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Introduction
[ 1o}

Let
@ y € R be a starting point,
@ (Xn),>; be a sequence of real random variables.

We construct the random walk as follows :

Vn > 1, y+Sp=y+ X1+ + X,

4/70



Introduction
oe

walks conditioned to stay

positive

We define the first time for which the walk enter in the non-positive
half-line :

7, =inf{k > 1, y + S5 <0}.
The fact that the walk stays positive until the time n can be written as

{y+5>0,y+5>0, ..., y+S5,>0} ={r, >n}.
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Introduction
[ Jelelele}

Previous results : the independent case

We assume that the sequence (X,),~; is

@ independent, identically distributed,

e centred E (X1) =0,

e with a moment of order 2, 02 = E (X2) € (0; +00).
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Limit theorems for walks conditioned to stay

positive, the independent case (1/3)

Theorem (Spitzer, 1960)

Let (X,),5; beiid IfE(X;)=0and 0 <E (X?) < +o0, then for any
y = 0, there exists V(y) > 0 such that

o 2V(y)
n—-+o00 \/277_,—;0-'

P(r, > n)

2\‘ e

7/70



Introduction
[e]e] lele}

Limit theorems for walks conditioned to stay
positive, the independent case (2/3)

Theorem (lglehart, Bolthausen, 1974-1976)

Let (X,),5; be iid. If E(X;) =0and 0 <E (X?) < +00, then for any
y>0and t >0,

lim P(y+5n<taﬁ’7},>n):1—e_7.

n—+00
ll
“
I

8
|“| il VAN

Xi ~ N (0,1)
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Limit theorems for walks conditioned to stay

positive, the independent case (3/3)

Conditioned local limit theorem (lglehart, 1974, Vatutin, Wachtel, 2008)

Let (X,,)n>1 beiid. fE(X;)=00<E (Xf) < +o00 and X is
non-lattice, then for any y > 0 and 0 < a < b,
fab V(z)dz

P(y + Sy €[a b]; 7, > n) s 100 V2nndl2g

Pz

P(y+Sa€(1,3]; 7y > n)
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Limit theorems for walks conditioned to stay
positive

Objective

To generalise the results when the increments (X,),, are a Markov
chain (and not necessarily independent).

P(r,>n) ~ 7

n——+oo

P(y+S.<tv/n|ry>n) ~ 7

n——+o0

i ?
HETOO]P’(y—i—SnG la,b]| Ty > n) 7

E. PRESMAN

(1967) Boundary problems for sums of lattice random variables, defined
on a finite regular markov chain. Theory of Probability and Its
Applications.

(1969) Methods of factorization and a boundary problems for sums of

random variables defined on a markov chain. lzvestija Akademii Nauk
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of the exit time
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The coupling

Theorem [Komlés-Major-Tusnady]

Let (Xp),s; i-id., E(X1) =0, 0 <E(|X;]") < +00, a > 2. There exists
€0 > 0 such that for any € € (0, €g], without loss of generality one can
reconstruct the sequence (S,)n>1 together with a continuous time
Brownian motion (B;):>o such that for any n > 1,

]P’( sup ‘SL"tJ — aBt,,| > n1/26> < &.
0<t<1 n¢
T}f’m:inf{t>0:y+03t<0}. J

We have c
bi €
M@>nnw%@gm%>n)+?;

If y > n'/27¢, we obtain that

b Gl B (1,9
P(ry > n) <P (7, 1y > n) + = < (1)
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The stopping time v,

For any y € R, we define

Uy = min{k} 1:y+5k>n1/276}.

By the Markov property, for any n > 1,

P(ry>n)=P(r, >n, v, < |n"¢|)+P(r, > n, v, > [n'7¢))

+o00
Z / P(ry >n—k)P(y+Scedy’, 7, >k, v,=k)+ R,
0

\z/

+c€> (y+Scedy , 7>k, vp=k)+ R,
27rn0 ne

- \/%a (1+ 7 ) B +Suim > ven v < [07]) + R
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The function V

Definition /Proposition 1.1

The following limit exists and is denoted by

V(y) = nliTooE(y+ Sn; 1y, > n) € (0,400).

V.

For any y € R,

lim E(y+S,,:7 > v, vn < [077]) = V(y).

n—+00

2
V2mno

P(r, > n) = <1+%>E(y+5,,n;Ty>un,un<p)+R,,.
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The function V

Definition /Proposition 1.1

The following limit exists and is denoted by

V(y) = nliTOOE(y+ Sn; 1y, > n) € (0,400).
For any y € R,
n—|i>TooE (y+Su,: 7 >n, va < [n'7¢]) = V(y).
Theorem 1.3
For any y € R,

o 2Vy)
n—+o0 \/2wno

P(r, > n)
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The harmonic function

Definition /Proposition 1.1

The following limit exists and is denoted by

V(y) := (y + Sn; 7, > n) € (0, +00).

lim E
n—+o00

Proposition 1.4

The function V' is harmonic : for any y € R,

Viy)=E(V(y+5S1);7 >1).
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Existence of the harmonic function

V(y)= lim V,(y)= lim E(y+S,; 7, > n) € (0,+00). J

n——+oo n——+oo

The killed random walk ((y + Sn)1{7y>n}),,>o is a submartingale :

Vori(y) =E(y + Sny1; 1y >n+1) 2 E(y + Sp; 7y > n) = Vip(y).

= It remains to prove that the sequence (V,(y)),s, is bounded.

17/70
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Integrability of the killed random walk

There exists ¢y > 0 such that for any € € (0,¢), y € R and n > 1,

E(y+ Sn; 7y > n) < y + cont/?72,

The proof is based on the fact that

02y+S, =y+5,1+X, >X,,.
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Integrability of the killed random walk

There exists ¢y > 0 such that for any € € (0,¢), y € R and n > 1,

E(y+S,; 7y >n) < y—|—c€n1/2*26.

The proof is based on the fact that
0 EYJFS@ :}/+5‘ry—l+X7'y >X7'y-

Ify > n1/275’
Ce
E(y+S,; 7 >n) < <1+;>y.

For any y € R, we define

Uy = min{k> 1:y+$k>n1/2_€}.
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Integrability of the killed random walk

Lemma 1.8

For any y e R and n > 1,

y<E(y+S,;7,>n)<c(l+y).

Definition/Proposition 1.1

The following limit exists and is denoted by

V(y) = lim E(y+S,; 7, > n) € (0, +00).

n——+oo
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Affine random walks

oe

The model

Let (an, bn),>, @ sequence of random variables i.i.d. The increments of
the walk are defined as follows. For any n > 0,

X,,+1 = a,,+1X,, + bn+1 and Xo=x€eR.
Condition 2.1

@ There exists a > 2 such that E (|a1|*) < 1 and E (|b1]") < +o0.

@ The random variable b; is non-zero with positive probability,
P (b1 # 0) > 0 and centred E (b;) = 0.

= (Xn),o is @ Markov chain with a unique invariant measure.
=

Y. GUIVARC’H, E. LE PAGE (2008). On spectral properties of a family
of transfer operators and convergence to stable laws for affine random
walks. Ergodic Theory and Dynamical Systems.

For any y € R and n > 1, the random walk is given by
Y+Sa=y+> X

k=1
24/70
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Affine random walks
o] ]

Martingale approximation

For any n > 1, let
M, = O (Xk) — PO (Xk-1),
k=1

where © is the solution of the Poisson equation. Then, (M,),~, is a
martingale. Moreover,

y+S,=z+ M, — pX,,

where E(a)
a

= — d = .

P=1"E@E ¢ #TyEex

26/70



Affine random walks
@00

Problem B

Martingale
approximation

Integrability
of the killed walk

v

Existence of the [ KMT ]

harmonic function approximation

[ Asymptotic
. . ————
l of the exit time

27/70



Affine random walks

@00

Problem B
Martingale
approximation

Integrability
of the killed walk

harmonic function approximation

[ EX|stence of the ] [ KMT ]

[ Asymptotic
l of the exit time

].=

27/70



Affine random walks
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The killed martingale, case E(a) > 0

The killed random walk ((y + Sn)1(7,5n}), -, i @ submartingale :

E(y+Smp1; 7, >n+1) >2E(y+ S, 7, > n).

Lemma 2.4.2

Assume Condition 2.1 and E(a) > 0.
Q@ ForallxeRand y >0,

Ty

— M., <0.
1—E(a) <z+ Mg

@ Forall x e R and y > 0, the sequence ((z + Mn)L{7,n}) a

submartingale.

0 1S
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Affine random walks
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The killed martingale, case E(a) < 0

Definition
For any x € R and y € R,

T,=min{k >1:z+ M, <0}

Lemma 2.4.6
Assume Condition 2.1 and E(a) < 0.
Q@ Forall xeR and y >0,

Ty & Uy

Q Forall x e R and y > 0, the sequence ((z+ M,)1;r, >,,})n>0 a

submartingale.
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Affine random walks
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The Markov property

There exists €y > 0 such that for any € € (0,¢), y € Rand n > 1,

E(y+S,; 7y >n) < y—l—c€n1/2’25.

E(y+S,; 7y > n)

< (1—1— %)E(y—&—s,,n; Ty > Up, Vp < Lnl_EJ) +coe ",
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Affine random walks
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The Markov property

There exists ¢y > 0 such that for any ¢ € (0,¢), y >0, x € Rand n > 1,

1/2—2¢

Ec(z+M,; 7, >n)<z+cen + c|x|.

E(y+ Sn; 7, > n)
< (1+%)E(y+5un; Ty > Vp, Vp < LnlfeJ)—i-cEe*Cﬁ"s.
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Affine random walks
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The Markov property

There exists ¢y > 0 such that for any ¢ € (0,¢), y >0, x € Rand n > 1,

1/2—2¢

Ec(z+M,; 7, >n)<z+cen + c|x|.

Ex (z+ M,; 7, > n)
<E((1+ ,‘;'—) (z+M,,)+c|X,,

v Ty > Vn, Vp < I_nl—EJ) = Rn-
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Affine random walks
(] J

The Markov property

There exists ¢y > 0 such that for any ¢ € (0,¢), y >0, x € Rand n > 1,

1/2—2¢

Ec(z+M,; 7, >n)<z+cen + c|x|.

Ex (z+ M,; 7, > n)
<E((1+ ,‘;'—) (z+M,,)+c|X,,

v Ty > Vn, Vp < I_nl—EJ) = Rn-

The perturbed time
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Affine random walks
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The Markov property

Ex (z+ M,; 7, > n)
Ce
< hid
< Ex ((1+ ne) (z+ My,) +c|X,,

5 Wy = Uy U S Lnl_eJ) + R,.

v

The perturbed time

vy =vp+ |n°].

4

Lemma 2.3.1

Ey (| Xa]) S c+e " |x].

\

cEx (|X;

P Ty > Vs, V< Lnl_EJ)

< cE, (1 +e X, |7y > v, vn < [nl_sj) )
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Affine random walks
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Existence of the harmonic function

Proposition 2.5.2

Assume Condition 2.1 and E(a) > 0. For any x € R and y > 0,

V(x,y) = HE)TOOEX (z+ M,; 7, > n).

Moreover, for any p € (2, a),

max(0,2) < V(x,y) < 6 (L+y + Ix|) (L + x|)" "

Proposition 2.4.8

Assume Condition 2.1 and E(a) < 0. For any x € R and y > 0,
V(x,y) = "_IiTOOIEX (z+M,; 7, > n).

Moreover, for any p € (2, a),
0< V(X,y)gcp(1+y+|x|p).
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Affine random walks
ooce

Conditioned affine random walks

Theorem 2.2.2

Assume Condition 2.1 and either Condition 2.2 and E(a) > 0 or
Condition 2.3, then for any x € X and y > 0,
2V(x,y)

]PX (Ty > n) n—;\-:-oo m

Theorem 2.2.4

Assume Condition 2.1 and either Condition 2.2 and E(a) > 0 or
Condition 2.3, then for any x € X, y > 0 and t > 0,

y+5,
<t
(57

| \

lim P,

n—+o00

T, > n) = @7 (1),

where ®1(t) =1 — e~ % is the Rayleigh distribution function.
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Markov walks with a spectral gap
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The spectral gap assumption

o Let (X,)
space X.

nen be a Markov chain with values in an abstract state

e For a given real function f : X = R, we set S, = > _, f (Xk).
o Let A be a Banach space of complex valued functions on X.

Hypothesis M3.2
The transition operator P satisfies for any g € £ :

Pg =v(g)e + Qg,

where v € %' is a linear form,

e is the constant function on X equal to 1

and @ is an operator on Z such that Q(e) =0, v o Q =0 and for any
n>1,

—cn

||Qn‘|g@_>ga Sce
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Markov walks with a spectral gap
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Examples of Markov walks with a spectral gap

The random walks with independent increments.
The affine random walks.
Markov walks with increments in a finite state space.

Markov walks with increments satisfying the Doeblin-Fortet
condition.

Y. GUIVARC’H AND J. HARDY (1988). Théoremes limites pour
une classe de chaine de Markov et applications aux difféomorphismes
d'Anosov. Annales de I'lHP Probabilités et statistiques.

Affine random walks in R conditioned to stay in a half-space :
Xot1 = Ans1Xn + Bos1,  (Ani1, Boy1) € GL(d,R) x R
and for any y € R,
n
Y+ Sa=y+ Y (u,X).
k=1
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Markov walks with a spectral gap
(o] lele)

The hybrid stopping time (1/2)

For any y € R and z € R,

0}
0}.

=min{k>1:y+ 5
>1

Ty <
T, := min {k cz4+ M, <

\

Definition (The hybrid stopping time)

For any x € X and z € R,

'i'z =min{k > 7, : z+ M, <0},

where y = z — r(x) and r(x) = PO(x).

39/70



Markov walks with a spectral gap
ooeo

The hybrid stopping time

For any x € X and z € R,

A

T, :=min{k > 7, : z+ M, <0},

where y = z — r(x) and r(x) = PO(x).

v

Lemma 3.5.4

e For any z € R,

Z+M?—Z<0
@ Forany x e X and y € R,

A

T, > max{r,, T,}

@ The sequence ((z + Mp) 14 >n}) N is a submartingale.
z ne

A\

— The application of the Markov property for the hybrid time is
different.
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Markov walks with a spectral gap
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Integrability of the killed martingale

Lemma 2.4.4

Assume Condition 2.1 and E(a) > 0. For any p € (2,a), x € R, y > 0
and n > 1,

B (z+ Mn: 7y >n) < 6o (1+y + |x]) (1+[x])P7

Lemma 2.4.8

Assume Condition 2.1. For any p € (2,a), x e R, y € Rand n > 1,

Ex (z+ Ma; Ty > n) < ¢ (14 max(y, 0) + |x|7).

There exists ¢ > 0 such that for any x € X, z€ Rand n> 1,

Ex (z—i— M,; T, > n) < ¢ (14 max(z,0) + N(x)).
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Markov walks with a spectral gap
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Positivity of the harmonic function

Proposition 3.8.6
For any 6 € (0,1), x € X and y > 0,

V(ix,y) = (1—98)y —cs (1 + N(x)).

D. DENISOV AND V. WACHTEL (2010). Conditioned limit theorems for
ordered random walks. Electronic Journal of Probability.

Definition

Forany x € X, y e Rand v > 0,

G =inf{k>1:y+ S >7(1+N(Xk))}
@w* (x,y) eXxR:3ng > 1, Py (¢y < o, 7y > ng) > 0}.
Proposition 3.8.8

There exists 79 > 0 such that for any v > g,

supp(V) = 2,.
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Markov walks with a spectral gap
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Asymptotic of the exit time

Theorem 3.2.3

@ For any (x,y) € supp(V),

2V(x,y)
Py (1, > n) o s

@ For any (x,y) ¢ supp(V) and n > 1,

Py (1, > n) < ce " (1+ N(x)).

NB : In the i.i.d. case, we have for any y ¢ supp(V) and n > 1,

P(r, > n) =0.
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Local limit theorems
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Conditioned local limit theorems (CLLT)

@ What is the survival probability of the walk until the time n?

2V(x,y)
PX (Ty > n) "_;'100 W

@ What is the behaviour of the walk conditioned to stay positive ?

+2

Pour t > 0, lim Px(y+5n<tﬁ|7y>n):1—e_2.
n—+o00

@ What it the local behaviour of the walk conditioned to stay positive ?

Pour 0 < a < b, Py (y + Sn € [a,b]| 7y > n) e ?

46/70



Local limit theorems
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Sketch of the proof of CLLT in i.i.d. case

Theorem (Stone, 1965)

Let (X,),>; beiid IFE(X;)=0,0<E (X?) < +o0 and X is
non-lattice, then for any y € R, z > 0 and a > 0,

a

Ply+S.clzzta) ~ —~—.

By the Markov property, with k = |n/2],

P(y+S,=2z,7,>n)

+00
:/ P(y'+Sk=2z,7 >k)P(y+Sp—k€dy’, 7y, >n—k)
0

< %P(Ty >n—k)
< e (1 max(0.y).
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Local limit theorems
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Sketch of the proof of CLLT in i.i.d. case

Corollary 4.5.5 (i.i.d.)
For any n > 1,

sup P(y+S,=2)<
yeR,z>0

Sl

By the Markov property, with k = | n/2],

P(y+S,=2z,7,>n)

+o00o
:/ P(y+Sx=2z,7 >k P(y+ Sk €dy’, 7, >n—k)
0

< WIF’(Ty >n— k)
c
< m(l—kmax(o,y)).
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Local limit theorems
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Sketch of the proof of CLLT in i.i.d. case

Lemma 4.6.1 (i.i.d.)
Foranyy e Rand n>1

supP(y+S,=2z,7,>n) <

(1+ max(0,)).
z>0

::Iﬁ

By the Markov property, with k = |n/2],
P(y+S,=2z,71,>n)

+o00

—/ P(y'+Sx=2z,7>k)P(y+ Sk €dy’, 7, >n—k)
0

c

< W}P’(Ty > n— k)
c
< m(l—i—max(o,y)).

47/70



Local limit theorems
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Sketch of the proof of CLLT in i.i.d. case

Lemma 4.6.1 (i.i.d.)
For any y € R and n > 1,

supP(y +S,=2z,7,>n) < %(l—i-max(O y)).
z20
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Local limit theorems
[e]ele] lo}

Sketch of the proof of CLLT in i.i.d. case

Lemma 4.3.2 (duality, i.i.d.)

P(y+Sk=z,7>k)=P(z+ S, =y, 1} >k)
<Z(+2).

By the Markov property, with k = |n/2],
P(y+S,=2z,71,>n)

+o00

:/ P(y'+Sk=z,7>k)P(y+ S,k €dy’, 7, >n—k)
0

g%ﬂ+zmﬁy>n—m

c

< —(1+ 1+ max(0, .

e (1 ) (L max(0.y))
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Sketch of the proof of CLLT in i.i.d. case

D. DENIsov, V. WACHTEL (2015).
Random walks in cones. The Annals of Probability.

Lemma 4.6.2 (i.i.d.)

Forany y e R, z>0and n>

P(y+S,=2z,71,>n)
< 3/2(1—i—max( y))(1+2).
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Local limit theorems
[e]e]e]e] }

Sketch of the proof of CLLT in i.i.d. case

D. DENIsov, V. WACHTEL (2015).
Random walks in cones. The Annals of Probability.

Lemma 4.6.2 (i.i.d.)

ForanyyeR,z>0and n>1

P(y+S,=2z,71,>n)

< 3/2 (14 max(0,y))(1+ 2).

— Duality lemma for Markov chain.

— The non-lattice case.
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Local limit theorems
@00

Hypotheses

o Let (X,),cy be a Markov chain on a finite state space X.
@ For a fixed function f : X — R and any y € R, the Markov walk is
defined by

y+Sa=y+ (X)) + -+ (X)), n>1.

@ The transition operator P of the Markov chain (X,),cy is assumed
primitive.

@ The function f is centred, v(f) = 0, where v is the invariant
measure.

@ The Markov walk is non-lattice : for any (a, ) € R?, there exists an
orbit xg, ..., X, in X such that

P(x0,x1) .. P(xp—1, %2)P(xn, %) > 0

and
f(xo)+ -+ f(xa) — (n+1)0 ¢ aZ.
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Local limit theorems

oeo

Conditioned local limit theorems

— Duality lemma for Markov chain.

The dual Markov transfer operator

For any (x,x’) € X2,

— The non-lattice case.

PX(Y+5n€[272+3]aTy>”)

=i

=>» P, (y+5€[z+ (k+1)a}77'y>n).
p’ P

0

T

==
i
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Local limit theorems
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Conditioned local limit theorems

Theorem 4.2.5

For any non-negative function ¥ : X - R, any a>0, xe X, y eR
and z > 0,

im 2B, (v(Xa); y + Sn € [2,2+ 3], 7, > n)

2V(X7Y) /z+a / /
= === E; (v (X7) V" (X, 2"+ S57) ; 7 > 1)dZ’.
arod J, (v (X7) V" (X 1) )

v
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Branching processes
@0000

Year 2 :
Conditioned
Markov walks

with a spectral

gap

Year 1 :
Conditioned affine
Markov walks

Year 3 :

Branching Year 3 :
processes Conditioned local
in Markov limit theorems

environment
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Branching processes
[¢] lele]e}

The model

o Let (X,),cn be a Markov chain in a finite state space X.
— X, is the environment at the time n.

e For any i € X, we consider a family (¢//), =1 of i.i.d. random
variables. The branching process (Z5), is defined recursively by
Zy =1 and for any n > 1,

Zn_1
_ n.j
Zy = &
Jj=1

@ For any i € X, let f; be the common generated function of
n.j .
(5, )n,j>1 '
fi(s) =E (55"1’1> , for any s € [0, 1].
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Branching processes
[e]e] le]e]

Recall of the results in the independent case (1/2)

The critical case (Geiger, Kersting, 2001)
Suppose integrability assumptions and E (In (f/(1))) = 0. Then,

C

The strongly subcritical case (Guivarc'h, Liu, 2001)

Suppose integrability assumptions and E (f'(1) In (f'(1))) < 0. Then,

M4>0%$%cmuﬁmﬁ
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Branching processes
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Recall of the results in the independent case (2/2)

The intermediate subcritical case (Geiger, Kersting, Vatutin, 2003)

Suppose integrability assumptions, E (In (f'(1))) < 0 and
E(f'(1)In(f'(1))) = 0. Then,

P(Z, > 0) [BEIF

~

n——+o00 \/E

The weakly subcritical case (Geiger, Kersting, Vatutin, 2003)

Suppose integrability assumptions, E (In (f'(1))) < 0 and
E(f(1)In(f'(1))) > 0. Then, there exists v € (0, 1) such that

n

cy
n—+o0o n3/2°

P(Z, > 0)
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Branching processes

O000e

The link with the Markov walk

A. AGRESTI (1974). Bound on the extinction time distribution of a
branching process. Advances in Applied Probability.

Lemma 5.3.2
ForanyieXand n>1

]P),' (Z,, > 0) = E,‘ (qn) = ]E,'

n—1 -1
) )
e "+ § e > Nit1,n )

k=0

where (nk+1a")n>k>0 are uniformly bounded random variables,

Sn=In(fr (1) fx (1)) prk

and
p(i) =In(f (1)), for any i € X.
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Branching processes
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The critical case in Markov environment : v(p) =0

The critical case

Assume that

v(p) =Y In(f(1)v(i)=0,

ieX

where v is the invariant measure of the Markov chain (X,,)n>1.
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The critical case in Markov environment : v(p) =0

The link with
the Markov walk
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Branching processes
00e0000

The positive trajectories

n—1

—1 ) )
g, =e "+ § e 7 Nkt1,n-
k=0

Lemma 5.4.1
For any m > 1 and (i, y) € supp(V),

IiTOO]P’,-(Zm >0|1, >n)= E,fy(qm),

n—

where for any k > 1 and g : XK = C,

1

WIE,- (g(X1y .- s Xk)V( Xy y + Sk) i 1y > k).

E;’t_y (g(Xla 000 7Xk)) =

v
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The critical case in Markov environment : v(p) =0

The link with
the Markov walk
( The positive )
trajectories
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Branching processes

0000800

The convergence of the process E;, (g,)

71 fS,,
+Ze 77k+1,n~

Lemma 5.3.13

For any (i,y) € supp(V) and k > 1

B 1+ max(0, y)) e
Ef, (e5) < <4 :
STy

where we recall that ]P’,fy is the probability under which the trajectories
(¥ + Sn) > stay positive.

Lemma 5.4.3
For any (i,y) € supp(V),

| A

lim  lim P;(Zn,>0|7,>n)= lim Ef (qm) = U(i,y).

m—+00 n—+00 m—+00
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Branching processes
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The convergence of the process E;, (g,)

71 75,,
+Ze 7’]k+1,n.

Lemma 5.3.13

For any (i,y) € supp(V) and k > 1

_ 1+ max(0, y)) e
EF S) < el ’
iy (€7) KkBRV(y)

where we recall that ]P’,fy is the probability under which the trajectories
(¥ + Sn) > stay positive.

Lemma 5.4.6
For any (i,y) € supp(V),

| A

lim JP’(Z > 0|1, >n)=U(i,y).

n——+
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The critical case in Markov environment : v(p) =0

The link with
the Markov walk
( The positive )
trajectories

The conditional local
limit theorem

[ The convergence ]

of Ef, (qm)
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Branching processes
000000

The critical case in Markov environment : v(p) =0

The link with
the Markov walk
( The positive )
trajectories

The conditional local
limit theorem

The convergence
| ofEl(m)
( The survival )
probability
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Result in the critical case in Markov environment

There exists a positive function u on X such that, for any (i, /) € X2,

20 %), 2020

64 /70



Branching processes
[ Jelele]e}

The subcritical case in Markov environment : v(p) < 0

For any A € R, consider P defined by
Pag(i) = P (¥ g) (i) = E; (e g (X)) ,

for any i € X and any function g : X — C.
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Branching processes
[ Jelele]e}

The subcritical case in Markov environment : v(p) < 0

For any A € R, consider P defined by
Pag(i) = P (¥ g) (i) = E; (e g (X)) ,

for any i € X and any function g : X — C.The operator P, has the
following decomposition :

Pag(i) = k(Mva(g)vali) + Qx(g)(i),

where
@ k(XA) > 0 is an eigenvalue of P, and its spectral radius,
@ v) is a positive linear form,
@ v, is a positive function on X and an eigenvector of P,
@ Q) is an operator with a spectral radius strictly less than k().
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Branching processes
[ Jelele]e}

The subcritical case in Markov environment : v(p) < 0

For any A € R, consider P defined by
Pag(i) = P (¥ g) (i) = E; (e g (X)) ,

for any i € X and any function g : X — C.The operator P, has the
following decomposition :

Pxg(i) = k(Ava(g)va(i) + Qa(g)(i),
where
@ k(XA) > 0 is an eigenvalue of P, and its spectral radius,
@ v) is a positive linear form,
@ v, is a positive function on X and an eigenvector of P,
@ Q) is an operator with a spectral radius strictly less than k().
The operator

lSAg(i) = P (gw) () Ej (eAsl g (X1) va (X1))

k(i) k(Ava(i) ’

is a Markov operator.
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The subcritical case in Markov environment : v(p) < 0

The drift of the walk under the changed measure is given by

7a(p) = va(pva) = > In (' (1)) va(wa ().

ieX

Lemma 5.3.15

The function K : A — In(k())) is strictly convex and satisfies :
K'(A)
! _ o~
d " ~ 2 ~ 2 = ~ DN ~ 2
K"(X) = oy (p°) — Da(p)” + 22 (&5 (pP3p) — Pa(p)?] > 0.
n=1

Y. GUIVARC’H AND J. HARDY (1988). Théorémes limites pour une
classe de chaine de Markov et applications aux difféomorphismes
d'Anosov. Annales de I'lHP Probabilités et statistiques.
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The subcritical case in Markov environment : v(p) < 0
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The subcritical case in Markov environment : v(p) < 0

W

Taking A = 1, we obtain

E; (gn) = k(1) (1) ((1)()

n—1 -1
L) e nk+1,n‘| ) :
k=0
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Results in the subcritical case in Markov environment

Theorem 5.2.2 (strongly subcritical case)

If k’(0) < 0 and k’(1) < 0 then there exists a positive function u on X
such that for any (i,j) € X2,

Ilm Pi(Z, > 0, X, =) ele k(1)"va(i)u()).

n——+

A\

Theorem 5.2.3 (intermediate subcritical case)

If k’(0) < 0 and k’(1) = 0 then there exists a positive function u on X
such that for any (i,j) € X,

I|m Pi(Z, >0, X,=j) ~ k()"

n——+ n——+o00 \/E Vl(i)u(j).

A
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Results in the subcritical case in Markov environment

Theorem 5.2.3 (weakly subcritical case)

If k’(0) < 0 and k’(1) > 0 then there exist a unique Ao € (0,1) and a
positive function u on X2 such that for any (i, ) € X2,

Bz o0 X KOo) .
AP (20> 0, X0 =J) | o2 —apulind)

69/70



Publications

Publications

@ Limit theorems for affine Markov walks conditioned to stay positive.
Annales de I'institut Henri Poincaré, (B) Probabilités et Statistiques,
2016 (in press).

@ Limit theorems for Markov walks conditioned to stay positive under
a spectral gap assumption.
Annals of Probability, 2017 (in press).

@ Conditioned local limit theorems for Markov walks defined on finite
Markov chains, 2017 (preprint).

@ The survival probability of critical and subcritical branching processes
in finite state space Markovian environment, 2017 (preprint).
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