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Limit theorems for Markov walks conditioned to stay
positive

Let
y ∈ R be a starting point,
(Xn)n>1 be a sequence of real random variables.

We construct the random walk as follows :

∀n > 1, y + Sn = y + X1 + · · ·+ Xn.
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Limit theorems for Markov walks conditioned to stay
positive

We define the first time for which the walk enter in the non-positive
half-line :

τy = inf {k > 1, y + Sk 6 0} .
The fact that the walk stays positive until the time n can be written as

{y + S1 > 0, y + S2 > 0, . . . , y + Sn > 0} = {τy > n} .
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Previous results : the independent case

We assume that the sequence (Xn)n>1 is

independent, identically distributed,

centred E (X1) = 0,

with a moment of order 2, σ2 = E
(
X 2
1
)
∈ (0; +∞).
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Limit theorems for Markov walks conditioned to stay
positive, the independent case (1/3)

Theorem (Spitzer, 1960)

Let (Xn)n>1 be i.i.d. If E (X1) = 0 and 0 < E
(
X 2
1
)
< +∞, then for any

y > 0, there exists V (y) > 0 such that

P (τy > n) ∼
n→+∞

2V (y)√
2πnσ

.
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Limit theorems for Markov walks conditioned to stay
positive, the independent case (2/3)

Theorem (Iglehart, Bolthausen, 1974-1976)

Let (Xn)n>1 be i.i.d. If E (X1) = 0 and 0 < E
(
X 2
1
)
< +∞, then for any

y > 0 and t > 0,
lim

n→+∞
P
(

y + Sn 6 tσ
√

n
∣∣ τy > n

)
= 1− e− t2

2 .
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Limit theorems for Markov walks conditioned to stay
positive, the independent case (3/3)

Conditioned local limit theorem (Iglehart, 1974, Vatutin, Wachtel, 2008)

Let (Xn)n>1 be i.i.d. If E (X1) = 0, 0 < E
(
X 2
1
)
< +∞ and X1 is

non-lattice, then for any y > 0 and 0 6 a < b,

P (y + Sn ∈ [a, b] ; τy > n) ∼
n→+∞

∫ b
a V (z) dz
√
2πn3/2σ

.
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Limit theorems for Markov walks conditioned to stay
positive

Objective
To generalise the results when the increments (Xn)n>1 are a Markov
chain (and not necessarily independent).

P (τy > n) ∼
n→+∞

?

P
(

y + Sn 6 t
√

n
∣∣ τy > n

)
∼

n→+∞
?

lim
n→+∞

P (y + Sn ∈ [a, b] | τy > n ) ?

E. Presman
(1967) Boundary problems for sums of lattice random variables, defined
on a finite regular markov chain. Theory of Probability and Its
Applications.
(1969) Methods of factorization and a boundary problems for sums of
random variables defined on a markov chain. Izvestija Akademii Nauk
SSSR. 10/70
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General approach based on the coupling method

Integrability
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the harmonic function

KMT
approximation

Asymptotic
of the exit time
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The coupling

Theorem [Komlós-Major-Tusnády]
Let (Xn)n>1 i.i.d., E (X1) = 0, 0 < E (|X1|α) < +∞, α > 2. There exists
ε0 > 0 such that for any ε ∈ (0, ε0], without loss of generality one can
reconstruct the sequence (Sn)n>1 together with a continuous time
Brownian motion (Bt)t>0 such that for any n > 1,

P
(

sup
06t61

∣∣Sbntc − σBtn
∣∣ > n1/2−ε

)
6

cε
nε .

τbm
y = inf{t > 0 : y + σBt 6 0}.

We have
P (τy > n) 6 P

(
τbm

y+n1/2−2ε > n
)

+ cε
n2ε .

If y > n1/2−ε, we obtain that

P (τy > n) 6 P
(
τbm

y(1+ 1
nε ) > n

)
+ cε

n2ε 6
2y√
2πnσ

(
1 + cε

nε
)
.
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The stopping time νn

For any y ∈ R, we define

νn := min
{

k > 1 : y + Sk > n1/2−ε
}
.

By the Markov property, for any n > 1,

P (τy > n) = P
(
τy > n , νn 6

⌊
n1−ε

⌋)
+ P

(
τy > n , νn >

⌊
n1−ε

⌋)
=
bn1−εc∑

k=1

∫ +∞

0
P (τy ′ > n − k)P (y + Sk ∈ dy ′ , τy > k , νn = k) + Rn

6

bn1−εc∑
k=1

∫ +∞

0

2y ′√
2πnσ

(
1 + cε

nε
)
P (y + Sk ∈ dy ′ , τy > k , νn = k) + Rn

= 2√
2πnσ

(
1 + cε

nε
)
E
(
y + Sνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ Rn.
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The function V

Definition/Proposition 1.1
The following limit exists and is denoted by

V (y) := lim
n→+∞

E (y + Sn ; τy > n) ∈ (0,+∞).

Lemma 1.2
For any y ∈ R,

lim
n→+∞

E
(
y + Sνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
= V (y).

P (τy > n) = 2√
2πnσ

(
1 + cε

nε
)
E (y + Sνn ; τy > νn , νn 6 p) + Rn.
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The function V

Definition/Proposition 1.1
The following limit exists and is denoted by

V (y) := lim
n→+∞

E (y + Sn ; τy > n) ∈ (0,+∞).

Lemma 1.2
For any y ∈ R,

lim
n→+∞

E
(
y + Sνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
= V (y).

Theorem 1.3
For any y ∈ R,

P (τy > n) ∼
n→+∞

2V (y)√
2πnσ

.

14/70



Introduction Affine random walks Markov walks with a spectral gap Local limit theorems Branching processes Publications

General approach based on the coupling method
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The harmonic function

Definition/Proposition 1.1
The following limit exists and is denoted by

V (y) := lim
n→+∞

E (y + Sn ; τy > n) ∈ (0,+∞).

Proposition 1.4
The function V is harmonic : for any y ∈ R,

V (y) = E (V (y + S1) ; τy > 1) .
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Existence of the harmonic function

V (y) = lim
n→+∞

Vn(y) = lim
n→+∞

E (y + Sn ; τy > n) ∈ (0,+∞).

Lemma 1.5
The killed random walk

(
(y + Sn)1{τy>n}

)
n>0 is a submartingale :

Vn+1(y) := E (y + Sn+1 ; τy > n + 1) > E (y + Sn ; τy > n) =: Vn(y).

⇒ It remains to prove that the sequence (Vn(y))n>0 is bounded.
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Integrability of the killed random walk (1/2)

Lemma 1.6
There exists ε0 > 0 such that for any ε ∈ (0, ε0), y ∈ R and n > 1,

E (y + Sn ; τy > n) 6 y + cεn1/2−2ε.

The proof is based on the fact that

0 > y + Sτy = y + Sτy−1 + Xτy > Xτy .

If y > n1/2−ε,
E (y + Sn ; τy > n) 6

(
1 + cε

nε
)

y .

For any y ∈ R, we define

νn := min
{

k > 1 : y + Sk > n1/2−ε
}
.
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Integrability of the killed random walk (2/2)

Lemma 1.8
For any y ∈ R and n > 1,

y 6 E (y + Sn ; τy > n) 6 c(1 + y).

Definition/Proposition 1.1
The following limit exists and is denoted by

V (y) := lim
n→+∞

E (y + Sn ; τy > n) ∈ (0,+∞).
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The model

Let (an, bn)n>1 a sequence of random variables i.i.d. The increments of
the walk are defined as follows. For any n > 0,

Xn+1 = an+1Xn + bn+1 and X0 = x ∈ R.

Condition 2.1
1 There exists α > 2 such that E (|a1|α) < 1 and E (|b1|α) < +∞.
2 The random variable b1 is non-zero with positive probability,

P (b1 6= 0) > 0 and centred E (b1) = 0.

⇒ (Xn)n>0 is a Markov chain with a unique invariant measure.
Y. Guivarc’h, E. Le Page (2008). On spectral properties of a family
of transfer operators and convergence to stable laws for affine random
walks. Ergodic Theory and Dynamical Systems.
For any y ∈ R and n > 1, the random walk is given by

y + Sn = y +
n∑

k=1
Xk .
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Martingale approximation

For any n > 1, let

Mn =
n∑

k=1
Θ (Xk)− PΘ (Xk−1) ,

where Θ is the solution of the Poisson equation. Then, (Mn)n>1 is a
martingale. Moreover,

y + Sn = z + Mn − ρXn,

where
ρ = E(a)

1− E(a) and z = y + ρx .
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The killed martingale, case E(a) > 0

Lemma 1.5
The killed random walk

(
(y + Sn)1{τy>n}

)
n>0 is a submartingale :

E (y + Sn+1 ; τy > n + 1) > E (y + Sn ; τy > n) .

Lemma 2.4.2
Assume Condition 2.1 and E(a) > 0.

1 For all x ∈ R and y > 0,
Xτy

1− E(a) < z + Mτy 6 0.

2 For all x ∈ R and y > 0, the sequence
(
(z + Mn)1{τy>n}

)
n>0 is a

submartingale.
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The killed martingale, case E(a) < 0

Definition
For any x ∈ R and y ∈ R,

Ty = min {k > 1 : z + Mk 6 0}

Lemma 2.4.6
Assume Condition 2.1 and E(a) < 0.

1 For all x ∈ R and y > 0,
τy 6 Ty

2 For all x ∈ R and y > 0, the sequence
(
(z + Mn)1{Ty>n}

)
n>0 is a

submartingale.
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The Markov property

Lemma 1.6
There exists ε0 > 0 such that for any ε ∈ (0, ε0), y ∈ R and n > 1,

E (y + Sn ; τy > n) 6 y + cεn1/2−2ε.

E (y + Sn ; τy > n)

6
(
1 + cε

nε
)
E
(
y + Sνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ cε e−cεnε .
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The Markov property

Lemma 2.4.3
There exists ε0 > 0 such that for any ε ∈ (0, ε0), y > 0, x ∈ R and n > 1,

Ex (z + Mn ; τy > n) 6 z + cεn1/2−2ε + c |x |.

E (y + Sn ; τy > n)

6
(
1 + cε

nε
)
E
(
y + Sνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ cε e−cεnε .
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The Markov property

Lemma 2.4.3
There exists ε0 > 0 such that for any ε ∈ (0, ε0), y > 0, x ∈ R and n > 1,

Ex (z + Mn ; τy > n) 6 z + cεn1/2−2ε + c |x |.

Ex (z + Mn ; τy > n)

6 Ex

((
1 + cε

nε
)

(z + Mνn ) + c |Xνn | ; τy > νn , νn 6
⌊
n1−ε

⌋)
+ Rn.
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The Markov property

Lemma 2.4.3
There exists ε0 > 0 such that for any ε ∈ (0, ε0), y > 0, x ∈ R and n > 1,

Ex (z + Mn ; τy > n) 6 z + cεn1/2−2ε + c |x |.

Ex (z + Mn ; τy > n)

6 Ex

((
1 + cε

nε
)

(z + Mνn ) + c |Xνn | ; τy > νn , νn 6
⌊
n1−ε

⌋)
+ Rn.

The perturbed time

νεn := νn + bnεc .
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The Markov property

Ex (z + Mn ; τy > n)

6 Ex

((
1 + cε

nε
)

(z + Mνn ) + c |Xνn | ; τy > νn , νn 6
⌊
n1−ε

⌋)
+ Rn.

The perturbed time

νεn := νn + bnεc .

Lemma 2.3.1

Ex (|Xn|) 6 c + e−cn |x | .

cEx
(∣∣Xνεn ∣∣ ; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
6 cEx

(
1 + e−cbnεc |Xνn | ; τy > νn , νn 6

⌊
n1−ε

⌋)
.
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Existence of the harmonic function

Proposition 2.5.2
Assume Condition 2.1 and E(a) > 0. For any x ∈ R and y > 0,

V (x , y) = lim
n→+∞

Ex (z + Mn ; τy > n) .

Moreover, for any p ∈ (2, α),

max(0, z) 6 V (x , y) 6 cp (1 + y + |x |) (1 + |x |)p−1
.

Proposition 2.4.8
Assume Condition 2.1 and E(a) < 0. For any x ∈ R and y > 0,

V (x , y) = lim
n→+∞

Ex (z + Mn ; τy > n) .

Moreover, for any p ∈ (2, α),
0 6 V (x , y) 6 cp

(
1 + y + |x |p

)
.
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Conditioned affine random walks

Theorem 2.2.2
Assume Condition 2.1 and either Condition 2.2 and E(a) > 0 or
Condition 2.3, then for any x ∈ X and y > 0,

Px (τy > n) ∼
n→+∞

2V (x , y)√
2πnσ

.

Theorem 2.2.4
Assume Condition 2.1 and either Condition 2.2 and E(a) > 0 or
Condition 2.3, then for any x ∈ X, y > 0 and t > 0,

lim
n→+∞

Px

(
y + Sn

σ
√

n
6 t

∣∣∣∣ τy > n
)

= Φ+(t),

where Φ+(t) = 1− e− t2
2 is the Rayleigh distribution function.
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The spectral gap assumption

Let (Xn)n∈N be a Markov chain with values in an abstract state
space X.
For a given real function f : X→ R, we set Sn =

∑n
k=1 f (Xk).

Let B be a Banach space of complex valued functions on X.

Hypothesis M3.2
The transition operator P satisfies for any g ∈ B :

Pg = ν(g)e + Qg ,

where ν ∈ B′ is a linear form,
e is the constant function on X equal to 1
and Q is an operator on B such that Q(e) = 0, ν ◦ Q = 0 and for any
n > 1,

‖Qn‖B→B 6 c e−cn .
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Examples of Markov walks with a spectral gap

The random walks with independent increments.
The affine random walks.
Markov walks with increments in a finite state space.
Markov walks with increments satisfying the Doeblin-Fortet
condition.
Y. Guivarc’h and J. Hardy (1988). Théorèmes limites pour
une classe de chaîne de Markov et applications aux difféomorphismes
d’Anosov. Annales de l’IHP Probabilités et statistiques.
Affine random walks in Rd conditioned to stay in a half-space :

Xn+1 = An+1Xn + Bn+1, (An+1,Bn+1) ∈ GL (d ,R)× Rd

and for any y ∈ R,

y + Sn = y +
n∑

k=1
〈u,Xn〉.
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The hybrid stopping time (1/2)

Definition
For any y ∈ R and z ∈ R,

τy := min {k > 1 : y + Sk 6 0}
Tz := min {k > 1 : z + Mk 6 0} .

Definition (The hybrid stopping time)
For any x ∈ X and z ∈ R,

T̂z := min {k > τy : z + Mk 6 0} ,

where y = z − r(x) and r(x) = PΘ(x).
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The hybrid stopping time (2/2)
Definition
For any x ∈ X and z ∈ R,

T̂z := min {k > τy : z + Mk 6 0} ,

where y = z − r(x) and r(x) = PΘ(x).

Lemma 3.5.4
For any z ∈ R,

z + MT̂z
6 0

For any x ∈ X and y ∈ R,
T̂z > max {τy ,Tz}

The sequence
(

(z + Mn)1{T̂z>n}

)
n∈N

is a submartingale.

−→ The application of the Markov property for the hybrid time is
different.
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Integrability of the killed martingale

Lemma 2.4.4
Assume Condition 2.1 and E(a) > 0. For any p ∈ (2, α), x ∈ R, y > 0
and n > 1,

Ex (z + Mn ; τy > n) 6 cp (1 + y + |x |) (1 + |x |)p−1
.

Lemma 2.4.8
Assume Condition 2.1. For any p ∈ (2, α), x ∈ R, y ∈ R and n > 1,

Ex (z + Mn ; Ty > n) 6 cp
(
1 + max(y , 0) + |x |p

)
.

Lemma 3.6.4
There exists c > 0 such that for any x ∈ X, z ∈ R and n > 1,

Ex

(
z + Mn ; T̂z > n

)
6 c (1 + max(z , 0) + N(x)) .
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Positivity of the harmonic function
Proposition 3.8.6
For any δ ∈ (0, 1), x ∈ X and y > 0,

V (x , y) > (1− δ)y − cδ (1 + N(x)) .

D. Denisov and V. Wachtel (2010). Conditioned limit theorems for
ordered random walks. Electronic Journal of Probability.

Definition
For any x ∈ X, y ∈ R and γ > 0,

ζγ = inf {k > 1 : |y + Sk | > γ (1 + N (Xk))}
Dγ = {(x , y) ∈ X× R : ∃n0 > 1, Px (ζγ 6 n0, τy > n0) > 0} .

Proposition 3.8.8
There exists γ0 > 0 such that for any γ > γ0,

supp(V ) = Dγ .
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Asymptotic of the exit time

Theorem 3.2.3
1 For any (x , y) ∈ supp(V ),

Px (τy > n) ∼
n→+∞

2V (x , y)√
2πnσ

.

2 For any (x , y) /∈ supp(V ) and n > 1,

Px (τy > n) 6 c e−cn (1 + N(x)) .

NB : In the i.i.d. case, we have for any y /∈ supp(V ) and n > 1,

P (τy > n) = 0.
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Conditioned local limit theorems (CLLT)

What is the survival probability of the walk until the time n ?

Px (τy > n) ∼
n→+∞

2V (x , y)√
2πnσ

.

What is the behaviour of the walk conditioned to stay positive ?

Pour t > 0, lim
n→+∞

Px
(

y + Sn 6 t
√

n
∣∣ τy > n

)
= 1− e− t2

2 .

What it the local behaviour of the walk conditioned to stay positive ?

Pour 0 6 a < b, Px (y + Sn ∈ [a, b] | τy > n ) ∼
n→+∞

?
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Sketch of the proof of CLLT in i.i.d. case (1/3)

Theorem (Stone, 1965)

Let (Xn)n>1 be i.i.d. If E (X1) = 0, 0 < E
(
X 2
1
)
< +∞ and X1 is

non-lattice, then for any y ∈ R, z > 0 and a > 0,

P (y + Sn ∈ [z , z + a]) ∼
n→+∞

a√
2πnσ

.

By the Markov property, with k = bn/2c,

P (y + Sn = z , τy > n)

=
∫ +∞

0
P (y ′ + Sk = z , τy ′ > k)P (y + Sn−k ∈ dy ′ , τy > n − k)

6
c√
k
P (τy > n − k)

6
c√

k
√

n − k
(1 + max(0, y)) .
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Sketch of the proof of CLLT in i.i.d. case (1/3)

Corollary 4.5.5 (i.i.d.)
For any n > 1,

sup
y∈R,z>0

P (y + Sn = z) 6 c√
n
.

By the Markov property, with k = bn/2c,

P (y + Sn = z , τy > n)

=
∫ +∞

0
P (y ′ + Sk = z , τy ′ > k)P (y + Sn−k ∈ dy ′ , τy > n − k)

6
c√
k
P (τy > n − k)

6
c√

k
√

n − k
(1 + max(0, y)) .
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Lemma 4.6.1 (i.i.d.)
For any y ∈ R and n > 1,

sup
z>0

P (y + Sn = z , τy > n) 6 c
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By the Markov property, with k = bn/2c,
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Lemma 4.6.1 (i.i.d.)
For any y ∈ R and n > 1,

sup
z>0

P (y + Sn = z , τy > n) 6 c
n (1 + max(0, y)) .

X1 ↔ X∗n , X2 ↔ X∗n−1, . . . , Xn ↔ X∗1 , Sn ↔ −S∗n .

Lemma 4.3.2 (duality, i.i.d.)

P (y + Sn = z , τy > n) = P (z + S∗n = y , τ∗z > n)

6
c
n (1 + z) .
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Sketch of the proof of CLLT in i.i.d. case (2/3)

Lemma 4.3.2 (duality, i.i.d.)

P (y + Sk = z , τy ′ > k) = P (z + S∗k = y , τ∗z > k)

6
c
k (1 + z) .

By the Markov property, with k = bn/2c,

P (y + Sn = z , τy > n)

=
∫ +∞

0
P (y ′ + Sk = z , τy ′ > k)P (y + Sn−k ∈ dy ′ , τy > n − k)

6
c
k (1 + z)P (τy > n − k)

6
c

k
√

n − k
(1 + z) (1 + max(0, y)) .
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Sketch of the proof of CLLT in i.i.d. case (3/3)

D. Denisov, V. Wachtel (2015).
Random walks in cones. The Annals of Probability.

Lemma 4.6.2 (i.i.d.)
For any y ∈ R, z > 0 and n > 1,

P (y + Sn = z , τy > n)

6
c

n3/2
(1 + max(0, y)) (1 + z) .

→ Duality lemma for Markov chain.

→ The non-lattice case.
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Hypotheses

Let (Xn)n∈N be a Markov chain on a finite state space X.
For a fixed function f : X→ R and any y ∈ R, the Markov walk is
defined by

y + Sn = y + f (X1) + · · ·+ f (Xn), n > 1.

The transition operator P of the Markov chain (Xn)n∈N is assumed
primitive.
The function f is centred, ν(f ) = 0, where ν is the invariant
measure.
The Markov walk is non-lattice : for any (a, θ) ∈ R2, there exists an
orbit x0, . . . , xn in X such that

P(x0, x1) . . .P(xn−1, xn)P(xn, x0) > 0

and
f (x0) + · · ·+ f (xn)− (n + 1)θ /∈ aZ.
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Conditioned local limit theorems

→ Duality lemma for Markov chain.

The dual Markov transfer operator
For any (x , x ′) ∈ X2,

P∗(x , x ′) := ν(x ′)
ν(x) P(x ′, x).

→ The non-lattice case.

Px (y + Sn ∈ [z , z + a] , τy > n)

=
p−1∑
k=0

Px

(
y + Sn ∈

[
z + ka

p , z + (k + 1)a
p

]
, τy > n

)
.
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Conditioned local limit theorems

Theorem 4.2.5
For any non-negative function ψ : X→ R+, any a > 0, x ∈ X, y ∈ R
and z > 0,

lim
n→+∞

n3/2Ex (ψ(Xn) ; y + Sn ∈ [z , z + a] , τy > n)

= 2V (x , y)√
2πσ3

∫ z+a

z
E∗ν (ψ (X∗1 ) V ∗ (X∗1 , z ′ + S∗1 ) ; τ∗z′ > 1) dz ′.
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The model

Let (Xn)n∈N be a Markov chain in a finite state space X.
→ Xn is the environment at the time n.

For any i ∈ X, we consider a family (ξn,j
i )n,j>1 of i.i.d. random

variables. The branching process (Zn)n>0 is defined recursively by
Z0 = 1 and for any n > 1,

Zn =
Zn−1∑
j=1

ξn,j
Xn

For any i ∈ X, let fi be the common generated function of(
ξn,j

i

)
n,j>1

:

fi (s) = E
(

sξ
1,1
i

)
, for any s ∈ [0, 1].
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Recall of the results in the independent case (1/2)

The critical case (Geiger, Kersting, 2001)
Suppose integrability assumptions and E (ln (f ′(1))) = 0. Then,

P (Zn > 0) ∼
n→+∞

c√
n
.

The strongly subcritical case (Guivarc’h, Liu, 2001)
Suppose integrability assumptions and E (f ′(1) ln (f ′(1))) < 0. Then,

P (Zn > 0) ∼
n→+∞

c [E (f ′(1))]n .
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Recall of the results in the independent case (2/2)

The intermediate subcritical case (Geiger, Kersting, Vatutin, 2003)
Suppose integrability assumptions, E (ln (f ′(1))) < 0 and
E (f ′(1) ln (f ′(1))) = 0. Then,

P (Zn > 0) ∼
n→+∞

c [E (f ′(1))]n√
n

.

The weakly subcritical case (Geiger, Kersting, Vatutin, 2003)
Suppose integrability assumptions, E (ln (f ′(1))) < 0 and
E (f ′(1) ln (f ′(1))) > 0. Then, there exists γ ∈ (0, 1) such that

P (Zn > 0) ∼
n→+∞

cγn

n3/2
.
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The link with the Markov walk

A. Agresti (1974). Bound on the extinction time distribution of a
branching process. Advances in Applied Probability.

Lemma 5.3.2
For any i ∈ X and n > 1,

Pi (Zn > 0) = Ei (qn) := Ei

[e−Sn +
n−1∑
k=0

e−Sk ηk+1,n

]−1 ,

where (ηk+1,n)n>k>0 are uniformly bounded random variables,

Sn = ln
(
f ′X1

(1) · · · f ′Xn
(1)
)

=
n∑

k=1
ρ (Xk)

and
ρ(i) = ln (f ′i (1)) , for any i ∈ X.
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The critical case in Markov environment : ν(ρ) = 0

The critical case
Assume that

ν (ρ) =
∑
i∈X

ln (f ′i (1)) ν(i) = 0,

where ν is the invariant measure of the Markov chain (Xn)n>1.
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The positive trajectories

q−1n = e−Sn +
n−1∑
k=0

e−Sk ηk+1,n.

Lemma 5.4.1
For any m > 1 and (i , y) ∈ supp(V ),

lim
n→+∞

Pi (Zm > 0 | τy > n ) = E+
i,y (qm),

where for any k > 1 and g : Xk → C,

E+
i,y (g(X1, . . . ,Xk)) = 1

V (i , y)Ei (g(X1, . . . ,Xk)V (Xk , y + Sk) ; τy > k) .
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The convergence of the process E+
i ,y (qn)

q−1n = e−Sn +
n−1∑
k=0

e−Sk ηk+1,n.

Lemma 5.3.13
For any (i , y) ∈ supp(V ) and k > 1,

E+
i,y
(
e−Sk

)
6

c (1 + max(0, y)) ey

k3/2V (i , y)
,

where we recall that P+
i,y is the probability under which the trajectories

(y + Sn)n>1 stay positive.

Lemma 5.4.3
For any (i , y) ∈ supp(V ),

lim
m→+∞

lim
n→+∞

Pi (Zm > 0 | τy > n ) = lim
m→+∞

E+
i,y (qm) = U(i , y).
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The convergence of the process E+
i ,y (qn)

q−1n = e−Sn +
n−1∑
k=0

e−Sk ηk+1,n.

Lemma 5.3.13
For any (i , y) ∈ supp(V ) and k > 1,

E+
i,y
(
e−Sk

)
6

c (1 + max(0, y)) ey

k3/2V (i , y)
,

where we recall that P+
i,y is the probability under which the trajectories

(y + Sn)n>1 stay positive.

Lemma 5.4.6
For any (i , y) ∈ supp(V ),

lim
n→+∞

Pi (Zn > 0 | τy > n ) = U(i , y).
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Result in the critical case in Markov environment

Theorem 5.2.1
There exists a positive function u on X such that, for any (i , j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

ν(j)u(i)√
n

.
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The subcritical case in Markov environment : ν(ρ) < 0

For any λ ∈ R, consider Pλ defined by

Pλg(i) = P
(
eλρ g

)
(i) = Ei

(
eλS1 g (X1)

)
,

for any i ∈ X and any function g : X→ C.

The operator Pλ has the
following decomposition :

Pλg(i) = k(λ)νλ(g)vλ(i) + Qλ(g)(i),

where
k(λ) > 0 is an eigenvalue of Pλ and its spectral radius,
νλ is a positive linear form,
vλ is a positive function on X and an eigenvector of Pλ,
Qλ is an operator with a spectral radius strictly less than k(λ).

The operator

P̃λg(i) = Pλ (gvλ) (i)
k(λ)vλ(i) =

Ei
(
eλS1 g (X1) vλ (X1)

)
k(λ)vλ(i) ,

is a Markov operator.
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The subcritical case in Markov environment : ν(ρ) < 0

The drift of the walk under the changed measure is given by

ν̃λ(ρ) = νλ (ρvλ) =
∑
i∈X

ln (f ′i (1)) vλ(i)νλ(i).

Lemma 5.3.15
The function K : λ→ ln(k(λ)) is strictly convex and satisfies :

K ′(λ) = k ′(λ)
k(λ) = ν̃λ(ρ)

and
K ′′(λ) = ν̃λ

(
ρ2
)
− ν̃λ(ρ)2 + 2

+∞∑
n=1

[
ν̃λ
(
ρP̃n

λρ
)
− ν̃λ(ρ)2

]
> 0.

Y. Guivarc’h and J. Hardy (1988). Théorèmes limites pour une
classe de chaîne de Markov et applications aux difféomorphismes
d’Anosov. Annales de l’IHP Probabilités et statistiques.
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The subcritical case in Markov environment : ν(ρ) < 0

0 k ′(0) < 0

•
k ′(1) = 0

k ′(1) > 0

k ′(1) < 0

•

λ0

Ei (qn) = k(λ)nvλ(i)Ẽi

 e−λSn

vλ (Xn)

[
e−Sn +

n−1∑
k=0

e−Sk ηk+1,n

]−1 .
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The subcritical case in Markov environment : ν(ρ) < 0

0 k ′(0) < 0

•
k ′(1) = 0

k ′(1) > 0

k ′(1) < 0

•

λ0

Taking λ = 1, we obtain

Ei (qn) = k(1)nv1(i)Ẽi

 1
v1 (Xn)

[
1 +

n−1∑
k=0

eSn−Sk ηk+1,n

]−1 .
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Results in the subcritical case in Markov environment

Theorem 5.2.2 (strongly subcritical case)
If k ′(0) < 0 and k ′(1) < 0 then there exists a positive function u on X
such that for any (i , j) ∈ X2,

lim
n→+∞

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(1)nv1(i)u(j).

Theorem 5.2.3 (intermediate subcritical case)
If k ′(0) < 0 and k ′(1) = 0 then there exists a positive function u on X
such that for any (i , j) ∈ X2,

lim
n→+∞

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(1)n
√

n
v1(i)u(j).
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Results in the subcritical case in Markov environment

Theorem 5.2.3 (weakly subcritical case)
If k ′(0) < 0 and k ′(1) > 0 then there exist a unique λ0 ∈ (0, 1) and a
positive function u on X2 such that for any (i , j) ∈ X2,

lim
n→+∞

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(λ0)n

n3/2
u(i , j).
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Publications

Limit theorems for affine Markov walks conditioned to stay positive.
Annales de l’institut Henri Poincaré, (B) Probabilités et Statistiques,
2016 (in press).

Limit theorems for Markov walks conditioned to stay positive under
a spectral gap assumption.
Annals of Probability, 2017 (in press).

Conditioned local limit theorems for Markov walks defined on finite
Markov chains, 2017 (preprint).

The survival probability of critical and subcritical branching processes
in finite state space Markovian environment, 2017 (preprint).
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