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Théorèmes limites pour des marches
aléatoires markoviennes
conditionnées à rester positives

Résumé
Sur un espace probabilisé (Ω,F ,P), on se munit d’une chaîne de Markov (Xn)n>0 à

valeurs dans un espace mesurable abstrait X. Pour tout point initial de la chaîne x ∈ X,
on désigne par Px la probabilité engendrée par les lois fini-dimensionnelles de la chaîne
lorsqu’elle est issue de X0 = x. On fixe une fonction réelle f : X → R et on construit la
marche aléatoire associée Sn = ∑n

k=1 f(Xk), n > 1. Pour tout point de départ y ∈ R de
la marche, on définit le premier temps τy pour lequel la marche markovienne (y+ Sn)n>1
sort de la demi-droite des réels positifs R∗+. L’objectif de la présente thèse est d’établir
sous des hypothèses assez générales sur la chaîne de Markov (Xn)n>0, l’asymptotique
de la probabilité de survie de la marche markovienne Px (τy > n). On montre également
que la loi de la marche markovienne (y + Sn)n>1 renormalisée lorsqu’elle est condition-
née à rester positive {τy > n} est donnée asymptotiquement par la loi de Rayleigh :
limn→+∞ Px(y + Sn 6 t

√
nσ | τy > n) = 1− e−t2/2, t ∈ R.

Lorsque l’espace X est fini, on va plus loin et l’on donne des théorèmes locaux pour
la marche markovienne conjointement avec le fait qu’elle reste positive. On détermine en
particulier limn→+∞ Px(y + Sn ∈ [a, b] , τy > n), où [a, b] est un intervalle fixé de R.

Enfin, on s’intéresse aux processus de branchement (Zn)n>0 critiques ou sous-critiques
soumis à un environnement markovien (Xn)n>0 lorsque l’espace d’états X est fini. On
établit les comportements asymptotiques de la probabilité de survie de tels processus de
branchement Px (Zn > 0).

Pour information, au début de chaque chapitre, les notations sont redéfinies et les
résultats préliminaires sont rappelés. En conséquence la lecture de chacun des chapitres
peut se faire indépendamment des autres.
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Limit theorems for Markov walks
conditioned to stay positive

Abstract
On a probability space (Ω,F ,P), we consider a Markov chain (Xn)n>0 taking its values

in a measurable space X. For any initial point x ∈ X of the Markov chain, let Px be the
probability generated by the finite dimensional distributions of the Markov chain starting
at X0 = x. Fix a real function f : X → R and consider the associated Markov walk
Sn = ∑n

k=1 f(Xk), n > 1. For any starting point y ∈ R of the walk, we define the first time
τy when the Markov walk (y+Sn)n>1 exit the real half-line R∗+. In this thesis, we establish
under general assumptions on the Markov chain (Xn)n>0, the asymptotic behaviour of
the survival probability of the Markov walk Px (τy > n). We prove also that the law of
the renormalized Markov walk (y+ Sn)n>1 conditioned to stay positive {τy > n} is given
asymptotically by the Rayleigh law: limn→+∞ Px(y + Sn 6 t

√
nσ | τy > n) = 1 − e−t2/2,

t ∈ R.
When the space X is finite, we go further and give local theorems for the Markov chain

conjointly with the fact that the Markov walk stays positive. We determine in particular
limn→+∞ Px(y + Sn ∈ [a, b] , τy > n), where [a, b] is a fix interval of R.

Finally, we care about critical and subcritical branching processes (Zn)n>0 under a
Markov environment (Xn)n>0 when the state space X is finite. We establish the asymp-
totic behaviours of the survival probability of such branching processes Px (Zn > 0).

For information, at the beginning of each chapter, notations are redefined and
preliminary results are recalled. Consequently, each chapter should be read independently
of the others.
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Chapitre 1

Introduction

1.1 Contexte
Qu’elles soient dites simples ou à valeurs dans des groupes plus exotiques, les marches

aléatoires occupent une place largement privilégiée dans le vaste paysage des probabilités.
Formalisme direct de nombreux problèmes concrets (trajectoire d’une particule, évolution
d’un capital d’un joueur...), la marche aléatoire peut également apparaître comme un
processus plus abstrait mais dont l’étude renseigne de façon cruciale sur le modèle de
départ. C’est le cas notamment des processus de branchement en environnement aléatoire
qui font l’objet d’un chapitre de ce manuscrit. Cependant, au-delà même de leur immense
champ d’application, les marches aléatoires ont ceci de très intéressant : elles soulèvent
dans une formulation assez simple des questions non triviales dont la résolution exige de
développer des outils et des techniques un peu élaborés. Un premier exemple scolaire est
la ruine du joueur dont l’énoncé très simple requiert dans sa résolution l’appareillage des
martingales et du théorème de Doob.

La généralisation de l’asymptotique de la probabilité de survivre à n’importe quelle
marche aléatoire réelle centrée avec un moment d’ordre 2, dont l’énoncé reste élémentaire,
a été démontrée en 1960 par Spitzer [65] comme conséquence de lemmes d’analyse et de
combinatoire [64]. Il précise que la loi du processus conditionné est asymptotiquement
celle de Rayleigh sans le démontrer. Iglehart apportera une première formulation complète
de cette démonstration en 1974 [47] et Bolthausen une version avec des hypothèses plus
faibles en 1976 [9]. D’autres auteurs comme par exemple Bertoin et Doney [6] ou Borovkov
[10, 11] ont participé à l’émergence et à l’enrichissement de toute la théorie des marches
aléatoires réelles centrées et indépendantes qui est désormais bien connue. On trouvera
notamment une description complète des principes de base dans les célèbres livres de
Spitzer [66] et de Feller [29].

Pourtant, le point clé pour obtenir ces résultats est la factorisation de Wiener-Hopf
qui, au moins dans ses conséquences directes, se prête assez mal à des modèles plus
élaborés. Malgré d’intéressantes considérations sur la marche lorsque les accroissements
sont markoviens comme dans les travaux de Presman [60, 61] par exemple, il faudra
attendre plusieurs décennies pour voir apparaître de nouvelles avancées importantes à ce
sujet. Motivée en particulier par des modèles physiques importants, l’étude des marches
aléatoires en dimensions supérieures a suscité ces dernières années un intérêt croissant
et beaucoup de réponses ont été apportées par de nombreux auteurs dont Varopoulos
[68, 69, 70], Eichelsbacher et König [27], Garbit [31], Duraj et Wachtel [26] ou encore
Denisov et Wachtel [18, 20]. Ces ingénieux travaux sont largement novateurs dans leur
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2 CHAPITRE 1. INTRODUCTION

globale approche du problème par rapport au cas unidimensionnel. Dans [18, 20], Denisov
et Wachtel développent une méthode articulée sur deux grandes étapes : la construction
d’une fonction harmonique d’une part et l’approximation de la marche par un mouvement
brownien par le théorème de Komlós-Major-Tusnády [51, 52] d’autre part.

La puissance de cette méthode, affranchie de la factorisation de Wiener-Hopf, suggé-
rait des applications dans de nouveaux modèles, plus généraux que le seul cadre où les
accroissements de la marche sont indépendants. La marche intégrée, où l’on considère la
somme de la somme de variables aléatoires indépendantes et identiquement distribuées
(i.i.d. en abrégé), est un premier exemple traité par Dembo, Ding et Gao [15] et perfec-
tionné par Denisov et Wachtel [19]. Cependant pour continuer de développer la méthode
en question et afin de l’étendre à d’autres modèles markoviens, il était absolument né-
cessaire de généraliser le théorème de Komlós-Major-Tusnády dit KMT aux chaînes de
Markov. Ce remarquable travail a été accompli récemment par mes responsables de thèse
Grama et Le Page en collaboration avec Peigné [40] ce qui leur a permis de résoudre
l’étude d’un produit de matrices [41].

C’est dans cette conjonction très favorable qu’a débuté ma thèse et les travaux as-
sociés. En m’appuyant sur la méthode de Denisov et Wachtel avec le KMT établi par
Grama, Le Page et Peigné, j’ai principalement pu avec l’aide de mes responsables étendre
les résultats sur les marches aléatoires unidimensionnelles à une large classe de marches
markoviennes unidimensionnelles. Un exemple de la portée de ces travaux sera donné en
généralisant les résultats des processus de branchement critiques et sous-critiques à des
environnements markoviens finis.

1.2 Présentation des objectifs
Soit (Ω,F ,P) un espace probabilisé et (Xn)n>0 une suite de variables aléatoires définie

sur cet espace et à valeurs dans un espace mesurable (X,X ). Pour une fonction f : X→ R
fixée, on considère la marche aléatoire associée, définie par

S0 := 0 et Sn :=
n∑
k=1

f (Xk) , ∀n > 1. (1.2.1)

Pour tout réel y ∈ R, interprété comme le point de départ de la marche, on pose

τy := inf {k > 1 : y + Sk 6 0} . (1.2.2)

Cette variable aléatoire correspond au premier instant pour lequel la marche (y + Sn)n>1
sort de la demi-droite des réels strictement positifs ]0; +∞[. Il est facile de voir que pour
pour la filtration naturelle (Fn)n>0 canoniquement associée à la suite (Xn)n>0, le temps
τy est un temps d’arrêt. La première interrogation qui s’offre à nous, au delà d’un calcul
explicite de la loi de τy qu’il n’est pas raisonnable d’envisager dans un cadre général, est
de savoir si τy est fini presque sûrement (p.s. en abrégé) ou non :

P (τy < +∞) = 1 ? (Q1/1.2.3)

Lorsque c’est le cas, on sait que la marche va nécessairement passer dans les négatifs,
que le joueur sera nécessairement ruiné, que la population s’éteindra nécessairement en
temps fini. La probabilité de survivre P (τy > n) jusqu’au temps/à la génération n tend
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donc par définition vers 0. La question suivante est de savoir avec quelle vitesse s’effectue
cette convergence vers 0, id est trouver (vn)n>1 ∈ RN telle que

P (τy > n) ∼
n→+∞

vn ? (Q2/1.2.4)

Le symbole ∼ signifie que le rapport des deux termes de chaque côté du symbole tend
vers 1 lorsque n→ +∞. Ensuite, lorsque cette probabilité n’est pas strictement nulle (à
n fixé !), on peut s’intéresser à la loi asymptotique des trajectoires, renormalisées, sachant
que la marche est restée positive :

∀t ∈]0; +∞[, lim
n→+∞

P
(
y + Sn 6 t

√
n
∣∣∣ τy > n

)
= ? (Q3/1.2.5)

Notons que, si la réponse à (Q1/1.2.3) est affirmative, la probabilité que la marche reste
positive infiniment longtemps est nulle. Plutôt que de conditionner par l’évènement {τy =
+∞}, il nous faut considérer que la marche reste positive jusqu’au temps n, puis faire
tendre ce temps vers l’infini. Je donne ici la renormalisation en 1√

n
car nous nous placerons

toujours dans le cadre de modèles dont la loi asymptotique (sans conditionnement) est
la loi normale (TCL). Même si l’on interdit aux trajectoires d’intersecter le demi-plan
inférieur, la hauteur « typique » de la marche au temps n reste de l’ordre de

√
n. Si

l’on s’intéresse à la probabilité que la marche y + Sn soit dans l’intervalle [z, z + a], avec
z > 0 et a > 0, le bon point de vue est de dire que l’on regarde la probabilité que
(y + Sn)/

√
n appartienne à l’intervalle [z/

√
n, (z + a)/

√
n] qui est de longueur a/

√
n.

En ce sens, on s’intéresse à la marche localement. Si l’on obtient une loi non-dégénérée à
la question (Q3/1.2.5), on comprend bien que cette probabilité d’être dans [z/

√
n, (z +

a)/
√
n] tend vers 0. La question de savoir la vitesse avec laquelle la probabilité tend vers

0 sera également un objet d’intérêt de ce manuscrit : quelle est la vitesse (wn)n>1 ∈ RN

pour laquelle on ait

P (y + Sn ∈ [z, z + a] | τy > n) ∼
n→+∞

wn ? (Q4/1.2.6)

Cette question est donc plus fine que le résultat dit intégrale de (Q3/1.2.5). Cependant
lorsqu’elle est résolue pour a fixé (ce qui sera notre cas), elle ne répond pas à la question
(Q3/1.2.5) (qui nécessiterait de prendre z = 0 et a = t

√
n).

D’autres questions ou des versions différentes (notamment pour le résultat local)
peuvent être considérées et en abordant les questions (Q1/1.2.3)-(Q4/1.2.6) nous parle-
rons également de nombreux autres résultats qui gravitent autour de la même thématique.
Pour une plus grande unité de mes propos, les considérations sur les processus de bran-
chement qui découlent des réponses (Q1/1.2.3)-(Q4/1.2.6) seront abordées ultérieurement
dans les Sections 1.3.4 et 1.4.6.

Dans la Section 1.3.2, nous allons voir que toutes ces questions ont déjà été résolues en
particulier lorsque les accroissements (Xn)n>1 sont supposés i.i.d., centrés (de moyenne
nulle) avec un moment d’ordre 2 fini. Au sujet de l’hypothèse de moment, précisons que
contrairement aux cas multidimensionnels ou markoviens pour lesquels un moment un
peu plus grand que 2 est toujours de rigueur, il est possible dans le cas unidimensionnel de
formuler des hypothèses plus faibles n’exigeant pas nécessairement un moment d’ordre 2.
En dehors du cadre centré, indépendant et unidimensionnel, de nombreuses autres situa-
tions plus élaborées (marche avec dérive, en dimension supérieure...) ont également été
traitées. Cependant, à l’exception de quelques modèles précis (marche intégrée, produit
de matrices), ces questions restaient en suspens lorsque l’on généralise de façon naturelle
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l’hypothèse d’accroissements i.i.d. par des accroissements markoviens. Insistons sur le
fait que si le cadre i.i.d. a été posé dans les années 60-70, le cadre markovien lui, même
dans sa formulation la plus simple d’un espace d’états fini, avait jusqu’à présent résisté à
toute généralisation. En s’appuyant très largement sur les récentes grandes avancées, la
présente thèse propose de répondre aux questions (Q1/1.2.3), (Q2/1.2.4) et (Q3/1.2.5)
pour une large classe de chaîne de Markov et de répondre à la question (Q4/1.2.6) (plus
délicate) dans le cadre d’une chaîne de Markov à espace d’états fini. Nous verrons néan-
moins que notre réponse à (Q4/1.2.6) permet de généraliser les résultats sur les processus
de branchement critiques et sous-critiques en environnement aléatoire.

1.3 Résultats antérieurs

1.3.1 Le cas brownien
Avant de donner les premières réponses à (Q1/1.2.3)-(Q4/1.2.6) pour des marches

aléatoires indépendantes, observons que les homologues continus fournissent une excel-
lente idée des résultats que l’on doit obtenir. Pour le mouvement brownien, les résultats
sont bien connus et même plus précis puisque non-asymptotique.

Soit (Bt)t>0 un mouvement brownien défini sur un espace probabilisé (Ω,F ,P) à
valeurs dans R. Pour tout y > 0 et σ > 0, on définit

τ bmy := inf {t > 0 : y + σBt 6 0} .

On trouvera le résultat suivant dans [57].

Proposition 1.3.1 (Lévy). Pour tout y > 0, 0 6 a < b et n > 1,

P
(
τ bmy > n , y + σBn ∈ [a, b]

)
= 1√

2πnσ

∫ b

a

(
e−

(s−y)2

2nσ2 − e−
(s+y)2

2nσ2

)
ds.

De cette unique formule, on résout nos quatre questions (Q1/1.2.3)-(Q4/1.2.6). Des
égalités non-asymptotiques que l’on ne précise pas peuvent également être obtenues.

Corollaire 1.3.2. Soit y > 0 et σ > 0.
1. On a τ bmy < +∞ p.s.
2. Pour tout n > 1,

P
(
τ bmy > n

)
= 2√

2πnσ

∫ y

0
e−

s2
2nσ2 ds ∼

n→+∞

2y√
2πnσ

.

3. Pour tout t > 0,

lim
n→+∞

P
(
y + σBn 6 t

√
n
∣∣∣ τ bmy > n

)
= 1− e−

t2
2σ2 .

4. Pour tout z > 0 et a > 0,

P
(
y + σBn ∈ [z, z + a]

∣∣∣ τ bmy > n
)
∼

n→+∞

(2z + a)a
nσ2 .
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Le point 2 nous dit que la probabilité de survivre est de l’ordre d’une constante
dépendant de y divisée par

√
n. Mais si l’on suppose malgré tout que la trajectoire de la

marche reste strictement positive alors la loi asymptotique donnée par le point 3 est la loi
de Rayleigh. Le point 4 quant à lui nous fournit le théorème local, souvent écrit dans sa
formulation de la probabilité conjointe, où la vitesse est alors une constante dépendant
du point de départ y et du point d’arrivée z divisé par n3/2 :

P
(
y + σBn ∈ [z, z + a] , τ bmy > n

)
∼

n→+∞

2y(2z + a)a√
2πσ3n3/2

.

Tous ces résultats nous guideront pour nos marches aléatoires et nous verrons que dans
nos modèles, nous obtenons exactement les mêmes vitesses mais que les constantes se
complexifient.

1.3.2 Le cas indépendant unidimensionnel
Revenons au temps discret et supposons que les accroissements (Xn)n>1 de la marche

définie en (1.2.1) sont i.i.d. Dans ce cas, puisque la suite (f(Xn))n>1 est aussi i.i.d., on
peut supposer sans perte de généralité que X = R et que f = id (l’introduction d’une
fonction f est utile dans le cadre des chaînes de Markov). Avec ce formalisme, le résultat
suivant répond aux questions (Q1/1.2.3) et (Q2/1.2.4). L’existence de la série donnée dans
(1.3.2) ci-dessous est issue du théorème 3.4 de Spitzer [65]. L’asymptotique du temps de
sortie lorsque l’on suppose l’existence d’un moment d’ordre 2 est un cas particulier du
théorème 1 d’Emery [28] ou encore du théorème 2 de Bingham [7]. On pourra également
se référer à Doney [22] ou au théorème 8.9.12 page 381 du livre de Bingham, Goldie et
Teugels [8]. Lorsque la marche est à valeurs entières, une version de la proposition suivante
est aussi exprimée dans le livre de Spitzer [66] (cf P4 page 382). Soit τ le premier instant
pour lequel la marche (Sn)n>1 issue de 0 passe dans les positifs :

τ = min {k > 1 : Sk 6 0} .

Sous les hypothèses de la proposition suivante, τ est fini p.s. et on définit χ1, . . . χn une
suite de variables aléatoires i.i.d. de loi commune celle de −Sτ . De cette façon, pour tout
y > 0, la fonction de renouvellement est donnée par,

H(y) = 1 +
+∞∑
k=1

P (χ1 + · · ·+ χk 6 y) . (1.3.1)

On note naturellement E l’espérance associée à P.

Proposition 1.3.3 (Spitzer, Emery, Bingham). Supposons E(X1) = 0 et E(X2
1 ) = σ2 ∈

(0,∞). Alors la série ∑k>1
1
k

(
P (Sk > 0)− 1

2

)
converge vers un réel noté

α =
∞∑
k=1

1
k

(
P (Sk > 0)− 1

2

)
∈ R. (1.3.2)

De plus, pour tout y > 0,

P (τy > n) ∼
n→+∞

eαH(y)√
πn

.
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Pour comprendre dans une certaine mesure l’origine de ce résultat, la Section 1.5
propose de reprendre la démonstration historique de cette proposition lorsque y = 0.
Cette étape avait été obtenue par Spitzer dans le théorème 3.5 de [65].

Annoncée par Spitzer également, la réponse à la question (Q3/1.2.5) a été démontrée
par Iglehart [47] sous la condition d’avoir un moment d’ordre 3 et d’être non-lattice. La
version ci-dessous avec un moment d’ordre 2 uniquement est due à Bolthausen [9].

Proposition 1.3.4 (Iglehart, Bolthausen). Supposons que E(X1) = 0 et que E(X2
1 ) =

σ2 ∈ (0,∞). Alors, pour tout t > 0,

lim
n→+∞

P
(
y + Sn 6 t

√
n
∣∣∣ τy > n

)
= 1− e−

t2
2σ2 .

En ce qui concerne le théorème local et la réponse à la question (Q4/1.2.6), Caravenna
[13] apporte un premier résultat. Cependant contrairement à son homologue sans condi-
tionnement (théorème de Stone classique), le théorème obtenu ne fournit un équivalent
que pour des points d’arrivée de tailles suffisantes (dans (Q4/1.2.6), z doit être de l’ordre
de c
√
n, avec c une constante positive). La proposition suivante provient du théorème 4

de Vatutin et Wachtel [71]. On dit que X1 est non-lattice si sa fonction caractéristique
est strictement plus petite que 1 en dehors de 0 : pour tout θ ∈ R∗,

E
(
eiθX

)
< 1.

Proposition 1.3.5 (Vatutin, Wachtel). Supposons X1 non-lattice, que E(X1) = 0 et que
E(X2

1 ) = σ2 ∈ (0,∞). Alors, pour tout suite (δn)n>1 convergeant vers 0 et tout réel a > 0,

lim
n→+∞

sup
z∈
(

0, δn√
n

]
∣∣∣∣∣n3/2P (Sn ∈ [z, z + a) , τ0 > n)−

∫ z+a
z H(z′) dz′√

2πσ

∣∣∣∣∣ = 0,

où H est définie par (1.3.1).

Après ce petit tour d’horizon (non exhaustif) des résultats du cas indépendant uni-
dimensionnel, nous allons nous rapprocher des travaux de cette thèse en introduisant
quelques résultats antérieurs traitant de modèles pour lesquels l’indépendance tombe en
défaut.

1.3.3 Les premiers modèles markoviens
Des factorisations pour les chaînes de Markov. Quelques généralisations des

factorisations, indispensables dans la démonstration du cas indépendant, sont obtenues
lorsque l’on remplace l’hypothèse d’indépendance par l’hypothèse selon laquelle la suite
(Xn)n>1 est une chaîne de Markov à espace d’états fini. Pour de tels travaux, on se
reportera à Presman [60, 61] et les références associées.

La marche intégrée. Grâce à leurs travaux sur les marches aléatoires en dimensions
supérieures [18, 20], Denisov et Wachtel ont récemment obtenu dans [19] des théorèmes
limites pour la marche intégrée conditionnée à rester positive : si (Xn)n>1 est une suite
de variables aléatoires i.i.d. la marche intégrée est définie par

S(2)
n = S1 + · · ·+ Sn, ∀n > 1,
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où pour tout n > 1, on a toujours Sn = X1 + · · · + Xn. Naturellement, si les Xn sont
indépendants, ce n’est plus le cas pour leurs sommes Sn. Les accroissements (Sn)n>1 de
la marche intégrée (S(2)

n )n>1 forment en réalité dans ce cas une chaîne de Markov. La
dépendance de Sn par rapport au passé, id est aux états précédents S1, . . . , Sn−1, étant
« forte » l’asymptotique du temps de survie possède une vitesse en n−1/4, différente de celle
en n−1/2 présentée dans le Corollaire 1.3.2 et la Proposition 1.3.3. Sans être rigoureux sur
la définition d’une « dépendance forte », je précise que les modèles markoviens que nous
considèrerons auront une dépendance dite « faible » (un trou spectral) et les vitesses
associées aux réponses de (Q2/1.2.4)-(Q4/1.2.6) resteront les mêmes que dans le cas
indépendant. Dans ce parallèle, notons que la marche intégrée correspond à une récursion
stochastique particulière (voir la Section 1.4.1 ou le Chapitre 2 dévolu justement à ce type
de chaînes de Markov).

Le produit de matrices. Terminons cette section par un dernier modèle qui a
largement influencé mes travaux. Soit (gn)n>1 ∈ GLd(R) une suite de matrices inversibles
de taille d×d. Pour tout vecteur de départ v ∈ Rd, on s’intéresse au premier instant pour
lequel le produit gn . . . g1v appartient à la boule unité B(0, 1) = {u ∈ Rd : ‖u‖ 6 1} :

τ v = inf {k > 1 : gk . . . g1v ∈ B(0, 1)} .

Pour tout v ∈ Rd, on note v son projeté dans l’espace des directions de Rd, espace noté
P(Rd). A v fixé, on définit X0 = (id, v) et pour tout n > 1, Xn = (gn, gn−1 · · · g1v) ∈ X =
GLd(R)× P(Rd). On écrit alors que

ln (‖gn · · · g1v‖) = ln
(
‖gn · · · g1v‖
‖gn−1 · · · g1v‖

)
+ · · ·+ ln

(
‖g1v‖
‖v‖

)
+ ln (‖v‖)

= f(Xn) + · · ·+ f(X1) + y = y + Sn,

avec y = ln(‖v‖) et f le cocycle défini par f(g, w) = ln
(
‖gw‖
‖w‖

)
où w est n’importe

quel vecteur non nul de direction w. Puisque la suite (gn . . . g1v)n>1 reste strictement à
l’extérieur de la boule unité si et seulement si le logarithme de sa norme reste strictement
positif, on remarque que τ v = τy avec τy défini en (1.2.2). Dans ce modèle, on voit bien
que la suite (Xn)n>0 n’est plus i.i.d. mais est une chaîne de Markov. En appliquant la
démarche de Denisov et Wachtel [20] couplée avec une récente version (voir [40]) du
théorème de Komlós-Major-Tusnády [51], Grama, Le Page et Peigné [41] ont montré le
résultat suivant.

Proposition 1.3.6 (Grama, Le Page, Peigné). Sous les hypothèses P1-P5 de [41], il
existe une fonction V strictement positive sur le complémentaire de B(0, 1), telle que
1. Pour tout v /∈ B(0, 1),

P (τ v > n) ∼
n→+∞

2V (v)√
2πnσ

,

où σ est une constante strictement positive.
2. De plus, pour tout v /∈ B(0, 1) et t > 0,

lim
n→+∞

P
(

ln (‖gn · · · g1v‖) 6 t
√
n
∣∣∣ τ v > n

)
∼

n→+∞
1− e−

t2
2σ2 .

Tous ces travaux apportent des réponses aux questions (Q1/1.2.3)-(Q3/1.2.5). Pour-
tant une formulation plus globale restait à poser. La marche intégrée est un modèle assez
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précis et puisque la dépendance de la chaîne de Markov (Sn)n>1 est explicite, il n’est
pas clair que les calculs puissent être étendus directement à d’autres chaînes de Markov.
Pour le produit de matrices, la formulation qui concerne la chaîne de Markov semble plus
générale. Cependant un examen plus attentif nous montre qu’en réalité les moments des
accroissements (f(Xn))n>1 par exemple (cf M4 de [41]) sont bornés uniformément par
rapport au point de départ x de la chaîne de Markov (Xn)n>0 = ((gn, gn−1 · · · g1v))n>0.
Tout se passe donc comme si la chaîne de Markov vivait dans un espace compact. L’ex-
tension des résultats à d’autres chaînes de Markov restait une étape à franchir et des
techniques particulières que je détaillerai dans la suite ont dû être mises en place pour
obtenir les résultats que je vais présenter dans la Section 1.4.

1.3.4 Les processus de branchement en environnement aléatoire
Avant de présenter mes propres travaux, finissons notre petit tour des résultats anté-

rieurs que nous nous proposons d’affiner. Même si le lien n’est pas explicite au premier
abord, l’étude des marches aléatoires a de profondes implications dans les processus de
branchement en milieu aléatoire. En quelques mots, un processus de branchement en
environnement aléatoire est l’étude d’une population qui se reproduit de façon aléatoire
chaque année selon une loi qui est elle-même déterminée par un tirage annuel aléatoire.
Puisque c’est ce tirage de l’environnement qui va nous donner la loi de reproduction
de tous les individus, l’environnement a un poids très important sur la taille de la po-
pulation. Ainsi, pour que la population ne s’éteigne pas, il faut que les environnements
restent favorables. Or une suite d’environnements favorables à la population peut être vue
comme une marche qui reste positive. Donc si l’on connait la probabilité que cette marche
reste positive on accède à la probabilité que l’environnement reste favorable et donc à la
probabilité que la population survive. Ce lien très important entre marche aléatoire et
processus de branchement, nous permettra d’illustrer dans la Section 1.4.6 le fait que les
réponses aux questions (Q1/1.2.3)-(Q4/1.2.6) ont des conséquences intéressantes.

Présentons ces conséquences à travers les résultats phares et bien connus lorsque les
environnements sont indépendants. Soit (Xn)n>0 une suite de variables aléatoires sur
(Ω,F ,P) à valeurs dans X représentant la suite d’environnements dans lesquels évolue
un processus de branchement construit de la façon suivante. On fixe une famille de va-
riables aléatoires (ξj,ni )i∈X,j,n>1 indépendante de la chaîne (Xn)n>0 et définie sans perte de
généralité sur le même espace probabilisé (Ω,F ,P). On suppose que pour chaque i ∈ X
les variables ξj,ni , j, n > 1 sont i.i.d. et on note fi leur fonction génératrice commune :

∀s ∈ [0, 1], fi(s) = E
(
sξ

1,1
i

)
.

Soit alors (Zn)n>0 le processus de branchement associé que l’on construit récursivement
par

Z0 = 1 et Zn+1 =
Zn∑
j=1

ξn+1,j
Xn+1 , ∀n > 0.

Concrètement, on considère que sous l’environnement Xn+1 = i, chaque individu j de la
population {1, . . . , Zn} donne naissance, de façon indépendante aux autres individus, à
ξn+1,j
i descendants et que donc la population totale Zn+1 l’année suivante est la somme
de tous ces descendants. On pose ρ la fonction de X dans R définie par

∀i ∈ X, ρ(i) = ln (f ′i(1)) = ln
(
E
(
ξ1,1
i

))
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et sans plus de détails, on indique que la marche aléatoire associée dont on a fait mention
au début du paragraphe est donnée par

S0 = 0 et Sn =
n∑
k=1

ρ(Xk) = ln
(
f ′X1(1) · · · f ′Xn(1)

)
, ∀n > 1.

Dans le cas d’environnements indépendants, Geiger et Kersting [32] ont montré le résultat
suivant.
Proposition 1.3.7 (Geiger et Kersting, cas critique). Supposons la suite (Xn)n>0 i.i.d.
et supposons

E (ρ(X1)) = 0, 0 < E
(
ρ(X2

1 )
)
< +∞, E

f ′′X1(1)
(
1 + ln+

(
f ′X1(1)

))
(
f ′′X1(1)

)2

 < +∞.

Alors il existe une constante 0 < c1 < +∞ telle que la probabilité pour que la population
Zn survive jusqu’au temps n est donnée asymptotiquement par

P (Zn > 0) ∼
n→+∞

c1√
n
.

Notons que l’hypothèse E (ρ(X1)) = 0 correspond au cas dit critique, lorsque que le
nombre d’enfant par personne est « globalement » de 1. Du point de vue de la marche
aléatoire associée Sn cela correspond à une marche centrée, sans dérive.

Lorsque cet indicateur E (ρ(X1)) est strictement négatif on dit être dans un cas sous-
critique. La population s’éteint alors plus rapidement et la marche aléatoire dérive vers
les négatifs. Il est encore possible cependant d’obtenir l’asymptotique de la survie de la
population Zn. L’idée est de recentrer la marche aléatoire Sn à l’aide d’un changement
de loi adéquat. Ce centrage fait cependant apparaître « un poids » sur les trajectoires
(Sk)n>k>1 d’ordre e−Sn ce qui signifie que seules les trajectoires dont le point d’arrivée Sn
est « petit » auront de l’importance. Suivant cette idée, il apparaît que la réponse à la
question (Q4/1.2.6) est utile pour démontrer les résultats du cas sous-critique.

Lorsque E (ρ(X1)) < 0, il n’y a en réalité pas qu’une seule situation mais trois dis-
tinctes chacune donnant un équivalent de la probabilité de survie P (Zn > 0) différent :
— si E

[
f ′X1(1) ln

(
f ′X1(1)

)]
< 0 on parle de cas fortement sous-critique,

— si E
[
f ′X1(1) ln

(
f ′X1(1)

)]
= 0 on parle de cas sous-critique intermédiaire,

— si E
[
f ′X1(1) ln

(
f ′X1(1)

)]
> 0 on parle de cas faiblement sous-critique.

On pose
κ := E

(
f ′X1(1)

)
.

On notera que dans les cas sous-critiques non-dégénérés, on a κ ∈ (0, 1).
Dans le cas fortement sous-critique, Guivarc’h et Liu [44] ont établi le résultat suivant.

Il avait été précédemment démontré par D’Souza et Hambly [23] sous une condition de
moment supplémentaire.
Proposition 1.3.8 (Guivarc’h et Liu, cas fortement sous-critique). Supposons la suite
(Xn)n>0 i.i.d. et supposons

E
[
f ′X1(1) ln

(
f ′X1(1)

)]
< 0, E

(
Z1 ln+ (Z1)

)
< +∞.

Alors il existe une constante 0 < c2 < +∞ telle que

P (Zn > 0) ∼
n→+∞

c2κ
n.
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Les deux propositions suivantes ont été montrées par Geiger, Kersting et Vatutin [33].

Proposition 1.3.9 (Geiger, Kersting et Vatutin, cas sous-critique intermédiaire). Sup-
posons la suite (Xn)n>0 i.i.d. et supposons

E [ρ(X1)] < 0, E
[
f ′X1(1) ln

(
f ′X1(1)

)]
= 0,

E
[
f ′X1(1) ln2

(
f ′X1(1)

)]
< +∞, E

[
f ′′X1(1)

(
1 + ln−

(
f ′X1(1)

))]
< +∞.

Alors il existe une constante 0 < c3 < +∞ telle que

P (Zn > 0) ∼
n→+∞

c3κ
n

√
n
.

Pour le cas faiblement sous-critique, on pose

γ := inf
06θ61

E
(
f ′X1(1)θ

)
et soit α ∈ [0, 1] tel que

γ = E
(
f ′X1(1)α

)
.

Proposition 1.3.10 (Geiger, Kersting et Vatutin, cas faiblement sous-critique). Suppo-
sons la suite (Xn)n>0 i.i.d., que

E [ρ(X1)] < 0, 0 < E
[
f ′X1(1) ln

(
f ′X1(1)

)]
< +∞,

E
[

f ′′X1(1)
f ′X1(1)1−α

]
< +∞, E

[
f ′′X1(1)

f ′X1(1)2−α

]
< +∞, .

et que la loi de ρ(X1) est non-lattice :

P (ρ(X1) ∈ a+ bZ) < 1, ∀0 < a < b.

Alors il existe une constante 0 < c4 < +∞ telle que

P (Zn > 0) ∼
n→+∞

c4γ
n

n3/2 .

D’autres situations ont été étudiées, comme par exemple le cas critique par Athreya
et Karlin [4, 3] pour des milieux échangeables ou par Le Page et Ye [56] pour des mi-
lieux markoviens sous une hypothèse adaptée de densité. Pourtant, à ma connaissance,
l’asymptotique exact de la probabilité de survie de processus de branchement en environ-
nement markovien fini n’a jamais été traitée en absence d’hypothèse supplémentaire que
le cadre non-lattice que nous décrirons.

1.4 Présentation des travaux de thèse
Les principaux travaux de cette thèse ont pour but d’étendre les résultats présentés

dans la section précédente à une large classe de marches dont les accroissements sont
markoviens. Je l’ai mentionné dans la section précédente pour la marche intégrée, lorsque
les accroissements sont markoviens il est possible que la vitesse de convergence répondant
à la question (Q2/1.2.4) puisse changer. Si l’on souhaite retrouver les résultats du cas
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indépendant, des hypothèses sur la chaîne de Markov constituant les accroissements de la
marche sont nécessaires. Le principal objectif de cette thèse est de donner des conditions
assez générales sur la chaîne de Markov et d’établir sous ces conditions des résultats
analogues au cas indépendant pour répondre aux questions (Q1/1.2.3)-(Q3/1.2.5). Nous
verrons également que ces conditions sont satisfaites au moins pour certains exemples
concrets. Par la suite, nous constaterons que lorsque la chaîne de Markov est à valeurs
dans un espace d’états fini, il nous est possible d’affiner les résultats et de répondre
à la question (Q4/1.2.6). Ces développements nous permettrons d’établir de nouveaux
résultats sur la théorie des processus de branchement critiques et sous-critiques.

1.4.1 Les modèles markoviens considérés
Notre approche s’est faite en deux temps. Même si le cas des chaînes de Markov à

espace d’états fini n’avait pas été explicitement traité, le produit de matrices aléatoires [41]
suggérait que si l’on pouvait contrôler la dépendance de la chaîne (Xn)n>1 uniformément
par rapport à son passé x = X0 alors la méthode restait identique. Intuitivement, les
questions (Q1/1.2.3)-(Q3/1.2.5) se posaient donc plutôt pour des chaînes de Markov
dont la dépendance au passé était « faible » (pour retrouver les mêmes vitesses que dans
le cas indépendant) mais pas uniforme. Ainsi, avant de poser un cadre général, nous nous
sommes d’abord intéressés à un modèle explicite répondant à ce critère sur la dépendance
de la chaîne : la récursion stochastique.

A partir de maintenant et dans la suite, pour tout x ∈ X, on pose Px, respectivement
Ex, la probabilité, respectivement l’espérance, engendrée par les lois fini-dimensionnelles
du processus (Xn)n>0 sachant que X0 = x.

Les chaînes de Markov affines (CMA). La récursion stochastique que l’on pré-
sente ici est le sujet d’étude du Chapitre 2. Soit (Ω,F ,P) un espace probabilisé et
(ai, bi)i>1 une suite de variables aléatoires i.i.d. On note (a, b) une représentation gé-
nérique dont la loi est celle commune aux (ai, bi)i>1. On construit récursivement la chaîne
de Markov par la transformation affine suivante :

X0 = x et Xn+1 = an+1Xn + bn+1, ∀n > 0.

On dira alors que (Xn)n>0 est une chaîne de Markov affine (CMA). On ne suppose pas
a priori que les ai sont indépendants des bi, cependant lorsque ai = 0 p.s., on retrouve
le cas indépendant. Lorsque ai = 1 p.s., on retrouve le cas de la marche intégrée. Les
hypothèses qui suivent contiennent le cas indépendant mais rejettent le cas de la marche
intégrée (voir (C1.1/1.4.1) ci-dessous). Présentons brièvement ces hypothèses.

La dépendance « faible » à laquelle j’ai fait allusion au début de cette section se traduit
dans ce modèle par l’hypothèse suivante : on suppose qu’il existe α > 2 tel que

E(|a|α) < 1. (C1.1/1.4.1)

Ceci correspond à une contraction de la dépendance : intuitivement, l’état suivant de
la chaîne Xn+1 ne dépend en moyenne que d’une fraction de l’état précédent Xn. Une
hypothèse de moment est également nécessaire sur les variables (bi)i>1,

E(|b|α) < +∞. (C1.2/1.4.2)

On suppose la marche non-dégénérée et centrée :

P(b = 0) < 1 et E(b) = 0. (C1.3/1.4.3)
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Une autre condition sera nécessaire pour s’assurer de la stricte positivité de l’équivalent
que nous déterminerons dans la réponse à la question (Q2/1.2.4), condition que je ne
détaille pas pour l’instant.

Sous les hypothèses (C1.1/1.4.1)-(C1.3/1.4.3), la dépendance de la chaîne Xn en fonc-
tion de l’état initial X0 = x décroit exponentiellement vite au cours du temps n. En effet
un simple calcul montre que pour tout n > 1,

Ex (|Xn|) 6 E(|a|)n |x|+
n−1∑
k=0

E(|a|)kE(|b|).

Par la propriété de Jensen, E(|a|) < 1, la série ∑k>0 E(|a|)kE(|b|) converge et l’inégalité
précédente formalise un peu cette idée de dépendance faible.

Ce modèle est intéressant à deux points de vue. Le premier est celui annoncé en début
de section sur le défi que représente la gestion d’une marche aléatoire avec une « réelle »
dépendance par rapport à son passé. Le second est le fait que la marche affine est un
modèle qui a généré beaucoup d’intérêt en particulier dans sa relation aux modèles ARCH.
Pour des résultats de convergence des marches affines (en absence de conditionnement)
on pourra se référer notamment aux travaux de Guivarc’h et Le Page [43].

Les Théorèmes 1.4.1, 1.4.3 et 1.4.7 qui suivent dans cette introduction répondent aux
questions (Q2/1.2.4) et (Q3/1.2.5) pour ce type de marches markoviennes.

Les chaînes de Markov avec un trou spectral (CMTS). La seconde famille
de chaînes de Markov avec laquelle nous allons travailler dans le Chapitre 3 est encore
beaucoup plus générale que celui de la récursion stochastique. Le modèle affine précédent
nous a permis de dégager les éléments qui étaient essentiels pour assurer les convergences
voulues dans (Q2/1.2.4) et (Q3/1.2.5). Ceci étant fait, j’ai pu déterminer un cadre plus
abstrait, mais surtout plus général, pour lequel je réponds aux questions (Q2/1.2.4) et
(Q3/1.2.5). Pour l’essentiel, le point de vue à adopter était déjà présent dans le formalisme
de l’article de Grama, Le Page et Peigné [40]. Sans détailler toutes les hypothèses, disons
simplement que l’important est de munir la chaîne de Markov d’un espace de Banach
approprié. Cet espace est intrinsèque à la marche et décrit dans un formalisme fonctionnel
ses propriétés (croissance et dépendance principalement). Pour (Xn)n>0 une chaîne de
Markov à valeurs dans X de noyau P, l’espace de Banach B que l’on considère est un
sous-ensemble de fonctions de X → C sur lequel principalement l’opérateur P possède
un trou spectral. Ceci correspond à une hypothèse de mélange pour la chaîne de Markov.
Donnons une esquisse du fil directeur de cette hypothèse. Pour toute fonction ϕ pour
laquelle l’intégrale suivante a un sens, on fait agir l’opérateur P sur ϕ en définissant

Pϕ(x) =
∫
X
ϕ(x′)P(x, dx′).

On dira que P possède une trou spectral sur B si P est un opérateur borné de B dans
B tel que sur B on ait

P = ν(·)e+Q, ν(Q) = Qe = 0,

avec ν une forme linéaire positive, e : x 7→ 1 la fonction constante égale à 1 sur X
et Q un opérateur dont le rayon spectral est strictement plus petit que 1. Une chaîne
de Markov vérifiant une telle hypothèse, et d’autres que l’on ne précise pas dans cette
introduction (cf Chapitre 3 pour plus de détails) sera dite chaîne de Markov avec un trou
spectral (CMTS). On verra que si (Xn)n>0 a une mesure invariante avec une condition de
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moment alors cette mesure est ν. La fonction e est le vecteur propre de P associé à la
valeur propre 1. Cette propriété de trou spectral nous permet de retrouver un résultat de
type Perron-Frobenius soulignant la décroissance rapide de la dépendance de la chaîne
(Xn)n>0 : pour tout x ∈ X,

|Pnϕ(x)− ν(ϕ)| 6 c e−cn ‖δx‖B′ ,

avec δx : ϕ 7→ ϕ(x) la mesure de Dirac en x, B′ le dual de B et ‖·‖B′ une norme sur
B′. Grâce à cette hypothèse de trou spectral, nous allons pouvoir retrouver les résultats
du cas indépendant en considérant que si Xn+1 n’est plus indépendant de Xn, la variable
Xn+p est, elle, « presque » indépendante de Xn pour p assez grand. Cette idée directrice
toute simple demande de nombreuses considérations techniques et le passage du modèle
particulier de la récursion stochastique à celui des chaînes de Markov avec un trou spec-
tral a nécessité des modifications d’importance dans notre approche, je vous renvoie au
Chapitre 3 pour plus de détails.

Avant de poursuivre et de décrire les principaux résultats de cette thèse, soulignons
que ce formalisme associé à l’espace de Banach bien que assez algébriste et abstrait
permet, de fait, de couvrir de nombreuses situations : le cas indépendant bien sûr, mais
aussi les chaînes de Markov à espace d’états fini ou même compact ainsi que la récursion
stochastique réelle X = R ou multidimensionnel X = Rd (avec une fonction f sur Rd

toujours à valeurs dans R). L’appendice du Chapitre 3 fournit plus de détails sur la
construction des espaces de Banach associés. La Section 3.13 montre également que nos
résultats couvrent le cas du produit des matrices aléatoires résolu par Grama, Le Page
Peigné [41].

Dans les Théorèmes 1.4.2, 1.4.4 et 1.4.8 des sections suivantes, nous allons répondre
aux questions (Q2/1.2.4) et (Q3/1.2.5) dans le cadre de ce type de marches markoviennes.

Les chaînes de Markov à espace d’états finis (CMF). Modèle beaucoup plus
réduit mais aussi beaucoup plus simple, le cas où l’espace d’états de la chaîne de Markov
est fini (on dira que la chaîne de Markov est finie (CMF)) nous sera utile notamment pour
affiner nos résultats dans un premier exemple. Ce modèle est élémentaire et ne recouvre
plus le modèle indépendant lorsque les valeurs de la suite i.i.d. en question sont en nombre
infini. Il reste cependant important et l’objectif principal sera de répondre au moins dans
cette situation à la question (Q4/1.2.6), ce que l’on développe dans le Chapitre 4. Soit
(Xn)n>0 une chaîne de Markov sur un espace X de cardinal fini. On aura besoin de trois
hypothèses. On note toujours P la matrice de transition de (Xn)n>0 et on suppose que P
est primitive, c’est-à-dire qu’il existe un entier k0 > 1 tel que pour tout (x, x′) ∈ X2, on
a

Pk0(x, x′) > 0. (C1/1.4.4)

On considère toujours la marche (y+Sn)n>1 et le temps de sortie τy définis respectivement
par (1.2.1) et (1.2.2) ainsi que la fonction f associée. Sous l’hypothèse (C1/1.4.4), nous
avons toujours notre dépendance faible au sens où le théorème de Perron-Frobenius assure
la convergence exponentielle de Pn(x, x′) vers une unique mesure invariante ν(x′), et ce
uniformément en x ∈ X. L’hypothèse suivante est la condition de centrage :

ν(f) =
∑
x∈X

f(x)ν(x) = 0. (C2/1.4.5)

Puisque l’objectif est d’obtenir un théorème local, à l’image de l’article originel de Stone
[67] et comme classiquement pour un tel résultat, nous aurons besoin d’une hypothèse
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de non-lattice. Cette condition, formulée ci-dessous, est équivalente à une formulation en
terme de rayon spectral strictement plus petit que 1 pour l’opérateur perturbé (voir le
Chapitre 4). On suppose que pour tout (θ, a) ∈ R2, il existe une orbite, c’est-à-dire une
suite de points x0, . . . , xn dans X communiquant de la façon suivante

P(x0, x1) > 0, P(x1, x2) > 0, . . . , P(xn−1, xn) > 0, P(xn, x0) > 0,

telle que
f(x0) + f(x1) + · · ·+ f(xn)− (n+ 1)θ /∈ aZ. (C3/1.4.6)

On peut vérifier que cette condition dite non-lattice implique en particulier la non-
dégénérescence de la marche. Cette idée de non-dégénérescence correspond à X1 6= 0
p.s. dans le cas indépendant, b 6= 0 dans le cas d’une marche affine et ici à σ2 > 0 où
σ2 est un réel positif d’intérêt correspondant d’une certaine façon à « la variance de la
marche ».

Lorsque qu’une chaîne de Markov à espace d’états fini (CMF) satisfait les conditions
(C1/1.4.4)-(C3/1.4.6), alors elle répond aux hypothèsesM3.1-M3.5 du Chapitre 3 ce qui
signifie qu’une chaîne de Markov fini (CMF) est en particulier une chaîne à trou spectral
(CMTS). Ainsi les réponses aux questions (Q1/1.2.3)-(Q3/1.2.5) sont toujours données
par les Théorèmes 1.4.2, 1.4.4 et 1.4.8. Cependant dans ce cas on peut également répondre
à la question (Q4/1.2.6) par les Théorèmes 1.4.9-1.4.11 et appliquer ces résultats pour
obtenir les Théorèmes 1.4.13-1.4.16 sur les processus de branchement.

Après cette brève description des principales hypothèses que l’on considèrera sur nos
chaînes de Markov, nous allons introduire dans les paragraphes suivants les principaux
résultats obtenus durant ces trois années de thèse.

1.4.2 Existence d’une fonction harmonique
Le fait que la réponse à la question (Q1/1.2.3) soit positive et que la probabilité

de survivre infiniment longtemps soit nulle pose une difficulté dans la définition d’un
processus conditionné à rester positif. Le premier point de vue dont nous avons déjà fait
mention propose de conditionner pour un temps fixé n > 1 par rapport à l’évènement « la
marche est restée positive au moins jusqu’au temps n » c’est-à-dire l’évènement {τy > n}
où y est le point de départ de la marche et τy est défini par (1.2.2). Puis dans un second
temps on fait tendre n vers l’infini.

Considérons dans l’immédiat, une approche un peu différente. Reprenons les notations
de la partie 1.2 et notons que lorsque les accroissements (Xn)n>0 ne sont plus indépendants
alors la marche (y + Sn)n>0 issue de y ∈ R n’est plus en général une chaîne de Markov.
Si l’on suppose que (Xn)n>0 est une chaîne de Markov, c’est le couple (Xn, y + Sn)n>0
qu’il faut considérer et qui forme une chaîne de Markov. Son noyau de transition est alors
donné par

Q((x, y), A) := Px ((X1, y + S1) ∈ A) ,

pour tout (x, y) ∈ X × R et tout A ensemble mesurable de l’espace produit X × R.
Puisque seules les trajectoires qui sont restées positives nous intéressent, nous définissons
la restriction Q+ par

Q+((x, y), A) = Q((x, y), A)

pour tout (x, y) ∈ X×R et tout A ensemble mesurable de X×R∗+. Alors que Q((x, y), ·)
est une probabilité, nous avons perdu de la masse en nous plaçant dans le sous-ensemble



1.4. PRÉSENTATION DES TRAVAUX DE THÈSE 15

X×R∗+ : en général nous avons Q+((x, y),X×R∗+) < 1. Une renormalisation du noyau est
nécessaire par l’intermédiaire d’une transformée de Doob aussi appelée fonction invariante
ou fonction harmonique. On note encore Q+ l’opérateur défini sur l’ensemble des fonctions
mesurables ϕ : X× R→ C par, pour tout (x, y) ∈ X× R,

Q+ϕ(x, y) =
∫
X×R∗+

ϕ(x′, y′)Q+((x, y), dx′ × dy′)

=
∫
X×R∗+

ϕ(x′, y′)Px (X1 ∈ dx′ , y + S1 ∈ dy′)

= Ex (ϕ (X1, y + S1) ; y + S1 > 0)
= Ex (ϕ (X1, y + S1) ; τy > 1) ,

où l’on adopte ici et pour tout le reste du document la notation suivante : pour toute
variable aléatoire X et tout évènement A :

E (X ; A) := E (X1A) .

Une fonction V est Q+-harmonique (on se contentera parfois de dire simplement har-
monique sans préciser le noyau associé lorsqu’il n’y aura pas d’ambiguïté) si pour tout
(x, y) ∈ X× R,

Q+V (x, y) = Ex (V (X1, y + S1) ; τy > 1) = V (x, y).

Notons qu’il n’y a pas unicité de la fonction harmonique, si on multiplie V par une
constante c alors la fonction cV est aussi une fonction harmonique. Bien sûr la fonction
nulle est toujours une fonction harmonique mais dénuée d’intérêt puisque c’est lorsque
que V (x, y) > 0 que l’on va pouvoir renormalisée Q+((x, y), ·). En effet, pour tout couple
de points (x, y) tel que V (x, y) > 0 et tout A ensemble mesurable de X× R∗+, on définit

Q̃+((x, y), A) = 1
V (x, y)Q+ (V 1A) (x, y)

= 1
V (x, y)Ex (V (X1, y + S1) ; (X1, y + S1) ∈ A , τy > 1) .

Il est clair que Q̃+ est un noyau markovien. De plus si (X̃n, y + S̃n)n>0 est une chaîne de
Markov de noyau Q̃+ alors sa seconde composante (y + S̃n)n>0 correspond à une marche
aléatoire qui reste positive.

En réalité, ces deux façons différentes d’aborder le problème ne sont que deux présen-
tations d’un même phénomène et la marche aléatoire conditionnée est la même dans les
deux constructions. En effet, nous allons voir que lorsque l’on est capable de répondre à
la question (Q2/1.2.4), l’asymptotique s’écrit

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

,

où V n’est ni plus ni moins qu’une fonction Q+-harmonique. Rappelons que dans le cas
indépendant cette fonction harmonique est donnée par la fonction de renouvellement H
définie par (1.3.1). Le principe de renouvellement est fondé sur l’observation suivante.
Si les accroissements (Xn)n>1 sont indépendants et si (Ti)i>1 est la suite des indices des
records (ladder epoch) définie récursivement par

T0 = 0 et Tj+1 = min{k > Tj + 1 : Sk > STj}, ∀j > 0,
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alors les suites (Tj+1−Tj)j>0 et (STj+1−STj)j>0 sont i.i.d. Cette propriété avantageuse est à
la base des développements du principe de renouvellement et en prenant χj+1 = STj+1−STj
on construit la fonction de renouvellement H. Cependant cette propriété tombe en défaut
en général lorsque l’on suppose que les accroissements (Xn)n>1 forment une chaîne de
Markov. La question de construire une fonction harmonique strictement positive mérite
alors des considérations nettement différentes.

Dans un esprit de point fixe, pour tout (x, y) ∈ X × R, on définit la suite de réels
Vn(x, y) par

Vn(x, y) = Ex (y + Sn ; τy > n) .

Cette définition est motivée par l’observation suivante. Puisque (Xn, y + Sn)n>0 est une
chaîne de Markov, par la propriété de Markov, on a

Vn+1(x, y) = Ex (E (y + Sn+1 ; τy > n+ 1 |X1 )) = Ex (Vn(X1, y + S1) ; τy > 1) .

Si l’on suppose que la suite (Vn(x, y))n>1 converge vers un réel V (x, y) et si on peut
intervertir la limite et l’espérance, cette limite V (x, y) vérifierait alors

V (x, y) = Ex (V (X1, y + S1) ; τy > 1) ,

id est la fonction V est harmonique.
Si cette construction est claire dans son principe, l’existence de la limite et l’hypo-

thèse de domination pour intervertir la limite et l’espérance en invoquant le théorème
de convergence dominée de Lebesgue est a contrario une difficulté majeure dans l’élabo-
ration d’une réponse aux questions (Q2/1.2.4) et (Q3/1.2.5). Dans le cas indépendant
(pour lequel, le paramètre x n’existe pas) Denisov et Wachtel [18] ont développé une
méthode récursive qui permet de montrer que la suite (Vn(y))n>1 (ou son équivalent dans
la dimension supérieure) est bornée par une constante dépendant uniquement du point
de départ y de la marche (y+Sn)n>1 (cf Lemme 10 de [18]). Pour les produits de matrices
aléatoires, Grama, Le Page et Peigné [41] établissent le même résultat pour leur marche
markovienne et montrent que la suite (Vn(x, y))n>1 est bornée. Même si la dépendance
par rapport au point de départ x de la chaîne de Markov (Xn)n>1 est bien présente dans
la démonstration, du fait de contrôles initiaux uniformes en x (comme mentionné à la
fin de la Section 1.3.3), le majorant de la suite (Vn(x, y))n>1 ne dépend en réalité que du
point de départ y de la marche (y + Sn)n>1 (cf Corollaire 5.7 de [41]).

La question de comment construire une fonction harmonique pour des marches mar-
koviennes (c’est-à-dire dont les accroissements sont markoviens) plus générales restait
donc à résoudre. La prise en compte de la dépendance de la chaîne de Markov (Xn)n>1
par rapport à son passé x fut l’obstacle majeur qui a motivé mes travaux. Les innovations
techniques associées nécessaire pour obtenir les deux théorèmes suivants seront détaillées
dans les Chapitres 2 et 3 respectivement.

Théorème 1.4.1 (Chaîne affine). On suppose que (Xn)n>0 est une chaîne de Markov
affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3).
1. Pour tout x ∈ R et tout y > 0, la suite

(Vn(x, y))n>1 = (Ex (y + Sn ; τy > n))n>1

converge vers un réel noté V (x, y).
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2. La fonction V est Q+-harmonique sur R× R∗+ : pour tout x ∈ R et tout y > 0,

Q+V (x, y) = Ex (V (X1, y + S1) ; τy > 1) = V (x, y).

3. Pour tout x ∈ R, la fonction y 7→ V (x, y) est positive, croissante et asymptotiquement
équivalente à y en l’infini :

lim
y→+∞

V (x, y)
y

= 1.

4. Pour tout δ > 0, p ∈ (2, α), x ∈ R et y > 0,

V (x, y) 6
(
1 + δ

(
1 + |x|p−1

))
y + cp,δ (1 + |x|p) .

La principale nouveauté dans la formulation de ce résultat comparé aux résultats
antérieurs est dans la dépendance en x, exprimée en particulier dans le point 4. Pour notre
second modèle de chaîne de Markov (couvrant le modèle précédent), on a le théorème
équivalent suivant.

Théorème 1.4.2 (Chaîne à trou spectral). Soit (Xn)n>0 chaîne de Markov avec un trou
spectral (CMTS). Plus précisément, sous les Hypothèses M3.1-M3.5 du Chapitre 3,
1. Pour tout x ∈ X et y ∈ R, la suite

(Vn(x, y))n>1 = (Ex (y + Sn ; τy > n))n>1

converge vers un réel noté V (x, y).
2. La function V : X× R→ R, est Q+-harmonique : pour tout x ∈ X et y ∈ R,

Q+V (x, y) = Ex (V (X1, y + S1) ; τy > 1) = V (x, y).

3. Pour tout x ∈ X, la fonction y 7→ V (x, y) est positive, croissante et asymptotiquement
équivalente à y en l’infini :

lim
y→+∞

V (x, y)
y

= 1.

4. Il existe une fonction N : X→ R+ telle que pour tout δ > 0, x ∈ X et y ∈ R,

V (x, y) 6 (1 + δ) max(y, 0) + cδ (1 +N(x)) .

1.4.3 Positivité de la fonction harmonique
Comme on l’a vu dans le paragraphe précédent, l’important dans notre construction

d’une fonction harmonique est de construire une fonction harmonique qui soit strictement
positive. Dans cette partie, V , dite la fonction harmonique, désigne la fonction construite
dans les Théorèmes 1.4.1 et 1.4.2 comme étant la limite de la suite (Vn(x, y))n>1. La stricte
positivité de V est un enjeu à ne pas négliger et requiert des hypothèses supplémentaires.
Dans le principe général il s’agit de reproduire la méthode récursive de Denisov et Wachtel
qui nous a permis d’obtenir les Théorèmes 1.4.1 et 1.4.2 en bornant supérieurement la
suite (Vn(x, y))n>1. De reproduire donc cette méthode et de la modifier pour construire
cette fois-ci une borne inférieure adaptée qui puisse à terme nous permettre de séparer V
de 0. Cette borne est donnée par le point 1 du Théorème 1.4.3 et le point 1 du Théorème
1.4.4 ci-dessous.
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Dans le cas d’une chaîne de Markov affine (CMA), on donne deux conditions suffisantes
pour que la fonction V soit strictement positive pour tous les points x ∈ R et tous les
points y > 0. Sans plus de détail (voir le Chapitre 2), ces conditions sont les suivantes.
Pour tout x ∈ R et y > 0,

Px (τy > 1) = P (ax+ b > −y) > 0. (C2/1.4.7)

Pour tout x ∈ R et y > 0, il existe p0 ∈ (2, α) tel que pour tout c > 0, il existe n0 > 1 tel
que

Px ((Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) > 0, (C3/1.4.8)

où
Kp0,c =

{
(x, y) ∈ R× R∗+, y > c (1 + |x|p0)

}
.

Il est clair que (C3/1.4.8) implique (C2/1.4.7). Cependant la condition (C2/1.4.7) ne
permet d’assurer la stricte positivité de V que lorsque E(a) > 0. La condition (C3/1.4.8)
est, dans une formulation adaptée, déjà présente chez Denisov et Wachtel [20]. Pour plus
de détails, je vous renvoie au Chapitre 2.

Théorème 1.4.3 (Chaîne affine). On suppose que (Xn)n>0 est une chaîne de Markov
affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3).
1. Pour tout δ > 0, p ∈ (2, α), x ∈ R et y > 0,

V (x, y) > (1− δ) y + cp,δ (1 + |x|p) .

2. Si on suppose de plus ou bien la condition (C2/1.4.7) et E(a) > 0 ou bien la condition
(C3/1.4.8), alors la fonction V est strictement positive sur R× R∗+.

Lorsque j’ai traité le cas plus général des chaînes de Markov avec un trou spectral
(CMTS), j’ai également changé mon point de vue sur la stricte positivité de V . Plutôt
que de chercher des hypothèses assurant la stricte positivité pour tous les points y > 0,
j’ai désiré décrire le domaine de positivité de V dit aussi support de V ,

supp(V ) = {(x, y) ∈ X× R : V (x, y) > 0} .

En effet, autant dans le cas indépendant on sent bien que y = 0 joue une frontière
importante, autant dans le cas markovien la frontière est plus complexe. Bien sûr si
y > 0 on parle bien pour τy d’un temps de sortie de la marche (y + Sn)n>1 et si y 6 0
plutôt d’un temps de retour de cette même marche. Cependant dans le cas markovien,
l’impulsion initiale x de la chaîne de Markov possède également son importance. Pour
y > 0, dans certains cas, il est possible de se munir d’un x ∈ X suffisamment défavorable
pour que partant de (x, y) on ait τy = 1 p.s. Ainsi, dans une approche un peu plus étoffée,
je n’impose pas à la fonction V d’être positive pour tout point de départ (x, y) mais je
donne une description de son support. Il est alors suivant le modèle toujours possible de
vérifier si V est strictement positive ou non sur X×R∗+ (elle ne l’est pas nécessairement).

Pour tout γ > 0, on considère l’ensemble

Dγ := {(x, y) ∈ X× R : ∃n0 > 1, Px (y + Sn0 > γ (1 +N (Xn0)) , τy > n0) > 0} .

On rappelle que l’existence d’une fonction N est donnée par le Théorème 1.4.2. On obtient
alors le résultat suivant.
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Théorème 1.4.4 (Chaîne à trou spectral). On suppose que (Xn)n>0 est une chaîne de
Markov avec un trou spectral (CMTS). Plus précisément, sous les Hypothèses M3.1-
M3.5 du Chapitre 3,
1. Pour tout δ > 0, x ∈ X et y ∈ R,

V (x, y) > (1− δ) max(y, 0)− cδ (1 +N(x)) .

2. Il existe γ0 > 0 telle que pour tout γ > γ0,

supp(V ) = Dγ.

1.4.4 Théorèmes limites pour des marches markoviennes
Bien que l’on ait répondu pour l’instant à aucune des questions (Q1/1.2.3)-(Q4/1.2.6)

dans le cadre de nos modèles markoviens, les résultats précédents sont d’importance et
vont nous permettre, par l’existence d’une fonction harmonique V , de trouver l’équivalent
recherché en (Q2/1.2.4). La stricte positivité de V justifiera la non-nullité de cet équi-
valent. Je passe pour le moment la description de lemmes techniques du Chapitre 2 ou 3
mettant en oeuvre des « trous » dans le processus (y + Sn)n>1 pour obtenir des résultats
similaires à la marche aléatoire indépendante. Je donne plutôt ci-dessous le principe de
départ des démonstrations des théorèmes qui suivent. J’en ai déjà fait rapidement men-
tion, l’idée est de partir d’un KMT pour montrer que les résultats liés au mouvement
brownien « se transporte » à notre marche markovienne. Ce couplage avec le mouvement
brownien a été récemment obtenu pour les chaînes de Markov avec un trou spectral par
Grama, Le Page et Peigné [40].

Proposition 1.4.5 (Grama, Le Page, Peigné). On suppose que (Xn)n>0 est une chaîne de
Markov affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3) ou que (Xn)n>0
est une chaîne de Markov avec un trou spectral (CMTS) vérifiant les Hypothèses M3.1-
M3.5 du Chapitre 3. Alors, il existe ε0 > 0 tel que pour tout ε ∈ (0, ε0], on peut recons-
truire sans perte de généralité la chaîne de Markov (Xn)n>0 et un mouvement (Bt)t∈R+

sur un même espace (Ω,F ,P) de façon à ce que pour tout x ∈ X et n > 1,

Px
(

sup
06t61

∣∣∣Sbtnc − σBtn

∣∣∣ > n1/2−ε
)
6
cε
nε

(1 +N(x)),

où σ est un réel positif.

La réponse à la question (Q1/1.2.3) est une conséquence facile de cette Proposition
1.4.5.

Corollaire 1.4.6. Soit (Xn)n>0 une chaîne de Markov affine (CMA) vérifiant les condi-
tions (C1.1/1.4.1)-(C1.3/1.4.3), respectivement une chaîne de Markov avec un trou spec-
tral (CMTS) vérifiant les Hypothèses M3.1-M3.5 du Chapitre 3. Alors pour tout x ∈ R
et tout y ∈ R, respectivement tout x ∈ X et tout y ∈ R, on a

Px (τy < +∞) < +∞.

En ce qui concerne la réponse à la question (Q2/1.2.4) et à la question (Q3/1.2.5), le
couplage fonctionne encore mais nécessite de nombreux développements supplémentaires
utilisant en particulier les Théorèmes 1.4.1 à 1.4.4. On voit réapparaître l’importance de
la fonction harmonique V .
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Théorème 1.4.7 (Chaîne affine). On suppose que (Xn)n>0 est une chaîne de Markov
affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3).
1. Pour tout p ∈ (2, α), x ∈ R et y > 0,

√
nPx (τy > n) 6 cp (1 + y + |x|)p .

2. Si on suppose de plus ou bien la condition (C2/1.4.7) et E(a) > 0 ou bien la condition
(C3/1.4.8), alors il existe σ > 0 tel que

i. Pour tout x ∈ R et y > 0,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

ii. Pour tout x ∈ R, y > 0 et t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

où Φ+(t) = 1− e− t
2
2 est la fonction de répartition de la loi de Rayleigh.

Dans le Chapitre 2, on donne également l’asymptotique du temps de retour, c’est-à-
dire les mêmes résultats mais pour des points pour lesquels y 6 0.

Dans le Chapitre 3 (pour les chaînes de Markov à trou spectral), notre réponse est
plus précise à plusieurs points de vue. On continue de donner des résultats analogues
sur le support de V mais on fait également remarquer que sur le complémentaire de V
le seul comportement possible est la décroissance très rapide de la probabilité de survie
(cf le point 3 du Théorème 1.4.8 ci-dessous). Ce résultat est optimal, je construit dans
le Chapitre 3 un exemple d’une chaîne de Markov qui atteint cette borne. Ce dernier
comportement tranche avec le cas indépendant pour lequel la marche survie avec une
probabilité en C/

√
n ou ne survie pas (la probabilité est nulle). Les résultats sont plus

précis également dans le sens où l’on donne des bornes du terme suivant dans le dévelop-
pement asymptotique lié à chaque réponse. A nouveau, la fonction N est donnée par le
Théorème 1.4.2.

Théorème 1.4.8 (Chaîne à trou spectral). On suppose que (Xn)n>0 est une chaîne de
Markov avec un trou spectral (CMTS). Plus précisément, sous les Hypothèses M3.1-
M3.5 du Chapitre 3, il existe σ > 0 tel que
1. Pour tout (x, y) ∈ X× R et n > 1,

Px (τy > n) 6 c
1 + max(y, 0) +N(x)√

n
.

2. Pour tout (x, y) ∈ supp(V ),

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

3. Pour tout (x, y) /∈ supp(V ) et n > 1,

Px (τy > n) 6 c e−cn (1 +N(x)) .
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4. Il existe ε0 > 0 tel que pour tout ε ∈ (0, ε0), n > 1 et (x, y) ∈ X× R,
∣∣∣∣∣Px (τy > n)− 2V (x, y)√

2πnσ

∣∣∣∣∣ 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−ε} +N(x)

)2

n1/2+ε/16 .

5. Pour tout (x, y) ∈ supp(V ) and t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

où Φ+(t) = 1− e− t
2
2 est la fonction de répartition de la loi de Rayleigh.

6. De plus il existe ε0 > 0 tel que pour tout ε ∈ (0, ε0), n > 1, t0 > 0, t ∈ [0, t0] et
(x, y) ∈ X× R,∣∣∣∣∣Px (y + Sn 6 t

√
n , τy > n

)
− 2V (x, y)√

2πnσ
Φ+

(
t

σ

)∣∣∣∣∣
6 cε,t0

max(y, 0) +
(
1 + y1{y>n1/2−ε} +N(x)

)2

n1/2+ε/16 .

1.4.5 Théorème local pour des marches markoviennes finies
On reprend dans ce paragraphe les principaux résultats du Chapitre 4. On se place

dans le cas où la chaîne de Markov est à espace d’états fini (CMF) et l’on souhaite
répondre à la question (Q4/1.2.6) à l’aide d’un résultat similaire à la Proposition 1.3.5.
La méthode s’inspire très largement de celle que développe Denisov et Wachtel [20] dans
le cas lattice et se fonde sur l’idée suivante. On reprend toujours les notations (1.2.1) et
(1.2.2) et on suppose que les conditions (C1/1.4.4)-(C3/1.4.6) sont satisfaites. On procède
en trois étapes, chacune renforçant la vitesse de convergence vers 0 d’un facteur 1/

√
n. La

première étape est immédiate et consiste à utiliser directement un théorème local pour
la marche non-conditionnée. L’inégalité suivante se démontre de la même façon que le
théorème 3.4 de Grama et Le Page [39]. Il existe une constante c > 0 telle que pour tout
x ∈ X, y ∈ R, z > 0, a > 0 et n > 1,

In(x, y, z) := Px (y + Sn ∈ [z, z + a] , τy > n) 6 Px (y + Sn ∈ [z, z + a]) 6 c(1 + a2)√
n

.

L’important est que cette majoration ne dépend ni de y ni de z. Dans un deuxième
temps, on va en conséquence pouvoir intégrer cette majoration de la façon suivante. Par
la propriété de Markov, on écrit que, pour k = bn/2c la partie entière de n/2,

In(x, y, z) = Ex (In−k (Xk, y + Sk, z) ; τy > k) 6 c(1 + a2)√
n− k

Px (τy > k) .

A l’aide du point 1 du Théorème 1.4.8, on obtient une majoration en 1/n mais qui dépend
cette fois du point de départ y :

In(x, y, z) 6 c(1 + a2)(1 + max(y, 0))
n

. (1.4.9)

Précisons que la fonction N du Théorème 1.4.8 peut être bornée uniformément en x
puisque l’espace X est fini. La troisième et dernière étape est plus astucieuse et consiste
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à « renverser » la marche. Revenons pour un moment au cas indépendant, si X1, . . . , Xn

sont i.i.d. alors la chaîne « renversée » Xn, Xn−1, . . . , X1 est également i.i.d. Posons
X∗1 = Xn, X∗2 = Xn−1, . . . , X∗n = X1. Dans ce cas la marche « renversée » est définie par

S∗k = −f(X∗1 )− · · · − f(X∗k) = −(Sn − Sn−k)

Plaçons-nous également pour simplifier dans le cas où Sn est une variable discrète. Alors
on observe que pour tout y > 0 et z > 0,

P (y + Sn = z , τy > n) = P (z + S∗n = y , τ ∗z > n)

avec τ ∗z := min{k > 1, z + S∗k 6 0}. Ce changement de regard sur l’évolution de la
marche nous permet d’inter-changer les rôles du point de départ y et du point d’arrivée
z. Revenons au cas markovien non-lattice et supposons pour le moment que l’on puisse
également « renverser » la chaîne de Markov et la marche associée. L’inégalité (1.4.9)
devient alors,

In(x, y, z) 6 c(1 + a2)(1 + max(z + a, 0))
n

.

On peut alors à nouveau intégrer cette inégalité comme précédemment et on obtient que

In(x, y, z) 6 c(1 + a3)(1 + max(z, 0)(1 + max(y, 0))
n3/2 .

Le processus s’arrête à cette troisième étape puisque cette fois le majorant dépend et de
y et de z. Ce procédé demande un travail supplémentaire pour obtenir l’asymptotique
exact de In(x, y, z) mais il nous donne déjà la bonne vitesse en 1/n3/2. Le fait de devoir
« renverser » la chaîne est une difficulté majeure qui nous a poussés à travailler avec
des chaînes de Markov à espace d’états fini (CMF). Dans ce cas, et sous les hypothèses
(C1/1.4.4)-(C3/1.4.6), il existe une unique mesure invariante ν strictement positive sur
X. Il nous est alors possible de définir la chaîne duale et de renverser le processus en loi.
On pose

P∗(x, x′) = P(x′, x)ν(x′)
ν(x) , ∀(x, x′) ∈ X2. (1.4.10)

La matrice P∗ est une matrice markovienne. Dans une situation plus générale que le cas
fini, une difficulté majeure après avoir défini l’opérateur dual P∗ est qu’il faut encore mon-
trer que cet opérateur dual P∗ vérifie les mêmes propriétés que l’opérateur initial P. Cette
condition est nécessaire afin de pouvoir étendre tous les résultats précédents connus pour
la marche initiale à la marche duale (comme le théorème local sans conditionnement par
exemple). Dans le cas fini, on verra que si P vérifie les conditions (C1/1.4.4)-(C3/1.4.6),
alors il n’est pas difficile de montrer que le noyau dual P∗ satisfait également les condi-
tions (C1/1.4.4)-(C3/1.4.6). On définit alors la chaîne duale (X∗n)n>0 comme étant une
chaîne de Markov de noyau P∗ et cette chaîne vérifie les mêmes théorèmes que la chaîne
initiale (Xn)n>0. Pour plus de détails, on renvoie au Chapitre 4 dans lequel je démontre les
quatre résultats suivants. Le premier est un résultat de type Gnedenko-Stone. La vitesse
donnée est d’ordre n seulement cependant le résultat est uniforme par rapport au point
d’arrivée z. On rappelle que ν est la mesure invariante de (Xn)n>0, que V est la fonction
harmonique définie par le Théorème 1.4.2 et que σ > 0 est un réel strictement positif
décrivant « la variance de la marche ».
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Théorème 1.4.9 (Chaîne finie). On suppose que (Xn)n>0 est une chaîne de Markov finie
(CMF) vérifiant les conditions (C1/1.4.4)-(C3/1.4.6) et que a > 0 est un réel strictement
positif. Alors, il existe ε0 ∈ (0, 1

4) tel que pour tout ε ∈ (0, ε0), ψ fonction de X dans R
positive et bornée, y ∈ R et n > 2ε−3, on a

sup
x∈X, z>0

n

∣∣∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)− 2aν (ψ)V (x, y)√
2πnσ2

ϕ+

(
z√
nσ

)∣∣∣∣∣
6 c (1 + max(y, 0)) ‖ψ‖∞

(
√
ε+ cε (1 + max(y, 0))

nε

)
,

où ϕ+(t) = t e− t
2
2 1{t>0} est la densité de la loi de Rayleigh.

Le deuxième résultat est le théorème local recherché pour une marche markovienne
finie conditionnée à rester positive, théorème qui résout la question (Q4/1.2.6) pour les
chaînes de Markov finies. Pour (X∗n)n>0 une chaîne de Markov duale (i.e. de noyau P∗
défini par(1.4.10)), on considère E∗ν l’espérance engendrée par les lois fini-dimensionnelles
du processus (X∗n)n>0 sachant que la loi initiale de X∗0 est donnée par ν.

Théorème 1.4.10 (Chaîne finie). On suppose que (Xn)n>0 est une chaîne de Markov finie
(CMF) vérifiant les conditions (C1/1.4.4)-(C3/1.4.6). Alors pour toute fonction positive
et bornée ψ : X→ R, a > 0, x ∈ X, y ∈ R and z > 0,

lim
n→+∞

n3/2Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

= 2V (x, y)√
2πσ3

∫ z+a

z
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

De plus pour tout n > 1,

sup
x∈X

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

6
c ‖ψ‖∞
n3/2

(
1 + a3

)
(1 + max(z, 0)) (1 + max(y, 0)) .

Le troisième résultat a été développé pour répondre aux besoins des processus de
branchement abordés dans le paragraphe suivant. Il est cependant intéressant en soi et
pour le dire un peu grossièrement exprime le fait qu’un processus conditionné à rester
positif et à revenir à des valeurs petites (entre z et z+a) se comporte asymptotiquement
comme le produit indépendant du processus direct et « renversé », tous les deux étant
conditionnés à rester positif.

Pour tout l > 1 on note C +
(
Xl × R

)
l’ensemble des fonctions positives g : Xl ×R→

R+ vérifiant les deux propriétés suivantes :
— pour tout (x1, . . . , xl) ∈ Xl, la fonction z 7→ g(x1, . . . , xl, z) est continue,
— il existe ε > 0 tel que max{(x1,...,xl)∈Xl} supz∈Rg(x1, . . . , xl, z)(1 + z)2+ε < +∞.

On suppose que la chaîne duale (X∗n)n>0 est construite de façon à être indépendante de
la chaîne directe (Xn)n>0 et on note par Ex,x∗ l’espérance engendrée par les lois fini-
dimensionnelles du processus (Xn, X

∗
n)n>0 sachant que (X0, X

∗
0 ) = (x, x∗). On note éga-

lement V ∗ la fonction harmonique de la chaîne duale (X∗n)n>0.
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Théorème 1.4.11 (Chaîne finie). On suppose que (Xn)n>0 est une chaîne de Markov
finie (CMF) vérifiant les conditions (C1/1.4.4)-(C3/1.4.6). Alors pour tout x ∈ X, y ∈ R,
l > 1, m > 1 et toute fonction g ∈ C +

(
Xl+m × R

)
,

lim
n→+∞

n3/2Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; τy > n)

= 2√
2πσ3

∫ +∞

0

∑
x∗∈X

Ex,x∗ (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z)

×V (Xl, y + Sl)V ∗ (X∗m, z + S∗m) ; τy > l , τ ∗z > m) ν(x∗) dz.

Le quatrième et dernier résultat de cette section découle du Théorème 1.4.11. Il donne
le comportement asymptotique de la probabilité que la marche y + Sn passe pour la
première fois dans les négatifs au temps n exactement.

Theorem 1.4.12. On suppose que (Xn)n>0 est une chaîne de Markov finie (CMF) véri-
fiant les conditions (C1/1.4.4)-(C3/1.4.6). Alors pour tout x ∈ X et y ∈ R,

lim
n→+∞

n3/2Px (τy = n) = 2V (x, y)√
2πσ3

∫ +∞

0
E∗ν (V ∗(X∗1 , z) ; S∗1 > z) dz.

1.4.6 Processus de branchement en environnement markovien
On reprend le cadre des processus de branchement en environnement aléatoire décrit

dans la Section 1.3.4 et qui est l’objet d’étude du Chapitre 5. Le principe est de remplacer
l’hypothèse d’indépendance des environnements par le fait que la suite (Xn)n>0 est une
chaîne de Markov à valeurs dans un espace d’états X fini (CMF). On suppose toujours
(C1/1.4.4), c’est-à-dire que la matrice de transition P associée est primitive,

∃k0 > 1, ∀(i, j) ∈ X2, Pk0(i, j) > 0. (C1/1.4.11)

Avec les notations de la Section 1.3.4, on suppose également que

∀i ∈ X, 0 < E
[(
ξ1,1
i

)2
]

= f ′′i (1) < +∞. (C2/1.4.12)

On se place dans un cadre non-lattice et on suppose que la condition (C3/1.4.6) est
vérifiée pour la fonction ρ : pour tout (θ, a) ∈ R2, il existe une orbite, c’est-à-dire une
suite de points i0, . . . , in dans X communiquant de la façon suivante

P(i0, i1) > 0, P(i1, i2) > 0, . . . , P(in−1, in) > 0, P(in, i0) > 0,

telle que
ρ(i0) + ρ(i1) + · · ·+ ρ(in)− (n+ 1)θ /∈ aZ. (C3/1.4.13)

Sous ces hypothèses, les développements précédents des Sections 1.4.2 à 1.4.4 vont nous
permettent dans le Chapitre 5 d’étendre les Propositions 1.3.7 à 1.3.10 au cas des envi-
ronnements markoviens finis. Pour tout λ ∈ R, et tout i ∈ X, nous verrons que la limite
de E1/n

i

(
eλSn

)
quand n→ +∞ existe et ne dépend pas de i. On définit alors

k(λ) := lim
n→+∞

E1/n
i

(
eλSn

)
.

Ce réel k(λ) correspond à la valeur propre dominante de l’opérateur perturbé Pλ qui
nous sera utile pour effectuer le changement de loi nécessaire aux cas sous-critiques.
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Théorème 1.4.13 (Cas critique). Supposons les conditions (C1/1.4.11)-(C3/1.4.13) et
supposons que

k′(0) = ν(ρ) =
∑
i∈X

ρ(i)ν(i) = 0.

Alors il existe u1 une fonction sur X strictement positive telle que pour tout (i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

ν(j)u1(i)√
n

.

Théorème 1.4.14 (Cas fortement sous-critique). Supposons les conditions (C1/1.4.11)-
(C3/1.4.13) et supposons que

k′(0) < 0, k′(1) < 0.

Alors il existe v1 et u2 deux fonctions sur X strictement positives telles que pour tout
(i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(1)nv1(i)u2(j).

On rappelle que sous la condition (C1/1.4.11), il existe une unique mesure invariante
pour la chaîne (Xn)n>0 que l’on note ν.

Théorème 1.4.15 (Cas critique intermédiaire). Supposons les conditions (C1/1.4.11)-
(C3/1.4.13) et supposons que

k′(0) < 0, k′(1) = 0.

Alors il existe v1 et u3 deux fonctions sur X strictement positives telles que pour tout
(i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(1)nv1(i)u3(i)√
n

.

Théorème 1.4.16 (Cas faiblement sous-critique). Supposons les conditions (C1/1.4.11)-
(C3/1.4.13) et supposons que

k′(0) < 0, k′(1) > 0.

Alors il existe un unique λ ∈ (0, 1) tel que k′(λ) = 0 et il existe u4 une fonction sur X2

strictement positive telle que pour tout (i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(λ)nu4(i, j)
n3/2 .

1.5 Rappels sur les marches indépendantes
Dans cette section je rappelle, et détaille parfois un peu, la démonstration du calcul

de l’asymptotique de la probabilité de survie d’une marche aléatoire unidimensionnelle
lorsque ses accroissements sont i.i.d. De cette façon, on pourra éventuellement constater
l’importante différence que possède cette approche historique avec celle que nous nous
proposons de suivre dans les chapitres suivants pour traiter nos modèles markoviens. La
preuve ci-dessous est très majoritairement due à Spitzer et je paraphrase essentiellement
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son livre [66]. Pour une version légèrement différente de cette démonstration on pourra
aussi se référer au livre de Feller [29].

Soient (Ω,F ,P) un espace probabilisé et E l’espérance associée. On considère (Xn)n>1
une suite de variables aléatoires indépendantes et identiquement distribuées définies sur
(Ω,F ,P) et à valeurs dans R. On définit la marche associée par :

∀n > 1, Sn = X1 + · · ·+Xn et S0 = 0.

On considère également τ le premier instant strictement positif pour lequel la marche
rentre dans la demi-droite des réels négatifs :

τ = inf {n > 1, Sn 6 0} .

L’objectif de cette section est de redonner les idées de la démonstration du résultat bien
connu de Spitzer [65].

Théorème 1.5.1 (Spitzer). Supposons que la suite (Xn)n>1 est i.i.d. et supposons que

E (X1) = 0 et σ2 = E
(
X2

1

)
<∞.

1. Alors, la série ∑k>1
1
k

(
P (Sk > 0)− 1

2

)
converge vers un réel noté

α =
+∞∑
k=1

1
k

(
P (Sk > 0)− 1

2

)
∈ R.

2. De plus, la probabilité que la marche survive est donnée asymptotiquement par l’équi-
valent suivant :

P (τ > n) ∼
n→∞

eα√
πn

.

Dans la section suivante, on démontre le Théorème 1.5.1. Pour une meilleure lisibilité,
les lemmes d’analyse pure sont reportés dans la Section 1.5.2.

1.5.1 Démonstration du Théorème 1.5.1
La première étape est d’obtenir des informations sur la fonction caractéristique du

couple (τ, Sτ ). Pour ce faire, introduisons quelques notations.

Définition 1.5.2.
1. On désigne par ϕ la fonction caractéristique de la loi commune aux Xn, n > 1 : pour

tout θ ∈ R,
ϕ(θ) := E

(
eiθX1

)
.

2. On découpe le plan complexe en deux demi-plans :

D+ := {z ∈ C : =(z) > 0} et D− := {z ∈ C : =(z) < 0} (1.5.1)

où =(z) est la partie imaginaire du complexe z.
3. Pour tout n > 0, on pose

∀z ∈ D− ∪ R, ϕ−n (z) := E
(
eizSn ; τ = n

)
∀z ∈ D+ ∪ R, ϕ+

n (z) := E
(
eizSn ; τ > n

)
.
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4. Pour tout t ∈ [0, 1[, on pose

∀z ∈ D− ∪ R, ϕ−(t, z) :=
+∞∑
n=1

tnϕ−n (z) = E
(
tτ eizSτ ; τ < +∞

)

∀z ∈ D+ ∪ R, ϕ+(t, z) :=
+∞∑
n=0

tnϕ+
n (z) = E

(
τ−1∑
n=0

tn eizSn
)
.

Par l’indépendance des accroissements on établit en premier lieu la factorisation sui-
vante :

Lemme 1.5.3 (Factorisation de Wiener-Hopf). Pour tout t ∈ [0, 1[ et θ ∈ R :

1− ϕ−(t, θ) = (1− tϕ(θ))ϕ+(t, θ).

Démonstration. Pour tout n > 0 et θ ∈ R,

ϕ−n+1(θ) + ϕ+
n+1(θ) = E

(
eiθSn+1 ; τ > n+ 1

)
= E

(
eiθSn eiθXn+1 ; τ > n

)
.

Naturellement, τ est un temps d’arrêt pour la filtration canonique (Fn)n>0 avec Fn =
σ (X1, . . . , Xn) et F0 la tribu grossière. Ainsi {τ > n} ∈ Fn est indépendant de Xn+1 et

ϕ−n+1(θ) + ϕ+
n+1(θ) = E

(
eiθSn ; τ > n

)
E
(
eiθXn+1

)
= ϕ(θ)ϕ+

n (θ)

En sommant on obtient pour tout t ∈ [0, 1[,

ϕ−(t, θ) + ϕ+(t, θ) = 1 +
+∞∑
n=0

tn+1
(
ϕ−n+1(θ) + ϕ+

n+1(θ)
)

= 1 + tϕ(θ)ϕ+(t, θ).

A l’aide de cette factorisation, on en déduit le résultat suivant.

Lemme 1.5.4. Pour tout t ∈ [0, 1[ on a

∀z ∈ D− ∪ R, ϕ−(t, z) = E
(
tτ eizSτ ; τ < +∞

)
= 1− exp

(
−

+∞∑
n=1

tn

n
E
(
eizSn ; Sn 6 0

))

et

∀z ∈ D+ ∪ R, ϕ+(t, z) = E
(
τ−1∑
n=0

tn eizSn
)

= exp
(+∞∑
n=1

tn

n
E
(
eizSn ; Sn > 0

))
.

Démonstration. Pour tout z ∈ C tel que |z| < 1, on a exp
(
−∑+∞

n=1
zn

n

)
= 1 − z. Donc

pour tout t ∈ [0, 1[ et θ ∈ R, par indépendance des variables aléatoires Xn, n > 1,

1− tϕ(θ) = exp
(
−

+∞∑
n=1

tn

n
ϕ(θ)n

)
= exp

(
−

+∞∑
n=1

tn

n
E
(
eiθSn

))
.
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En découpant suivant le signe de Sn, on obtient que

1− tϕ(θ) = exp
(
−

+∞∑
n=1

tn

n
E
(
eiθSn ; Sn > 0

))
exp

(
−

+∞∑
n=1

tn

n
E
(
eiθSn ; Sn 6 0

))
. (1.5.2)

On reprend les notations présentées en (1.5.1) et pour tout t ∈ [0, 1[, on considère ζ−t
et ζ+

t deux fonctions complexes définies sur D− ∪ R, respectivement D+ ∪ R de la façon
suivante :

∀z ∈ D− ∪ R, ζ−t (z) :=
[
1−

+∞∑
n=1

tnE
(
eizSn ; τ = n

)]
exp

(+∞∑
n=1

tn

n
E
(
eizSn ; Sn 6 0

))
,

∀z ∈ D+ ∪ R, ζ+
t (z) :=

[+∞∑
n=0

tnE
(
eizSn ; τ > n

)]
exp

(
−

+∞∑
n=1

tn

n
E
(
eizSn ; Sn > 0

))
.

Il est clair que pour t fixé entre [0, 1[, la fonction ζ−t est analytique sur D−, continue en
tout point de R et bornée sur D− ∪ R par

∣∣∣ζ−t (z)
∣∣∣ 6 [

1 +
+∞∑
n=1

tnP (τ = n)
]

exp
(+∞∑
n=1

tn

n
P (Sn 6 0)

)

6 [1 + E (tτ ; τ < +∞)] exp
(+∞∑
n=1

tn

n

)
6

2
1− t . (1.5.3)

De même la fonction ζ+
t est analytique sur D+, continue en tout point de R et bornée

sur D+ ∪ R par

∣∣∣ζ+
t (z)

∣∣∣ 6 [+∞∑
n=0

tnP (τ > n)
]

exp
(+∞∑
n=1

tn

n
P (Sn > 0)

)
6
( 1

1− t

)2
. (1.5.4)

De plus en utilisant la définition de ϕ− et ϕ+ (voir Définition 1.5.2), le Lemme 1.5.3 et
l’égalité (1.5.2), on obtient la relation suivante sur R entre ζ−t et ζ+

t

∀θ ∈ R, ζ−t (θ) =
[
1− ϕ−(t, θ)

]
exp

(+∞∑
n=1

tn

n
E
(
eiθSn ; Sn 6 0

))

= [1− tϕ(θ)]ϕ+(t, θ) exp
(+∞∑
n=1

tn

n
E
(
eiθSn ; Sn 6 0

))

= ϕ+(t, θ) exp
(
−

+∞∑
n=1

tn

n
E
(
eiθSn ; Sn > 0

))
= ζ+

t (θ). (1.5.5)

On pose maintenant ζt la fonction définie sur C par

ζt(z) =
{
ζ−t (z) si z ∈ D− ∪ R,
ζ+
t (z) si z ∈ D+ ∪ R.

D’après (1.5.5), la fonction ζt est bien définie sur R. De plus ζt est analytique sur D−∪D+

et continue sur R. Donc par le Lemme 1.5.13, ζt est analytique sur C. De plus par (1.5.3)
et (1.5.4), ζt est bornée sur C donc par le théorème de Liouville,

∃ct ∈ C, telle que ∀z ∈ C, ζt(z) = ct.
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On détermine la constante en remarquant que, par convergence dominée,

lim
θ→+∞
θ∈R

ζ+
t (iθ) = lim

θ→+∞
θ∈R

[
1 +

+∞∑
n=1

tnE
(
e−θSn ; τ > n

)]
exp

(
−

+∞∑
n=1

tn

n
E
(
e−θSn ; Sn > 0

))
= 1.

Donc ct = 1 et par suite, ∀z ∈ C, ζ−t (z) = ζ+
t (z) = 1. Donc par les définitions de ζ−t , ζ+

t ,
ϕ− et ϕ+, on en conclut que

∀z ∈ D− ∪ R, 1− ϕ−(t, z) = exp
(
−

+∞∑
n=1

tn

n
E
(
eizSn ; Sn 6 0

))
,

∀z ∈ D+ ∪ R, ϕ+(t, z) = exp
(+∞∑
n=1

tn

n
E
(
eizSn ; Sn > 0

))
.

Lemme 1.5.5. Le temps de sortie dans les négatifs τ est fini presque sûrement :

P (τ < +∞) = 1.

Démonstration. D’après le Lemme 1.5.4, pour tout t ∈ [0, 1[,

ϕ−(t, 0) = E (tτ ; τ < +∞) = 1− exp
(
−

+∞∑
n=1

tn

n
P (Sn 6 0)

)
.

Par conséquent, par le théorème de convergence monotone de Lebesgue,

P (τ < +∞) = lim
t→1
t<1

E (tτ ; τ < +∞)

= 1− exp
− lim

t→1
t<1

+∞∑
n=1

tn

n
P (Sn 6 0)


= 1− exp

(
−

+∞∑
n=1

1
n
P (Sn 6 0)

)
. (1.5.6)

De plus, par le théorème central limite, P (Sn 6 0) −→
n→+∞

1/2 et donc

+∞∑
n=1

1
n
P (Sn 6 0) = +∞. (1.5.7)

Ce qui, avec (1.5.6), conclut la preuve du lemme.

Lemme 1.5.6. Le temps de sortie τ n’est pas intégrable :

E (τ) = +∞.

Démonstration. Pour tout k > 1 et t ∈ [0, 1[, on a 0 6 (1 − tk)/(1 − t) 6 k. Donc pour
tout t ∈ [0, 1[,

E (τ) > 1− E (tτ )
1− t = 1− ϕ−(t, 0)

1− t .
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Par le Lemme 1.5.4,

E (τ) > exp
(
−

+∞∑
n=1

tn

n
P (Sn 6 0)

)
exp (− ln(1− t))

= exp
(
−

+∞∑
n=1

tn

n
P (Sn 6 0) +

+∞∑
n=1

tn

n

)

= exp
(+∞∑
n=1

tn

n
P (Sn > 0)

)
.

Or de façon analogue à (1.5.7), ∑+∞
n=1

1
n
P (Sn > 0) = +∞. D’où, par convergence mono-

tone,

E (τ) > lim
t→1
t<1

exp
(+∞∑
n=1

tn

n
P (Sn > 0)

)
= +∞.

Pour établir la convergence de ∑+∞
k=1

1
n

(
P (Sn > 0)− 1

2

)
on va avoir besoin des deux

lemmes suivants.

Lemme 1.5.7.
lim

n→+∞
E
(
Sn√
nσ

; Sn > 0
)

= 1√
2π
.

Démonstration. On note F la fonction de répartition de la loi normale centrée et réduite.
Pour tout n > 1, on écrit que∣∣∣∣∣E

(
Sn√
nσ

; Sn > 0
)
− 1√

2π

∣∣∣∣∣ =
∣∣∣∣∣
∫ +∞

0
P
(
Sn√
nσ

> u

)
− (1− F (u)) du

∣∣∣∣∣ .
Fixons A > 0, on a alors∣∣∣∣∣E

(
Sn√
nσ

; Sn > 0
)
− 1√

2π

∣∣∣∣∣
6
∫ A

0

∣∣∣∣∣F (u)− P
(
Sn√
nσ

< u

)∣∣∣∣∣ du+
∫ +∞

A

∣∣∣∣∣1− F (u)− P
(
Sn√
nσ

> u

)∣∣∣∣∣ du
6
∫ A

0

∣∣∣∣∣F (u)− P
(
Sn√
nσ

< u

)∣∣∣∣∣ du+
∫ +∞

A

1
u2 + E (S2

n)
nσ2u2 du

=
∫ A

0

∣∣∣∣∣F (u)− P
(
Sn√
nσ

< u

)∣∣∣∣∣ du+ 2
A
.

Ainsi par convergence dominée, pour tout A > 0,

lim
n→+∞

∣∣∣∣∣E
(
Sn√
nσ

; Sn > 0
)
− 1√

2π

∣∣∣∣∣ 6 2
A

et lorsque A tend vers +∞ on obtient le résultat souhaité.

Lemme 1.5.8.
lim
t→1
t<1

√
1− t

+∞∑
n=1

tn

n
E (Sn ; Sn > 0) = σ√

2
.
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Démonstration. On commence tout d’abord par observer que, pour tout t ∈ [0, 1[,

1√
1− t

=
+∞∑
n=0

ant
n,

où an = (2n)!
22n(n!)2 , pour tout n > 0 et par la formule de Stirling,

an ∼
n→+∞

1√
πn

.

Notamment an > 0 et ∑n>0 ant
n a un rayon de convergence égal à 1 et diverge en 1. De

plus par le Lemme 1.5.7,

an ∼
n→+∞

√
2

σn
E (Sn ; Sn > 0) = bn

Donc par le Lemme 1.5.14,
√

2
σ

+∞∑
n=0

tn

n
E (Sn ; Sn > 0) ∼

t→1
t<1

1√
1− t

,

d’où le résultat.

Lemme 1.5.9. La fonction t 7→ ∑+∞
k=1

tn

n

(
P (Sn > 0)− 1

2

)
admet une limite dans R ∪

{+∞} lorsque t→ 1 et

−E (Sτ ) = σ√
2

exp
lim
t→1
t<1

+∞∑
k=1

tn

n

(
P (Sn > 0)− 1

2

) ∈]0,+∞].

Démonstration. Posons bn = E (Sn ; τ > n) pour tout n > 0. Montrons que (bn)n>0 est
une suite croissante qui tend vers −E (Sτ ) quand n tend vers +∞. Soit n > 0,

bn+1 = E (Sn+1 ; τ > n+ 1)
= E (Sn+1 ; τ > n)− E (Sn+1 ; τ = n+ 1)
= E (Sn ; τ > n) + E (Xn+1 ; τ > n)− E (Sn+1 ; τ = n+ 1) .

Or par indépendance des accroissements (Xn)n>1 et leur centrage,

E (Xn+1 ; τ > n) = E (Xn+1)P (τ > n) = 0.

De plus par définition de τ ,

−E (Sn+1 ; τ = n+ 1) = −E (Sτ ; τ = n+ 1) > 0.

Donc, on en déduit que
bn+1 > E (Sn ; τ > n) = bn.

Montrons maintenant que (bn)n>0 tend vers −E (Sτ ) ∈ R ∪ {+∞}. Puisque par le
Lemme 1.5.5, τ est fini presque sûrement,

−E (Sτ ) = −
+∞∑
n=1

E (Sn ; τ = n) =
+∞∑
n=1

[bn − E (Sn ; τ > n− 1)] .
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A nouveau par indépendance et centrage des (Xn)n>1,

−E (Sτ ) =
+∞∑
n=1

[bn − bn−1] = lim
n→+∞

bn.

Comme X1 est centré et non-identiquement nul, on note au passage que

−E (Sτ ) > b1 = E (X1 ; X1 > 0) > 0. (1.5.8)

Maintenant, puisque (bn)n>0 est croissante, deux possibilités s’offrent à nous : ou bien
la suite converge dans R ou bien la suite diverge vers l’infini. Supposons que (bn)n>0
converge vers −E (Sτ ) < +∞. Dans ce cas, en invoquant le Lemme 1.5.14 avec an =
−E (Sτ ) pour tout n > 1, on trouve que

+∞∑
n=1

bnt
n =

+∞∑
n=1

tnE (Sn ; τ > n) ∼
t→1
t<1

−E (Sτ )
1− t

ou encore
lim
t→1
t<1

(1− t)
+∞∑
n=1

tnE (Sn ; τ > n) = −E (Sτ ) . (1.5.9)

Dans le second cas où bn −→
n→+∞

+∞, d’après le Lemme 1.5.15, l’égalité (1.5.9) reste encore
vraie.

Rappelons maintenant que d’après le Lemme 1.5.4, pour tout t ∈ [0, 1[ et tout θ > 0,

ϕ+(t, iθ) =
+∞∑
n=0

tnE
(
e−θSn ; τ > n

)
= exp

(+∞∑
n=1

tn

n
E
(
e−θSn ; Sn > 0

))
.

Puisque
∣∣∣tnSn e−θSn 1{τ>n}

∣∣∣ 6 tn |Sn| et que tnE (|Sn|) 6 tnnE (|X1|) est sommable en n
pour tout t < 1, il est possible de dériver terme à terme par rapport à θ le membre de
gauche. De même pour le membre de droite, donc pour tout θ > 0 et t ∈ [0, 1[,
+∞∑
n=0

tnE
(
Sn e−θSn ; τ > n

)
=

+∞∑
n=1

tn

n
E
(
Sn e−θSn ; Sn > 0

)
exp

(+∞∑
n=1

tn

n
E
(
e−θSn ; Sn > 0

))
.

En particulier,
+∞∑
n=0

tnE (Sn ; τ > n) =
+∞∑
n=1

tn

n
E (Sn ; Sn > 0) exp

(+∞∑
n=1

tn

n
P (Sn > 0)

)
.

En utilisant (1.5.9),

−E (Sτ ) = lim
t→1
t<1

√
1− t

+∞∑
n=1

tn

n
E (Sn ; Sn > 0)

√
1− t exp

(+∞∑
n=1

tn

n
P (Sn > 0)

)

En conséquence, par le Lemme 1.5.8,

−E (Sτ ) = σ√
2

lim
t→1
t<1

√
1− t exp

(+∞∑
n=1

tn

n
P (Sn > 0)

)

= σ√
2

lim
t→1
t<1

exp
(
−1

2

+∞∑
n=1

tn

n
+

+∞∑
n=1

tn

n
P (Sn > 0)

)

= σ√
2

exp
lim
t→1
t<1

+∞∑
n=1

tn

n

(
P (Sn > 0)− 1

2

) ,
ce qui avec (1.5.8) établit le lemme.
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Lemme 1.5.10.
+∞∑
n=1

1
n
P (Sn = 0) < +∞.

Démonstration. Rappelons que, par le Lemme 1.5.5, le temps τ est fini presque sûrement.
Donc, d’après le Lemme 1.5.4, pour tout t ∈ [0, 1[ et tout θ > 0,

ϕ−(t,−iθ) = E
(
tτ eθSτ

)
= 1− exp

(
−

+∞∑
n=1

tn

n
E
(
eθSn ; Sn 6 0

))

Par convergence dominée, pour tout t ∈ [0, 1[ lorsque θ → +∞, on obtient que

E (tτ ; Sτ = 0) = 1− exp
(
−

+∞∑
n=1

tn

n
P (Sn = 0)

)
.

Supposons que∑+∞
n=1

1
n
P (Sn = 0) = +∞. Alors, par convergence monotone lorsque t→ 1,

P (Sτ = 0) = 1.

Mais ceci implique notamment que P (X1 < 0) = 0 ce qui contredit le fait que la loi de
X1 est centrée et non dégénérée. Donc nécessairement ∑+∞

n=1
1
n
P (Sn = 0) < +∞.

Lemme 1.5.11. La série ∑k>1
1
k

(
P (Sk > 0)− 1

2

)
converge vers un réel noté

α =
∞∑
k=1

1
k

(
P (Sk > 0)− 1

2

)
= lim

t→1
t<1

+∞∑
k=1

tk

k

(
P (Sk > 0)− 1

2

)
∈ R

et
−E (Sτ ) = σ√

2
eα .

Démonstration. Procédons par l’absurde et supposons que

lim
t→1
t<1

+∞∑
n=1

tn

n

(
P (Sn > 0)− 1

2

)
= +∞.

Notons que pour tout t > [0, 1[,

+∞∑
n=1

tn

n

(
P (Sn > 0)− 1

2

)
=

+∞∑
n=1

tn

n

(1
2 − P (Sn 6 0)

)

= −
+∞∑
n=1

tn

n

(
P (Sn < 0)− 1

2

)
−

+∞∑
n=1

tn

n
P (Sn = 0) .

En utilisant le Lemme 1.5.10, la série entière∑n>1
tn

n
P (Sn = 0) a un rayon de convergence

égal à 1 et converge en 1, donc est bornée sur [0, 1]. On en déduit que

lim
t→1
t<1

+∞∑
n=1

tn

n

(
P (Sn < 0)− 1

2

)
= −∞. (1.5.10)
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Or la marche aléatoire Tn = −X1 − · · · − Xn et T0 = 0 a des accroissements (−Xn)n>1
indépendants, identiquement distribués, centrés et dont le moment d’ordre 2 existe. Donc
tous les lemmes précédents sont vérifiés pour (Tn)n>0. En particulier, par le Lemme 1.5.9,

lim
t→1
t<1

+∞∑
n=1

tn

n

(
P (Sn < 0)− 1

2

)
= lim

t→1
t<1

+∞∑
n=1

tn

n

(
P (Tn > 0)− 1

2

)
∈ R ∪ {+∞},

ce qui contredit (1.5.10). Donc

lim
t→1
t<1

+∞∑
n=1

tn

n

(
P (Sn > 0)− 1

2

)
6= +∞.

Or d’après le Lemme 1.5.9, nécessairement la limite existe dans R. Notons α cette limite.
La série entière ∑n>1

tn

n

(
P (Sn > 0)− 1

2

)
a un rayon de convergence égal à 1 et converge

pour t = 1, donc d’après le théorème taubérien d’Hardy-Littlewood,

lim
t→1
t<1

+∞∑
n=1

tn

n

(
P (Sn > 0)− 1

2

)
=

+∞∑
n=1

1
n

(
P (Sn > 0)− 1

2

)
= α ∈ R.

Par le Lemme 1.5.9 on conclut également que −E (Sτ ) = σ√
2 eα.

Lemme 1.5.12. Le comportement asymptotique de la probabilité de survie est donné par

P (τ > n) ∼
n→+∞

eα√
nπ

.

Démonstration. Considérons la série entière associée, pour tout t ∈ [0, 1[,
+∞∑
n=0

P (τ > n) tn = 1 +
+∞∑
n=1

P (τ > n− 1) tn −
+∞∑
n=1

P (τ = n) tn

= 1 + t
+∞∑
n=0

P (τ > n) tn − E (tτ ) .

Donc, d’après le Lemme 1.5.4,

(1− t)
+∞∑
n=0

P (τ > n) tn = 1− ϕ−(t, 0) = exp
(
−

+∞∑
n=1

tn

n
P (Sn 6 0)

)
.

Par conséquent,

√
1− t

+∞∑
n=0

P (τ > n) tn = exp
(
−1

2 ln(1− t)−
+∞∑
n=1

tn

n
P (Sn 6 0)

)

= exp
(+∞∑
n=1

tn

n

(1
2 − P (Sn 6 0)

))

= exp
(+∞∑
n=1

tn

n

(
P (Sn > 0)− 1

2

))
.

Par le Lemme 1.5.11,

lim
t→1
t<1

√
1− t

+∞∑
n=0

P (τ > n) tn = eα .
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Par le Lemme 1.5.16,
lim

n→+∞

1√
n

n∑
k=0

P (τ > k) = 2 eα√
π
.

Finalement, puisque (P (τ > n))n>0 est décroissante, on conclut par le Lemme 1.5.17 que

lim
n→+∞

√
nP (τ > n) = eα√

π
.

1.5.2 Quelques lemmes d’analyse
Lemme 1.5.13. Soient D+ et D− les demi-plans définis en (1.5.1). Si ζ est une fonction
holomorphe sur D+ ∪D− et continue sur C alors elle est holomorphe sur C.

Inspiré de la proposition P17.3 de [66] page 179, il faut remarquer que l’intégrale de
tout triangle entourant un point de l’axe des réels est nulle et que donc par le théorème
de Morera, la fonction en question est analytique partout.

On pourra trouver le lemme abélien suivant au théorème 57 page 108 de Hardy [45].

Lemme 1.5.14. Soient (an)n>0 et (bn)n>0 deux suites de réels telles que
1. pour tout n > 1, an > 0,
2. la série entière ∑n>0 ant

n a un rayon de convergence égale à 1 et diverge en t = 1,
3. les suites (an)n>0 et (bn)n>0 sont équivalentes : an ∼

n→+∞
bn.

Alors les fonctions t 7→ ∑+∞
n=0 ant

n et t 7→ ∑+∞
n=0 bnt

n sont équivalentes en 1 :
+∞∑
n=0

ant
n ∼
t→1
t<1

+∞∑
n=0

bnt
n.

Démonstration. Puisque les suites (an)n>0 et (bn)n>0 sont équivalentes, il est clair que pour
n assez grand, bn > 0 et que la série entière ∑n>0 bnt

n a aussi un rayon de convergence
égale à 1 et diverge en t = 1. Soit ε > 0, il existe n0 > 0 tel que pour tout n > n0, on a
|an − bn| 6 ε

2an. Donc, pour tout t ∈ [0, 1[,∣∣∣∣∣
+∞∑
n=0

ant
n − bntn

∣∣∣∣∣ 6
n0∑
n=0
|an − bn|+

+∞∑
n=n0+1

|an − bn| tn

6
n0∑
n=0
|an − bn|+

ε

2

+∞∑
n=n0+1

ant
n

Or ∑+∞
n=0 an = +∞ donc il existe t0 < 1 tel que pour tout t ∈ [t0, 1[, on a ∑n0

n=0 |an − bn| 6
ε
2
∑+∞
n=0 ant

n. Ainsi, pour tout t ∈ [t0, 1[,∣∣∣∣∣
+∞∑
n=0

ant
n − bntn

∣∣∣∣∣ 6
n0∑
n=0
|an − bn|+

+∞∑
n=n0+1

|an − bn| tn

6
ε

2

+∞∑
n=0

ant
n + ε

2

+∞∑
n=0

ant
n.
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Lemme 1.5.15. Soit (bn)n>0 une suite de réels positifs telle que la série entière associée∑
n>0 t

nbn a un rayon de convergence égal à 1 et telle que bn −→
n→+∞

+∞. Alors

lim
t→1
t<1

(1− t)
+∞∑
n=0

tnbn = +∞.

Démonstration. Puisque (bn)n>0 diverge, pour tout A > 0 il existe n0 > 1 tel que pour
tout n > n0, on a bn > A. Donc pour tout t ∈ [0, 1[,

(1− t)
+∞∑
n=0

tnbn > (1− t)
+∞∑
n=n0

tnbn > Atn0 .

D’où, pour tout A > 0,

lim inf
t→1
t<1

(1− t)
+∞∑
n=0

tnbn > A

et le lemme est vérifié en faisant tendre A→ +∞.

Lemme 1.5.16 (Karamata). Soit (an)n>0 une suite de réels positifs (ou nuls) telle que
la série entière associée ∑n>0 ant

n a un rayon de convergence égal à 1 et telle que

lim
t→1
t<1

√
1− t

+∞∑
n=0

ant
n = 1.

Alors
lim

n→+∞

a0 + · · ·+ an√
n

= 2√
π
.

Démonstration. Pour tout fonction h : [0,+∞[→ [0,+∞[ bornée, on considère, lorsqu’elle
existe, la limite suivante :

L (h) = lim
t→1
t<1

√
1− t

+∞∑
n=0

ant
nh (tn) .

Il est clair que L est linéaire. De plus, lorsque hk : t 7→ tk avec k > 0, on obtient :

L (hk) = lim
t→1
t<1

√
1− t

+∞∑
n=0

ant
n(k+1) = lim

t→1
t<1

√
1− t√

1− tk+1

√
1− tk+1

+∞∑
n=0

ant
n(k+1).

Puisque par hypothèse
√

1− s∑+∞
n=0 ans

n −→ 1 quand s→ 1, on trouve donc

L (hk) = 1√
k + 1

.

D’autre part, en notant Γ la fonction gamma : Γ(z) =
∫+∞

0 uz−1 e−u du,
∫ +∞

0

hk (e−u) e−u√
uΓ(1/2) du =

∫ +∞

0

e−u(k+1)
√
uΓ(1/2) du = 1√

k + 1

∫ +∞

0

e−v√
vΓ(1/2) dv = 1√

k + 1
.

D’où pour tout k > 0,
L (hk) =

∫ +∞

0

hk (e−u) e−u√
uΓ(1/2) du,
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et par linéarité, pour tout polynôme P ,

L (P ) =
∫ +∞

0

P (e−u) e−u√
uΓ(1/2) du.

Fixons désormais h(t) = 1
t
1{t>e−1}, pour tout t ∈ (0, 1]. Soit ε > 0 on considère également

h+
ε et h−ε deux fonctions continue sur [0, 1] définie respectivement par

h+
ε (t) =


h(t) si t ∈ [0, e−1−ε] ∪ [e−1, 1]
e1

ε

(
t− e−1 +ε

)
si t ∈ [e−1−ε, e−1]

et

h−ε (t) =


h(t) si t ∈ [0, e−1] ∪ [e−1 +ε, 1]

1
ε (e−1 +ε)

(
t− e−1

)
si t ∈ [e−1, e−1 +ε]

Puisque pour tout t ∈ [0, 1], on a h(t) 6 h+
ε (t), on écrit que

L +(h) = lim sup
t→1
t<1

√
1− t

+∞∑
n=0

ant
nh (tn) 6 lim sup

t→1
t<1

√
1− t

+∞∑
n=0

ant
nh+

ε (tn) .

Par le théorème d’approximation de Weierstrass, il existe un polynôme P+
ε approchant

h+
ε : supt∈[0,1] |h+

ε (t)− P+
ε (t)| 6 ε. En conséquence,

L +(h) = L
(
P+
ε

)
+ ε

=
∫ +∞

0

P+
ε (e−u) e−u√
uΓ(1/2) du+ ε

6
∫ +∞

0

h+
ε (e−u) e−u√
uΓ(1/2) du+ 2ε

6
∫ +∞

0

h (e−u) e−u√
uΓ(1/2) du+

∫ +∞

0

h+
ε (e−u) e−u√
uΓ(1/2) 1{e−u∈[e−1−ε,e−1]} du+ 2ε

=
∫ +∞

0

h (e−u) e−u√
uΓ(1/2) du+

∫ e−1

e−1−ε

h+
ε (x)√

− ln(x)Γ(1/2)
dx+ 2ε

6
∫ +∞

0

h (e−u) e−u√
uΓ(1/2) du+ e1 ε

Γ(1/2) + 2ε.

En prenant la limite quand ε→ 0, on obtient le majorant suivant,

L +(h) 6
∫ +∞

0

h (e−u) e−u√
uΓ(1/2) du.

De la même façon, on montre que

L −(h) = lim inf
t→1
t<1

√
1− t

+∞∑
n=0

ant
nh (tn) >

∫ +∞

0

h (e−u) e−u√
uΓ(1/2) du.

Par conséquent,

L (h) =
∫ +∞

0

h (e−u) e−u√
uΓ(1/2) du =

∫ 1

0

1√
uΓ(1/2) du = 2

Γ(1/2) = 2√
π
.
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De plus,

L (h) = lim
N→+∞

√
1− e− 1

N

+∞∑
n=0

an e− n
N h

(
e− n

N

)
= lim

N→+∞

1√
N

+∞∑
n=0

an1{e−
n
N >e−1

}
= lim

N→+∞

1√
N

N∑
n=0

an,

ce qui conclut la preuve.

Lemme 1.5.17. Soit (an)n>0 une suite décroissante de réels positifs (ou nuls) telle que

lim
n→+∞

a0 + · · ·+ an√
n

= 2√
π
.

Alors
lim

n→+∞

√
nπan = 1.

Démonstration. On considère G la fonction définie sur [0,+∞[ par G(x) = abxc où bxc est
la partie entière de x ∈ [0,+∞[. Pour tout entier n > 1 et tout réel θ > 1, on commence
par remarquer que, par décroissance des ak et donc de G,

nabθnc 6
1

θ − 1

∫ θn

n
G(x) dx 6 nan.

Par hypothèse,
∫ n

0 G(x) dx = a0 + · · ·+ an−1 ∼ 2
√
n/
√
π quand n→ +∞. En particulier

pour n suffisamment grand,
∫ n

0 G(x) dx > 0. Ainsi,

nabθnc∫ n
0 G(x) dx 6

∫ θn
0 G(x) dx−

∫ n
0 G(x) dx

(θ − 1)
∫ n
0 G(x) dx 6

nan∫ n
0 G(x) dx.

En passant à la limite lorsque n→ +∞,
√
π

2 lim sup
n→+∞

√
nabθnc 6 lim

n→+∞

√
θn−

√
n

(θ − 1)
√
n

=
√
θ − 1
θ − 1 6

√
π

2 lim inf
n→+∞

√
nan.

Donc, pour tout θ > 1,
√
π

2
√
θ

lim sup
p→+∞

√
pap 6

√
θ − 1
θ − 1 6

√
π

2 lim inf
n→+∞

√
nan.

En passant à la limite quand θ → 1, on conclut que

lim sup
n→+∞

√
πnan 6 1 6 lim inf

n→+∞

√
πnan.



Chapter 2

Limit theorems for affine Markov
walks conditioned to stay positive

This chapter is the subject of the article [36] in collaboration with
Ion Grama and Emile Le Page

to appear in
Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques.

Résumé. On considère une marche Markovienne réelle Sn = X1 + · · · + Xn dont les
accroissements (Xn)n>1 sont définis par une récursion stochastique partant de X0 = x.
Pour un point de départ y > 0, on note par τy le temps de sortie du processus (y + Sn)n>1
de la partie positive de la droite des réels. On s’intéresse au comportement asymptotique
de la probabilité de l’évènement τy > n ainsi qu’à la loi conditionnelle de y + Sn sachant
τy > n quand n→ +∞.

Abstract. Consider the real Markov walk Sn = X1 + · · ·+Xn with increments (Xn)n>1
defined by a stochastic recursion starting at X0 = x. For a starting point y > 0, denote
by τy the exit time of the process (y + Sn)n>1 from the positive part of the real line. We
investigate the asymptotic behaviour of the probability of the event τy > n and of the
conditional law of y + Sn given τy > n as n→ +∞.

2.1 Introduction
Assume that the Markov chain (Xn)n>0 is defined by the stochastic recursion

X0 = x ∈ R, Xn+1 = an+1Xn + bn+1, n > 0, (2.1.1)

where (ai, bi)i>1 is a sequence of i.i.d. real random pairs satisfying E(|a1|α) < 1 and
E(|b1|α) < +∞, for some α > 2. Consider the Markov walk Sn = ∑n

k=1Xk, n > 1. Under
a set of conditions ensuring the existence of the spectral gap of the transition operator of
the Markov chain (Xn)n>0, it was established in Guivarc’h and Le Page [43] that there
exist constants µ and σ > 0 such that, for any t ∈ R,

Px
(
Sn − nµ
σ
√
n

6 t

)
→ Φ (t) as n→ +∞, (2.1.2)

where Φ is the standard normal distribution function and Px is the probability measure
generated by (Xn)n>0 starting at X0 = x. There are simple expressions of µ and σ in
terms of law of the pair (a, b): in particular µ = Eb

1−Ea .

39
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For a starting point y > 0, define the first time when the affine Markov walk (y+Sn)n>1
becomes non-positive by setting

τy = min{k > 1, y + Sk 6 0}.

In this paper we complete upon the results in [43] by determining the asymptotic of the
probability Px (τy > n) and proving a conditional version of the limit theorem (2.1.2)
for the sum y + Sn, given the event {τy > n} in the case when µ = 0. The main
challenge in obtaining these asymptotics is to prove the existence of a positive harmonic
function pertaining to the associated Markov chain (Xn, y + Sn)n>0. A positive harmonic
function, say V , is defined as a positive solution of the equation Q+V = V , where Q+ is
the restriction on R×R∗+ of the Markov transition kernel Q of the chain (Xn, y + Sn)n>0.

From the more general results of the paper it follows that, under the same hypotheses
that ensure the CLT (see Condition 2.1 in Section 2.2), if the pair (a, b) is such that
P((a, b) ∈ (0, 1)× (0, C]) > 0 and P((a, b) ∈ (−1, 0)× (0, C]) > 0, for some C > 0, then

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

(2.1.3)

and
Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t), (2.1.4)

where Φ+(t) = 1 − e−t2/2 is the Rayleigh distribution function. In particular, the above
mentioned results hold true if a and b are independent and a is such that P(a ∈ (0, 1)) > 0
and P(a ∈ (−1, 0)) > 0. Less restrictive assumptions on the pair (a, b) are formulated in
our Section 2.2. For example, (2.1.3) and (2.1.4) hold if a = 0 and b satisfies Condition
2.1 which covers the case of independent increments.

The above mentioned results are in line with those already known in the literature for
random walks with independent increments conditioned to stay in limited areas: the rate
1/
√
n in (2.1.3) and the asymptotic distribution Φ+(t) in (2.1.4) are the same. We refer

the reader to Iglehart [47], Bolthausen [9], Doney [21], Bertoin and Doney [6], Borovkov
[11, 10], Caravenna [13], Eichelsbacher and Köning [27], Garbit [31], Denisov, Vatutin
and Wachtel [17], Denisov and Wachtel [18, 20]. More general walks with increments
forming a Markov chain have been considered by Presman [60, 61], Varapoulos [68, 69],
Dembo [15], Denisov and Wachtel [19] or Grama, Le Page and Peigné [41]. In [60, 61]
the case of sums of lattice random variables defined on finite regular Markov chains has
been considered. Varapoulos [68, 69] studied Markov chains with bounded increments
and obtained lower and upper bounds for the probabilities of the exit time from cones.
Some studies take advantage of additional properties: for instance in [19] the Markov
walk has a special integrated structure; in [41] the moments of Xn are bounded by some
constants not depending on the initial condition. However, to the best of our knowledge,
the asymptotic behaviour of the probability Px (τy > n) in the case of the stochastic
recursion (2.1.1) has not yet been considered in the literature.

Note that the Wiener-Hopf factorization, which usually is employed in the case of in-
dependent random variables, cannot be applied in a straightforward manner for Markov
chains. Instead, to study the case of the stochastic recursion, we rely upon the develop-
ments in [19], [20] and [41]. The main idea of the paper is given below. The existence of
the positive harmonic function V is linked to the construction of a martingale approxi-
mation for the Markov walk (Sn)n>1. While the harmonicity is inherently related to the
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martingale properties, the difficulty is to show that the approximating martingale is inte-
grable at the exit time of the Markov walk (y + Sn)n>1. In contrast to [20] and [41], our
proof of the existence of V employs different techniques according to positivity or not of
the values of E(a1). The constructed harmonic function allows to deduce the properties
of the exit time and the conditional distribution of the Markov walk from those of the
Brownian motion using a strong approximation result for Markov chains from Grama, Le
Page and Peigné [40].

The technical steps of the proofs are as follows. We first deal with the case when
the starting point of the Markov walk (y + Sn)n>0 is large: y > n1/2−ε, for some ε >
0. When y > 0 is arbitrary, the law of iterated logarithm ensures that the sequence
(|y + Sk|)16k6n1−ε will cross the level n1/2−ε with high probability. Then, by the Markov
property, we are able to reduce the problem to a Markov walk with a large starting point
y′ = y + Sνn , where νn is the first time when the sequence |y + Sk| exceeds the level
n1/2−ε. The major difficulty, compared to [20] and [41], is that, for the affine model under
consideration, the sequence (Xνn)n>1 is not bounded in L1. To overcome this we need a
control of the moments of Xn in function of the initial state X0 = x and the lag n.

We end this section by agreeing upon some basic notations. As from now and for the
rest of this paper the symbols c, cα, cα,β, . . . denote positive constants depending only on
their indices. All these constants are likely to change their values every occurrence. The
indicator of an event A is denoted by 1A. For any bounded measurable function f on
X = Rd, d = 1, 2, random variable X in X and event A, the integral

∫
X f(x)P(X ∈ dx,A)

means the expectation E (f(X);A) = E (f(X)1A).

2.2 Notations and results
Assume that on the probability space (Ω,F ,P) we are given a sequence of independent

real random pairs (ai, bi), i > 1, with the same law as the generic random pair (a, b).
Denote by E the expectation pertaining to P. Consider the Markov chain (Xn)n>0 defined
by the affine transformations

Xn+1 = an+1Xn + bn+1, n > 0,

where X0 = x ∈ R is a starting point. The partial sum process (Sn)n>0 defined by
Sn = ∑n

i=1Xi for all n > 1 and S0 = 0 will be called affine Markov walk. Note that
(Sn)n>0 itself is not a Markov chain, but the pair (Xn, Sn)n>0 forms a Markov chain.

For any x ∈ R, denote by Px and Ex the probability and the corresponding expectation
generated by the finite dimensional distributions of (Xn)n>0 starting at X0 = x.

We make use of the following condition which ensures that the affine Markov walk
satisfies the central limit theorem (2.1.2) (c.f. [43]):

Condition 2.1. The pair (a, b) is such that:
1. There exists a constant α > 2 such that E (|a|α) < 1 and E (|b|α) < +∞.
2. The random variable b is non-zero with positive probability, P(b 6= 0) > 0, and

centred, E(b) = 0.

Note that Condition 2.1 is weaker than the conditions required in [43] in the special
case α > 2. Nevertheless, using the same techniques as in [43] it can be shown that,
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under Condition 2.1, the Markov chain (Xn)n>0 has a unique invariant measure m and
its partial sum Sn satisfies the central limit theorem (2.1.2) with

µ =
∫
R
xm(dx) = E(b)

1− E(a) = 0 (2.2.1)

and

σ2 =
∫
R
x2m(dx) + 2

∞∑
k=1

∫
R
xEx(Xk)m(dx) = E(b2)

1− E(a2)
1 + E(a)
1− E(a) > 0. (2.2.2)

Moreover, it is easy to see that under Condition 2.1 the Markov chain (Xn)n>0 has no
fixed point: P (ax+ b = x) < 1, for any x ∈ R. Below we make use of a slightly refined
result which gives the rate of convergence in the central limit theorem for Sn with an
explicit dependence of the constants on the initial value X0 = x stated in Section 2.9.3.

For any y ∈ R consider the affine Markov walk (y + Sn)n>0 starting at y and define
its exit time

τy = min{k > 1, y + Sk 6 0}.

Corollary 2.9.7 implies the finiteness of the stopping time τy: under Condition 2.1, it
holds Px (τy < +∞) = 1, for any x ∈ R and y ∈ R.

The asymptotic behaviour of the probability Px (τy > n) is determined by the har-
monic function which we proceed to introduce. For any (x, y) ∈ R × R, denote by
Q(x, y, ·) the transition probability of the Markov chain (Xn, y + Sn)n>0. The restriction
of the measure Q(x, y, ·) on R× R∗+ is defined by

Q+(x, y, B) = Q(x, y, B)

for any measurable set B on R×R∗+ and for any (x, y) ∈ R×R. Let D be a measurable
set in R × R containing R × R∗+. For any measurable ϕ : D → R set Q+ϕ(x, y) =∫
R×R∗+

ϕ(x′, y′)Q+(x, y, dx′ × dy′). A Q+-harmonic function on D is any function V :
D → R which satisfies

Q+V (x, y) = V (x, y), for any (x, y) ∈ D .

The existence of a non-negative harmonic function is obvious: V = 0 is an example. To
ensure the existence of a harmonic function which is positive on a set containing R×R∗+,
we need additional assumptions.

Condition 2.2. For all x ∈ R and y > 0,

Px (τy > 1) = P (ax+ b > −y) > 0.

Condition 2.3. For any x ∈ R and y > 0, there exists p0 ∈ (2, α) such that for any
constant c > 0, there exists n0 > 1 such that,

Px ((Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) > 0,

where
Kp0,c =

{
(x, y) ∈ R× R∗+, y > c (1 + |x|p0)

}
.
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It is clear that Condition 2.3 implies Condition 2.2. Moreover under either Condition
2.2 or Condition 2.3, the event {τy > n} has positive probability, for any n > 1, x ∈ R
and y > 0.

The existence of a harmonic function is guaranteed by the following theorem. For any
x ∈ R consider the process (Mn)n>0 defined by

M0 = 0, Mn = Sn + E(a)
1− E(a) (Xn − x) , n > 1, (2.2.3)

and the natural filtration (Fn)n>0 with F0 the trivial σ-algebra and Fn the σ-algebra
generated by X1, X2, . . . , Xn. It is easy to verify that (Mn,Fn)n>0 is a Px-martingale,
for any x ∈ R (see Gordin [35]).

Theorem 2.2.1. Assume Condition 2.1.
1. For any x ∈ R and y > 0, the random variable Mτy is integrable,

Ex
(∣∣∣Mτy

∣∣∣) < +∞

and the function
V (x, y) = −Ex

(
Mτy

)
, x ∈ R, y > 0,

is well defined on R× R∗+.
2. The function V has the following properties:

(a) For any x ∈ R, the function V (x, .) is non-decreasing.
(b) For any δ > 0, p ∈ (2, α), x ∈ R and y > 0,

V (x, y) > max (0, (1− δ)y − cp,δ (1 + |x|p)) ,
V (x, y) 6

(
1 + δ

(
1 + |x|p−1

))
y + cp,δ (1 + |x|p) .

(c) For any x ∈ R, it holds lim
y→+∞

V (x,y)
y

= 1.

3. The function V is Q+-harmonic on R× R∗+: for any x ∈ R and y > 0,

Q+V (x, y) = V (x, y).

4. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
the function V is positive on R× R∗+.

Using the harmonic function from the previous theorem, we obtain the asymptotic of
the tail probability of the exit time τy.

Theorem 2.2.2. Assume Condition 2.1.
1. For any p ∈ (2, α), x ∈ R and y > 0,

√
nPx (τy > n) 6 cp (1 + y + |x|)p .

2. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
for any x ∈ R and y > 0,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.
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Corollary 2.2.3. Assume Condition 2.1. For any p ∈ (2, α), x ∈ R, y > 0 and γ ∈
(0, 1/2),

Ex
(
τ γy
)
6 cp,γ(1 + y + |x|)p.

If in addition we assume Condition 2.2 and E(a) > 0, or Condition 2.3, then

Ex
(
τ 1/2
y

)
= +∞.

Moreover, we prove that the Markov walk (y + Sn)n>0 conditioned to stay positive
satisfies the following limit theorem.

Theorem 2.2.4. Assume either Conditions 2.1, 2.2 and E(a) > 0, or Conditions 2.1
and 2.3. For any x ∈ R, y > 0 and t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

where Φ+(t) = 1− e− t
2
2 is the Rayleigh distribution function.

Theorems 2.2.1, 2.2.2, 2.2.4 can be extended to some non-positive initial points y. Set

D− := {(x, y) ∈ R× R−, Px (τy > 1) = P (ax+ b > −y) > 0} .

Theorem 2.2.5. Assume Condition 2.1.
1. For any (x, y) ∈ D−, the random variable Mτy is integrable and the function

V (x, y) = −Ex
(
Mτy

)
, is well defined on D−.

2. The function V is Q+-harmonic on D = D− ∪ R× R∗+.
3. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then

V is positive D = D− ∪ R× R∗+.
4. For any (x, y) ∈ D−, √

nPx (τy > n) 6 cp (1 + |x|)p .

5. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
(a) For any (x, y) ∈ D−,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

(b) For any (x, y) ∈ D− and t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t).

The study of the asymptotic behaviour of τy and y+Sn for y 6 0 can be motivated by
the problem of determining the time when the population y0+Sn, starting at y0 > 0, stays
over a fixed levelH. When y = y0−H is in (−H, 0], the time τy = inf{k > 1, y0+Sk 6 H}
is the return time of the population y0 + Sn under the level H.

Below we discuss two more restrictive assumptions which, however, are easier to verify
than Conditions 2.2 and 2.3, respectively.
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Condition 2.2bis. The law of the pair (a, b) is such that for all C > 0,

P (b > C |a|) > 0.

Condition 2.3bis. There exists C > 0 such that,

P ((a, b) ∈ (−1, 0)× (0, C]) > 0 and P ((a, b) ∈ (0, 1)× (0, C]) > 0.

It is straightforward that Condition 2.2bis implies Condition 2.2. This follows from
the inequality

P (ax+ b > −y) > P (b > C |a|) ,
with C = |x|. The fact that Condition 2.3bis implies Condition 2.3 is proved in the
Appendix 2.9.1.

Under Condition 2.1, it is easy to see that Condition 2.3bis is satisfied, for ex-
ample, when random variables a and b are independent and P (a ∈ (−1, 0)) > 0 and
P (a ∈ (0, 1)) > 0.

Note that, while Condition 2.3 implies Condition 2.2, there is no link between Con-
ditions 2.2bis and 2.3bis. Indeed, if a and b are independent, a is non-negative and the
support of b contains R+, then Condition 2.2bis holds true whereas Condition 2.3bis does
not. At the opposite, if a and b are independent, b bounded and the support of a equals
to {−1/2} ∪ {1/2} then Condition 2.3bis holds true whereas Condition 2.2bis does not.

The outline of the paper is as follows. The martingale approximation (Mn)n>0 of the
Markov walk (Sn)n>0 and some of its properties are given in Section 2.3. In Section 2.4
we prove that the expectation of the killed Markov walk ((y + Sn)1{τy>n})n>0 is bounded
uniformly in n. This allows us to prove the existence of the harmonic function and
establish some of its properties in Section 2.5. With the help of the harmonic function
and of a strong approximation result for Markov chains we prove Theorems 2.2.2, 2.2.4
and 2.2.5, in Sections 2.6, 2.7 and 2.8 respectively. Section 2.9 is an appendix where we
collect some results used in the proofs.

2.3 Martingale approximation
In this section we approximate the Markov walk (Sn)n>0 by the martingale defined in

(2.2.3) and state some related bounds.
We start by a lemma which shows that there is an exponential decay of the dependence

of Xn on the initial state x = X0 as n grows to infinity. This simple fact will be used
repeatedly in the sequel.

Lemma 2.3.1. Assume Condition 2.1. For all p ∈ [1, α], x ∈ R, and n > 0,

E1/p
x (|Xn|p) 6 cp +

(
E1/p (|a|p)

)n
|x| 6 cp(1 + |x|).

Proof. Since Xn = ∑n
k=1

(
bk
∏n
i=k+1 ai

)
+ ∏n

i=1 aix, for n > 1, with the convention∏n
i=n+1 ai = 1, we have by the Minkowski inequality and the independence of (ai, bi)i>1,

E1/p
x (|Xn|p) 6

n∑
k=1

(
E1/p (|b|p)E1/p (|a|p)n−k

)
+ E1/p (|a|p)n |x| .

The conclusion of the lemma is thus a direct consequence of Condition 2.1.
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All over the paper we use the abbreviation

ρ = E(a)
1− E(a) . (2.3.1)

Using this notation and the martingale (Mn)n>0 defined in (2.2.3), for any x ∈ R and
y ∈ R, the Markov walk (y + Sn)n>0 has the following martingale representation:

y + Sn = y + ρx+Mn − ρXn, n > 0. (2.3.2)

Define the sequence (X0
n)n>0, by

X0
0 = 0 and X0

n =
n∑
k=1

bk
n∏

i=k+1
ai, n > 1, (2.3.3)

with the convention ∏n
i=k+1 ai = 1 for k = n. The sequence (X0

n)n>0 corresponds to
the stochastic recursion starting at 0. In the same line, we define M0

0 = 0 and M0
n =∑n

k=1
X0
k−E(a)X0

k−1
1−E(a) , for all n > 1. It is easy to see that the process (M0

n,Fn)n>0 is a zero
mean Px-martingale which is related to the martingale (Mn)n>0 by the identity

Mn = M0
n + ∆nx, (2.3.4)

where
∆0 = 0 and ∆n =

n∑
k=1

∏k−1
i=1 ai

1− E(a) (ak − E(a)) , n > 1.

The following two lemmas will be used to control Ex(|Mn|p).

Lemma 2.3.2. Assume Condition 2.1.
1. The sequence (∆n)n>0 is a centred martingale.
2. For all p ∈ [1, α] and n > 0,

E1/p (|∆n|p) 6 cp.

Proof. The first claim follows from the fact that ∆n is a difference of two zero mean
martingales. Using the Minkowski inequality for 1 6 p 6 α, the independence of (ai)i>1
and Condition 2.1 we obtain the second claim.

Let us introduce the martingale differences:

ξ0
k = M0

k −M0
k−1 = X0

k − E(a)X0
k−1

1− E(a) , k > 1.

Lemma 2.3.3. Assume Condition 2.1. For all p ∈ [1, α] and n > 0,

E1/p
(∣∣∣ξ0

n

∣∣∣p) 6 cp and E1/p
(∣∣∣M0

n

∣∣∣p) 6 cp
√
n.

Proof. For the increments ξ0
n we simply use Lemma 2.3.1 with x = 0. For the martingale

(M0
n)n>0, the upper bound is obtained by Burkholder inequality: for all 2 < p 6 α and

all n > 1,

E1/p
(∣∣∣M0

n

∣∣∣p) 6 cpE1/p

( n∑
k=1

(
ξ0
k

)2
)p/2 .
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By the Hölder inequality with the exponents u = p/2 > 1 and v = p
p−2 , we obtain

E1/p
(∣∣∣M0

n

∣∣∣p) 6 cpE1/p

( n∑
k=1

∣∣∣ξ0
k

∣∣∣2u) p
2u

n
p

2v

 6 cpn
p−2
2p

(
n∑
k=1

cp

)1/p

= cp
√
n.

This proves the claim when 2 < p 6 α. When 1 6 p 6 2 the assertion follows from the
case above since the Lp norm is less than the Lq norm for q ∈ (2, α].

Lemma 2.3.4. Assume Condition 2.1. For all p ∈ [1, α] and n > 0,

E1/p
x (|Mn|p) 6 cp

(
|x|+

√
n
)
.

Proof. By the Minkowski inequality and equation (2.3.4), for all 1 6 p 6 α, x ∈ R and
n > 1,

E1/p
x (|Mn|p) 6 E1/p (|∆n|p) |x|+ E1/p

(∣∣∣M0
n

∣∣∣p) .
Then, by the claim 2 of Lemma 2.3.2 and Lemma 2.3.3, the result follows.

2.4 Bound on the expectation of the killed martin-
gale

The goal of this section is to prepare the background to prove the integrability of
the random variable Mτy , which is crucial for showing the existence of the harmonic
function in Section 2.5. We use different approaches depending on the sign on E(a): when
E(a) > 0, in Section 2.4.2 we prove that the expectation of the martingale (y+ρx+Mn)n>0
killed at τy is uniformly bounded in n, while, when E(a) < 0, in Section 2.4.3 we prove
that the expectation of the same martingale killed at Ty is uniformly bounded in n, where
Ty is the exit time of the martingale (y + ρx+Mn)n>0.

2.4.1 Preliminary results
We first state a result concerning the first time when the process (|y + Sn|)n>1 (re-

spectively (|y + ρx+Mn|)n>1) crosses the level n1/2−ε. Introduce the following stopping
times: for any n > 1, ε ∈ (0, 1/2), x ∈ R and y ∈ R,

νn = νn,ε,y = min
{
k > 1, |y + Sk| > n1/2−ε

}
(2.4.1)

and
vn = vn,ε,x,y = min

{
k > 1, |y + ρx+Mk| > n1/2−ε

}
.

Lemma 2.4.1. Assume Condition 2.1. Let p ∈ (2, α). There exists ε0 > 0 such that for
any ε ∈ (0, ε0], δ > 0, x ∈ R, y > 0 and n > 1,

Px
(
νn > δn1−ε

)
6

cp,ε,δ
np/2−pε

+ cp,ε,δ e−cp,ε,δn1−2ε |x|p

and
Px
(
vn > δn1−ε

)
6

cp,ε,δ
np/2−pε

+ cp,ε,δ e−cp,ε,δn1−2ε |x|p .
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Proof. With ε < min(1/2, ε0), where ε0 is defined in Corollary 2.9.6 and b > 0 a constant
to be chosen below, let l = bb2δn1−2εc, K = bnε/b2c and for any m > 1, x ∈ R and y ∈ R,
with z = y + ρx,

Am(x, y) =
{

max
16k6m

|z +Mkl| 6 (1 + 2 |ρ|)n1/2−ε
}
.

Note that by the martingale representation (2.3.2), we have for any k > 2, |z +Mk|
= |y + Sk + ρ(y + Sk)− ρ(y + Sk−1)| 6 (1 + |ρ|) |y + Sk|+ |ρ| |y + Sk−1|. Then, choosing
n large enough to have l > 2,

Px
(
νn > δn1−ε

)
= Px

(
max

16k6bδn1−εc
|y + Sk| 6 n1/2−ε

)

6 Px
(

max
26k6bδn1−εc

|z +Mk| 6 (1 + 2 |ρ|)n1/2−ε
)

6 Px (AK(x, y)) .

Moreover, we have also,

Px
(
vn > δn1−ε

)
6 Px (AK(x, y)) .

Since (Xn, y + Sn)n>0 is a Markov chain,

Px (AK(x, y)) =
∫
R2

Px′ (A1(x′, y′))

× Px
(
X(K−1)l ∈ dx′ , y + S(K−1)l ∈ dy′ , AK−1(x, y)

)
. (2.4.2)

We use the decomposition (2.3.4) to write that, with c = 1 + 2 |ρ|,

Px′ (A1(x′, y′)) 6 Px′
(∣∣∣z′ +M0

l

∣∣∣ 6 2cn1/2−ε , |∆lx
′| 6 cn1/2−ε

)
+ Px′

(
|∆lx

′| > cn1/2−ε
)
.

Using (2.3.2) with x = 0, we have M0
n = S0

n + ρX0
n. By the Markov inequality,

Px′ (A1(x′, y′)) 6 Px′
(∣∣∣z′ + S0

l

∣∣∣ 6 3cn1/2−ε , |ρ|
∣∣∣X0

l

∣∣∣ 6 cn1/2−ε
)

+ Px′
(
|ρ|
∣∣∣X0

l

∣∣∣ > cn1/2−ε
)

+ cp
E (|∆l|p)
np/2−pε

|x′|p .

Since S0
l does not depend on x′, using Lemma 2.3.1 and the claim 2 of Lemma 2.3.2, we

obtain
Px′ (A1(x′, y′)) 6 sup

y′∈R
P
(∣∣∣y′ + S0

l

∣∣∣ 6 3cn1/2−ε
)

+ cp (1 + |x′|p)
np/2−pε

.

Inserting this bound in (2.4.2), it follows that

Px (AK(x, y)) 6 Px (AK−1(x, y)) sup
y′∈R

P
(∣∣∣y′ + S0

l

∣∣∣ 6 3cn1/2−ε
)

+ cp
np/2−pε

(
1 + Ex

(∣∣∣X(K−1)l

∣∣∣p)) .
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Set rn = 3cn1/2−ε
√
l

. Denote by B−y′√
l

(rn) the closed ball centred in −y′√
l
of radius rn. The

rate of convergence in the central limit theorem from Corollary 2.9.6 (applied with x = 0)
implies that,

sup
y′∈R

P
(
S0
l√
l
∈ B−y′√

l

(rn)
)
6 sup

y′∈R

∫
B−y′√

l

(rn)
e−

u2
2σ2

du√
2πσ

+ 2cp,ε
lε
.

Moreover,
sup
y′∈R

∫
B−y′√

l

(rn)
e−

u2
2σ2

du√
2πσ

6
2rn√
2πσ

6
cδ
b
.

Let q < 1. With b large enough in the definition of l, we have 2 cp,ε
lε

6 q
2 ,

cδ
b
6 q

2 and thus

sup
y′∈R

P
(
S0
l√
l
∈ B−y′√

l

(rn)
)
6 q < 1.

Iterating, we get

Px (AK(x, y)) 6 qK−1Px (A1(x, y)) + cp
np/2−pε

K−2∑
k=0

qk
(
1 + Ex

(∣∣∣X(K−1−k)l

∣∣∣p)) .
Using the fact that qK−1Px (A1(x, y)) 6 qK−1 = 1

q
e−bnε/b2c ln(1/q) 6 cp,ε,δ

np/2−pε , Lemma 2.3.1
and the fact that (K − 1− k)l > cε,δn

1−2ε for all 0 6 k 6 K − 2, we finally obtain

Px (AK(x, y)) 6 cp,ε,δ
np/2−pε

+ cp,ε,δ e−cp,ε,δn1−2ε |x|p .

2.4.2 Bound on the expectation of the killed martingale: the
case E(a) > 0

The difficulty in proving that the expectation Ex(y + ρx + Mn ; τy > n) is bounded
uniformly in n lies in the fact that whereas the killed Markov walk (y + Sn)1{τy>n} is
non-negative, the random variable (y + ρx+Mn)1{τy>n} may be not. In the case when
E(a) > 0 we take advantage of the properties presented in the next lemma.

Lemma 2.4.2. Assume Condition 2.1 and E(a) > 0.
1. For all x ∈ R and y > 0,

y + ρx+Mτy 6 0, Px-a.s.

2. For all x ∈ R and y > 0,

Xτy

1− E(a) < y + ρx+Mτy , Px-a.s.

3. For all x ∈ R and y > 0, the sequence
(
(y + ρx+Mn)1{τy>n}

)
n>0

is a submartingale
with respect to Px.
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Proof. Claim 1. Let, for brevity, z = y + ρx. Since, by the definition of τy,

Xτy = y + Sτy − (y + Sτy−1) < 0,

it follows from (2.3.2) and the bound E(a) > 0 that z +Mτy 6 y + Sτy 6 0.
Claim 2. Rewrite the martingale representation (2.3.2) in the form

z +Mn = y + Sn−1 + Xn

1− E(a) . (2.4.3)

So, at the exit time τy,
Xτy

1− E(a) = z +Mτy −
(
y + Sτy−1

)
< z +Mτy .

Claim 3. Using the first claim and the fact that (Mn)n>0 is a martingale,

Ex (z +Mn+1 ; τy > n+ 1 |Fn ) = z +Mn − Ex
(
z +Mτy ; τy = n+ 1

∣∣∣Fn

)
− Ex (z +Mn+1 |Fn )1{τy6n}

> (z +Mn)1{τy>n}.

In the next lemma we obtain a first bound for the expectation of the killed martingale
((y + ρx + Mn)1{τy>n})n>0 which is of order n1/2−2ε, for some ε > 0. Using a recursive
procedure we improve it subsequently to a bound not depending on n.
Lemma 2.4.3. Assume Condition 2.1 and E(a) > 0. Let p ∈ (2, α). For any ε ∈ (0, p−2

4p ),
x ∈ R, y > 0 and n ∈ N, we have

Ex (y + ρx+Mn ; τy > n) 6 y + ρx+ c |x|+ cpn
1/2−2ε.

Proof. By the Doob optional stopping theorem and the claim 2 of Lemma 2.4.2, with
z = y + ρx,

Ex (z +Mn ; τy > n) 6 z − Ex
(

Xτy

1− E(a) ; τy 6 n

)
.

Note that Xn = ∏n
i=1 aix+X0

n, with X0
n given by (2.3.3). Then, with ε ∈ (0, 1/4),

Ex (z +Mn ; τy > n)

6 z + c
n∑
k=1

k∏
i=1

E (|ai|) |x|+ cEx
(∣∣∣X0

τy

∣∣∣ ; τy 6 n , max
16k6n

∣∣∣X0
k

∣∣∣ 6 n1/2−2ε
)

+ cEx
(∣∣∣X0

τy

∣∣∣ ; τy 6 n , max
16k6n

∣∣∣X0
k

∣∣∣ > n1/2−2ε
)
.

By the Markov inequality, for 2 < p < α,

Ex (z +Mn ; τy > n) 6 z + c
n∑
k=1

Ek (|a|) |x|+ cn1/2−2ε + cEx

 max
16k6n

|X0
k |
p

n
p−1

2 (1−4ε)

 .
By Lemma 2.3.1 (with x = 0),

Ex (z +Mn ; τy > n) 6 z + c |x|+ cn1/2−2ε + cp
n

n
p−1

2 (1−4ε)
.

Since ε ∈
(
0, p−2

4p

)
, we have p−1

2 (1− 4ε) > 1/2 + 2ε which concludes the proof.
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Now we give an improvement of Lemma 2.4.3 which establishes a bound of the expec-
tation of the killed martingale ((y+ ρx+Mn)1{τy>n})n>0 depending only on the starting
values x, y.

Lemma 2.4.4. Assume Condition 2.1 and E(a) > 0. For any δ > 0, p ∈ (2, α), x ∈ R,
y > 0 and n > 0,

Ex (y + ρx+Mn ; τy > n) 6
(
1 + cpδ (1 + |x|)p−1

)
y + cp,δ (1 + |x|)p .

Moreover, with δ = 1, for any p ∈ (2, α), x ∈ R, y > 0 and n > 0,

Ex (y + ρx+Mn ; τy > n) 6 cp (1 + y + |x|) (1 + |x|)p−1 .

Proof. Let δ > 0 and ε ∈ (0, ε1], where ε1 = min
(
ε0,

p−2
4p

)
and ε0 is defined in Lemma

2.4.1. Set z = y + ρx. We split the proof following the values of n.
Assume first that n 6 δ−1/ε. A bound of Ex (z +Mn ; τy > n) is obtained immediately

from Lemma 2.4.3: since z = y + ρx, for any y > 0,

Ex (z +Mn ; τy > n) 6 y + c |x|+ c
√
n 6 y + cδ (1 + |x|)

and the lemma is proved when n 6 δ−1/ε.
Assume now that n > δ−1/ε and y > n1/2−ε. From Lemma 2.4.3, we deduce that,

Ex (y + ρx+Mn ; τy > n) 6 y + ρx+ c |x|+ cpn
1/2−2ε 6 (1 + cpn

−ε)y + c |x| ,

which proves the lemma when y > n1/2−ε and n is larger than δ−1/ε.
Now, we turn to the last case, when n > δ−1/ε and 0 < y 6 n1/2−ε. Introduce the

following stopping time:
νεn = νn + bnεc .

We have the following obvious decomposition:

Ex (z +Mn ; τy > n)
= Ex

(
z +Mn ; τy > n , νεn >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J1

+Ex
(
z +Mn ; τy > n , νεn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J2

. (2.4.4)

Bound of J1. Using the Hölder inequality for 1 < p < α, Lemma 2.3.4 and Lemma
2.4.1, we have

J1 6 cp,ε
√
n (1 + y + |x|) (1 + |x|)p−1

n(p−1)( 1
2−ε)

.

As ε < p−2
4p , denoting Cp,ε(x, y) = cp,ε (1 + y + |x|) (1 + |x|)p−1, for all n > 1,

J1 6
Cp,ε(x, y)

nε
. (2.4.5)

Bound of J2. Using the martingale representation (2.3.2) for the Markov walk (y +
Sn)n>1, by the Markov property,

J2 =
bn1−εc∑
k=1

∫
R×R∗+

Ex′ (y′ + ρx′ +Mn−k ; τy′ > n− k)

× Px
(
Xνεn ∈ dx′ , y + Sνεn ∈ dy′ , τy > νεn , ν

ε
n = k

)
.
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By Lemma 2.4.3,

J2 6 Ex
(
z +Mνεn + c

∣∣∣Xνεn

∣∣∣+ cpn
1/2−2ε ; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
.

For the term z+Mνεn , we use the fact that ((z+Mn)1{τy>n})n>0 is a submartingale (claim
3 of Lemma 2.4.2), while for the term c

∣∣∣Xνεn

∣∣∣ = c
∣∣∣Xνn+bnεc

∣∣∣ we use the Markov property
at νn and Lemma 2.3.1. This gives

J2 6 Ex
(
z +Mbn1−εc ; τy >

⌊
n1−ε

⌋
, νεn 6

⌊
n1−ε

⌋)
+ cpEx

(
n1/2−2ε + Ebnεc (|a|) |Xνn| ; τy > νn , νn 6

⌊
n1−ε

⌋)
.

Since 0 < y 6 n1/2−ε and νn is the first time when (|y + Sn|)n>1 exceeds n1/2−ε, the
jump Xνn is necessarily positive on the event {τy > νn}. Therefore, under the condition
E(a) > 0, by the representation (2.3.2) we have z +Mνn > n1/2−ε. Using the last bound,
we obtain

J2 6 Ex
(
z +Mbn1−εc ; τy >

⌊
n1−ε

⌋
, νεn 6

⌊
n1−ε

⌋)
+ cpEx

(
z +Mνn

nε
; τy > νn , νn 6

⌊
n1−ε

⌋)
+ cp e−cpnε Ex

(
|Xνn| ; νn 6

⌊
n1−ε

⌋)
.

Again, using the fact that ((z +Mn)1{τy>n})n>0 is a submartingale and Lemma 2.3.1, we
bound J2 as follows,

J2 6
(

1 + cp
nε

)
Ex
(
z +Mbn1−εc ; τy >

⌊
n1−ε

⌋)
+ cp e−cpnε n1−ε (1 + |x|)

− Ex
((
z +Mbn1−εc

)(
1{νεn>bn1−εc} + cp

nε
1{νn>bn1−εc}

)
; τy >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J3

. (2.4.6)

We bound J3 in a same manner as J1,

|J3| 6 cp,ε
√
bn1−εc (1 + y + |x|) cp,ε

(1 + |x|)p−1

n
p−1

2 −(p−1)ε
6
Cp,ε(x, y)

nε
.

Inserting this bound in (2.4.6) and using (2.4.5) and (2.4.4) we find that, for any n >
n0 =

⌊
y1/(1/2−ε)

⌋
+ 1,

Ex (z +Mn ; τy > n) 6
(

1 + cp
nε

)
Ex
(
z +Mbn1−εc ; τy >

⌊
n1−ε

⌋)
+ Cp,ε(x, y)

nε
.

Since ((z+Mn)1{τy>n})n>0 is a submartingale, the sequence un = Ex (z +Mn ; τy > n) is
non-decreasing. By Lemma 2.9.1 used with α = cp, β = Cp,ε(x, y) and γ = 0 it follows
that, for any n > n0 and k0 ∈ {n0, . . . , n},

Ex (z +Mn ; τy > n) 6
(

1 + cp,ε
kε0

)
Ex (z +Mk0 ; τy > k0) + Cp,ε(x, y)

kε0
.

By Lemma 2.4.3 and the fact that z = y + ρx, we have

Ex (z +Mn ; τy > n) 6
(

1 + cp,ε
kε0

)
y + cp,εk

1/2−2ε
0 + cp,ε |x|

+ cp,ε
kε0

(1 + y + |x|) (1 + |x|)p−1

6

(
1 + cp,ε (1 + |x|)p−1

kε0

)
y + cp,ε,k0 (1 + |x|)p .
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Choosing k0 > δ−1/ε, for any 0 < y 6 n1/2−ε and n > δ−1/ε,

Ex (z +Mn ; τy > n) 6
(
1 + cp,εδ (1 + |x|)p−1

)
y + cp,ε,δ (1 + |x|)p .

Finally we conclude that the lemma holds true for any n ∈ N.

We can now transfer the bound provided by Lemma 2.4.4 to the Markov walk (y +
Sn)n>0.
Corollary 2.4.5. Assume Condition 2.1 and E(a) > 0. For any p ∈ (2, α), x ∈ R, y > 0
and n ∈ N,

Ex (y + Sn ; τy > n) 6 cp (1 + y + |x|) (1 + |x|)p−1 .

Proof. Using equation (2.3.2), the result follows from Lemma 2.4.4 and Lemma 2.3.1.

2.4.3 Bound on the expectation of the killed martingale: the
case E(a) < 0

We adapt the mainstream of the proof for the case E(a) > 0 given in the previous
section, highlighting the details that have to be modified.

In the discussion preceding Lemma 2.4.2, we noted that (y + ρx+Mn)1{τy>n} may
not be positive. In the case E(a) < 0, we overcome this by introducing the exit time of
the martingale (y + ρx+Mn)n>0: for any y ∈ R,

Ty = min{k > 1, y + ρx+Mk 6 0}.

The importance of this new exit time is stressed by the fact that one can check that
when E(a) < 0, the sequence ((y + ρx + Mn)1{τy>n})n>0 is not a submartingale (as in
Lemma 2.4.2 when E(a) > 0) but a supermartingale. Instead we prove that ((y + ρx +
Mn)1{Ty>n})n>0 is a submartingale (see Lemma 2.4.6 below). This will play an important
role in view of obtaining upper bounds. By Corollary 2.9.7 we have Px (Ty < +∞) = 1
for any x ∈ R. The main point is to show the integrability of y + ρx + MTy . Under the
assumption E(a) < 0 we have τy 6 Ty (see Lemma 2.4.6 below), which together with
the integrability of y+ ρx+MTy and the fact (|y + ρx+Mn|)n>0 is a submartingale, will
allow us to prove in Section 2.5.2 that y + ρx+Mτy is integrable.
Lemma 2.4.6. Assume Condition 2.1.

1. If E(a) < 0, then for all x ∈ R and y > 0,

τy 6 Ty Px-a.s.

2. For all x ∈ R and y ∈ R, the sequence
(
(y + ρx+Mn)1{Ty>n}

)
n>0

is a submartin-
gale with respect to Px.

Proof. Claim 1. We note that when Ty > 1, by (2.3.2) and (2.4.3), with z = y + ρx,

y + STy = z +MTy − ρXTy 6 −ρXTy ,

y + STy−1 = z +MTy −
XTy

1− E(a) 6 −
XTy

1− E(a) .

Since ρ < 0, according to the positivity or non-positivity of XTy , we have respectively
y+STy 6 0 or y+STy−1 6 0. When Ty = 1 and y > 0 we have X1 < 0 and so τy = 1 = Ty.

Claim 2. In a same manner as in the proof of the claim 3 of Lemma 2.4.2, the claim
2 is a consequence of the fact that z +MTy 6 0 and that (Mn)n>0 is a martingale.
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The following lemma is similar to Lemma 2.4.3 but with Ty replacing τy.

Lemma 2.4.7. Assume Condition 2.1. Let p ∈ (2, α). For any ε ∈ (0, p−2
4p ), x ∈ R,

y > −ρx and n > 0, we have

Ex (y + ρx+Mn ; Ty > n) 6 y + ρx+ c |x|+ cpn
1/2−2ε.

Proof. Note that z = y+ ρx > 0. Since at the exit time Ty we have 0 > z+MTy > ξTy =
XTy−E(a)XTy−1

1−E(a) , by the Doob optional stopping theorem,

Ex (z +Mn ; Ty > n) 6 z + cEx
(∣∣∣XTy

∣∣∣+ ∣∣∣XTy−1

∣∣∣ ; Ty 6 n
)
.

Since
∣∣∣XTy

∣∣∣+ ∣∣∣XTy−1

∣∣∣ 6 2 max16k6n |Xk|+ |x| on {Ty 6 n}, following the proof of Lemma
2.4.3,

Ex (z +Mn ; Ty > n) 6 z + c

(
1 +

n∑
k=1

k∏
i=1

E (|ai|)
)
|x|

+ cn1/2−2εP
(

max
16k6n

∣∣∣X0
k

∣∣∣ 6 n1/2−2ε
)

+ cE
(

max
16k6n

∣∣∣X0
k

∣∣∣ ; max
16k6n

∣∣∣X0
k

∣∣∣ > n1/2−2ε
)

6 z + c |x|+ cpn
1/2−2ε.

Lemma 2.4.8. Assume Condition 2.1. Let p ∈ (2, α). There exists ε1 > 0 such that for
any ε ∈ (0, ε1), x ∈ R, y ∈ R, n > 0 and 2 6 k0 6 n,

Ex (y + ρx+Mn ; Ty > n) 6
(

1 + cp,ε
kε0

)
max(y, 0) + cp,ε |x|+ cp,ε

√
k0 + cp,ε e−cp,εkε0 |x|p

6 cp (1 + max(y, 0) + |x|p) .

Proof. We proceed as in the proof of Lemma 2.4.4. Set ε1 = min
(
ε0,

p−2
4p

)
, where ε0 is

defined in Lemma 2.4.1. Let ε ∈ (0, ε1]. With z = y + ρx and vεn = vn + bnεc, we have

Ex (z +Mn ; Ty > n) = Ex
(
z +Mn ; Ty > n , vεn >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J1

+ Ex
(
z +Mn ; Ty > n , vεn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J2

. (2.4.7)

Bound of J1. Let mε = bn1−εc − bnεc. Since on {vn > mε} it holds z′ = z + Mmε 6
n1/2−ε, by the Markov property we write that

J1 6 n1/2−εPx (vn > mε) +
∫
R
Ex′ (|Mn−mε |)Px (Xmε ∈ dx′ , vn > mε) .

By Lemma 2.3.4 and the Hölder inequality,

J1 6 n1/2−εPx (vn > mε) + Ex
(
c
(√

n−mε + |Xmε|
)

; vn > mε

)
6 cn1/2Px (vn > mε) + E1/p

x (|Xmε |
p)P1/q

x (vn > mε) .
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By Lemma 2.3.1 and Lemma 2.4.1 (since mε > n1−ε/cε),

J1 6
cp,ε

n
p−1

2 −pε
+ cp,ε e−cp,εn1−2ε |x|p . (2.4.8)

Bound of J2. Repeating the arguments used for bounding the term J2 in Lemma
2.4.4, by the Markov property and Lemma 2.4.7, we get

J2 6 Ex
(
z +Mvεn + c

∣∣∣Xvεn

∣∣∣+ cpn
1/2−2ε ; Ty > vεn , v

ε
n 6

⌊
n1−ε

⌋)
.

Using the claim 2 of Lemma 2.4.6 and Lemma 2.3.1,

J2 6 Ex
(
z +Mbn1−εc ; Ty >

⌊
n1−ε

⌋
, vεn 6

⌊
n1−ε

⌋)
+ Ex

(
cpn

1/2−2ε ; Ty > vn , vn 6
⌊
n1−ε

⌋)
+ cp,ε e−cεnε Ex

(
|Xvn| ; vn 6

⌊
n1−ε

⌋)
.

On the event {Ty > vn}, we have n1/2−ε < z +Mvn . Hence

J2 6 Ex
(
z +Mbn1−εc ; Ty >

⌊
n1−ε

⌋
, vεn 6

⌊
n1−ε

⌋)
+ cpEx

(
z +Mvn

nε
; Ty > vn , vn 6

⌊
n1−ε

⌋)
+ cp,ε e−cεnε Ex

(
|Xvn| ; vn 6

⌊
n1−ε

⌋)
.

Coupling this with (2.4.8) and (2.4.7) and using again the claim 2 of Lemma 2.4.6, we
obtain that

Ex (z +Mn ; Ty > n) 6
(

1 + cp
nε

)
Ex
(
z +Mbn1−εc ; Ty >

⌊
n1−ε

⌋)
+ cp,ε

n
p−1

2 −pε
+ cp,ε e−cp,εnε |x|p .

Since ((z + Mn)1{Ty>n})n>0 is a submartingale (claim 2 of Lemma 2.4.6), the sequence
un = E (z +Mn ; Ty > n) is non-decreasing. By Lemma 2.9.1 with α = cp, β = cp,ε,
γ = |x|p and δ = cp,ε, we write that

Ex (z +Mn ; Ty > n) 6
(

1 + cp,ε
kε0

)
Ex (z +Mk0 ; Ty > k0) + cp,ε

kε0
+ cp,ε e−cp,εkε0 |x|p .

Using Lemma 2.3.4 and the fact that z = y + ρx, we obtain that

Ex (z +Mn ; Ty > n) 6
(

1 + cp,ε
kε0

)
max(y, 0) + cp,ε |x|+ cp,ε

√
k0 + cp,ε e−cp,εkε0 |x|p .

To transfer the assertion of Lemma 2.4.8 to the random walk (y+Sn)n>0, we need to
assume that E(a) < 0.

Corollary 2.4.9. Assume Condition 2.1 and E(a) < 0. Let p ∈ (2, α). For any x ∈ R,
y > 0 and n ∈ N,

Ex (y + Sn ; τy > n) 6 cp (1 + y + |x|p) .

Proof. By (2.3.2) and the claim 1 of Lemma 2.4.6, we have

Ex (y + Sn ; τy > n) = Ex (y + ρx+Mn ; Ty > τy > n)− Ex (ρXn ; τy > n) .

The result follows from Lemma 2.4.8.
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2.5 Existence of the harmonic function
In this section we prove Theorem 2.2.1. We split the proof into two parts according

to the values of E(a).

2.5.1 Existence of the harmonic function: the case E(a) > 0
We start with the following assertion.

Lemma 2.5.1. Assume Condition 2.1 and E(a) > 0. For any x ∈ R and y > 0, the
random variable Mτy is integrable. Moreover, for any p ∈ (2, α),

Ex
(∣∣∣Mτy

∣∣∣) 6 cp (1 + y + |x|) (1 + |x|)p−1 .

Proof. Let z = y+ρx. Using the claim 1 of Lemma 2.4.2 and the Doob optional stopping
theorem, we have

Ex
(∣∣∣Mτy

∣∣∣ ; τy 6 n
)
6 −Ex (z +Mn ; τy 6 n) + y + ρ |x|
= Ex (z +Mn ; τy > n)− z + y + ρ |x| .

By second bound in Lemma 2.4.4, for all n > 0,

Ex
(∣∣∣Mτy

∣∣∣ ; τy 6 n
)
6 cp (1 + y + |x|) (1 + |x|)p−1 =: Cp(x, y).

Since ({τy 6 n})n>1 is a non-decreasing sequence of events and Px (τy < +∞) = 1 for any
x ∈ R (by Corollary 2.9.7), the result follows by the Lebesgue monotone convergence
theorem.

It follows from Lemma 2.5.1 that the function

V (x, y) = −Ex
(
Mτy

)
is well defined for any x ∈ R and y > 0, which also proves the claim 1 of Theorem 2.2.1
when E(a) > 0.

The following two propositions prove the claims 2 and 3 of Theorem 2.2.1 when
E(a) > 0.

Proposition 2.5.2. Assume Condition 2.1 and E(a) > 0.
1. For any x ∈ R and y > 0,

V (x, y) = lim
n→+∞

Ex (y + ρx+Mn ; τy > n) = lim
n→+∞

Ex (y + Sn ; τy > n) .

2. For any x ∈ R, the function V (x, .) is non-decreasing.
3. For any δ > 0, p ∈ (2, α), x ∈ R and y > 0,

max(0, y + ρx) 6 V (x, y) 6
(
1 + cpδ (1 + |x|)p−1

)
y + cp,δ (1 + |x|)p .

4. For any x ∈ R,
lim

y→+∞

V (x, y)
y

= 1.
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Proof. We use the notation z = y + ρx.
Claim 1. Since, by Lemma 2.5.1, Mτy is integrable, we have by the Lebesgue domi-

nated convergence theorem,

Ex (z +Mn ; τy > n) = z − Ex
(
z +Mτy ; τy 6 n

)
−→
n→+∞

−Ex
(
Mτy

)
= V (x, y).

To prove the second equality of the claim 1 we use Lemma 2.3.1 and the fact that
τy < +∞:

|Ex (Xn ; τy > n)| 6 E1/2
x

(
|Xn|2

)√
Px (τy > n) 6 c2 (1 + |x|)

√
Px (τy > n) −→

n→+∞
0.

Using (2.3.2), we obtain the claim 1.
Claim 2. If y1 6 y2, then τy1 6 τy2 and

Ex (y1 + Sn ; τy1 > n) 6 Ex (y2 + Sn ; τy1 > n) 6 Ex (y2 + Sn ; τy2 > n) .

Taking the limit as n→ +∞ we get the claim 2.
Claim 3. The upper bound follows from the claim 1 and Lemma 2.4.4. On the event

{τy > n}, we obviously have y + Sn > 0 and so by claim 1, V (x, y) > 0. Moreover, since
z +Mτy 6 0 (by claim 1 of Lemma 2.4.2), we have, by claim 1,

V (x, y) = z − lim
n→+∞

Ex
(
z +Mτy ; τy 6 n

)
> z,

which proves the lower bound.
Claim 4. By the claim 3, for all δ > 0, x ∈ R,

1 6 liminf
y→+∞

V (x, y)
y

6 limsup
y→+∞

V (x, y)
y

6
(
1 + cpδ (1 + |x|)p−1

)
.

Letting δ → 0, we obtain the claim 4.

We now prove that V is harmonic on R× R∗+.

Proposition 2.5.3. Assume Conditions 2.1 and E(a) > 0.
1. The function V is Q+-harmonic on R× R∗+: for any x ∈ R and y > 0,

Q+V (x, y) = V (x, y).

2. If in addition we assume Condition 2.2, then the function V is positive on R×R∗+.

Proof. Claim 1. Denote for brevity Vn(x, y) = Ex (y + Sn ; τy > n). For all x ∈ R, y > 0
and n > 1, by the Markov property,

Vn+1(x, y) = Ex (Vn(X1, y + S1) ; τy > 1) .

By Corollary 2.4.5, we see that the quantity Vn(X1, y + S1) is dominated by the random
variable cp (1 + y + S1 + |X1|) (1 + |X1|)p−1 which is integrable with respect to Ex. Con-
sequently, by the Lebesgue dominated convergence theorem and the claim 1 of Proposition
2.5.2,

V (x, y) = Ex (V (X1, y + S1) ; τy > 1) = Q+V (x, y),
where by convention, V (x, y)1{y>0} = 0 if y 6 0 and x ∈ R.
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Claim 2. Fix x ∈ R and y > 0. Using the claim 1 and the fact that V is non-negative
on R× R∗+ (claim 3 of Proposition 2.5.2) we write

V (x, y) > Ex
(
V (X1, y + S1) ; τy > 1 , X1 >

−y
2(1 + ρ)

)
.

By the lower bound of the claim 3 of Proposition 2.5.2 and (2.3.2),

V (x, y) > Ex
(
y + (1 + ρ)X1 ; τy > 1 , X1 >

−y
2(1 + ρ)

)
>
y

2Px
(
X1 >

−y
2(1 + ρ)

)
.

By Condition 2.2, we conclude that, V (x, y) > 0 for any x ∈ R and y > 0.

2.5.2 Existence of the harmonic function: the case E(a) < 0
In this section we prove the harmonicity and the positivity of the function V in the

case E(a) < 0. The following analogue of Lemma 2.5.1 shows that the random variables
MTy and Mτy are integrable.

Lemma 2.5.4. Assume Condition 2.1.
1. For any x ∈ R and y ∈ R,

Ex
(∣∣∣MTy

∣∣∣) 6 cp (1 + |y|+ |x|p) .

2. If in addition E(a) < 0, then for any x ∈ R and y ∈ R,

Ex
(∣∣∣Mτy

∣∣∣) 6 cp (1 + |y|+ |x|p) .

Proof. Claim 1. The proof of the bound of Ex
(∣∣∣MTy

∣∣∣) is similar to that of Lemma 2.5.1
using Lemma 2.4.8 instead of Lemma 2.4.4 and the fact that by Corollary 2.9.7 we have
Px (Ty < +∞) = 1, x ∈ R.

Claim 2. By the claim 1 of Lemma 2.4.6, we have τy ∧ n 6 Ty ∧ n. Since (|Mn|)n>0 is
a submartingale, with z = y + ρx,

Ex
(∣∣∣Mτy

∣∣∣ ; τy 6 n
)
6 Ex

(∣∣∣Mτy∧n

∣∣∣) 6 Ex
(∣∣∣MTy∧n

∣∣∣) 6 2 |z|+ 2Ex
(∣∣∣MTy

∣∣∣ ; Ty 6 n
)
.

The Lebesgue monotone convergence theorem implies the claim 2.

It follows from the claim 2 of Lemma 2.5.4 that, under Condition 2.1 and E(a) < 0,
the function

V (x, y) = −Ex
(
Mτy

)
is well defined for any x ∈ R and y > 0. This also implies the claim 1 of Theorem 2.2.1
when E(a) < 0. To prove the positivity of the function V on R × R∗+, we also consider
the function

W (x, y) = −Ex
(
MTy

)
,

which is well defined on R×R by the claim 1 of Lemma 2.5.4. Note that W exists under
solely Condition 2.1.

Proposition 2.5.5. Assume Condition 2.1.
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1. For any x ∈ R and y ∈ R,

W (x, y) = lim
n→+∞

Ex (y + ρx+Mn ; Ty > n) .

2. For any x ∈ R, the function W (x, .) is non-decreasing.
3. For any p ∈ (2, α), there exists ε1 > 0 such that for any ε ∈ (0, ε1], k0 > 2, x ∈ R

and y ∈ R,

max(0, y+ρx) 6 W (x, y) 6
(

1 + cp,ε
kε0

)
max(y, 0)+cp,ε |x|+cp,ε

√
k0+cp,ε e−cp,εkε0 |x|p .

4. For any x ∈ R,
lim

y→+∞

W (x, y)
y

= 1.

5. For any x ∈ R and y ∈ R,

W (x, y) = Ex (W (X1, y + S1) ; Ty > 1) ,

and
(
W (Xn, y + Sn)1{Ty>n}

)
n>0

is a martingale.

Proof. The proof is very close to that of Proposition 2.5.2. The upper bound of the claim
3 is obtained taking the limit as n→ +∞ in Lemma 2.4.8. We prove the claim 4 taking
the limit as y → +∞ and then as k0 → +∞ in the inequality of the claim 3. The proof
of the claim 5 is the same as that of the claim 1 of Proposition 2.5.3.

Turning now to V , we have the following proposition.

Proposition 2.5.6. Assume Condition 2.1 and E(a) < 0.
1. For any x ∈ R and y > 0,

V (x, y) = lim
n→+∞

Ex (y + ρx+Mn ; τy > n) = lim
n→+∞

Ex (y + Sn ; τy > n) .

2. For any x ∈ R, the function V (x, .) is non-decreasing.
3. For any p ∈ (2, α), δ > 0, x ∈ R and y > 0,

0 6 V (x, y) 6 W (x, y) 6 (1 + cpδ) y + cp,δ (1 + |x|p) .

4. The function V is Q+-harmonic on R× R∗+: for any x ∈ R and y > 0,

Q+V (x, y) = V (x, y)

and
(
V (Xn, y + Sn)1{τy>n}

)
n>0

is a martingale.

Proof. The proofs of the claims 1, 2, 4 and of the lower bound of the claim 3, being
similar to that of the previous proposition and of the Proposition 2.5.2, is left to the
reader. The upper bound of the claim 3 is a consequence of the fact that τy 6 Ty (claim
1 of Lemma 2.4.6): with z = y + ρx,

V (x, y) = lim
n→+∞

Ex (z +Mn ; τy > n)

6 lim
n→+∞

Ex (z +Mn ; Ty > n) = W (x, y).
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Our next goal is to prove that V (x, y) > max (0, (1− δ)y − cp,δ (1 + |x|p)) from which
we will deduce the positivity of V . For this we make appropriate adjustments to the proof
of Lemmas 2.4.3 and Lemma 2.4.4 where the submartingale ((y+ρx+Mn)1{τy>n})n>0 will
be replaced by the supermartingale (W (Xn, y + Sn)1{τy>n})n>0. Instead of upper bounds
in Lemmas 2.4.3 and Lemma 2.4.4 the following two lemmas establish lower bounds.

Lemma 2.5.7. Assume Condition 2.1 and E(a) < 0. For any p ∈ (2, α), there exists
ε1 > 0 such that for any ε ∈ (0, ε1], x ∈ R, y > 0 and n ∈ N,

Ex (W (Xn, y + Sn) ; τy > n) > W (x, y)− cp,εn1/2−2ε − cp,ε |x|p .

Proof. By the claim 1 of Lemma 2.4.6 and the claim 5 of Lemma 2.5.5, as in the proof
of Lemma 2.4.3,

Ex (W (Xn, y + Sn) ; τy > n) = W (x, y)− Ex
(
W (Xτy , y + Sτy) ; Ty > τy , τy 6 n

)
.

Using the claim 3 of Proposition 2.5.5 and the fact that y + Sτy 6 0,

Ex
(
W (Xτy , y + Sτy) ; Ty > τy , τy 6 n

)
6

Ex
(
cp,ε

∣∣∣Xτy

∣∣∣+ cp,ε
√
k0 + cp,ε e−cp,εkε0

∣∣∣Xτy

∣∣∣p ; τy 6 n
)
.

Taking k0 = bn1−4εc, the end of the proof is the same as the proof of Lemma 2.4.3.

Lemma 2.5.8. Assume Condition 2.1 and E(a) < 0. For any p ∈ (2, α) there exists
ε1 > 0 such that for any ε ∈ (0, ε1], k0 > 2, x ∈ R and y > 0,

Ex (W (Xn, y + Sn) ; τy > n) > y

(
1− cp,ε

kε0

)
− cp,εk2

0 (1 + |x|p) .

Proof. The proof is similar to that of Lemma 2.4.4. With vεn = vn + bnεc, we have

J0 = Ex (W (Xn, y + Sn) ; τy > n) > Ex
(
W (Xn, y + Sn) ; τy > n , vεn 6

⌊
n1−ε

⌋)
.

Using the Markov property, Lemma 2.5.7 and the fact that n− vεn 6 n,

J0 > Ex
(
W
(
Xvεn , y + Svεn

)
− cp,εn1/2−2ε − cp,ε

∣∣∣Xvεn

∣∣∣p ; τy > vεn , v
ε
n 6

⌊
n1−ε

⌋)
.

By the claim 1 of Lemma 2.4.6, on {τy > vn} we have z+Mvn > n1/2−ε, where z = y+ρx.
Moreover, using the fact that

(
W (Xn, y + Sn)1{Ty>n}

)
n>1

is a non-negative martingale
(claim 3 and 5 of Proposition 2.5.5) and the fact that τy 6 Ty a.s. (claim 1 of Lemma
2.4.6) we can see that

(
W (Xn, y + Sn)1{τy>n}

)
n>1

is a supermartingale. From this and
as in the bound of the term J2 of Lemma 2.4.4, we obtain that

J0 > Ex
(
W
(
Xbn1−εc, y + Sbn1−εc

)
; τy >

⌊
n1−ε

⌋)
− Ex

(
W
(
Xbn1−εc, y + Sbn1−εc

)
; τy >

⌊
n1−ε

⌋
, vεn >

⌊
n1−ε

⌋)
(2.5.1)

− cp,ε
nε

Ex
(
z +Mvn ; Ty > vn , vn 6

⌊
n1−ε

⌋)
− cp,ε e−cp,εnε (1 + |x|p) .
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Using the claim 3 of Proposition 2.5.5 with k0 = n and the martingale representation
(2.3.2), the absolute value of the second term in the r.h.s. of (2.5.1) does not exceed

cp,εEx
(
z +Mbn1−εc +

√
n+

∣∣∣Xbn1−εc

∣∣∣+ e−cp,εnε
∣∣∣Xbn1−εc

∣∣∣p ;

τy >
⌊
n1−ε

⌋
, vεn >

⌊
n1−ε

⌋)
.

Since
(
(z +Mn)1{Ty>n}

)
n>0

is a submartingale, by claim 2 of Lemma 2.4.6, the absolute
value of the third term is less than

cp,ε
nε

Ex (z +Mn ; Ty > n) .

These bounds imply

J0 > Ex
(
W
(
Xbn1−εc, y + Sbn1−εc

)
; τy >

⌊
n1−ε

⌋)
− cp,εEx

(
z +Mbn1−εc +

√
n+

∣∣∣Xbn1−εc

∣∣∣ ; τy >
⌊
n1−ε

⌋
, vεn >

⌊
n1−ε

⌋)
− cp,ε e−cp,εnε Ex

(∣∣∣Xbn1−εc

∣∣∣p ; τy >
⌊
n1−ε

⌋
, vεn >

⌊
n1−ε

⌋)
(2.5.2)

− cp,ε
nε

Ex (z +Mn ; Ty > n)− cp,ε e−cp,εnε (1 + |x|p) .

Using the Markov property with the intermediate time mε = bn1−εc−bnεc, Lemmas 2.3.4
and 2.3.1 and the fact that vεn = vn + bnεc, the absolute value of the second term in the
r.h.s. of (2.5.2) is bounded by

cp,εEx
(
|z +Mmε |+ cnε/2 + c |Xmε |+

√
n+ c(1 + |Xmε|) ; τy > mε , vn > mε

)
,

which, in turn, using the fact that z +Mmε 6 n1/2−ε on {vn > mε}, is less than

cp,εEx
(√

n+ |Xmε| ; τy > mε , vn > mε

)
.

The absolute value of the third term in the r.h.s. of (2.5.2) is bounded using Lemma 2.3.1
by cp,ε e−cp,εnε (1 + |x|p) . The fourth term is bounded by Lemma 2.4.8. Collecting these
bounds, we obtain

J0 > Ex
(
W
(
Xbn1−εc, y + Sbn1−εc

)
; τy >

⌊
n1−ε

⌋)
− cp,εEx

(√
n+ |Xmε| ; τy > mε , vn > mε

)
− cp,ε

nε
(1 + y + |x|p) . (2.5.3)

Coupling the Hölder inequality with Lemma 2.3.1 and Lemma 2.4.1, we find that the
second term in the r.h.s. of (2.5.3) does not exceed

cp,ε
(√

n+ E1/p
x (|Xmε |

p)
)
P1/q
x

(
vn >

n1−ε

cε

)
6 cp,ε

(√
n+ |x|

) cp,ε (1 + |x|)p−1

n
p−1

2 −(p−1)ε
.

Implementing this into (2.5.3),

J0 > Ex
(
W
(
Xbn1−εc, y + Sbn1−εc

)
; τy >

⌊
n1−ε

⌋)
− cp,ε

nε
(1 + y + |x|p) .

Since
(
W (Xn, y + Sn)1{τy>n}

)
n>1

is a supermartingale, Lemma 2.9.2 implies that

J0 > Ex (W (Xk0 , y + Sk0) ; τy > k0)− cp,ε
kε0

(1 + y + |x|p) .
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Using the lower bound of the claim 3 of Proposition 2.5.5 and Lemma 2.3.4, we deduce
that

Ex (W (Xn, y + Sn) ; τy > n) > yPx (τy > k0)− y cp,ε
kε0
− cp,ε

√
k0 − cp,ε |x|p .

Now, when y → +∞, one can see that Px (τy > k0)→ 1: more precisely,

Px (τy > k0) > Px
(

max
16k6k0

|Xk| <
y

k0

)
> 1− ck

2
0 (1 + |x|)

y
.

Finally,

Ex (W (Xn, y + Sn) ; τy > n) > y

(
1− cp,ε

kε0

)
− cp,εk2

0 (1 + |x|p) .

Under Condition 2.3 we use Lemma 2.5.8 to prove that V is positive on R× R∗+.
Proposition 2.5.9. Assume Conditions 2.1 and E(a) < 0.

1. For any δ > 0, p ∈ (2, α), x ∈ R, y > 0,

V (x, y) > (1− δ)y − cp,δ (1 + |x|p) .

2. For any x ∈ R,
lim

y→+∞

V (x, y)
y

= 1.

3. If in addition we assume Condition 2.3, then the function V is positive on R×R∗+.
Proof. Claim 1. Using the claim 1 of Lemma 2.4.6 and the claims 3 and 5 of Proposition
2.5.5, with z = y + ρx, we write

Ex (z +Mn ; τy > n)
> Ex (z +Mn ; Ty > n)− Ex (W (Xn, y + Sn) ; Ty > n , τy 6 n)
= Ex (z +Mn ; Ty > n)−W (x, y) + Ex (W (Xn, y + Sn) ; τy > n) .

Using Lemma 2.5.8, the claim 1 of Proposition 2.5.5 and the claim 1 of Proposition 2.5.6,
we obtain

V (x, y) > y

(
1− cp,ε

kε0

)
− cp,εk2

0 (1 + |x|p) .

Taking k0 large enough, the claim 1 is proved.
Claim 2. Taking the limit as y → +∞ and as δ → 0 in the claim 1, we obtain

first that liminf
y→+∞

V (x, y)/y > 1. By the claim 3 of Proposition 2.5.6, we obtain also that
limsup
y→+∞

V (x, y)/y 6 1.

Claim 3. Fix x ∈ R, y > 0 and δ0 > 0. By Condition 2.3, there exists p0 ∈ (2, α) such
that for any c > 0 there exists n0 > 1 such that Px ((Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) > 0.
Thus, using the claim 4 of Proposition 2.5.6,

V (x, y) > Ex (V (Xn0 , y + Sn0) ; (Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) .

Using the claim 1 with p = p0 and δ = 1/2 and choosing the constant c = 2cp0,δ + 2δ0,
there exists n0 such that

V (x, y) > δ0Px ((Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) > 0.
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2.6 Asymptotic for the exit time
The aim of this section is to prove Theorem 2.2.2. The asymptotic for the exit time of

the Markov walk (y+Sn)n>0 will be deduced from the asymptotic of the exit time for the
Brownian motion in Corollary 2.9.4 using the functional approximation in Proposition
2.9.5.

2.6.1 Auxiliary statements
We start by proving an analogue of Corollaries 2.4.5 and 2.4.9, where n is replaced

by the stopping time νn defined by (2.4.1).

Lemma 2.6.1. Assume Condition 2.1. For any p ∈ (2, α), there exists ε0 > 0 such that
for any ε ∈ (0, ε0], x ∈ R, y > 0 and n > 1,

E1 = Ex
(
y + Sνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
6 cp,ε(1 + y + |x|)(1 + |x|)p−1.

Proof. When τy > νn > 1, we note that

0 < Xνn < y + Sνn . (2.6.1)

Using the martingale representation (2.3.2) and (2.6.1), we have

y + Sνn 6 z +Mνn + max(0,−ρ)Xνn 6 z +Mνn + max(0,−ρ) (y + Sνn) ,

with z = y + ρx, and so

0 < y + Sνn 6
1

1−max (0,−ρ) (z +Mνn) 6 2 (z +Mνn) .

Consequently, using Lemma 2.3.1 when νn = 1,

E1 6 c (1 + y + |x|) + cEx
(
z +Mνn ; τy > νn , 1 < νn 6

⌊
n1−ε

⌋)
6 c (1 + y + |x|) + cEx

(
z +Mνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

E′1

. (2.6.2)

Now, denoting νn ∧ bn1−εc = min(νn, bn1−εc), we write

E ′1 = cEx
(
z +Mνn∧bn1−εc

)
− cEx

(
z +Mνn∧bn1−εc ; τy 6 νn ∧

⌊
n1−ε

⌋)
− cEx

(
z +Mbn1−εc ; τy >

⌊
n1−ε

⌋
, νn >

⌊
n1−ε

⌋)
.

Since (Mn)n>0 is a centred martingale, using Lemma 2.5.1 when E(a) > 0 and the claim
2 of Lemma 2.5.4 when E(a) < 0, Lemmas 2.3.4, 2.4.1 and Hölder inequality, we obtain

E ′1 6 cp,ε(1 + y + |x|)(1 + |x|)p−1.

Implementing this into (2.6.2), it concludes the proof.

Now, we can prove an upper bound of order 1/n1/2−ε of the probability of survival
Px (τy > n).
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Lemma 2.6.2. Assume Condition 2.1. For any p ∈ (2, α), there exists ε0 > 0 such that
for any ε ∈ (0, ε0], x ∈ R, y > 0 and n > 1,

Px (τy > n) 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n1/2−ε .

Moreover, summing these bounds, we have

bn1−εc∑
k=1

Px (τy > k) 6 cp,ε(1 + y + |x|)(1 + |x|)p−1n1/2+ε.

Proof. We write

Px (τy > n) 6 Ex
(
y + Sνn
n1/2−ε ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ Px

(
νn > n1−ε

)
.

Using Lemma 2.6.1 and Lemma 2.4.1, the claim follows.

Before to proceed with the proof of Theorem 2.2.2, we need two additional technical
lemmas. Recall the notation νε/6n = νn +

⌊
nε/6

⌋
.

Lemma 2.6.3. Assume Condition 2.1. There exists ε0 > 0 such that for any ε ∈ (0, ε0],
x ∈ R and y > 0,

E2 = Ex
(
y + S

ν
ε/6
n

; τy > νε/6n , νε/6n 6
⌊
n1−ε

⌋)
−→
n→+∞

V (x, y).

Proof. Using the martingale approximation (2.3.2),

E2 = −ρEx
(
X
ν
ε/6
n

; τy > νε/6n , νε/6n 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E21

+ Ex
(
z +M

ν
ε/6
n

; τy > νε/6n , νε/6n 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E22

. (2.6.3)

Bound of E21. By the Markov property, Lemma 2.3.1 and the fact that (y+Sνn)/n1/2−ε

> 1,

|E21| 6 cEx
(
1 + e−cnε/6 |Xνn| ; τy > νn , νn 6

⌊
n1−ε

⌋)

6
c

n1/2−εE1 + c e−cnε/6
bn1−εc∑
k=1

Ex (|Xk|) .

By Lemma 2.6.1, we obtain

|E21| 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n1/2−ε . (2.6.4)

Bound of E22. We proceed in the same way as for bounding E ′1 defined in (2.6.2):

E22 = z−Ex
(
z +Mτy ; τy 6 νε/6n ∧

⌊
n1−ε

⌋)
−Ex

(
z +M

ν
ε/6
n ∧bn1−εc ; τy > νε/6n ∧

⌊
n1−ε

⌋
, νε/6n >

⌊
n1−ε

⌋)
.
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By the Hölder inequality, Lemma 2.3.4 and Lemma 2.4.1,

E22 6 z − Ex
(
z +Mτy ; τy 6 νε/6n ∧

⌊
n1−ε

⌋)
+ cp,ε

(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
. (2.6.5)

Since νε/6n >
⌊
nε/6

⌋
→ +∞ as n→ +∞ and Mτy is integrable (using Lemma 2.5.1 when

E(a) > 0 and the claim 2 of Lemma 2.5.4 when E(a) < 0), by the Lebesgue dominated
convergence we deduce that

lim
n→+∞

E22 = −Ex
(
Mτy

)
= V (x, y).

Coupling this with equations (2.6.3) and (2.6.4), we conclude that E2 −→
n→+∞

V (x, y).

Lemma 2.6.4. Assume Condition 2.1. There exists ε0 > 0 such that for any ε ∈ (0, ε0],
x ∈ R and y > 0,

E3 = Ex
(
y + S

ν
ε/6
n

; y + S
ν
ε/6
n

> n1/2−ε/6 , τy > νε/6n , νε/6n 6
⌊
n1−ε

⌋)
−→
n→+∞

0.

Proof. The first step of the proof consists in proving that we can replace the time νε/6n

in the definition of E3 by the time νn. More precisely, we shall prove that the following
bound holds true:

E3 6 cnε/6 Ex
(
y + Sνn ; y + Sνn > n1/2−ε/2 , τy > νn , νn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E31

+ cp,ε
(1 + y + |x|)(1 + |x|)p−1

nε/6
. (2.6.6)

To this end, we bound E3 as follows:

E3 6E31 + Ex
(∣∣∣S

ν
ε/6
n
− Sνn

∣∣∣ ; y + Sνn > n1/2−ε/2 ; τy > νn , νn 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E32

+Ex
(
y + Sνn ; y + Sνn 6 n1/2−ε/2 , y + S

ν
ε/6
n

> n1/2−ε/6 ,

τy > νn , νn 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E33

(2.6.7)

+Ex
(∣∣∣S

ν
ε/6
n
− Sνn

∣∣∣ ; y + Sνn 6 n1/2−ε/2 , y + S
ν
ε/6
n

> n1/2−ε/6 ,

τy > νn , νn 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E34

.

Bound of E32. By the Markov property and Lemma 2.3.1,

E32 6
∫
R×R∗+

Ex′
(∣∣∣∣Sbnε/6c

∣∣∣∣)Px (Xνn ∈ dx′ , y + Sνn ∈ dy′ ,

y + Sνn > n1/2−ε/2 , τy > νn , νn 6
⌊
n1−ε

⌋)
6 Ex

(
cnε/6 (1 + |Xνn|) ; y + Sνn > n1/2−ε/2 , τy > νn , νn 6

⌊
n1−ε

⌋)
.



66 CHAPTER 2. CONDITIONED AFFINE MARKOV WALKS

If τy > νn > 1, by (2.6.1), we have |Xνn| = Xνn < y+Sνn . Using this bound when νn > 1
and the Markov inequality when νn = 1,

E32 6 Ex
(
cnε/6 (1 + |X1|) ; y +X1 > n1/2−ε/2 , νn = 1

)
+ cnε/6E31

6 c
(1 + y + |x|)(1 + |x|)

n1/2−cε + cnε/6E31. (2.6.8)

Bound of E33. By the Markov property,

E33 6
∫
R×R∗+

y′Px′
(
y′ + Sbnε/6c > n1/2−ε/6

)
Px (Xνn ∈ dx′ , y + Sνn ∈ dy′ ,

y + Sνn 6 n1/2−ε/2 , τy > νn , νn 6
⌊
n1−ε

⌋)
.

When y′ 6 n1/2−ε/2, by the Markov inequality, we have,

Px′
(
y′ + Sbnε/6c > n1/2−ε/6

)
6 Px′

(∣∣∣∣Sbnε/6c
∣∣∣∣ > n1/2−ε/6

cε

)
6
cεn

ε/6 (1 + |x′|)
n1/2−ε/6 .

On the event {y + Sνn 6 n1/2−ε/2 , τy > νn}, we obviously have x′ = Xνn 6 n1/2−ε/2.
From these bounds, using the positivity of Xνn for νn > 1, see (2.6.1), we obtain

E33 6 Ex
(

(y + S1) cε (1 + |X1|)
n1/2−ε/3 ; νn = 1

)
+ cε
nε/2−ε/3

E1.

By Lemma 2.6.1, we obtain

E33 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

nε/6
. (2.6.9)

Bound of E34. Again, by the Markov property,

E34 6
∫
R×R∗+

Ex′
(∣∣∣∣Sbnε/6c

∣∣∣∣ ; y′ + Sbnε/6c > n1/2−ε/6
)
Px (Xνn ∈ dx′ ,

y + Sνn ∈ dy′ , y + Sνn 6 n1/2−ε/2 , τy > νn , νn 6
⌊
n1−ε

⌋)
.

When y′ 6 n1/2−ε/2, using the Markov inequality and Lemma 2.3.1, we have

Ex′
(∣∣∣∣Sbnε/6c

∣∣∣∣ ; y′ + Sbnε/6c > n1/2−ε/6
)
6 Ex′

c
p−1
ε

∣∣∣∣Sbnε/6c
∣∣∣∣p

n
p−1

2 −(p−1)ε/6

 6 cp,ε
(1 + |x′|)p

n
p−1

2 −cpε
.

Then, using Lemma 2.3.1 again and the Markov property for the terms in the last sum
below,

E34 6
cp,ε

n
p−1

2 −cpε
+ cp,ε

n
p−1

2 −cpε

bnεc∑
k=1

Ex (|Xk|p) + cp,ε

n
p−1

2 −cpε

bn1−εc∑
k=bnεc+1

Ex (|Xk|p ; τy > k)

6
cp,ε (1 + |x|p)
n
p−1

2 −cpε
+ cp,ε

n
p−1

2 −cpε

bn1−εc−bnεc∑
k=1

Ex
(
1 + e−cpnε |Xk|p ; τy > k

)

6
cp,ε (1 + |x|p)
n
p−1

2 −cpε
+ cp,ε e−cp,εnε (1 + |x|p) + cp,ε

n
p−1

2 −cpε

bn1−εc∑
k=1

Px (τy > k) .
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Using the second bound in Lemma 2.6.2, and taking ε > 0 small enough, we obtain

E34 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
−→
n→+∞

0. (2.6.10)

Inserting (2.6.8), (2.6.9) and (2.6.10) in (2.6.7), we conclude the proof of (2.6.6).
Bound of cnε/6E31. Note that, when νn > 1 and y + Sνn > n1/2−ε/2, we have Xνn =

y + Sνn − (y + Sνn−1) > n1/2−ε/2 − n1/2−ε > n1/2−ε/2

cε
. Consequently,

cnε/6E31 6 cnε/6Ex (y + Sνn ; νn 6 bnεc)︸ ︷︷ ︸
=:E35

+ cnε/6Ex
(
y + Sνn ; Xνn >

n1/2−ε/2

cε
, τy > νn , bnεc < νn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E36

.

(2.6.11)

Bound of E35. Using the definition of νn, the Markov inequality and Lemma 2.3.1,

E35 6 cnε/6Ex
(

max
k6bnεc

|y + Sk| ; max
k6bnεc

|y + Sk| > n1/2−ε
)

6
cp (1 + y + |x|)2

n1/2−cpε
. (2.6.12)

Bound of E36. The idea is based on the observation that, according to the first bound
in Lemma 2.3.1, the random variables y + Sνn−bnεc and Xνn are "almost" independent.
In this line, summing over the values of νn and bounding the indicators 1{νn=k} by 1, we
write

E36 6cn
ε/6
bn1−εc∑
k=bnεc+1

Ex
(
y + Sk−bnεc ; Xk >

n1/2−ε/2

cε
, τy > k

)

+ cnε/6
bn1−εc∑
k=bnεc+1

Ex
(∣∣∣Sk − Sk−bnεc∣∣∣ ; Xk >

n1/2−ε/2

cε
, τy > k

)
.

By the Markov property,

E36 6 cnε/6
bn1−εc∑
k=bnεc+1

∫
R×R∗+

y′Px′
(
Xbnεc >

n1/2−ε/2

cε

)

× Px
(
Xk−bnεc ∈ dx′ , y + Sk−bnεc ∈ dy′ , τy > k − bnεc

)

+ cnε/6
bn1−εc∑
k=bnεc+1

Ex
(
nε max

k−bnεc6i6k
|Xi| ; Xk >

n1/2−ε/2

cε
, τy > k

)
. (2.6.13)

Recall that, under Px′ , by (2.3.3), Xbnεc = ∏bnεc
i=1 aix

′ + X0
bnεc. Then, since ai’s are inde-

pendent and identically distributed, by claim 1 of Condition 2.1 and Lemma 2.3.1,

Px′
(
Xbnεc >

n1/2−ε/2

cε

)
6 P

bnεc∏
i=1

aix
′ >

n1/2−ε/2

2cε

+ P
(∣∣∣X0

bnεc

∣∣∣ > n1/2−ε/2

2cε

)

6 cε e−cεnε |x′|+ cp,ε

n
p
2−cpε

. (2.6.14)
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Inserting (2.6.14) into (2.6.13) and using Cauchy-Schwartz inequality, by Corollaries 2.4.5
and 2.4.9,

E36 6
bn1−εc∑
j=1

(
cε e−cεnε E1/2

x

(
|y + Sj|2

)
E1/2
x

(
|Xj|2

)
+ cp,ε

n
p
2−cpε

(1 + y + |x|)(1 + |x|)p−1
)

+ cnε+ε/6
bn1−εc∑
k=bnεc+1

Ex

 max
k−bnεc6i6k

|Xi|p

n
p−1

2 −cpε
; τy > k − bnεc

 .
Using the decomposition (2.3.2) and Lemmas 2.3.1 and 2.3.4

E36 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε

+ cp

n
p−1

2 −cpε

bn1−εc∑
k=bnεc+1

Ex
(
nε
(
1 +

∣∣∣Xk−bnεc

∣∣∣p) ; τy > k − bnεc
)
.

Re-indexing j = k − bnεc, after some elementary transformations, we get

E36 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
+ cp

n
p−1

2 −cpε

bn1−εc∑
j=1

Px (τy > j)

+ cp

n
p−1

2 −cpε

bnεc∑
j=1

Ex (|Xj|p) + cp

n
p−1

2 −cpε

bn1−εc∑
j=bnεc+1

Ex (|Xj|p ; τy > j − bnεc) .

Again using the Markov property, Lemma 2.3.1 and Lemma 2.6.2, we have

E36 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
+ cp

n
p−1

2 −cpε

bn1−εc∑
j=1

Px (τy > j)

+ cp e−cpnε
bn1−εc∑
j=1

Ex (|Xj|p ; τy > j)

6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2 −cpε
.

Inserting this bound and (2.6.12) into (2.6.11), we obtain

cnε/6E31 6
cp,ε (1 + y + |x|)p

n
p−2

2 −cpε
.

Together with (2.6.6), this bound implies that

E3 6
cp (1 + y + |x|)p

nε/6
−→
n→+∞

0. (2.6.15)
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2.6.2 Proof of the claim 2 of Theorem 2.2.2

Assume either Conditions 2.1, 2.2 and E(a) > 0, or Conditions 2.1 and 2.3. Introduc-
ing the stopping time νε/6n = νn +

⌊
nε/6

⌋
, we have

Px (τy > n) = Px
(
τy > n , νε/6n 6

⌊
n1−ε

⌋)
+ Px

(
τy > n , νε/6n >

⌊
n1−ε

⌋)
. (2.6.16)

We bound the second term by Lemma 2.4.1: for 2 < p < α,

Px
(
τy > n , νε/6n >

⌊
n1−ε

⌋)
6 Px

(
νn >

n1−ε

cε

)
6 cp,ε

(1 + |x|)p
np/2−cpε

= o

(
1√
n

)
. (2.6.17)

To bound the first term, we introduce more notations. Let (Bt)t>0 be the Brownian
motion from Proposition 2.9.5, Ak be the event Ak = {max

06t61

∣∣∣Sbtkc − σBtk

∣∣∣ 6 k1/2−2ε}
where σ is defined by (2.2.2), and Ak be its complement. Using the Markov property, we
have

Px
(
τy > n , νε/6n 6

⌊
n1−ε

⌋)
=
bn1−εc∑
k=1

∫
R×R∗+

Px′
(
τy′ > n− k , An−k

)
Px (Xk ∈ dx′ ,

y + Sk ∈ dy′ , τy > k , νε/6n = k
)

︸ ︷︷ ︸
=:J1

+
bn1−εc∑
k=1

∫
R×R∗+

Px′ (τy′ > n− k , An−k)Px (Xk ∈ dx′ ,

(2.6.18)
y + Sk ∈ dy′ , τy > k , νε/6n = k

)
︸ ︷︷ ︸

=:J2

.

Bound of J1. Taking into account that n− k > n
cε

for any k 6 bn1−εc, by Proposition
2.9.5 with ε small enough, we find

Px′
(
τy′ > n− k , An−k

)
6 Px′

(
An−k

)
6 cp,ε(1 + |x′|)pn−2ε.

By the Markov property and the first bound in Lemma 2.3.1,

J1 6 Ex
(
cp,ε e−cp,εnε/6 |Xνn|

p + cp,ε
n2ε ; τy > νn , νn 6

⌊
n1−ε

⌋)
.

Since y+Sνn
n1/2−ε > 1, using Lemma 2.6.1,

J1 6 cp,ε e−cp,εnε/6 (1 + |x|)p + cp,ε
n1/2−ε+2εE1 6

cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε . (2.6.19)

Bound of J2. The idea is as follows. When y′ 6 θn
√
n, with θn = n−ε/6, we are going

to control the probability Px′ (τy′ > n− k , An−k) in J2 by the claim 2 of Corollary 2.9.4.
When y′ > θn

√
n we shall apply Lemma 2.6.4. Accordingly, we split J2 into two terms as
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follows:

J2 =
bn1−εc∑
k=1

∫
R×R∗+

Px′ (τy′ > n− k , An−k)Px (Xk ∈ dx′ , y + Sk ∈ dy′ ,

y + Sk > n1/2−ε/6 , τy > k , νε/6n = k
)

︸ ︷︷ ︸
=:J3

+
bn1−εc∑
k=1

∫
R×R∗+

Px′ (τy′ > n− k , An−k)Px (Xk ∈ dx′ , y + Sk ∈ dy′ , (2.6.20)

y + Sk 6 n1/2−ε/6 , τy > k , νε/6n = k
)

︸ ︷︷ ︸
=:J4

.

Bound of J3. Let τ bmy be the exit time of the Brownian motion defined by (2.9.10)
and y′+ = y′ + (n− k)1/2−2ε. Since

Px′ (τy′ > n− k , An−k) 6 Px′
(
τ bmy′+ > n− k

)
, (2.6.21)

using the claim 1 of Corollary 2.9.4 with y′+ > 0, we get

J3 6
bn1−εc∑
k=1

Ex
(
c
y + Sk + (n− k)1/2−2ε

√
n− k

; y + Sk > n1/2−ε/6 , τy > k , νε/6n = k

)
.

Since c√
n−k 6 cε√

n
and y+Sk+(n−k)1/2−2ε 6 2 (y + Sk) on the event {y+Sk > n1/2−ε/6},

using Lemma 2.6.4, we have

J3 6
cε√
n
E3 = o

(
1√
n

)
. (2.6.22)

Upper bound of J4. Since n
cε

6 n − k 6 n, we have y′+ 6 cε(n − k)1/2−ε/6 when
y′ 6 n1/2−ε/6. Using (2.6.21), from the claim 2 of Corollary 2.9.4 with θm = cεm

−ε/6, we
deduce that

J4 6
bn1−εc∑
k=1

Ex

 2√
2π (n− k)σ

(
y + Sk + (n− k)1/2−2ε

) (
1 + cθ2

n−k

)
;

y + Sk 6 n1/2−ε/6 , τy > k , νε/6n = k

 . (2.6.23)

Taking into account that 1√
n−k 6 1√

n

(
1 + cε

nε

)
, θn−k 6 cε

nε/6 and 1 < y+Sνn
n1/2−ε , we obtain

J4 6
2√

2πnσ

(
1 + cε

nε/3

)
E2 + cε

n1/2+εE1. (2.6.24)

Using Lemma 2.6.1 and Lemma 2.6.3, we get the following upper bound,

J4 6
2V (x, y)√

2πnσ
(1 + o(1)) . (2.6.25)



2.6. ASYMPTOTIC FOR THE EXIT TIME 71

Lower bound of J4. In the same way as for the upper bound of J4, with y′− =
y + S

ν
ε/6
n
−
(
n− νε/6n

)1/2−2ε
> 0 on the event {

(
n− νε/6n

)1/2−2ε
< y + S

ν
ε/6
n
}, we have

J4 >
2√

2πnσ

(
1− cε

nε/3

)
Ex
(
y′− ;

(
n− νε/6n

)1/2−2ε
< y + S

ν
ε/6
n

6 n1/2−ε/6 ,

τy > νε/6n , νε/6n 6
⌊
n1−ε

⌋)
(2.6.26)

−
bn1−εc∑
k=1

∫
R
Px′

(
An−k

)
Px
(
Xk ∈ dx′ , τy > k , νε/6n = k

)
.

Using the fact that −y′− > 0 on {
(
n− νε/6n

)1/2−2ε
> y + S

ν
ε/6
n
}, we obtain in a same way

as for the upper bound of J1,

J4 >
2√

2πnσ

(
1− cε

nε/3

)
E2 −

2√
2πnσ

Ex
(
n1/2−2εy + Sνn

n1/2−ε ; τy > νn , νn 6
⌊
n1−ε

⌋)

− 2√
2πnσ

E3 −
cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε

>
2√

2πnσ

(
1− cε

nε/3

)
E2 −

c

n1/2+εE1 −
c√
n
E3 −

cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε .

Consequently, using the results of Lemma 2.6.3, Lemma 2.6.1 and Lemma 2.6.4 we con-
clude that

J4 >
2V (x, y)√

2πnσ
(1− o(1)) . (2.6.27)

Coupling the obtained lower bound with the upper bound in (2.6.25) we obtain J4 ∼
2V (x,y)√

2πnσ . With the decomposition of J2 in (2.6.20) and the bound of J3 in (2.6.22) we get
J2 ∼ 2V (x,y)√

2πnσ . Finally, the claim 2 of Theorem 2.2.2 follows from (2.6.16), (2.6.17), (2.6.18)
and (2.6.19).

2.6.3 Proof of the claim 1 of Theorem 2.2.2
Assume Condition 2.1. All the necessary bounds are obtained in the previous section

2.6.2. It is easy to see that they hold under solely Condition 2.1. We highlight how to
gather them. By (2.6.16), (2.6.17), (2.6.18) and (2.6.20), we have,

Px (τy > n) 6 cp,ε
(1 + |x|p)√

n
+ J1 + J3 + J4.

Then, by (2.6.19), (2.6.22), and (2.6.24),

Px (τy > n) 6 cp,ε
(1 + y + |x|) (1 + |x|)p−1

√
n

+ cε√
n
E3 + cε√

n
(E2 + E1) .

Now, by Lemma 2.6.1, (2.6.3) and (2.6.15),

Px (τy > n) 6 cp,ε
(1 + y + |x|)p√

n
+ cε√

n
(E21 + E22) .
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Finally, using (2.6.4), (2.6.5) and Lemmas 2.5.1 and 2.5.4 we have,

Px (τy > n) 6 cε√
n

(
z − Ex

(
z +Mτy ; τy 6 νε/6n ∧

⌊
n1−ε

⌋))
+ cp,ε

(1 + y + |x|)p√
n

6
cε√
n
Ex
(∣∣∣Mτy

∣∣∣)+ cp,ε
(1 + y + |x|)p√

n

6 cp
(1 + y + |x|)p√

n
.

2.6.4 Proof of Corollary 2.2.3

For any p > 0,

Ex
(
τ py
)

=
+∞∑
k=0

Px (τy > k) ((k + 1)p − kp) .

Now the first and the second assertions of the corollary follow respectively from the claim
1 and 2 of Theorem 2.2.2.

2.7 Asymptotic for conditioned Markov walk

In this section we prove Theorem 2.2.4. We will deduce the asymptotic of the Markov
walk (y + Sn)n>0 conditioned to stay positive from the corresponding result for the Brow-
nian motion given by Proposition 2.9.3. As in Section 2.6, we will use the functional
approximation of Proposition 2.9.5. We will refer frequently to Section 2.6 in order to
shorten the exposition.

Proof of Theorem 2.2.4. Introducing νε/6n = νn +
⌊
nε/6

⌋
and taking into account

Condition 2.2 or 2.3, we have

Px
(
y + Sn 6 t

√
n
∣∣∣ τy > n

)
=

Px
(
y + Sn 6 t

√
n , τy > n , νε/6n > bn1−εc

)
Px (τy > n)︸ ︷︷ ︸

=:L1

+
Px
(
y + Sn 6 t

√
n , τy > n , νε/6n 6 bn1−εc

)
Px (τy > n)︸ ︷︷ ︸

=:L2

.

(2.7.1)

Bound of L1. Using Lemma 2.4.1 and Theorem 2.2.2,

L1 6
Px
(
νn >

n1−ε

cε

)
Px (τy > n) 6

cp,ε (1 + |x|)p

n
p
2−cpεPx (τy > n)

−→
n→+∞

0. (2.7.2)

Bound of L2. As in Section 2.6, setting Ak =
{

max
06t61

∣∣∣Sbtkc − σBtk

∣∣∣ 6 k1/2−2ε
}
, by the
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Markov property,

Px (τy > n)L2

=
bn1−εc∑
k=1

∫
R×R∗+

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
Px (Xk ∈ dx′ ,

y + Sk ∈ dy′ , τy > k , νε/6n = k
)

︸ ︷︷ ︸
=:Px(τy>n)L3

+
bn1−εc∑
k=1

∫
R×R∗+

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
Px (Xk ∈ dx′ , (2.7.3)

y + Sk ∈ dy′ , y + Sk > n1/2−ε/6 , τy > k , νε/6n = k
)

︸ ︷︷ ︸
=:Px(τy>n)L4

+
bn1−εc∑
k=1

∫
R×R∗+

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
Px (Xk ∈ dx′ ,

y + Sk ∈ dy′ , y + Sk 6 n1/2−ε/6 , τy > k , νε/6n = k
)

︸ ︷︷ ︸
=:Px(τy>n)L5

.

Bound of L3. Using the bound of J1 in (2.6.19) and Theorem 2.2.2,

L3 6
J1

Px (τy > n) 6
cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+εPx (τy > n) −→
n→+∞

0. (2.7.4)

Bound of L4. Using the bound of J3 in (2.6.22) and Theorem 2.2.2, we have

L4 6
J3

Px (τy > n) = o(1). (2.7.5)

Upper bound of L5. Define t+ = t+ 2
(n−k)2ε and y′+ = y′+(n−k)1/2−2ε. By Proposition

2.9.3,

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
6 P

(
y′+ + σBn−k 6 t+

√
n , τ bmy′+ > n− k

)
= 1√

2π(n− k)σ

∫ t+
√
n

0
e−

(s−y′+)2

2(n−k)σ2 − e−
(s+y′+)2

2(n−k)σ2 ds.

Note that for any y′ 6 n1/2−ε/6 we have y′+/
√
n 6 2

nε/6 and for any k 6 bn1−εc we have
n
(
1− 1

nε

)
6 n− k 6 n. Using these remarks with the fact that sh(x) 6 x

(
1 + x2

6 ch(x)
)

for any x > 0, we obtain after some calculations that

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)

6
2y′+√
2πnσ

(
1 + cε

nε

) ∫ t+
√
n

0

s e−
s2+(y′+)2

2(n−k)σ2

(n− k)σ2

1 +
s2
(
y′+
)2

6(n− k)2σ4 ch
(

sy′+
(n− k)σ2

) ds

6
2y′+√
2πnσ

(
1 + ct,ε

nε/3

)(
1− e−

t2
2σ2

)
.
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Consequently, using the same arguments as in the proof of Theorem 2.2.2 in Section 2.6
(see the developments from (2.6.23) to (2.6.25)), we obtain, with Φ+

σ (t) = 1− e−
t2

2σ2 ,

L5 6
(

1 + ct,ε
nε/3

)
Φ+
σ (t) 2V (x, y)√

2πnσPx (τy > n)
(1 + o(1)) ,

which by the claim 2 of Theorem 2.2.2 implies that

L5 = Φ+
σ (t) (1 + o(1)) . (2.7.6)

Lower bound of L5. In the same way as for the upper bound, with y′− = y′−(n−k)1/2−2ε

and t− = t− 2
(n−k)2ε , we have

Px (τy > n)L5

>
bn1−εc∑
k=1

∫
R∗+

P
(
y′− + σBn−k 6 t−

√
n , τ bmy′− > n− k

)
Px (y + Sk ∈ dy′ ,

(n− k)1/2−2ε < y + Sk 6 n1/2−ε/6 , τy > k , νε/6n = k
)

−
bn1−εc∑
k=1

∫
R
Px′

(
An−k

)
Px
(
Xk ∈ dx′ , τy > k , νε/6n = k

)
.

Using Proposition 2.9.3 with y′−, which is positive when (n− k)1/2−2ε < y′ 6 n1/2−ε/6, we
obtain after calculation that

P
(
y′− + σBn−k 6 t−

√
n , τ bmy′− > n− k

)
>

2y′−√
2πnσ

(
1− ct,ε

nε/3

)
Φ+
σ (t).

Copying the proof of the bound of J1 in (2.6.19) and using the same arguments as in the
proof of Theorem 2.2.2 in Section 2.6 (see the developments from (2.6.26) to (2.6.27)),
we get

L5 > Φ+
σ (t) 2V (x, y)√

2πnσPx (τy > n)
(1− o(1)) = Φ+

σ (t) (1− o(1)) .

Coupling this with (2.7.6) we obtain that

L5 = Φ+
σ (t) (1 + o(1)) .

Inserting this and (2.7.4) and (2.7.5) into (2.7.3), we deduce that L2 ∼
n→+∞

Φ+
σ (t). By

(2.7.1) and (2.7.2), we finally have

Px
(
y + Sn 6 t

√
n
∣∣∣ τy > n

)
−→
n→+∞

Φ+
σ (t).

Changing t into tσ, this concludes the proof.

2.8 The case of non-positive initial point
In this section, we prove Theorem 2.2.5.

Lemma 2.8.1. Assume Condition 2.1. For any (x, y) ∈ D−, the random variable Mτy

is integrable and the function V (x, y) = −Ex
(
Mτy

)
, is well defined on D−.
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Proof. If E(a) > 0, by the Markov inequality, with z = y + ρx,

Ex (z +Mn ; τy > n) =
∫
R×R∗+

Ex′ (y′ + ρx′ +Mn−1 ; τy′ > n− 1)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

Since y + S1 > 0 on {τy > 1}, by Lemma 2.4.4,

Ex (z +Mn ; τy > n) 6 cpEx
(
(1 + y + S1 + |X1|) (1 + |X1|)p−1 ; τy > 1

)
6 cpEx ((1 + |X1|)p)
6 cp (1 + |x|)p . (2.8.1)

Moreover

Ex
(∣∣∣Mτy

∣∣∣ ; τy 6 n
)
6 |z|+

n∑
k=2

∫
R×R∗+

Ex′ (|y′ + ρx′ +Mk−1| ; τy = k − 1)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1)
+ Ex (|M1| ; τy = 1) .

Since y + S1 > 0 on {τy > 1}, by Lemma 2.4.2,

Ex
(∣∣∣Mτy

∣∣∣ ; τy 6 n
)
6 c (1 + |y|+ |x|)− Ex

(
z +Mτy ; τy 6 n

)
6 c (1 + |y|+ |x|) + Ex (z +Mn ; τy > n) .

Using (2.8.1), we deduce that Ex
(∣∣∣Mτy

∣∣∣ ; τy 6 n
)
6 cp (1 + |y|+ |x|p). Consequently, by

the Lebesgue monotone convergence theorem, the assertion is proved when E(a) > 0.
When E(a) < 0, the assertion follows from Lemma 2.5.4.

Lemma 2.8.2. Assume Condition 2.1. The function V is Q+-harmonic on D = D− ∪
R× R∗+. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3,
then the function V is positive on D = D− ∪ R× R∗+.

Proof. Note that by Corollary 2.9.7, we have Px(τy < +∞) = 1, for any x ∈ R and y ∈ R.
Therefore, by the Lebesgue dominated convergence theorem,

V (x, y) = −Ex
(
Mτy

)
= z − lim

n→∞
Ex
(
z +Mτy ; τy 6 n

)
= lim

n→∞
Ex (z +Mn ; τy > n) ,

for any (x, y) ∈ D−. The fact that V is Q+-harmonic on D can be proved in the same
way as in the proof of Proposition 2.5.3. Therefore, for any (x, y) ∈ D−,

V (x, y) = Ex (V (X1, y + S1) ; τy > 1) . (2.8.2)

By the claim 2 of Proposition 2.5.3 and the claim 3 of Proposition 2.5.9, on {τy > 1}, the
random variable V (X1, y + S1) is positive almost surely. Since by the definition of D−,
we have Px (τy > 1) > 0, we conclude that V (x, y) > 0 for any (x, y) ∈ D−.

Lemma 2.8.3. Assume Condition 2.1.
1. For any (x, y) ∈ D−, √

nPx (τy > n) 6 cp (1 + |x|)p .
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2. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
for any (x, y) ∈ D−,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

Proof. By the Markov property,

√
nPx (τy > n) =

∫
R×R∗+

√
nPx′ (τy′ > n− 1)Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

By Theorem 2.2.2, for any y′ > 0, we have
√
nPx′ (τy′ > n− 1) 6 cp (1 + y′ + |x′|)p and

moreover, for any y 6 0,

Ex (cp (1 + y + S1 + |X1|)p ; τy > 1) 6 cp (1 + |x|)p .

Then, we obtain the claim 1 and by the Lebesgue dominated convergence theorem and
the claim 2 of Theorem 2.2.2,

lim
n→∞

√
nPx (τy > n) = Ex

(
2V (X1, y + S1)√

2πσ
; τy > 1

)
.

Using (2.8.2) we conclude the proof.

Lemma 2.8.4. Assume either Conditions 2.1, 2.2 and E(a) > 0, or Conditions 2.1 and
2.3. For any (x, y) ∈ D− and t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

1− e− t
2
2 .

Proof. Similarly as in the proof of Lemma 2.8.3, we write,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)

= 1
Px (τy > n)

∫
R×R∗+

Px′
(
y′ + Sn−1

σ
√
n− 1

6 t ; τy′ > n− 1
)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1)

= 1√
nPx (τy > n)

∫
R×R∗+

Px′
(
y′ + Sn−1

σ
√
n− 1

6 t

∣∣∣∣∣ τy′ > n− 1
)
√
nPx′ (τy′ > n− 1)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

Since, by Lemma 2.8.3,
√
nPx′ (τy′ > n− 1) 6 cp (1 + |x′|)p, applying the Lebesgue dom-

inated convergence theorem, Theorem 2.2.2, Theorem 2.2.4 and Lemma 2.8.3, we have

lim
n→∞

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)

=
√

2πσ
2V (x, y)

∫
R×R∗+

(
1− e− t

2
2

) 2V (x′, y′)√
2πσ

Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

Using (2.8.2) concludes the proof.
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2.9 Appendix

2.9.1 Proof of the fact Condition 2.3bis implies Condition 2.3
We suppose that Condition 2.3bis holds. Then, there exists δ > 0 such that

P ((a, b) ∈ [−1 + δ, 0]× [δ, C]) > 0 (2.9.1)

and

P ((a, b) ∈ [0, 1− δ]× [δ, C]) > 0. (2.9.2)

For any x ∈ R, set Cx = max
(
|x| , C

δ

)
and

An =
{
δ 6 X1 6 Cx , δ 6 X2 6 CX1 , . . . , δ 6 Xn 6 CXn−1

}
.

Using (2.9.1) for x < 0 and (2.9.2) for x > 0, we obtain that Px (A1) > 0. By the Markov
property, we deduce that Px (An) > 0. Moreover, it is easy to see that, on An, we have
y + Sk > y + kδ > 0, for all k 6 n, and |Xn| 6 Cx. Taking n = n0 large enough, we
conclude that Condition 2.3 holds under Condition 2.3bis.

2.9.2 Convergence of recursively bounded monotonic sequences
The following two lemmas give sufficient conditions for a monotonic sequence to be

bounded.

Lemma 2.9.1. Let (un)n>1 be a non-decreasing sequence of reals such that there exist
n0 > 2, ε ∈ (0, 1), α, β, γ > 0 and δ > 0 such that for any n > n0,

un 6
(

1 + α

nε

)
ubn1−εc + β

nε
+ γ e−δnε . (2.9.3)

Then, for any n > n0 and any integer k0 ∈ {n0, . . . , n},

un 6 exp
(
α

kε0

2ε2ε2

2ε2 − 1

)uk0 + β

kε0

2ε2ε2

2ε2 − 1 + γ
exp

(
−δ k

ε
0

2ε
)

1− e−δ(2ε2−1)


6

(
1 + cα,ε

kε0

)
uk0 + β

cα,ε
kε0

+ γcα,δ,ε e−cα,δ,εkε0 .

In particular, choosing k0 constant, it follows that (un)n>1 is bounded.

Proof. Fix n > n0 and k0 ∈ {n0, . . . , n} and consider for all j > 0,

pj =
⌊
n(1−ε)j

⌋
.

The sequence (pj)j>0 starts at n0 = n, is non-increasing and converge to 1. So there
exists m = m(k0) ∈ N such that pm > k0 > pm+1. Since n(1−ε)j/2 > k0/2 > 1, for all
j ∈ {0, . . . ,m}, we have

n(1−ε)j > pj > n(1−ε)j − 1 >
n(1−ε)j

2 . (2.9.4)
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Using (2.9.3) and the fact that (un)n>2 is non-decreasing, we write for all j = 0, . . . ,m,

upj 6

(
1 + α

pεj

)
upj+1 + β

pεj
+ γ e−δpεj 6

(
1 + α

pεj

)(
upj+1 + β

pεj
+ γ e−δpεj

)
.

Iterating, we obtain that

un 6 Am
(
upm+1 + βBm + γCm

)
,

where Am = ∏m
j=0

(
1 + α

pεj

)
, Bm = ∑m

j=0
1
pεj

and Cm = ∑m
j=0 e−δpεj . Since pm+1 6 k0 and

since (un)n>2 is non-decreasing,

un 6 Am (uk0 + βBm + γCm) . (2.9.5)

Now, we bound Am as follows,

Am 6
m∏
j=0

e
α
pε
j = eαBm . (2.9.6)

Denoting ηj = n−(1−ε)jε, using (2.9.4), we have Bm 6 2ε∑m
j=0 ηj. Moreover, for all j 6 m,

we note that ηj
ηj+1

= 1
nε

2(1−ε)j 6 1
kε

2
0

6 1
2ε2 < 1 and so

ηj 6
ηm

2ε2(m−j) 6
1

pεm2ε2(m−j) 6
1

kε02ε2(m−j) . (2.9.7)

Therefore, Bm is bounded as follows:

Bm 6
2ε
kε0

m∑
k=0

( 1
2ε2

)k
6

1
kε0

2ε2ε2

2ε2 − 1 . (2.9.8)

Using (2.9.4) and (2.9.7), we have

Cm 6
m∑
j=0

e−
δ

2εηj 6
m∑
j=0

exp
(
−δk

ε
02ε2(m−j)

2ε

)
.

Since for any u > 0 and k ∈ N, we have (1 + u)k > 1 + ku, it follows that

Cm 6 e−
δkε0
2ε

m∑
k=0

exp
(
−δk

(
2ε2 − 1

))
6

e−
δkε0
2ε

1− e−δ(2ε2−1) . (2.9.9)

Putting together (2.9.6), (2.9.8) and (2.9.9) into (2.9.5) proves the lemma.

Lemma 2.9.2. Let (un)n>1 be a non-increasing sequence of reals such that there exist
n0 > 2, ε ∈ (0, 1) and β > 0 such that for any n > n0,

un > ubn1−εc −
β

nε
.

Then, for any n > n0 and any integer k0 ∈ {n0, . . . , n},

un > uk0 −
β

kε0

2ε2ε2

2ε2 − 1 = uk0 − cε
β

kε0
.

In particular, choosing k0 constant, it follows that (un)n>1 is bounded.

Proof. For the proof it is enough to use Lemma 2.9.1 with un replaced by −un.
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2.9.3 Results on the Brownian case and strong approximation
Consider the standard Brownian motion (Bt)t>0 living on a probability space (Ω,F ,PPP).

Define the exit time
τ bmy = inf{t > 0, y + σBt 6 0}, (2.9.10)

where σ > 0. The following assertions are due to Lévy [57].

Proposition 2.9.3. For any y > 0, 0 6 a 6 b and n > 1,

PPP
(
τ bmy > n

)
= 2√

2πnσ

∫ y

0
e−

s2
2nσ2 ds.

and
PPP
(
τ bmy > n , y + σBn ∈ [a, b]

)
= 1√

2πnσ

∫ b

a

(
e−

(s−y)2

2nσ2 − e−
(s+y)2

2nσ2

)
ds.

From this one can deduce easily:

Corollary 2.9.4.
1. For any y > 0,

PPP
(
τ bmy > n

)
6 c

y√
n
.

2. For any sequence of real numbers (θn)n>0 such that θn −→
n→+∞

0,

sup
y∈[0;θn

√
n]

PPP
(
τ bmy > n

)
2y√
2πnσ

− 1
 = O(θ2

n).

To transfer the results from the Brownian motion to the Markov walk, we use a
functional approximation given in Theorem 3.3 from Grama, Le Page and Peigné [40].
We have to construct an adapted Banach space B and verify the hypotheses M1−M5
in [40] which are necessary to apply Theorem 3.3. Fix p ∈ (2, α) and let ε, θ, c0 and δ
be positive numbers such that c0 + ε < θ < 2c0 < α− ε and 2 < 2 + 2δ < (2 + 2δ)θ 6 p.
Define the Banach space B = Lε,c0,θ as the set of continuous function f from R to C such
that ‖f‖ = |f |θ + [f ]ε,c0

< +∞, where

|f |θ = sup
x∈R

|f(x)|
1 + |x|θ

, [f ]ε,c0
= sup

(x,y)∈R2

x 6=y

|f(x)− f(y)|
|x− y|ε (1 + |x|c0) (1 + |y|c0) .

For example, one can take ε < min(p−2
4 , 1

2), c0 = 1, θ = 1 + 2ε and 2 + 2δ = p
1+2ε . Using

the techniques from [43] one can verify that, under Condition 2.1, the Banach space B
and the perturbed operator Ptf(x) = Ex(f(X1) eitX1) satisfy Hypotheses M1−M5 in
[40]. The hypothesis M1 is verified straightforwardly. In particular the norm of the Dirac
measure δx is bounded: ‖δx‖B→B 6 1 + |x|θ, for each x ∈ R. We refer to Proposition 4
and Corollary 3 of [43] for M2−M3. For M4, we have

µδ(x) = sup
k>1

E1/2+2δ
x

(
|Xn|2+2δ

)
6 cδ (1 + |x|) .

Hypothesis M5 follows from Proposition 1 of [43] and Lemma 2.3.1.
With these considerations, the C(x) = C1(1 + µδ(x) + ‖δx‖)2+2δ in Theorem 3.3

established in [40] is less than cp(1 + |x|)p, where C1 is a constant. Therefore Theorem
3.3 can be reformulated in the case of the stochastic recursion as follows.
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Proposition 2.9.5. Assume Condition 2.1. For any p ∈ (2, α), there exists ε0 > 0 such
that for any ε ∈ (0, ε0], x ∈ R and n > 1, without loss of generality (on an extension of
the initial probability space) one can reconstruct the sequence (Sn)n>0 with a continuous
time Brownian motion (Bt)t∈R+, such that

Px
(

sup
06t61

∣∣∣Sbtnc − σBtn

∣∣∣ > n1/2−ε
)
6
cp,ε
nε

(1 + |x|)p,

where σ is given by (2.2.2).

This proposition plays the crucial role in the proof of Theorem 2.2.2 and Theorem
2.2.4 (cf. Sections 2.6 and 2.7). The following straightforward consequence of Proposition
2.9.5 is used in the proof of Lemma 2.4.1 in Section 2.4. Set Φ(t) = 1√

2π
∫ t
−∞ e−u

2
2 du.

Corollary 2.9.6. Assume Condition 2.1. For any p ∈ (2, α), there exists ε0 > 0 such
that for any ε ∈ (0, ε0], x ∈ R and n > 1,

sup
u∈R

∣∣∣∣∣Px
(
Sn√
n
6 u

)
−Φ

(
u

σ

)∣∣∣∣∣ 6 cp,ε
nε

(1 + |x|)p .

Proof. Let ε ∈ (0, 1/2) and An =
{

sup
06t61

∣∣∣Sbtnc − σBtn

∣∣∣ > n1/2−ε
}
. For any x ∈ R and

any u ∈ R,

Px
(
Sn√
n
6 u

)
6 Px (An) + Px

(
σBn√
n

6 u+ 1
nε

)
,

where the last probability does not exceed Φ(u
σ
) + cεn

−ε. Using Proposition 2.9.5, we
conclude that there exists ε0 > 0 such that for any ε ∈ (0, ε0] and x ∈ R,

Px
(
Sn√
n
6 u

)
6 Φ

(
u

σ

)
+ cp,ε

nε
(1 + |x|)p .

In the same way we obtain a lower bound and the assertion follows.

2.9.4 Finiteness of the exit times
Corollary 2.9.7. Assume Condition 2.1. For any x ∈ R and y ∈ R,

Px (τy < +∞) = 1 and Px (Ty < +∞) = 1.

Proof. Let y > 0 and ε ∈ (0, 1/2). Set An =
{

sup06t61

∣∣∣S[tn] − σBtn

∣∣∣ 6 n1/2−ε
}
. Using

Proposition 2.9.5, there exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and y > 0,

Px (τy > n) 6 Px (τy > n,An) + Px
(
An
)

6 P
(
τ bmy+n1/2−ε > n

)
+ cp,ε

nε
(1 + |x|)p .

Since, by the claim 1 of Corollary 2.9.4, P
(
τ bm
y+n1/2−ε > n

)
6 cy+n1/2−ε

√
n

6 (1 + y) c
nε
, taking

the limit as n→ +∞ we conclude that Px (τy < +∞) = 1.
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Let Dn =
{

max16k6n |Sk −Mk| 6 n1/2−ε
}
. Obviously

Px (Ty > n) 6 Px (Ty > n,An, Dn) + Px
(
An
)

+ Px
(
Dn

)
6 P

(
τ bmy+2n1/2−ε > n

)
+ cp,ε

nε
(1 + |x|)p + Px

(
max
16k6n

|ρXk| > n1/2−ε
)
.

Using the claim 1 of Corollary 2.9.4, the Markov inequality and Lemma 2.3.1, for any
ε ∈ (0, ε0], x ∈ R and y > 0,

Px (Ty > n) 6 (1 + y) c
nε

+ cp,ε
nε

(1 + |x|)p + cp
1 + |x|p

n
p−2

2 −pε
.

Choosing ε small enough and taking the limit as n → +∞ we conclude the second
assertion when y > 0.

When y 6 0, the results follow since the applications y 7→ τy and y 7→ Ty are non-
decreasing.

Acknowledgements. The authors would like to thank the two anonymous referees
for their thorough reviews of the original manuscript and helpful comments and correc-
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Chapter 3

Limit theorems for Markov walks
conditioned to stay positive under a
spectral gap assumption

This chapter is the subject of the article [38] written in collaboration with
Ion Grama and Emile Le Page

to appear in
The Annals of Probability.

Résumé. On considère une chaîne de Markov (Xn)n>0 à valeurs dans un espace d’états
X. Pour f une fonction réelle définie sur X, on pose Sn = ∑n

i=1 f(Xi), n > 1. Soit Px la
probabilité engendrée par la chaîne de Markov lorsque l’état initial est donné par X0 = x.
Pour tout point de départ y ∈ R, on définit τy comme étant le premier instant pour lequel
la marche markovienne (y + Sn)n>1 devient négative ou nulle. Sous la condition que la
marche Sn soit sans dérive, on détermine l’asymptotique de Px (τy > n) ainsi que celui de
la loi de la marche conditionnée Px (y + Sn 6 ·

√
n | τy > n) as n→ +∞.

Abstract. Consider a Markov chain (Xn)n>0 with values in the state space X. Let f be
a real function on X and set Sn = ∑n

i=1 f(Xi), n > 1. Let Px be the probability measure
generated by the Markov chain starting at X0 = x. For a starting point y ∈ R denote by
τy the first moment when the Markov walk (y+Sn)n>1 becomes non-positive. Under the
condition that Sn has zero drift, we find the asymptotics of the probability Px (τy > n)
and of the conditional law Px (y + Sn 6 ·

√
n | τy > n) as n→ +∞.

3.1 Introduction
Assume that on the probability space (Ω,F ,P) we are given a sequence of random

variables (Xn)n>1 with values in a measurable space X. Let f be a real function on X.
Suppose that the random walk Sn = ∑n

i=1 f(Xi), n > 1 has zero drift. For a starting point
y ∈ R denote by τy the time at which (y + Sn)n>1 first passes into the interval (−∞, 0].
We are interested in the asymptotic behaviour of the probability P(τy > n) and of the
conditional law of y+Sn√

n
given the event {τy > n} = {S1 > 0, . . . , Sn > 0} as n→ +∞.

The case when f is the identity function and (Xn)n>1 are i.i.d. in X = R has been
extensively studied in the literature. We refer to Spitzer [66], Iglehart [47, 48], Bolthausen
[9], Doney [22], Bertoin and Doney [6], Borovkov [10, 11], Caravenna [13], Vatutin and

83



84 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

Wachtel [71] to cite only a few. Recent progress has been made for random walks with
independent increments in X = Rd, see Eichelbacher and König [27], Denisov and Wachtel
[20, 18] and Duraj [25]. However, to the best of our knowledge, the case of the Markov
chains has been treated only in some special cases. Upper and lower bounds for P(τy > n)
have been obtained in Varapoulos [68], [69] for Markov chains with bounded jumps and in
Dembo, Ding and Gao [15] for integrated random walks based on independent increments.
An approximation of P (τy > n) by the survival probability of the Brownian motion for
Markov walk under moment conditions is given in Varopoulos [70]. Exact asymptotic
behaviour was determined in Presman [60, 61] in the case of sums of random variables
defined on a finite Markov chain under the additional assumption that the distributions
have an absolute continuous component and in Denisov and Wachtel [19] for integrated
random walks. The case of products of i.i.d. random matrices which reduces to the study
of a particular Markov chain defined on a merely compact state space was considered in
[41] and the case of affine walks in R has been treated in [36] (Chapter 2). We also point
out the work of Denisov, Korshunov and Wachtel [16] where a constructive analysis of
harmonic functions for Markov chains with values in N is performed.

In this paper we determine the limit of the probability of the exit time τy and of the
law of y+Sn conditioned to stay positive for a Markov chain under the assumption that its
transition operator has a spectral gap. In particular our results cover the case of Markov
chains with compact state spaces and the affine random walks in R (see [36]/Chapter 2)
and Rd (see Gao, Guivarc’h and Le Page [30]). Our results apply also to the case of sums
of i.i.d. random variables.

To present briefly the main results of the paper denote by Px and Ex the probabil-
ity and the corresponding expectation generated by the trajectories of a Markov chain
(Xn)n>1 with the initial state X0 = x ∈ X. Let Q be the transition operator of the Markov
chain (Xn, y + Sn)n>1 and let Q+ be the restriction of Q on X×R∗+. We show that under
appropriate assumptions, there exists a Q+-harmonic function V with non-empty support
supp(V ) in X× R such that, for any (x, y) ∈ supp(V ),

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

(3.1.1)

and
Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

where Φ+(t) = 1 − e− t
2
2 is the Rayleigh distribution function and σ is a positive real.

Moreover, we complete this result by giving the behaviour of Px (τy > n) on the comple-
ment of supp(V ) : for any (x, y) /∈ supp(V ),

Px (τy > n) 6 cx e−cn, (3.1.2)

where cx depends on x and c is a constant. This is different from the case of sums of i.i.d.
real random variables, where instead of (3.1.2), on supp(V )c it holds Px (τy > n) = 0.
We give an example of a Markov chain for which the bound (3.1.2) is attained and state
uniform versions of (3.1.1) and (3.1.2). A characterization of the supp(V ) is given in
point 4 of Theorem 3.2.2. For details we refer to Section 3.2.

The study of the asymptotic behaviour of the probability P(τy > n) for walks on the
real line R is usually based on the Wiener-Hopf factorization (see Feller [29]). Unfor-
tunately the Wiener-Hopf factorisation is not well suited for more general walks, as for
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example those with values in Rd or for walks with dependent increments. For random
walks with dependent increments and for random walks with independent increments in
Rd, Varopoulos [70], Eichelbacher and König [27] and Denisov and Wachtel [20] have de-
veloped an alternative approach based on the existence of the harmonic function. Using
the particular structure of the underlaying models such extensions where performed in
Denisov and Wachtel [19] for integrated random walks, in [41] for products of random
matrices and in [36] (Chapter 2) for affine random walks in R. Despite these advances,
there are still some major difficulties in transferring the harmonic function approach to
the case of more general Markov chains. In this paper we extend it to Markov chains
under spectral gap assumptions. Let us highlight below the key points of the proofs.

We begin with the construction of a martingale approximation (Mn)n>1 for (Sn)n>1
following the approach of Gordin [35]. One of the delicate points of the proof is to control
the difference Sn−Mn. We make use of the spectral gap property of the transition operator
P of the Markov chain (Xn)n>1 relatively to some Banach space B (for details we refer
to Section 3.2). Our martingale approximation is such that

(z +Mn)− (y + Sn) = r (Xn) ,

where r(x) = Θ(x) − f(x) is the coboundary, z = y + r(x) and Θ is the solution of
the Poisson equation Θ − PΘ = f. Under Hypothesis M3.4 we can control |r(x)| by
c(1 + N(x)) where N ∈ B has bounded moments E1/α

x (N(Xn)α) 6 c(1 + N(x)), for
some α > 2. Note that in the case of products of random matrices [41] the coboundary
is bounded, so that supn>1 |Sn −Mn| is bounded by a constant Px-a.s. for any x ∈ X,
which simplifies greatly the proofs. The extension to the case of unbounded coboundary
turns out to be quite laborious even for particular examples. We refer to the case of affine
Markov walks considered in [36] (Chapter 2), where the authors have benefited from the
special structure of the model.

The next step is the proof of the existence of a positive harmonic function. The
starting idea is very simple. Let Vn(x, y) := Ex((y + Sn)1{τy>n}) be the expectation of
the Markov walk (y + Sn)n>1 killed at τy. Since by the Markov property, Vn+1(x, y) =
Q+Vn(x, y), taking the limit as n→ +∞ under appropriate assumptions, yields that the
function V (x, y) = limn→+∞ Vn(x, y) is Q+-harmonic. Using the approximating martin-
gale, the function V can be identified as V (x, y) = −Ex

(
Mτy

)
. To justify this approach,

it is important to control uniformly in n the expectation wn := Ex((z + Mn)1{τy>n}).
Our key idea (in contrast to [41] and [36]/Chapter 2) is the introduction of two extra
stopping times Tz and T̂z: the first time when (z + Mn)n>1 leaves R∗+ and the first time
larger than τy when (z + Mn)n>1 leaves R∗+, respectively, where as before z = y + r(x).
Clearly, T̂z depends on τy and dominates both, τy and Tz. The relation of the time T̂z
to the exit times τy and Tz is explicitly given in Lemma 3.5.3 which is an application of
the Markov property to T̂z. This property is useful to control uniformly in n the expec-
tation un := Ex((z + Mn)1{T̂z>n}), which is one of the crucial points of the proof. To
establish this we note that the sequence (un)n>0 is increasing, since ((z+Mn)1{T̂z>n})n>1
is a submartingale. In addition we show that it satisfies a recurrence equation, which
implies its boundedness. Using the previous arguments we obtain a uniform control on
the expectation wn. All the details can be found in Sections 3.6 and 3.7. The proof of
the (strict) positivity of V is also rather involved but uses similar arguments based on
the subhamonicity of the function Ŵ (x, z) = −Ex(MT̂z

). (see Section 3.8).
Now we can turn to the tail behaviour of the exit time τy. It is inferred from that

of the exit time τ bmy of the Brownian motion, using the Donsker invariance principle for
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sums defined on Markov chains with a the rate of convergence, recently proved in [40].
The result in [40] gives the explicit dependence of the constants on the norm ‖δx‖B′ of
the Dirac measure δx and on the absolute moments µα(x) = supn>1 E1/α

x (|f (Xn)|α) for
some initial state x ∈ X and some α > 2. To have a control on the constants we make
use of Hypothesis M3.4. Note that for products of random matrices [41], ‖δx‖B′ and
µα(x) are bounded uniformly in the initial state x ∈ X, so that the rate of convergence
invariance principle does not depend on the initial state. The case of when ‖δx‖B′ and
µα(x) are not bounded was was studied in details in [36] (Chapter 2) for affine Markov
walks.

The paper is organized as follows. In Section 3.2 we introduce the necessary notations
and state our main results. In Section 3.3 we give applications of the results of the paper
to stochastic recursions in Rd and Markov chains with compact state space. In Section
3.4 we collect some preliminary results. In Section 3.5 we construct the approximating
martingale and state some of its properties and of the associated exit times. In Section 3.6
we prove that the expectations Ex((y+Sn)1{τy>n}) are bounded uniformly in n. Using the
results of Sections 3.5 and 3.6, we establish in Section 3.7 the existence of a Q+-harmonic
function and prove in Section 3.8 that this function is not identically zero. We determine
the limit of the probability Px(τy > n) in Section 3.9 and that of the conditioned law of
(y + Sn)/(σ

√
n) given the event {τy > n} in Section 3.10.

We end this section by setting some basic notations. For the rest of the paper the
symbol c denotes a positive constant depending on the all previously introduced constants.
Sometimes, to stress the dependence of the constants on some parameters α, β, . . . we
shall use the notations cα, cα,β, . . . . All these constants are likely to change their values
every occurrence. For any real numbers u and v, denote by u ∧ v = min(u, v) the
minimum between u and v. The indicator of an event A is denoted by 1A. For any
bounded measurable function f on X, random variable X in X and event A, the integral∫
X f(x)P(X ∈ dx,A) means the expectation E (f(X);A) = E (f(X)1A).

3.2 Main results
Let (Xn)n>0 be a Markov chain taking values in the measurable state space (X,X ),

defined on the probability space (Ω,F ,P). For any given x ∈ X, denote by P(x, ·) its
transition probability, to which we associate the transition operator

Pg(x) =
∫
X
g(x′)P(x, dx′),

for any complex bounded measurable function g on X. Denote by Px and Ex the probabil-
ity and the corresponding expectation generated by the finite dimensional distributions
of the Markov chain (Xn)n>0 starting at X0 = x. We remark that Pg (x) = Ex (g (X1))
and Png (x) = Ex (g (Xn)) for any g complex bounded measurable, x ∈ X and n > 1.

Let f be a real valued function defined on the state space X and let B be a Banach
space of complex valued functions on X endowed with the norm ‖·‖B. Let ‖·‖B→B be
the operator norm on B and let B′ = L (B,C) be the topological dual of B endowed
with the norm ‖ϕ‖B′ = suph∈B

|ϕ(h)|
‖h‖B

, for any ϕ ∈ B′. Denote by e the unit function of
X: e(x) = 1, for any x ∈ X and by δx the Dirac measure at x ∈ X: δx(g) = g(x), for any
g ∈ B.

Following [40], we assume the following hypotheses.
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Hypothesis M3.1 (Banach space).
1. The unit function e belongs to B.
2. For any x ∈ X, the Dirac measure δx belongs to B′.
3. The Banach space B is included in L1 (P(x, ·)), for any x ∈ X.
4. There exists a constant κ ∈ (0, 1) such that for any g ∈ B, the function eitf g is in B

for any t satisfying |t| 6 κ.

Under the point 3 of M3.1, Pg(x) exists for any g ∈ B and x ∈ X.

Hypothesis M3.2 (Spectral gap).
1. The map g 7→ Pg is a bounded operator on B.
2. There exist constants c1 > 0 and c2 > 0 such that

P = Π +Q,

where Π is a one-dimensional projector and Q is an operator on B satisfying ΠQ =
QΠ = 0 and for any n > 1,

‖Qn‖B→B 6 c1 e−c2n .

Since Π is a one-dimensional projector and e is an eigenvector of P, there exists a
linear form ν ∈ B′, such that for any g ∈ B,

Πg = ν(g)e. (3.2.1)

When Hypotheses M3.1 and M3.2 hold, we set Ptg := P
(
eitf g

)
for any g ∈ B and

t ∈ [−κ, κ]. In particular P0 = P.

Hypothesis M3.3 (Perturbed transition operator).
1. For any |t| 6 κ the map g 7→ Ptg is a bounded operator on B.
2. There exists a constant CP > 0 such that, for any n > 1 and |t| 6 κ,

‖Pn
t ‖B→B 6 CP.

The following hypothesis will be important for establishing the main results.

Hypothesis M3.4 (Local integrability). The Banach space B contains a sequence of
real non-negative functions N,N1, N2, . . . such that:
1. There exist α > 2 and γ > 0 such that, for any x ∈ X,

max
{
|f(x)|1+γ , ‖δx‖B′ ,E

1/α
x (N (Xn)α)

}
6 c (1 +N(x))

and
N(x)1{N(x)>l} 6 Nl(x), for any l > 1.

2. There exists c > 0 such that, for any l > 1,

‖Nl‖B 6 c.
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3. There exist β > 0 and c > 0 such that, for any l > 1,

|ν (Nl)| 6
c

l1+β .

A comment on Hypothesis M3.4 seems to be appropriate. Although the function
N belongs to the Banach space B, the truncated function x 7→ N(x)1{N(x)>l} may not
belong to B. Fortunately, in many interesting cases, there exists an element Nl in B
dominating it. We refer to Section 3.3, where we verify Hypothesis M3.4 for stochastic
recursions in Rd and for Markov chains with compact state space. Note also that the
function f need not belong to the Banach space B.

Under Hypotheses M3.1, M3.2 and M3.4, we have, for any x ∈ X and n > 1,

Ex (N(Xn)) = ν(N) +QnN(x)
6 |ν(N)|+ ‖Qn‖B→B ‖N‖B ‖δx‖B′
6 c(1 + e−cnN(x)) (3.2.2)

and, in the same way, for any x ∈ X, l > 1 and n > 1,

Ex (Nl (Xn)) 6 c

l1+β + c e−cn (1 +N(x)) . (3.2.3)

Moreover, from the point 1 of M3.4, one can easily verify that, for any x ∈ X,

µα(x) := sup
n>1

E1/α
x (|f (Xn)|α) 6 c

(
1 +N(x)

1
1+γ
)
. (3.2.4)

The following proposition is proved in [40], where the bounds on the right follow from
(3.2.4) and again M3.4.

Proposition 3.2.1. Assume that the Markov chain (Xn)n>0 and the function f satisfy
Hypotheses M3.1-M3.4.
1. There exists a constant µ such that, for any x ∈ X and n > 1,

|Ex (f(Xn))− µ| 6 c e−cn
(
1 + µα(x)1+γ + ‖δx‖B′

)
6 c e−cn (1 +N(x)) .

2. There exists a constant σ > 0 such that, for any x ∈ X and n > 1,

sup
m>0

∣∣∣∣∣∣Varx

 m+n∑
k=m+1

f(Xk)
− nσ2

∣∣∣∣∣∣ 6 c
(
1 + µα(x)2+2γ + ‖δx‖B′

)
6 c

(
1 +N(x)2

)
,

where Varx is the variance under Px.

We do not assume the existence of the stationary probability measure. If a stationary
probability measure ν ′ satisfying ν ′ (N2) < +∞ exists then, under Hypotheses M3.1-
M3.4, we have that ν ′ = ν is necessarily unique and it holds (see [40])

ν(f) = µ and σ2 = ν
(
f 2
)
− ν(f)2 + 2

+∞∑
n=1

[
ν (fP nf)− ν(f)2

]
. (3.2.5)

Hypothesis M3.5 (Centring and non-degeneracy). We suppose that the constants µ and
σ defined in Proposition 3.2.1 satisfy µ = 0 and σ > 0.
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Under M3.5 it follows from Proposition 3.2.1 that, for any x ∈ X and n > 1,

|Ex (f(Xn))| 6 c e−cn (1 +N(x)) . (3.2.6)

Let y ∈ R be a starting point and (y + Sn)n>0 be the Markov walk defined by Sn :=∑n
k=1 f (Xk), n > 1 with S0 = 0. Denote by τy the first moment when y + Sn becomes

non-positive:
τy := inf {k > 1 : y + Sk 6 0} .

It is shown in Lemma 3.5.5 that for any y ∈ R and x ∈ X, the stopping time τy is
Px-a.s. finite. The asymptotic behaviour of the probability Px (τy > n) is determined by
the harmonic function which we proceed to introduce. For any (x, y) ∈ X×R, denote by
Q(x, y, ·) the transition probability of the Markov chain (Xn, y+ Sn)n>0. The restriction
of the measure Q(x, y, ·) on X× R∗+ is defined by

Q+(x, y, B) = Q(x, y, B)

for any measurable set B on X × R∗+ and for any (x, y) ∈ X × R. For any bounded
measurable function ϕ : X × R → R set Q+ϕ(x, y) =

∫
X×R∗+

ϕ(x′, y′)Q+(x, y, dx′ × dy′),
where (x, y) ∈ X× R. A function V : X× R→ R is said to be Q+-harmonic if

Q+V (x, y) = V (x, y), for any (x, y) ∈ X× R.

We shall deal only with non-negative harmonic functions V . Denote by supp(V ) the
support of such a function V ,

supp(V ) := {(x, y) ∈ X× R : V (x, y) > 0}.

On the complement of supp(V ), the function V is 0. For any γ > 0, consider the set

Dγ := {(x, y) ∈ X× R : ∃n0 > 1, Px (y + Sn0 > γ (1 +N (Xn0)) , τy > n0) > 0} .

The following assertion proves the existence of a non-identically zero harmonic func-
tion.

Theorem 3.2.2. Assume Hypotheses M3.1-M3.5.
1. For any x ∈ X, y ∈ R, the sequence (Ex (y + Sn ; τy > n))n>0 converges to a real

number V (x, y):
Ex (y + Sn ; τy > n) −→

n→+∞
V (x, y).

2. The function V : X × R → R, defined in the previous point is Q+-harmonic, i.e. for
any x ∈ X, y ∈ R,

Q+V (x, y) = Ex (V (X1, y + S1) ; τy > 1) = V (x, y).

3. For any x ∈ X, the function V (x, ·) is non-negative and non-decreasing on R and

lim
y→+∞

V (x, y)
y

= 1.

Moreover, for any δ > 0, x ∈ X and y ∈ R,

(1− δ) max(y, 0)− cδ (1 +N(x)) 6 V (x, y) 6 (1 + δ) max(y, 0) + cδ (1 +N(x)) .
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4. There exists γ0 > 0 such that, for any γ > γ0,

supp(V ) = Dγ.

The following result gives the asymptotic of the exit probability for fixed (x, y) ∈ X×R.

Theorem 3.2.3. Assume Hypotheses M3.1-M3.5.
1. For any (x, y) ∈ supp(V ),

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

2. For any (x, y) /∈ supp(V ) and n > 1,

Px (τy > n) 6 c e−cn (1 +N(x)) .

Now we complete the point 1 of the previous theorem by some estimations.

Theorem 3.2.4. Assume Hypotheses M3.1-M3.5.
1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 1 and (x, y) ∈ X× R,

∣∣∣∣∣Px (τy > n)− 2V (x, y)√
2πnσ

∣∣∣∣∣ 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−ε} +N(x)

)2

n1/2+ε/16 .

2. Moreover, for any (x, y) ∈ X× R and n > 1,

Px (τy > n) 6 c
1 + max(y, 0) +N(x)√

n
.

Finally, we give the asymptotic of the conditional law of y + Sn.

Theorem 3.2.5. Assume Hypotheses M3.1-M3.5.
1. For any (x, y) ∈ supp(V ) and t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

where Φ+(t) = 1− e− t
2
2 is the Rayleigh distribution function.

2. Moreover there exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 1, t0 > 0, t ∈ [0, t0]
and (x, y) ∈ X× R,∣∣∣∣∣Px (y + Sn 6 t

√
n , τy > n

)
− 2V (x, y)√

2πnσ
Φ+

(
t

σ

)∣∣∣∣∣
6 cε,t0

max(y, 0) +
(
1 + y1{y>n1/2−ε} +N(x)

)2

n1/2+ε/16 .

We now comment on Theorems 3.2.2 and 3.2.3.

Remark 3.2.6. If we assume that there exist δ > 0 and M > 0 such that for any x ∈ X,
Px (f(X1) > δ , N(X1) 6M) > 0, then one can see that the set X× [0,+∞) is included
in supp(V ).
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Remark 3.2.7. The sets (Dγ)γ>0 are nested and become equal to supp(V ) for large γ:
we have Dγ1 ⊇ Dγ2 ⊇ Dγ = supp(V ), for γ1 6 γ2 6 γ, where γ is large enough (see
Proposition 3.8.8).

Remark 3.2.8. The set supp(V ) is not empty. More precisely there exists γ1 > 0 such
that

{(x, y) ∈ X× R : y > γ1 (1 +N(x))} ⊆ supp(V ),
see Proposition 3.8.8. Example 3.2.11 and Figure 3.1 illustrate this property.

Remark 3.2.9. When (Xn)n>1 are i.i.d., it is well known that Px (τy > n) = 0 for any
(x, y) /∈ supp(V ). When the sequence (Xn)n>1 is a Markov chain, instead of this, we
have an exponential bound, see the point 2 of Theorem 3.2.3. We show that this bound
is attained for some Markov walk. We refer for details to Example 3.2.12.

Example 3.2.10 (Random walks in R). Suppose that (Xn)n>1 are i.i.d. real random
variables of mean 0 and positive variance with finite absolute moments of order p > 2.
In this case, one can take N = Nl = 0, l > 0. Therefore,

Dγ := {y ∈ R : ∃n0 > 1, P (y + Sn0 > γ , τy > n0) > 0} .

Since the walk (y + Sn)n>1 can increase at each step with positive probability, it follows
that P (y + Sn0 > γ , τy > n0) > 0 if and only if P (τy > 1) = P (y +X1 > 0) > 0. Thus,
[0,+∞) ⊆ (−max supp(µ),+∞) = Dγ = supp(V ), for every γ > 0, where µ is the
common law of Xn and supp(µ) is its support.

The following example is intended to illustrate Remark 3.2.8.

Example 3.2.11. Consider the following special case of the one dimensional stochastic
recursion: Xn+1 = an+1Xn+bn+1 where (ai)i>1 and (bi)i>1 are two independent sequences
of i.i.d. random variables. In this example we consider that the law of ai is 1

2δ{−1/2} +
1
2δ{1/2} and that of bi is uniform on [−1, 1]. The state space X is R. The functions N
and Nl are given by N(x) = |x|1+ε for some ε > 0, and Nl(x) = N(x)φl(|x|) with φl
defined by (3.11.4). The Banach space satisfying M3.1-M3.5 is constructed in Section
3.11 (see also [36]/Chapter 2). One can verify that the domain of positivity of the
function V is supp(V ) = {(x, y) ∈ R2 : y > − |x|2 − 1} = Dγ, for all γ > 0. Obviously,
{(x, y) ∈ X× R : y > 1

2

(
1 + |x|1+ε

)
} ⊆ supp(V ), see Figure 3.1.

The next example is intended to show that the inequality of the point 2 of Theorem
3.2.3 is attained.

Example 3.2.12. Consider the Markov walk (Xn)n>0 living on the finite state space
X := {−1 ; 1 ; −3 ; 7/6} with the transition probabilities given in Figure 3.2. Suppose
that f is the identity function on X. It is easy to see that the assumptions stated in
Remark 3.3.10 of Section 3.3.3 are satisfied and thereby so are Hypotheses M3.1-M3.5.
In particular, M3.4 holds with N = Nl = 0 for any l > 1. Now, when x = 1 and y ∈ (1, 3]
or when x = −1 and y ∈ (−1, 2], one can check that the Markov walk y+Sn stays positive
if and only if the values of the variables Xi alternate between 1 and −1 and therefore,
for such starting points (x, y), we have Px (τy > n) =

(
1
2

)n
. This shows that, when the

random variables (Xn)n>1 form a Markov chain, the survival probability Px (τy > n) has
an asymptotic behaviour different from that in the independent case where it can be
either equivalent to cx,y√

n
or 0.



92 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

y > 1
2(|x|1+ε + 1)
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In this example we can make explicit the support of V . Since N = 0, the function V is
positive if and only if there exists an integer n > 1 such that Px (y + Sn > γ , τy > n) > 0
for a γ large enough. This is possible only if the chain can reach the state Xn = 7/6
within a trajectory of (y + Sk)n>k>1 which stays positive, i.e. Px (Xn = 7/6 , τy > n) > 0.
Consequently

supp(V ) = {−1} × (2,+∞) ∪ {1} × (3,+∞) ∪ {−3, 7/6} × (−7/6,+∞)
= D3 = {(x, y) ∈ X× R : ∃n > 1, Px (y + Sn > 3 , τy > n) > 0} .

To sum up, this model presents the three possible asymptotic behaviours of the prob-
ability Px (τy > n): for any (x, y) ∈ supp(V ) = {−1} × (2,+∞) ∪ {1} × (3,+∞) ∪
{−3, 7/6} × (−7/6,+∞),

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

,

for any (x, y) ∈ {−1} × (−1, 2] ∪ {1} × (1, 3] and n > 1,

Px (τy > n) =
(1

2

)n
,

for any (x, y) ∈ {−1}× (−∞,−1]∪ {1}× (−∞, 1]∪ {−3, 7/6}× (−∞,−7/6] and n > 1,

Px (τy > n) = 0.
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3.3 Applications
We illustrate the results of Section 3.2 by considering three particular models.

3.3.1 Affine random walk in Rd conditioned to stay in a half-
space

Let d > 1 be an integer and (gn)n>1 = (An, Bn)n>1 be a sequence of i.i.d. random
elements in GL (d,R)×Rd following the same distribution µ. Let (Xn)n>0 be the Markov
chain on Rd defined by

X0 = x ∈ Rd, Xn+1 = An+1Xn +Bn+1, n > 1.

Set Sn = ∑n
k=1 f (Xk), n > 1, where the function f(x) = 〈u, x〉 is the projection of the

vector x ∈ Rd on the direction defined by the vector u ∈ Rd r {0}. For any y ∈ R,
consider the first time when the random walk (y + Sn)n>1 becomes non-positive:

τy = inf{k > 1 : y + Sk 6 0}.

This stopping time coincides with the entry time of the affine walk (∑n
k=1Xk)n>0 in the

closed half-subspace {s ∈ Rd : 〈u, s〉 6 −y}.
Introduce the following hypothesis.

Hypothesis 3.3.1.
1. There exists a constant δ > 0, such that

E
(
‖A1‖2+2δ

)
< +∞, E

(
|B1|2+2δ

)
< +∞

and
k(δ) = lim

n→+∞
E1/n

(
‖AnAn−1 . . . A1‖2+2δ

)
< 1.

2. There is no proper affine subspace of Rd which is invariant with respect to all the
elements of the support of µ.

3. For any vector v0 ∈ Rd r {0},

P
(
tA−1

1 v0 = tA−1
2 v0

)
< 1,

where tA is the transpose of A, for any A ∈ GL (d,R).
4. The vector B1 is centred: E (B1) = 0.

Proposition 3.3.2. Under Hypothesis 3.3.1, Theorems 3.2.2–3.2.5 hold true.

Proposition 3.3.2 is proved in Appendix 3.11 where we construct an appropriate Ba-
nach space B and show that Hypotheses M3.1-M3.5 are satisfied with N(x) = |x|1+ε,
for some ε > 0 and with Nl(x) = N(x)φl(|x|), where φl is defined by (3.11.4).

Remark 3.3.3. The set supp(V ) depends on the law of (Ai, Bi). In the case when Ai are
independent of Bi and the support of the law of 〈u,Bi〉 contains a sequence converging
to +∞, one can verify that supp(V ) = Rd × R.
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3.3.2 Two components Markov chains in compact sets under
the Doeblin-Fortet condition

Let (X, dX) be a compact metric space, C (X) and L (X) be the spaces of continuous
and Lipschitz complex functions on X, respectively. Define

|h|∞ = sup
x∈X
|h(x)| , ∀h ∈ C (X)

and
[h]X = sup

(x,y)∈X
x 6=y

|h(x)− h(y)|
dX(x, y) , ∀h ∈ L (X) .

We endow C (X) with the uniform norm |·|∞ and L (X) with the norm |·|L = |·|∞+[·]X ,
respectively. Consider the space X := X × X with the metric dX on X defined by
dX((x1, x2), (y1, y2)) = dX(x1, y1) + dX(x2, y2), for any (x1, x2) and (y1, y2) in X. Denote
by L (X) the space of the Lipschitz complex function on X endowed with the norm
‖·‖L = ‖·‖∞ + [·]X, where

‖h‖∞ = sup
x∈X
|h(x)| , ∀h ∈ C (X)

and
[h]X = sup

(x,y)∈X
x 6=y

|h(x)− h(y)|
dX(x, y) , ∀h ∈ L (X) .

Following Guivarc’h and Hardy [42], consider a Markov chain (χn)n>0 on X with transi-
tion probability P . Let (Xn)n>0 be the Markov chain on X defined by Xn = (χn−1, χn),
n > 1 and X0 = (0, χ0): its transition probability is given by

P((x1, x2), dy1 × dy2) = δx2 (dy1)P (x2, dy2) .

For a fixed real function f on X, let Sn := ∑n
k=1 f (Xn) be the associated Markov walk

and, for any y ∈ R, let τy := inf {n > 1 : y + Sn 6 0} be the associated exit time.
In order to apply the results stated in the previous section, we need some hypotheses

on the function f and the operator P on C (X) defined by Ph(x) =
∫
X h(y)P (x, dy) for

any x ∈ X and any h ∈ C (X).

Hypothesis 3.3.4.
1. For any h in C (X) , respectively in L (X), the function Ph is an element of C (X),

respectively of L (X).
2. There exist constants n0 > 1, 0 < ρ < 1 and C > 0 such that, for any function

h ∈ L (X), we have
|P n0h|L 6 ρ |h|L + C |h|∞

3. The unique eigenvalue of P of modulus 1 is 1 and the associated eigenspace is generated
by the function e: x 7→ 1, i.e. if there exist θ ∈ R and h ∈ L (X) such that Ph = eiθ h,
then h is constant and eiθ = 1.

Under Hypothesis 3.3.4, one can check that conditions (a), (b), (c) and (d) of Chapter
3 in Norman [59] hold true and we can apply the theorem of Ionescu Tulcea and Marinescu
[49] (see also [42]). Coupling this theorem with the point 3 of Hypothesis 3.3.4 we obtain
the following proposition.
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Proposition 3.3.5.
1. There exists a unique P -invariant probability ν on X.
2. For any n > 1 and h ∈ L (X),

P nh = ν(h) +Rnh,

where R is an operator on L (X) with a spectral radius r(R) < 1.

Suppose that f and ν satisfy the following hypothesis.

Hypothesis 3.3.6.
1. The function f belongs to L (X).
2. The function f is centred, in the sense that∫

X
f(x, y)P (x, dy)ν(dx) = 0.

3. The function f is non-degenerated, that means that there is no function h ∈ L (X)
such that

f(x, y) = h(x)− h(y),
for Pν-almost all (x, y), where Pν(dx× dy) = P (x, dy)ν(dx).

Assuming Hypotheses 3.3.4 and 3.3.6, Guivarc’h and Hardy [42] have established that
the sequence (Sn/

√
n)n>1 converges weakly to a centred Gaussian random variable of

variance σ2 > 0, under the probability Px generated by the finite dimensional distributions
of the Markov chain (Xn)n>0 starting atX0 = x, for any x ∈ X. Moreover, under the same
hypotheses, we show in Appendix 3.12 that M3.1-M3.5 are satisfied with N = Nl = 0,
thereby proving the following assertion.

Proposition 3.3.7. Under Hypotheses 3.3.4 and 3.3.6, Theorems 3.2.2–3.2.5 hold true.

3.3.3 Markov chains in compact sets under spectral gap as-
sumptions

In this section we give sufficient conditions in order that a Markov chain with values
in a compact set satisfy conditions M3.1-M3.5.

Let (X, d) be a compact metric space and (Xn)n>0 be a Markov chain living in X.
Denote by P the transition probability of (Xn)n>0 and by C (X) the Banach algebra of
the continuous complex functions on X endowed with the uniform norm

|h|∞ = sup
x∈X
|h(x)| , h ∈ C (X).

Consider a real function f defined on X, the transition operator P on C (X) associated to
the transition probability of (Xn)n>0 and the unit function e defined on X by e(x) = 1,
for any x ∈ X.

Hypothesis 3.3.8.
1. For any h ∈ C (X), the function Ph is an element of C (X).
2. The operator P has a unique invariant probability ν.
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3. For any n > 1,
Pn = Π +Qn,

where Π is the one-dimensional projector on C (X) defined by Π(h) = ν(h)e, for
any h ∈ C (X), Q is an operator on C (X) of spectral radius r(Q) < 1 satisfying
ΠQ = QΠ = 0.

4. The function f belongs to C (X) and is ν-centred, i.e. ν(f) = 0.
5. The function f is non-degenerated, that is there is no function h ∈ C (X) such that

f(X1) = h(X0)− h(X1), Pν-a.s.,

where Pν is the probability generated by the finite dimensional distributions of the
Markov chain (Xn)n>0 when the initial law of X0 is ν.

Consider the Markov walk Sn = ∑n
k=1 f(Xk). It is well known, that under Hypothesis

3.3.8 the normalized sum Sn/
√
n converges in law to a centred normal distribution of

variance σ2 > 0 with respect to the probability Px generated by the finite dimensional
distributions of the Markov chain (Xn)n>0 starting at X0 = x, for any x ∈ X.

Proposition 3.3.9. Under Hypothesis 3.3.8, Theorems 3.2.2–3.2.5 hold true.

All the elements of the proof are contained in the proof of Proposition 3.3.7 (see
Appendix 3.12), which therefore is left to the reader. In particular Hypothesis M3.4
holds with N = Nl = 0.

Remark 3.3.10. As a special example of the compact case, consider the Markov chain
(Xn)n>1 taking values in a finite space X. Assume that (Xn)n>1 is aperiodic and irreducible
with transition matrix P. Let f be a finite function on X. We shall verify Hypotesis 3.3.8.
The Banach space B consists of all finite real functions on X, therefore condition 1 is
obvious. Moreover, there is a unique invariant measure ν, which proves condition 2.
According to Perron-Frobenius theorem, the transition matrix P admits 1 as the only
simple eigenvalue of modulus 1, which implies condition 3. Assume in addition that
ν(f) = 0 (which is condition 4) and that there exists a path x0, . . . , xn in X such that
P(x0, x1) > 0, . . . ,P(xn−1, xn) > 0,P(xn, x0) > 0 and f(x0) + · · · + f(xn) 6= 0 (which
implies condition 5). Thus all the conclusions of Theorems 3.2.2–3.2.5 hold true.

3.4 Preliminary statements

3.4.1 Results for the Brownian motion
Let (Bt)t>0 be the standard Brownian motion with values in R living on the probability

space (Ω,F ,P). Define the exit time

τ bmy = inf{t > 0 : y + σBt 6 0}, (3.4.1)

where σ > 0. The following affirmations are due to Lévy [57].

Lemma 3.4.1. For any y > 0, 0 6 a 6 b and n > 1,

P
(
τ bmy > n , y + σBn ∈ [a, b]

)
= 1√

2πnσ

∫ b

a

(
e−

(s−y)2

2nσ2 − e−
(s+y)2

2nσ2

)
ds.
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Lemma 3.4.2.
1. For any y > 0,

P
(
τ bmy > n

)
6 c

y√
n
.

2. For any sequence of real numbers (θn)n>0 such that θn −→
n→+∞

0,

sup
y∈[0;θn

√
n]

P
(
τ bmy > n

)
2y√
2πnσ

− 1
 = O(θ2

n).

3.4.2 Strong approximation
Under hypothesesM3.1-M3.5 it is proved in [40] that there is a version of the Markov

walk (Sn)n>0 and of the standard Brownian motion (Bt)t>0 living on the same probability
space which are close enough in the following sense:

Proposition 3.4.3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0], without loss
of generality one can reconstruct the sequence (Sn)n>0 together with a continuous time
Brownian motion (Bt)t∈R+, such that for any x ∈ X and n > 1,

Px
(

sup
06t61

∣∣∣Sbtnc − σBtn

∣∣∣ > n1/2−ε
)
6
cε
nε

(1 +N(x)), (3.4.2)

where σ is defined in the point 2 of Proposition 3.2.1.

In the original result the right-hand side in (3.4.2) is cεn−ε (1 + µα(x) + ‖δx‖B′)
α 6

cεn
−ε(1 + N(x))α with α > 2, by the point 1 of the Hypothesis M3.5. To obtain the

result of Proposition 3.4.3 it suffices to take the power 1/α on the both sides and to use
the obvious inequality p < p1/α, for p ∈ [0, 1].

Using Proposition 3.4.3 we easily deduce the following result.

Corollary 3.4.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ R and n > 1,

sup
t∈R

∣∣∣∣∣Px
(
Sn√
n
6 t

)
−
∫ t

−∞
e−

u2
2σ2

du√
2πσ

∣∣∣∣∣ 6 cε
nε

(1 +N(x)) .

3.5 Martingale approximation and related assertions
In this section we construct an approximating martingale for the Markov walk (Sn)n>0,

which will be used subsequently to define the harmonic function. We also state some
useful properties.

Consider Θ the real valued function defined on X by:

Θ(x) = f(x) +
+∞∑
k=1

Pkf(x), ∀x ∈ X.

It is well known that Θ is the solution of the Poisson equation

Θ−PΘ = f.
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For any x ∈ X, let

r(x) = PΘ(x) = Θ(x)− f(x) =
+∞∑
k=1

Pkf(x).

Following Gordin [35], define the process (Mn)n>0 by setting M0 = 0 and, for any n > 1,

Mn =
n∑
k=1

[Θ (Xk)−PΘ (Xk−1)] =
n∑
k=1

[Θ (Xk)− r (Xk−1)] .

For any x ∈ X, we have that (Mn)n>0 is a zero mean Px-martingale with respect to the
natural filtration (Fn)n>0. Denote by ξn the increments of the martingale (Mn)n>0: for
any n > 1,

ξn := Θ (Xn)− r (Xn−1) .
In the sequel it will be convenient to consider the martingale (z +Mn)n>1 starting at

z = y + r(x).

The reason for this is the following approximation which is an easy consequence of the
definition of the martingale (z +Mn)n>1: for any x ∈ X and y ∈ R, we have

z +Mn = y + Sn + r (Xn) . (3.5.1)

From (3.2.6) we deduce the following assertion.

Lemma 3.5.1. The functions Θ and r exist on X and for any x ∈ X,

|Θ(x)| 6 c (1 +N(x)) and |r(x)| 6 c (1 +N(x)) .

We show that the moments of order p ∈ [1, α] of the martingale (Mn)n>0 are bounded.

Lemma 3.5.2.
1. For any p ∈ [1, α], x ∈ X and n > 1,

E1/p
x (|Mn|p) 6 cp

√
n (1 +N(x)) .

2. For any x ∈ X and n > 1,

Ex (|Mn|) 6 c
(√

n+N(x)
)
.

Proof. First we control the increments ξn. By Lemma 3.5.1, for any n > 1,

|ξn| 6 c (1 +N (Xn) +N (Xn−1)) . (3.5.2)

So, using the point 1 of Hypothesis M3.4 and (3.2.2), for any n > 1,

E1/p
x (|ξn|p) 6 cp (1 +N(x)) ∀p ∈ [1, α], (3.5.3)
Ex (|ξn|) 6 c+ c e−cnN(x). (3.5.4)

Proof of the claim 1. By Burkholder’s inequality, for 2 < p 6 α,

E1/p
x (|Mn|p) 6 cpE1/p

x

( n∑
k=1

ξ2
k

)p/2 .
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Using Hölder’s inequality with the exponents u = p/2 > 1 and v = p
p−2 , we obtain

E1/p
x (|Mn|p) 6 cpE1/p

x

( n∑
k=1

ξ2u
k

) p
2u

n
p

2v

 = cpn
p−2
2p

(
n∑
k=1

Ex [|ξk|p]
)1/p

.

From (3.5.3), for any p ∈ (2, α],

E1/p
x (|Mn|p) 6 cpn

p−2
2p

(
n∑
k=1

cp (1 +N(x))p
)1/p

6 cp
√
n (1 +N(x)) . (3.5.5)

Using the Jensen inequality for p ∈ [1, 2], we obtain the claim 1.
Proof of the claim 2. Consider ε ∈ (0, 1/2). By (3.5.4),

Ex (|Mn|) 6
bnεc∑
k=1

Ex (|ξk|) + Ex
(∣∣∣Mn −Mbnεc

∣∣∣)
6 cnε + cN(x) + Ex

(∣∣∣Mn −Mbnεc
∣∣∣) .

Since (Xn,Mn)n>0 is a Markov chain, by the Markov property, the claim 1 and (3.2.2),

Ex (|Mn|) 6 cnε + cN(x) + Ex
(
E
(∣∣∣Mn −Mbnεc

∣∣∣ ∣∣∣Fbnεc))
6 cnε + cN(x) + Ex

[
c (n− bnεc)1/2

(
1 +N

(
Xbnεc

))]
6 c
√
n+ cεN(x).

A key point in the proof of the existence and of the positivity of the harmonic function
is the introduction of the following stopping times. Let Tz be the first time when the
martingale (z+Mn)n>1 becomes non-positive, and let T̂z be the first time, after the time
τy, when the martingale (z + Mn)n>1 becomes non-positive. Precisely, for any x ∈ X,
z ∈ R and y = z − r(x), set

Tz := inf {k > 1 : z +Mk 6 0} and T̂z := inf {k > τy : z +Mk 6 0} . (3.5.6)

The finiteness of the stopping times τy, Tz and T̂z is proved in Lemmas 3.5.5, 3.5.6 and
3.5.7 below. Now we point out some elementary facts which will be helpful in the sequel.
First, the stopping time T̂z is such that τy 6 T̂z and Tz 6 T̂z. Since τy is the exit time of
(y + Sn)n>0, by the Markov property,

Px (τy > n) =
∫
X×R

Px′ (τy′ > n− k)Px (Xk ∈ dx′ , y + Sk ∈ dy′ , τy > k) . (3.5.7)

A similar expression holds true for Tz. Unfortunately, (3.5.7) does not hold for T̂z.
Instead we have a more sophisticated expression given by the following lemma. We
shall use repeatedly the same trick for more complicated functionals, as for example
Ex
(
z +Mn ; T̂z > n

)
.

Lemma 3.5.3. For any x ∈ X, z ∈ R, n > 1, k 6 n and y = z − r(x),

Px
(
T̂z > n

)
=
∫
X×R

Px′
(
T̂z′ > n− k

)
Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k)

+
∫
X×R

Px′ (Tz′ > n− k)Px
(
Xk ∈ dx′ , z +Mk ∈ dz′ , τy 6 k , T̂z > k

)
.
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Proof. Since T̂z > τy, for any k 6 n, we have

Px
(
T̂z > n

)
= Px (τy > n) +

n−k∑
i=1

Px
(
τy = i+ k , T̂z > n

)
+ Px

(
τy 6 k , T̂z > n

)
.

By the Markov property and (3.5.1), with y′ = z′ − r(x′),

Px
(
T̂z > n

)
=
∫
X×R

Px′ (τy′ > n− k)Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k)

+
n−k∑
i=1

∫
X×R

Px′ (τy′ = i , z′ +Mi > 0 , . . . , z′ +Mn−k > 0)

× Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k)

+
∫
X×R

Px′ (Tz′ > n− k)Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy 6 k ,

z +Mτy > 0 , . . . , z +Mk > 0
)
.

Putting together the first two terms we get the result.

The following lemma will be useful in the next sections.

Lemma 3.5.4. For any x ∈ X and z ∈ R, the sequence
(

(z +Mn)1{T̂z>n}
)
n>0

is a
Px-submartingale.

Proof. Let x ∈ X, z ∈ R. For any n > 0,

Ex
(

(z +Mn+1)1{T̂z>n+1}
∣∣∣∣Fn

)
= Ex

(
(z +Mn+1)1{T̂z>n}

∣∣∣∣Fn

)
− Ex

(
(z +Mn+1)1{T̂z=n+1}

∣∣∣∣Fn

)
= (z +Mn)1{T̂z>n} − Ex

((
z +M

T̂z

)
1{T̂z=n+1}

∣∣∣∣Fn

)
.

By the definition of T̂z we have z +M
T̂z

6 0 Px-a.s. and the result follows.

We end this section by proving the finiteness of τy, Tz and T̂z.

Lemma 3.5.5. For any x ∈ X and y ∈ R,

τy < +∞ Px-a.s.

Proof. Let x ∈ X. Assume first that y > 0. Since {τy > n} is a non-increasing sequence
of events,

Px (τy = +∞) = lim
n→+∞

Px (τy > n) = lim
n→+∞

Px (y + Sk > 0, ∀k 6 n) .

Using Proposition 3.4.3,

Px (y + Sk > 0, ∀k 6 n) 6 cε
nε

(1 +N(x)) + P
(
τ bmy+n1/2−ε > n

)
.

Thus, by the point 1 of Lemma 3.4.2,

Px (τy > n) 6 cε
nε

(1 +N(x)) + c
y + n1/2−ε
√
n

6
cε
nε

(1 + y +N(x)) . (3.5.8)
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When y 6 0, we have, for any y′ > 0, Px (τy > n) 6 Px (τy′ > n). Taking the limit when
y′ → 0, we obtain that

Px (τy > n) 6 cε
nε

(1 +N(x)) . (3.5.9)

From (3.5.8) and (3.5.9) it follows that, for any y ∈ R,

Px (τy > n) 6 cε
nε

(1 + max(y, 0) +N(x)) . (3.5.10)

Taking the limit as n→ +∞, we conclude that τy < +∞ Px-a.s.

The same result can be obtained for the exit time Tz of the martingale (z +Mn)n>0.

Lemma 3.5.6. For any x ∈ X and z ∈ R,

Tz < +∞ Px-a.s.

Proof. Let x ∈ X, z ∈ R and y = z− r(x). Assume first that y = z− r(x) > 0. Following
the proof of Lemma 3.5.5,

Px (Tz = +∞) = lim
n→+∞

Px (z +Mk > 0, ∀k 6 n) .

By (3.5.1) the martingale (z + Mn)n>0 is relied to the Markov walk (y + Sn)n>0, which
gives

Px (z +Mk > 0, ∀k 6 n) 6 Px
(
y + Sk > −n1/2−ε, ∀k 6 n

)
+ Px

(
max
16k6n

|r (Xk)| > n1/2−ε
)
. (3.5.11)

On the one hand, in the same way as in the proof of Lemma 3.5.5,

Px
(
y + Sk > −n1/2−ε, ∀k 6 n

)
6
cε
nε

(1 +N(x)) + Px
(
τ bmy+2n1/2−ε > n

)
. (3.5.12)

On the other hand, using Lemma 3.5.1, for n large enough,

Px
(

max
16k6n

|r (Xk)| > n1/2−ε
)
6
bnεc∑
k=1

Ex
(
cN (Xk)
n1/2−ε

)
+

n∑
k=bnεc+1

Ex
(
cNl (Xk)
n1/2−ε

)
,

where l = cn1/2−ε. So, using (3.2.3) and taking ε 6 min
(

1
6 ,

β
2(3+β)

)
, we obtain

Px
(

max
16k6n

|r (Xk)| > n1/2−ε
)
6
cε
nε

(1 +N(x)) . (3.5.13)

Putting together (3.5.11), (3.5.12) and (3.5.13) and using the point 1 of Lemma 3.4.2, we
have, for z > r(x),

Px (Tz > n) 6 cε
nε

(1 +N(x)) + c
y + 2n1/2−ε
√
n

6
cε
nε

(1 + max(z, 0) +N(x)) .

Since z 7→ Tz is non-decreasing, we obtain the same bound for any z ∈ R,

Px (Tz > n) 6 cε
nε

(1 + max(z, 0) +N(x)) . (3.5.14)

Taking the limit as n→ +∞ we conclude that Tz < +∞ Px-a.s.
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Lemma 3.5.7. For any x ∈ X and z ∈ R,

T̂z < +∞ Px-a.s.

Proof. In order to apply Lemmas 3.5.5 and 3.5.6, we write, with y = z − r(x),

Px
(
T̂z > n

)
6 Px (τy > bn/2c) +

∫
X×R

Px′ (Tz′ > n− bn/2c)Px
(
Xbn/2c ∈ dx′ ,

z +Mbn/2c ∈ dz′ , τy 6 bn/2c , T̂z > bn/2c
)
.

Using (3.5.10), (3.5.14) and the definition of y, we have

Px
(
T̂z > n

)
6
cε
nε

(1 + max(y, 0) +N(x))

+ cε
nε

Ex
(
1 + z +Mbn/2c +N

(
Xbn/2c

)
; τy 6 bn/2c , T̂z > bn/2c

)
.

By the point 1 of Hypothesis M3.4,

Px
(
T̂z > n

)
6
cε
nε

(1 + max(y, 0) +N(x)) + cε
nε

Ex
(
z +Mbn/2c ; T̂z > bn/2c

)
− cε
nε

Ex
(
z +Mbn/2c ; τy > bn/2c

)
.

Using (3.5.1), we see that on the event {τy > bn/2c} we have z + Mbn/2c > r
(
Xbn/2c

)
.

Then, by Lemma 3.5.1 and the point 1 of Hypothesis M3.4,

Px
(
T̂z > n

)
6
cε
nε

(1 + max(y, 0) +N(x)) + cε
nε

Ex
(
z +Mbn/2c ; T̂z > bn/2c

)
.

Using Lemma 3.6.4, we have

Px
(
T̂z > n

)
6
cε
nε

(1 + max(y, 0) +N(x)) .

Finally, we conclude that

Px
(
T̂z = +∞

)
= lim

n→+∞
Px
(
T̂z > n

)
= 0.

3.6 Integrability of the killed martingale
The goal of this section is to show that the expectations of the martingale (z+Mn)n>0

killed at T̂z and of the Markov walk (y + Sn)n>0 killed at τy are bounded uniformly in n.
We start by establishing two auxiliary bounds of order n1/2−2ε for the expectations of

the martingale (z +Mn)n>0 killed at Tz or at T̂z.

Lemma 3.6.1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R and
n > 1, it holds

Ex (z +Mn ; Tz > n) 6 max(z, 0) + cε
(
n1/2−2ε +N(x)

)
.
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Proof. Using the fact that (Mn)n>0 is a zero mean martingale and the optional stopping
theorem,

Ex (z +Mn ; Tz > n) = z − Ex (z +Mn ; Tz 6 n) = z − Ex (z +MTz ; Tz 6 n) .

By the definition of Tz, on the event {Tz > 1}, we have

ξTz = z +MTz − (z +MTz−1) < z +MTz 6 0.

Using this inequality and (3.5.2), we obtain

Ex (z +Mn ; Tz > n) 6 zPx (Tz > 1) + Ex (|ξ1| ; Tz = 1) + Ex (|ξTz | ; 1 < Tz 6 n)
6 max(z, 0) + cEx (1 +N (XTz) +N (XTz−1) ; Tz 6 n) . (3.6.1)

We bound Ex (N (XTz) ; Tz 6 n) as follows. Let ε be a real number in (0, 1/6) and set
l =

⌊
n1/2−2ε

⌋
. Using the point 1 of Hypothesis M3.4 we write

Ex (N (XTz) ; Tz 6 n) 6 n1/2−2ε + Ex
(
N (XTz) ; N (XTz) > n1/2−2ε , Tz 6 n

)
6 n1/2−2ε +

bnεc∑
k=1

Ex (N (Xk)) +
n∑

k=bnεc+1
Ex (Nl (Xk)) .

By (3.2.2) and (3.2.3),

Ex (N (XTz) ; Tz 6 n) 6 cn1/2−2ε + cN(x) + cn

l1+β + c e−cnε (1 +N(x)) .

Choosing ε < min( β
4(2+β) ,

1
6), we find that

Ex (N (XTz) ; Tz 6 n) 6 cεn
1/2−2ε + cεN(x). (3.6.2)

In the same manner, we obtain that Ex (N (XTz−1) ; Tz 6 n) 6 cεn
1/2−2ε + cεN(x). Con-

sequently, from (3.6.2) and (3.6.1), we conclude the assertion of the lemma.

Lemma 3.6.2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R and
n > 1, we have

Ex
(
z +Mn ; T̂z > n

)
6 max(z, 0) + cε

(
n1/2−2ε + n2εN(x)

)
.

Proof. Let ε be a real number in (0, 1/4) and n > 1. Denoting z+ := z+n1/2−2ε we have,

Ex
(
z +Mn ; T̂z > n

)
= Ex

(
z +Mn ; Tz+ 6 n , T̂z > n

)
︸ ︷︷ ︸

=:J1

+ Ex
(
z +Mn ; Tz+ > n , T̂z > n

)
︸ ︷︷ ︸

=:J2

. (3.6.3)

Bound of J1. Recall that y = z − r(x). Using the definition of T̂z, we can see
that on the event {τy 6 k , T̂z > k} it holds z+ + Mk > z + Mk > 0. So, we have
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Px
(
τy 6 k , T̂z > k , Tz+ = k

)
= 0. Using this fact and the Markov property, in the same

way as in the proof of Lemma 3.5.3,

J1 =
n∑
k=1

∫
X×R

Ex′
(
z′ +Mn−k ; T̂z′ > n− k

)
× Px

(
Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k , Tz+ = k

)
.

Since z +MTz+
< 0, using the point 2 of Lemma 3.5.2, we have

J1 6 cEx
(√

n+N
(
XTz+

)
; τy > Tz+ , Tz+ 6 n

)
.

By the approximation (3.5.1), on the event {τy > Tz+}, it holds

r
(
XTz+

)
= z +MTz+

−
(
y + STz+

)
< −n1/2−2ε.

Therefore, by Lemma 3.5.1,

J1 6 cn2εEx
(∣∣∣r (XTz+

)∣∣∣+N
(
XTz+

)
;
∣∣∣r (XTz+

)∣∣∣ > n1/2−2ε , Tz+ 6 n
)

6 cn2ε + cn2εEx
(
N
(
XTz+

)
; Tz+ 6 n

)
.

Choosing ε small enough, by (3.6.2),

J1 6 cn2ε + cεn
2ε
(
n1/2−4ε +N(x)

)
6 cεn

1/2−2ε + cεn
2εN(x). (3.6.4)

Bound of J2. By Lemma 3.6.1, there exists ε0 > 0 such that, for any ε ∈ (0, ε0),

J2 6 Ex
(
z+ +Mn ; Tz+ > n

)
6 max(z, 0) + cεn

1/2−2ε + cεN(x).

Inserting this bound and (3.6.4) into (3.6.3), for any ε ∈ (0, ε0), we deduce the asser-
tion of the lemma.

Let νn be the first time when the martingale z + Mn exceeds n1/2−ε: for any n > 1,
ε ∈ (0, 1/2) and z ∈ R,

νn = νn,ε,z := min
{
k > 1 : z +Mk > n1/2−ε

}
. (3.6.5)

The control on the joint law of νn and T̂z is given by the following lemma.

Lemma 3.6.3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), δ > 0, x ∈ X, z ∈ R
and n > 1,

Px
(
νn > δn1−ε , T̂z > δn1−ε

)
6 cε,δ e−cε,δnε (1 +N (x)) .

Proof. Let ε ∈ (0, 1/4) and δ > 0. Without loss of generally, we assume that n >
cε,δ, where cε,δ is large enough. Set K := bnε/2c. We split the interval [1, δn1−ε] by
subintervals of length l := bδn1−2εc. For any k ∈ {1, . . . K}, introduce the event Ak,z :=
{max16k′6k (z +Mk′l) 6 n1/2−ε}. Then

Px
(
νn > δn1−ε , T̂z > δn1−ε

)
6 Px

(
A2K,z , T̂z > 2Kl

)
. (3.6.6)
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By the Markov property, as in the proof of Lemma 3.5.3, with y = z − r(x), we have

Px
(
A2K,z , T̂z > 2Kl

)
=
∫
X×R

Px′
(
A2,z′ , T̂z′ > 2l

)
Px
(
X2(K−1)l ∈ dx′ , z +M2(K−1)l ∈ dz′ ,

A2(K−1),z , τy > 2(K − 1)l
)

+
∫
X×R

Px′ (A2,z′ , Tz′ > 2l)Px
(
X2(K−1)l ∈ dx′ , z +M2(K−1)l ∈ dz′ ,

A2(K−1),z , τy 6 2(K − 1)l , T̂z > 2(K − 1)l
)
. (3.6.7)

Moreover, with y′ = z′ − r(x′), we write also that

Px′
(
A2,z′ , T̂z′ > 2l

)
=
∫
X×R

Px′′
(
A1,z′′ , T̂z′′ > l

)
Px′ (Xl ∈ dx′′ , z′ +Ml ∈ dz′′ , A1,z′ , τy′ > l)

+
∫
X×R

Px′′ (A1,z′′ , Tz′′ > l) (3.6.8)

× Px′
(
Xl ∈ dx′′ , z′ +Ml ∈ dz′′ , A1,z′ , τy′ 6 l , T̂z′ > l

)
.

Bound of Px′′
(
A1,z′′ , T̂z′′ > l

)
. Note that on the event {τy′ > l} we have z′ + Ml −

r(Xl) = y′ + Sl > 0. Consequently, in the first integral of the right-hand side of (3.6.8),
the integration over X × R can be replaced by the integration over {(x′′, z′′) ∈ X × R :
z′′ − r(x′′) > 0}. Therefore it is enough to bound Px′′

(
A1,z′′ , T̂z′′ > l

)
for x′′ and z′′

satisfying y′′ = z′′ − r(x′′) > 0. Using (3.5.1) we have,

Px′′
(
A1,z′′ , T̂z′′ > l

)
6 Px′′

(
y′′ + Sl 6 2n1/2−ε , |r (Xl)| 6 n1/2−ε

)
+ Px′′

(
|r (Xl)| > n1/2−ε

)
.

Therefore, there exists a constant cε,δ such that

Px′′
(
A1,z′′ , T̂z′′ > l

)
6 Px′′

(
Sl√
l
6 cε,δ

)
+ Ex′′

(
|r (Xl)|
n1/2−ε

)
.

Using Corollary 3.4.4 and Lemma 3.5.1, there exists ε0 ∈ (0, 1/4), such that, for any
ε ∈ (0, ε0),

Px′′
(
A1,z′′ , T̂z′′ > l

)
6
∫ cε,δ

−∞
e−

u2
2σ2

du√
2πσ

+ cε
lε

(1 +N(x′′)) + c

n1/2−εEx′′ (1 +N (Xl)) .

Using the point 1 of Hypothesis M3.4 and the fact that lε > nε/2/cε,δ for ε < 1/4, we
have,

Px′′
(
A1,z′′ , T̂z′′ > l

)
6 qε,δ + cε,δ

nε/2
(1 +N(x′′)) , (3.6.9)

with qε,δ :=
∫ cε,δ
−∞ e−

u2
2σ2 du√

2πσ < 1.
Bound of Px′′ (A1,z′′ , Tz′′ > l). On the event {Tz′′ > l} we have z′′ + Ml > 0. Using

(3.5.1) and Corollary 3.4.4, in the same way as in the proof of the bound (3.6.9), we
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obtain

Px′′ (A1,z′′ , Tz′′ > l) 6 Px′′
(
0 < z′′ +Ml 6 n1/2−ε

)
6
∫ −y′′√

l
+cε,δ

−y′′√
l
−cε,δ

e−
u2

2σ2
du√
2πσ

+ cε,δ
nε/2

(1 +N(x′′))

6 qε,δ + cε,δ
nε/2

(1 +N(x′′)) . (3.6.10)

Bound of Px′
(
A2,z′ , T̂z′ > 2l

)
. Inserting (3.6.9) and (3.6.10) into (3.6.8) and using

(3.2.2), we have

Px′
(
A2,z′ , T̂z′ > 2l

)
6 qε,δ + cε,δ

nε/2
+ cε,δ
nε/2

Ex′ (N (Xl))

6 qε,δ + cε,δ
nε/2

+ cε,δ e−cε,δn1−2ε
N(x′). (3.6.11)

Bound of Px′ (A2,z′ , Tz′ > 2l). By the Markov property,

Px′ (A2,z′ , Tz′ > 2l) =
∫
X×R

Px′′ (A1,z′′ , Tz′′ > l)

× Px′ (Xl ∈ dx′′ , z′ +Ml ∈ dz′′ , A1,z′ , Tz′ > l) .

Using (3.6.10) to bound the probability inside the integral, we get

Px′ (A2,z′ , Tz′ > 2l) 6 qε,δ + cε,δ
nε/2

+ cε,δ e−cε,δn1−2ε
N(x′). (3.6.12)

Inserting the bounds (3.6.11) and (3.6.12) into (3.6.7), we find that

Px
(
A2K,z , T̂z > 2Kl

)
6
(
qε,δ + cε,δ

nε/2

)
Px
(
A2(K−1),z , T̂z > 2(K − 1)l

)
+ cε,δ e−cε,δn1−2ε (1 +N(x)) .

Iterating this inequality, we get

Px
(
A2K,z , T̂z > 2Kl

)
6
(
qε,δ + cε,δ

nε/2

)K
+ cε,δ e−cε,δn1−2ε (1 +N(x))

K−1∑
k=0

(
qε,δ + cε,δ

nε/2

)k
.

As K = bnε/2c and qε,δ < 1 it follows that, for n large enough,
(
qε,δ + cε,δ

nε/2

)K
6

cε,δ e−cε,δnε , which, in turn, implies

Px
(
A2K,z , T̂z > 2Kl

)
6 cε,δ e−cε,δnε (1 +N(x)) .

Lemma 3.6.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R, n > 2
and any integer k0 ∈ {2, . . . , n},

Ex
(
z +Mn ; T̂z > n

)
6

(
1 + cε

kε0

)
(max(z, 0) + cN(x)) + cεk

1/2
0 .
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Proof. Set for brevity un := Ex
(
z +Mn ; T̂z > n

)
. By Lemma 3.5.4, the sequence (un)n>1

is non-decreasing. Let ε ∈ (0, 1/2). We shall prove below that, for n > 2,

un 6
(

1 + cε
nε

)
ubn1−εc + cε e−cεnε (1 +N(x)) . (3.6.13)

Using Lemma 9.1 of [36] (Lemma 2.9.1 in Chapter 2), we obtain that for any n > 2 and
k0 ∈ {2, . . . , n},

un 6

(
1 + cε

kε0

)
uk0 + cε e−cεkε0 (1 +N(x)) .

Next, by the point 2 of Lemma 3.5.2, uk0 6 Ex (|Mk0 |) 6 c
(√

k0 +N(x)
)
, so that

un 6

(
1 + cε

kε0

)
(max(z, 0) + cN(x)) + cεk

1/2
0 ,

which proves Lemma 3.6.4.
Establishing (3.6.13) is rather tedious. In the proof we make use of Lemmas 3.6.2 and

3.6.1. Consider the stopping time νεn := νn + bnεc. Then,

un 6 Ex
(
z +Mn ; T̂z > n , νεn >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J1

+ Ex
(
z +Mn ; T̂z > n , νεn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J2

. (3.6.14)

Bound of J1. Set mε = bn1−εc−bnεc and recall that y = z−r(x). Using the fact that
{νεn > bn1−εc} = {νn > mε} and the Markov property, as in the proof of Lemma 3.5.3,

J1 =
∫
X×R

Ex′
(
z′ +Mn−mε ; T̂z′ > n−mε

)
× Px (Xmε ∈ dx′ , z +Mmε ∈ dz′ , τy > mε , νn > mε)

+
∫
X×R

Ex′ (z′ +Mn−mε ; Tz′ > n−mε)

× Px
(
Xmε ∈ dx′ , z +Mmε ∈ dz′ , τy 6 mε , T̂z > mε , νn > mε

)
.

On the event {νn > mε}, we have z′ = z +Mmε 6 n1/2−ε 6 n1/2. Moreover by the point
2 of Lemma 3.5.2, Ex′ (|Mn−mε|) 6 cn1/2 + cN(x′). Therefore,

J1 6 cEx
(
n1/2 +N (Xmε) ; T̂z > mε , νn > mε

)
.

Set m′ε = mε − bnεc = bn1−εc − 2 bnεc. Using the Markov property and (3.2.2),

J1 6 c
∫
X

[
n1/2 + Ex′

(
N
(
Xbnεc

))]
Px
(
Xm′ε ∈ dx′ , T̂z > m′ε , νn > m′ε

)
6 cn1/2Px

(
T̂z > m′ε , νn > m′ε

)
+ c e−cnε Ex

(
N
(
Xm′ε

))
.

By Lemma 3.6.3 and the point 1 of Hypothesis M3.4,

J1 6 cεn
1/2 e−cεnε (1 +N(x)) + c e−cnε (1 +N(x)) 6 cε e−cεnε (1 +N(x)) . (3.6.15)
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Bound of J2. By the Markov property, as in the proof of Lemma 3.5.3, we have

J2 =
bn1−εc∑
k=1

∫
X×R

Ex′
(
z′ +Mn−k ; T̂z′ > n− k

)
× Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k , νεn = k)

+
∫
X×R

Ex′ (z′ +Mn−k ; Tz′ > n− k)

× Px
(
Xk ∈ dx′ , z +Mk ∈ dz′ , τy 6 k , T̂z > k , νεn = k

)
.

By Lemmas 3.6.2 and 3.6.1,

J2 6 cεEx
(
n1/2−2ε + n2εN

(
Xνεn

)
; T̂z > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J21

+ Ex
(
max

(
z +Mνεn , 0

)
; T̂z > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J22

. (3.6.16)

Bound of J21. Using the Markov property and (3.2.2),

J21 6 cε

∫
X
Ex′

(
n1/2−2ε + n2εN

(
Xbnεc

))
Px
(
Xνn ∈ dx′ , T̂z > νn , νn 6

⌊
n1−ε

⌋)
6 cεEx

(
n1/2−2ε + e−cεnε N (Xνn) ; T̂z > νn , νn 6

⌊
n1−ε

⌋)
.

Again by (3.2.2),

Ex
(
e−cεnε N (Xνn) ; T̂z > νn , νn 6

⌊
n1−ε

⌋)
6 e−cεnε

bn1−εc∑
k=1

Ex (N (Xk) ; νn = k)

6 cε e−cεnε n1−ε (1 +N(x)) . (3.6.17)

Therefore,

J21 6 cεEx
(
n1/2−2ε ; T̂z > νn , νn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J ′21

+cε e−cεnε (1 +N(x)) . (3.6.18)

By the definition of νn, we have n1/2−2ε < z+Mνn

nε
. So

J ′21 6
cε
nε

Ex
(
z +Mνn ; T̂z > νn , νn 6

⌊
n1−ε

⌋)
.

Using Lemma 3.5.4,

J ′21 6
cε
nε

Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋)
− cε
nε

Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋
, νn >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J ′′21

. (3.6.19)

Note that on the event {τy > bn1−εc}, by (3.5.1), we have z+Mbn1−εc > r
(
Xbn1−εc

)
while

on the event {τy 6 bn1−εc , T̂z > bn1−εc} we have z + Mbn1−εc > 0. Therefore, by the
definition of T̂z,

−J ′′21 6 − Ex
(
r
(
Xbn1−εc

)
; τy >

⌊
n1−ε

⌋
, νn >

⌊
n1−ε

⌋)
6 cEx

(
1 +N

(
Xbn1−εc

)
; T̂z >

⌊
n1−ε

⌋
, νn >

⌊
n1−ε

⌋)
.
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Using the Markov property and (3.2.2),

−J ′′21 6 cEx
(
1 + e−cnε N (Xmε) ; T̂z > mε , νn > mε

)
6 cPx

(
νn > mε , T̂z > mε

)
+ c e−cnε (1 +N(x)) .

By Lemma 3.6.3,
−J ′′21 6 cε e−cεnε (1 +N(x)) . (3.6.20)

Putting together (3.6.20) and (3.6.19),

J ′21 6
cε
nε

Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋)
+ cεe

−cεnε (1 +N(x)) . (3.6.21)

From (3.6.21) and (3.6.18) it follows that

J21 6
cε
nε

Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋)
+ cε e−cεnε (1 +N(x)) . (3.6.22)

Bound of J22. On the event {T̂z > νεn , τy 6 νεn} we have z +Mνεn > 0. Consequently

J22 = Ex
(
z +Mνεn ; T̂z > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
+ Ex

(
max

(
z +Mνεn , 0

)
−
(
z +Mνεn

)
; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
.

By Lemma 3.5.4,

J22 6 Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋)
− Ex

(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋
, νεn >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J ′′22

(3.6.23)

−Ex
(
z +Mνεn ; z +Mνεn < 0 , τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:J ′22

.

In the same way as in the proof of the bound of J ′′21, replacing νn by νεn, one can prove
that

−J ′′22 6 cε e−cεnε (1 +N(x)) . (3.6.24)

Moreover, using (3.5.1), on the event {τy > νεn}, we have −(z + Mνεn) < −r
(
Xνεn

)
. So,

by Lemma 3.5.1 and the Markov property

J ′22 6 Ex
(∣∣∣r (Xνεn

)∣∣∣ ; T̂z > νεn , ν
ε
n 6

⌊
n1−ε

⌋)
6 Ex

(
c
(
1 +N

(
Xνεn

))
; T̂z > νn , νn 6

⌊
n1−ε

⌋)
= c

∫
X
Ex′

(
1 +N

(
Xbnεc

))
Px
(
Xνn ∈ dx′ , T̂z > νn , νn 6

⌊
n1−ε

⌋)
.

Using (3.2.2),

J ′22 6 cEx
(
1 + e−cnε N (Xνn) ; T̂z > νn , νn 6

⌊
n1−ε

⌋)
.

Therefore, from (3.6.17) with the notation J ′21 from (3.6.18),

J ′22 6 J ′21 + cε e−cεnε (1 +N(x)) . (3.6.25)
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With (3.6.21), (3.6.23) and (3.6.24) we obtain,

J22 6
(

1 + cε
nε

)
ubn1−εc + cε e−cεnε (1 +N(x)) . (3.6.26)

Inserting (3.6.26) and (3.6.22) into (3.6.16),

J2 6
(

1 + cε
nε

)
ubn1−εc + cε e−cεnε (1 +N(x)) . (3.6.27)

Now, inserting (3.6.15) and (3.6.27) into (3.6.14), we find (3.6.13).

Corollary 3.6.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R, n > 2
and any integer k0 ∈ {2, . . . , n},

Ex (y + Sn ; τy > n) 6
(

1 + cε
kε0

)
(max(y, 0) + cN(x)) + cεk

1/2
0 .

Proof. First, using the definition of T̂z and Lemma 3.6.4, with z = y + r(x),

Ex (z +Mn ; τy > n) = Ex
(
z +Mn ; T̂z > n

)
− Ex

(
z +Mn ; τy 6 n , T̂z > n

)
6 Ex

(
z +Mn ; T̂z > n

)
(3.6.28)

6

(
1 + cε

kε0

)
(max(z, 0) + cN(x)) + cεk

1/2
0 . (3.6.29)

Now, using (3.5.1), Lemma 3.5.1 and (3.2.2),

Ex (y + Sn ; τy > n) = Ex (z +Mn ; τy > n)− Ex (r (Xn) ; τy > n)
6 Ex (z +Mn ; τy > n) + c

(
1 + e−cnN(x)

)
6

(
1 + cε

kε0

)
(max(z, 0) + cN(x)) + cεk

1/2
0 .

Using the definition of z concludes the proof.

3.7 Existence and properties of the harmonic func-
tion

The idea is very simple. Set for brevity Vn(x, y) := Ex (y + Sn ; τy > n) . By the
Markov property Vn+1(x, y) = Q+Vn(x, y). We show that limn→∞ Vn(x, y) exists and
is equal to V (x, y) := −Ex(Mτy). Then the harmonicity of V follows by the Lebesgue
dominated convergence theorem. The key point of the proof is the integrability of the
random variableMτy . To justify the applicability of the Lebesgue dominated convergence
theorem we use Lemma 3.6.4. We also shall establish some properties of V. They will be
deduced from those of the following two functions: W (x, z) := −Ex(MTz) and Ŵ (x, z) :=
−Ex(MT̂z

). The strict positivity of V is technically more delicate and therefore is deferred
to the next section.
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Lemma 3.7.1. Let x ∈ X, y ∈ R and z = y + r(x). The random variables M
T̂z
, MTz

and Mτy are integrable and

max
{
Ex
(∣∣∣M

T̂z

∣∣∣) ,Ex (|MTz |) ,Ex
(∣∣∣Mτy

∣∣∣)} 6 c (1 + |z|+N(x)) < +∞.

In particular, the following functions are well defined, for any x ∈ X, y ∈ R and z ∈ R,

V (x, y) := −Ex
(
Mτy

)
, W (x, z) := −Ex (MTz) and Ŵ (x, z) := −Ex

(
M

T̂z

)
.

Proof. Let n > 1. The stopping times τy ∧ n, Tz ∧ n and T̂z ∧ n are bounded and satisfy
τy ∧ n 6 T̂z ∧ n and Tz ∧ n 6 T̂z ∧ n. Since (|Mn|)n>0 is a submartingale, we have

max
{
Ex
(∣∣∣Mτy∧n

∣∣∣) ,Ex (|MTz∧n|)
}
6 Ex

(∣∣∣M
T̂z∧n

∣∣∣) . (3.7.1)

Using the optional stopping theorem,

Ex
(∣∣∣M

T̂z∧n

∣∣∣) 6 − Ex
(
z +M

T̂z
; T̂z 6 n

)
+ Ex (|z +Mn| ; τy > n)

+ Ex
(
z +Mn ; τy 6 n , T̂z > n

)
+ |z|

= − Ex
(
z +Mn ; T̂z 6 n

)
− 2Ex (z +Mn ; z +Mn 6 0 , τy > n)

+ Ex (z +Mn ; τy > n) + Ex
(
z +Mn ; τy 6 n , T̂z > n

)
+ |z|

= − z + 2Ex
(
z +Mn ; T̂z > n

)
− 2Ex (z +Mn ; z +Mn 6 0 , τy > n) + |z| .

On the event {z +Mn 6 0 , τy > n}, by (3.5.1), it holds |z +Mn| 6 |r (Xn)|. Therefore,
by Lemma 3.5.1 and the point 1 of Hypothesis M3.4, we have

−2Ex (z +Mn ; z +Mn 6 0 , τy > n) 6 c (1 +N(x)) ,

Using Lemma 3.6.4,

Ex
(∣∣∣M

T̂z

∣∣∣ ; T̂z 6 n
)
6 Ex

(∣∣∣M
T̂z∧n

∣∣∣) 6 c (1 + |z|+N(x)) . (3.7.2)

By the Lebesgue monotone convergence theorem and the fact that T̂z < +∞, we deduce
that M

T̂z
is Px-integrable and

Ex
(∣∣∣M

T̂z

∣∣∣) 6 c (1 + |z|+N(x)) .

In the same manner, using (3.7.1), (3.7.2) and Lemmas 3.5.5 and 3.5.6, we conclude that
Mτy and MTz are Px-integrable and

max
{
Ex
(∣∣∣Mτy

∣∣∣) ,Ex (|MTz |)
}
6 c (1 + |z|+N(x)) .

The assertion of the lemma follows obviously from the last two inequalities.
Proposition 3.7.2.
1. Let x ∈ X, y ∈ R and z = y + r(x). Then

V (x, y) = lim
n→+∞

Ex (z +Mn ; τy > n) = lim
n→+∞

Ex (y + Sn ; τy > n)

and

W (x, z) = lim
n→+∞

Ex (z +Mn ; Tz > n) ,

Ŵ (x, z) = lim
n→+∞

Ex
(
z +Mn ; T̂z > n

)
.
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2. For any x ∈ X, the functions y 7→ V (x, y), z 7→ W (x, z) and z 7→ Ŵ (x, z) are
non-decreasing on R.

3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, z ∈ R and any integer
k0 > 2,

Ŵ (x, z) 6
(

1 + cε
kε0

)
(max(z, 0) + cN(x)) + cεk

1/2
0 (3.7.3)

and, for any x ∈ X, y ∈ R and z = y + r(x),

0 6 min {V (x, y),W (x, z)} 6 max {V (x, y),W (x, z)} 6 Ŵ (x, y). (3.7.4)

In particular, for any x ∈ X and y ∈ R,

0 6 V (x, y) 6 c (1 + max(y, 0) +N(x)) . (3.7.5)

4. For any x ∈ X and y ∈ R,

V (x, y) = Q+V (x, y) := Ex (V (X1, y + S1) ; τy > 1)

and
(
V (Xn, y + Sn)1{τy>n}

)
n>0

is a Px-martingale.

Proof. Claim 1. Let υ be any of the stopping times τy, Tz, or T̂z. By the martingale
property, for n > 1,

Ex (z +Mn ; υ > n) = zPx (υ > n)− Ex (Mυ ; υ 6 n) .

Using Lemmas 3.5.5, 3.5.6, 3.5.7, 3.7.1 and the Lebesgue dominated convergence theorem,

Ex (z +Mn ; υ > n) = −Ex (Mυ) .

Moreover, by (3.5.1),

Ex (y + Sn ; τy > n) = Ex (z +Mn ; τy > n)− Ex (r (Xn) ; τy > n) .

Since, by Lemma 3.5.1, the point 1 of Hypothesis M3.4 and Lemma 2.9.7, we have

|Ex (r (Xn) ; τy > n)| 6 cE1/2
x

(
(1 +N (Xn))2

)
P1/2
x (τy > n)

6 c (1 +N(x))P1/2
x (τy > n) −→

n→+∞
0, (3.7.6)

the claim 1 follows.
Proof of the claim 2. Let x ∈ X. For any y′ 6 y, we obviously have τy′ 6 τy.

Therefore, for n > 1,

Ex (y′ + Sn ; τy′ > n) 6 Ex (y + Sn ; τy′ > n) 6 Ex (y + Sn ; τy > n) .

Taking the limit as n → +∞ and using the claim 1, it follows that V (x, y′) 6 V (x, y).
In the same way W (x, z′) 6 W (x, z) for z′ 6 z. To prove the monotonicity of Ŵ , we
note that, for any z′ 6 z, y′ = z′ − r(x) and y = z − r(x), we have T̂z′ = min{k > τy′ :
z′ +Mk 6 0} 6 min{k > τy : z′ +Mk 6 0} 6 T̂z. So

Ex
(
z′ +Mn ; T̂z′ > n

)
6 Ex

(
z +Mn ; T̂z′ > n , T̂z > n

)
6 Ex (y + Sn ; τy > n) + Ex (|r (Xn)| ; τy > n)

+ Ex
(
z +Mn ; τy 6 n , T̂z > n

)
6 Ex

(
z +Mn ; T̂z > n

)
+ 2Ex (|r (Xn)| ; τy > n) .
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As in (3.7.6), taking the limit as n→ +∞, by the claim 1, we have Ŵ (x, z′) 6 Ŵ (x, z).
Proof of the claim 3. The inequality (3.7.3) is a direct consequence of the claim 1 and

Lemma 3.6.4. Moreover, taking the limit as n→∞ in (3.6.28), we get V (x, y) 6 Ŵ (x, z).
To bound W , we write, for n > 1,

Ex (z +Mn ; Tz > n) = Ex
(
z +Mn ; τy 6 n , T̂z > n , Tz > n

)
+ Ex (z +Mn ; z +Mn > 0 , τy > n , Tz > n) .

Since z +Mn > 0 on the event {τy 6 n , T̂z > n},

Ex (z +Mn ; Tz > n) 6 Ex
(
z +Mn ; τy 6 n , T̂z > n

)
+ Ex (z +Mn ; z +Mn > 0 , τy > n)

= Ex
(
z +Mn ; T̂z > n

)
− Ex (z +Mn ; z +Mn 6 0 , τy > n) .

Using the approximation (3.5.1),

Ex (z +Mn ; Tz > n) 6 Ex
(
z +Mn ; T̂z > n

)
+ Ex (|r (Xn)| ; τy > n) . (3.7.7)

As in (3.7.6), using the claim 1,

W (x, z) 6 Ŵ (x, z).

Now, since y+Sn is positive on the event {τy > n}, by the claim 1, we see that V (x, y) > 0
and in the same way, W (x, z) > 0. This proves (3.7.4).

Inequality (3.7.5) follows from (3.7.3) and (3.7.4).
Proof of the claim 4. By the Markov property, for n > 1,

Vn+1(x, y) := Ex (y + Sn+1 ; τy > n+ 1)

=
∫
X×R

Vn(x′, y′)Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) , (3.7.8)

where, by Corollary 3.6.5, Vn(x′, y′) 6 c (1 + |y′|+N (x′)) and by the point 1 of Hypoth-
esis M3.4,

Ex (1 + |y + S1|+N (X1)) 6 c (1 + |y|+N(x)) < +∞.
Taking the limit in (3.7.8), by the Lebesgue dominated convergence theorem, we have

V (x, y) = Q+V (x, y) := Ex (V (X1, y + S1) ; τy > 1) .

3.8 Positivity of the harmonic function
The aim of this section is to prove that the harmonic function V is non-identically

zero and to precise its support.
For any x ∈ X, z ∈ R and n > 0, denote for brevity,

Ŵn(x, z) = Ŵ (Xn, z +Mn)1{T̂z>n}. (3.8.1)
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Although it is easy to verify that Ŵ (x, z) > z (see Lemma 3.8.1) which, in turn, ensures
that Ŵ (x, z) > 0 for any z > 0, it is not straightforward to give a lower bound for
the function V . We show that V (x, y) = limn→+∞ Ex(Ŵn(x, z) ; τy > n) (Lemma 3.8.2)
and use the fact that (Ŵn(x, z)1{τy>n})n>0 is a Px-supermartingale (Lemma 3.8.1). By a
recurrent procedure similar to that used in Lemma 3.6.4, we obtain a lower bound for V
(Lemma 3.8.6) which subsequently is used to prove the positivity of V (Lemma 3.8.8).

Lemma 3.8.1.
1. For any x ∈ X and z ∈ R,

Ŵ (x, z) > z.

2. For any x ∈ X,

lim
z→+∞

Ŵ (x, z)
z

= 1.

3. The function Ŵ is subharmonic, i.e. for any x ∈ X, z ∈ R and n > 0,

Ex
(
Ŵn(x, z)

)
> Ŵ (x, z).

4. For any x ∈ X and z ∈ R,
(
Ŵn(x, z)1{τy>n}

)
n>0

is a Px-supermartingale.

Proof. Claim 1. By the Doob optional theorem and the definition of T̂z, for any n > 1,

Ex
(
z +Mn ; T̂z > n

)
= z − Ex

(
z +M

T̂z
; T̂z 6 n

)
> z.

Taking the limit as n→ +∞ and using the point 1 of Proposition 3.7.2 proves the claim
1.

Proof of the claim 2. By the claim 1, lim infz→+∞ Ŵ (x, z)/z > 1. Moreover, by
(3.7.3), for any k0 > 2,

lim sup
z→∞

Ŵ (x, z)
z

6

(
1 + cε

kε0

)
.

Taking the limit as k0 → +∞, the claim follows.
Proof of the claim 3. Recall the notation y = z − r(x). Using the Markov property,

as in the proof of Lemma 3.5.3, for any k > 1,

Ex
(
z +Mn+k ; T̂z > n+ k

)
=
∫
X×R

Ex′
(
z′ +Mn ; T̂z′ > n

)
× Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k)

+
∫
X×R

Ex′ (z′ +Mn ; Tz′ > n) (3.8.2)

× Px
(
Xk ∈ dx′ , z +Mk ∈ dz′ , τy 6 k , T̂z > k

)
.

We shall find the limits as n → +∞ of the two terms in the right hand side of (3.8.2).
By Lemmas 3.6.4 and 3.5.1, Ex′

(
z′ +Mn ; T̂z′ > n

)
6 c (1 + |y′|+N (x′)), with y′ =

z′ − r(x′). Moreover by the point 1 of Hypothesis M3.4, Ex (1 + |y + Sk|+N (Xk)) 6
ck (1 + |y|+N(x)) < +∞. So, by the Lebesgue dominated convergence theorem and the
point 1 of Proposition 3.7.2,∫

X×R
Ex′

(
z′ +Mn ; T̂z′ > n

)
Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k)

−→
n→+∞

Ex
(
Ŵ (Xk, z +Mk) ; τy > k

)
. (3.8.3)
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Moreover, using (3.7.7), Lemmas 3.6.4 and 3.5.1 and the point 1 of Hypothesis M3.4,

Ex′ (z′ +Mn ; Tz′ > n) 6 c (1 + |z′|+N (x′)) .

Again, by the Lebesgue dominated convergence theorem and the point 1 of Proposition
3.7.2, we have∫

X×R
Ex′ (z′ +Mn ; Tz′ > n)Px

(
Xk ∈ dx′ , z +Mk ∈ dz′ , τy 6 k , T̂z > k

)
−→
n→+∞

Ex
(
W (Xk, z +Mk) ; τy 6 k , T̂z > k

)
. (3.8.4)

Putting together (3.8.2), (3.8.3), (3.8.4) and using the point 1 of Proposition 3.7.2,

Ŵ (x, z) = Ex
(
Ŵ (Xk, z +Mk) ; τy > k

)
+ Ex

(
W (Xk, z +Mk) ; τy 6 k , T̂z > k

)
. (3.8.5)

Now, taking into account (3.7.4) and the identity {τy > k} = {τy > k, T̂z > k}, we
obtain the claim 3.

Proof of the claim 4. By the point 3 of Proposition 3.7.2,W is a non-negative function.
Therefore, using (3.8.5),

Ŵ (x, z) > Ex
(
Ŵ (X1, z +M1) ; τy > 1

)
,

which implies that
(
Ŵn(x, z)1{τy>n}

)
n>0

is a supermartingale.

Lemma 3.8.2. For any x ∈ X, y ∈ R and z = y + r(x),

V (x, y) = lim
n→+∞

Ex
(
Ŵn(x, z) ; τy > n

)
.

Proof. For any n > 1, x ∈ X, y ∈ R and z = y + r(x),

Ex (z +Mn ; τy > n) = Ex
(
z +Mn ; T̂z > n

)
− Ex

(
z +Mn ; τy 6 n , T̂z > n

)
.

By the point 1 of Lemma 3.8.1, on the event {T̂z > n} we have z + Mn 6 Ŵn(x, z) and
therefore

Ex (z +Mn ; τy > n) > Ex
(
z +Mn ; T̂z > n

)
− Ex

(
Ŵn(x, z)

)
+ Ex

(
Ŵn(x, z) ; τy > n

)
. (3.8.6)

Moreover, by (3.7.3), for any δ > 0,

Ex
(
Ŵn(x, z)

)
6 (1 + δ)Ex

(
z +Mn ; T̂z > n

)
+ cδEx

(
1 +N (Xn) ; T̂z > n

)
− (1 + δ)Ex (z +Mn ; z +Mn < 0 , τy > n) .

On the event {z+Mn < 0 , τy > n}, by (3.5.1), it holds r (Xn) < z+Mn < 0. Therefore,
using Lemma 3.5.1,

Ex
(
Ŵn(x, z)

)
6 (1 + δ)Ex

(
z +Mn ; T̂z > n

)
+ cδEx

(
1 +N (Xn) ; T̂z > n

)
.
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By the Markov property and (3.2.2),

Ex
(
1 +N (Xn) ; T̂z > n

)
6 cEx

(
1 + e−cn/2N

(
Xbn/2c

)
; T̂z > bn/2c

)
6 cPx

(
T̂z > bn/2c

)
+ c e−cn (1 +N(x)) .

By Lemma 3.5.7 and the point 1 of Proposition 3.7.2,

lim
n→+∞

Ex
(
Ŵn(x, z)

)
6 (1 + δ) Ŵ (x, z). (3.8.7)

Taking the limit as n→ +∞ in (3.8.6) and using the previous bound, we obtain that

V (x, y) > −δŴ (x, z) + lim
n→+∞

Ex
(
Ŵn(x, z) ; τy > n

)
.

Since this inequality holds true for any δ > 0 small enough, we obtain the bound

lim
n→+∞

Ex
(
Ŵn(x, z) ; τy > n

)
6 V (x, y). (3.8.8)

Now, by the point 1 of Lemma 3.8.1,

Ex (z +Mn ; τy > n) 6 Ex
(
Ŵ (Xn, z +Mn) ; τy > n

)
.

Taking the limit as n→ +∞ and using the point 1 of Proposition 3.7.2, we obtain that

V (x, y) 6 lim
n→+∞

Ex
(
Ŵn(x, z) ; τy > n

)
.

Together with (3.8.8), this concludes the proof.

Remark 3.8.3. Taking the limit in the point 3 of Lemma 3.8.1, we can deduce that

lim
n→+∞

Ex
(
Ŵn(x, z)

)
> Ŵ (x, z).

Coupling this result with (3.8.7), it follows that

lim
n→+∞

Ex
(
Ŵn(x, z)

)
= Ŵ (x, z).

Lemma 3.8.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 1, x ∈ X, z ∈ R
and y = z − r(x), we have

Ex
(
Ŵn(x, z) ; τy > n

)
> Ŵ (x, z) + cmin(z, 0)− cε

(
n1/2−2ε + n2εN(x)

)
.

Proof. Using the point 3 of Lemma 3.8.1, the bound (3.7.3) and the point 1 of Hypothesis
M3.4, we have, for any n > 1,

Ex
(
Ŵn(x, z) ; τy > n

)
= Ex

(
Ŵn(x, z)

)
− Ex

(
Ŵn(x, z) ; τy 6 n

)
> Ŵ (x, z)− cEx

(
z +Mn ; τy 6 n , T̂z > n

)
− c (1 +N (x)) .

Again by the point 1 of M3.4, Lemma 3.6.2 and the Doob optional stopping theorem,

Ex
(
Ŵn(x, z) ; τy > n

)
> Ŵ (x, z)− c

[
Ex
(
z +Mn ; T̂z > n

)
− Ex (z +Mn ; τy > n)

]
− c (1 +N (x))

> Ŵ (x, z)− c
[
max(z, 0)− z + Ex

(
z +Mτy ; τy 6 n

)]
− cε

(
n1/2−2ε + n2εN(x)

)
− c (1 +N (x)) .
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By (3.5.1), z +Mτy 6 r
(
Xτy

)
. Therefore, in the same way as in the proof of (3.6.2),

Ex
(
z +Mτy ; τy 6 n

)
6 cEx

(
1 +N

(
Xτy

)
; τy 6 n

)
6 cεn

1/2−2ε + cεN(x).

Together with the previous bound, this implies that

Ex
(
Ŵn(x, z) ; τy > n

)
> Ŵ (x, z) + cmin(z, 0)− cε

(
n1/2−2ε + n2εN(x)

)
.

Lemma 3.8.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 2, k0 ∈ {2, . . . , n},
x ∈ X and z ∈ R, with y = z − r(x), we have

Ex
(
Ŵn(x, z) ; τy > n

)
> Ex

(
Ŵk0(x, z) ; τy > k0

)
− cε
kε0

(max(z, 0) + 1 +N(x)) .

Proof. Let ε ∈ (0, 1). Set for brevity un := Ex(Ŵn(x, z) ; τy > n) for n > 1. By the point
4 of Lemma 3.8.1, the sequence (un)n>1 is non-increasing. We shall prove that

un > ubn1−εc −
cε
nε

(max(z, 0) + 1 +N(x)) . (3.8.9)

By Lemma 9.2 of [36] (Lemma 2.9.2 in Chapter 2) on the convergence of recursively
bounded non-increasing sequences, we conclude that, for any n > 2 and k0 ∈ {2, . . . , n},

un > uk0 −
cε
kε0

(max(z, 0) + 1 +N(x)) ,

which proves the assertion of the lemma.
It remains to establish (3.8.9). Consider the stopping time νεn = νn + bnεc. By the

Markov property, with y′ = z′ − r(x′),

un > Ex
(
Ŵn(x, z) ; τy > n , νεn 6

⌊
n1−ε

⌋)

=
bn1−εc∑
k=bnεc+1

∫
X×R

Ex′
(
Ŵn−k(x′, z′) ; τy′ > n− k

)
Px (Xk ∈ dx′ , z +Mk ∈ dz′ , τy > k , νεn = k) .

Using Lemma 3.8.4, we obtain,

un > Ex
(
Ŵνεn(x, z) ; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
+ cEx

(
min

(
z +Mνεn , 0

)
; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
− cεEx

(
n1/2−2ε + n2εN

(
Xνεn

)
; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
.

On the event {z + Mνεn 6 0 , τy > νεn}, by (3.5.1), we have 0 > z + Mνεn > r
(
Xνεn

)
.

Therefore, by Lemma 3.5.1,

Ex
(
min

(
z +Mνεn , 0

)
; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
> −cEx

(
1 +N

(
Xνεn

)
; τy > νεn , ν

ε
n 6

⌊
n1−ε

⌋)
.
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Consequently, using the point 4 of Lemma 3.8.1 and (3.2.2),

un > Ex
(
Ŵbn1−εc(x, z) ; τy >

⌊
n1−ε

⌋
, νεn 6

⌊
n1−ε

⌋)
− cεEx

(
n1/2−2ε + e−cεnε N (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
.

By the definition of νn, we have n1/2−2ε 6 (z +Mνn)/nε. Then as in (3.6.17),

un > Ex
(
Ŵbn1−εc(x, z) ; τy >

⌊
n1−ε

⌋
, νεn 6

⌊
n1−ε

⌋)
− cε
nε

Ex
(
z +Mνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
− cε e−cεnε (1 +N(x)) .

Rearranging the terms, we have

un > ubn1−εc − cε e−cεnε (1 +N(x))

− cε
nε

Ex
(
z +Mνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:I1

(3.8.10)

− Ex
(
Ŵbn1−εc(x, z) ; τy >

⌊
n1−ε

⌋
, νεn >

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:I2

.

Bound of I1. To bound I1 we use the facts that, by the definition of νn, z + Mνn >
n1/2−ε > 0 and that T̂z > τy. Taking into account Lemma 3.5.4, we have

I1 6 Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋
, νn 6

⌊
n1−ε

⌋)
= Ex

(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋)
− J ′′21,

where J ′′21 is defined in (3.6.19). Now, it follows from Lemma 3.5.4 and the point 1 of
Proposition 3.7.2, that (Ex(z + Mbn1−εc ; T̂z > bn1−εc))n>0 is a non-decreasing sequence
which converges to Ŵ (x, z) and so Ex(z + Mbn1−εc ; T̂z > bn1−εc) 6 Ŵ (x, z). Using
(3.6.20), we find that

I1 6 Ŵ (x, z) + cε e−cεnε (1 +N(x)) . (3.8.11)

Bound of I2. By (3.8.1) and (3.7.3),

I2 6 cEx

z +Mbn1−εc

1− 1{
z+Mbn1−εc<0

} ; T̂z >
⌊
n1−ε

⌋
, νεn >

⌊
n1−ε

⌋
+ cEx

(
1 +N

(
Xbn1−εc

)
; T̂z >

⌊
n1−ε

⌋
, νεn >

⌊
n1−ε

⌋)
.

On the event {z +Mbn1−εc < 0 , T̂z > bn1−εc} = {z +Mbn1−εc < 0 , τy > bn1−εc}, it holds
z +Mbn1−εc > r

(
Xbn1−εc

)
. Therefore, using Lemma 3.5.1,

I2 6 cEx
(
z +Mbn1−εc + 1 +N

(
Xbn1−εc

)
; T̂z >

⌊
n1−ε

⌋
, νεn >

⌊
n1−ε

⌋)
.

By Lemma 3.5.4,

Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋
, νεn >

⌊
n1−ε

⌋)
6 J1,
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where J1 is defined in (3.6.14). Using inequalities (3.6.15), (3.2.2) and Lemma 3.6.3, with
mε = bn1−εc − bnεc, we obtain

I2 6 cε e−cεnε (1 +N(x)) + cEx
(
1 + e−cnε N (Xmε) ; T̂z > mε , νn > mε

)
6 cε e−cεnε (1 +N(x)) . (3.8.12)

Putting together (3.8.12), (3.8.11) and (3.8.10) and using (3.7.3), we obtain (3.8.9), which
completes the proof of the lemma.

Proposition 3.8.6.
1. For any δ ∈ (0, 1), x ∈ X and y > 0,

V (x, y) > (1− δ) y − cδ (1 +N(x)) .

2. For any x ∈ X,
lim

y→+∞

V (x, y)
y

= 1.

Proof. Claim 1. By Lemmas 3.8.5 and 3.8.2, we immediately have, with z = y + r(x),

V (x, y) > Ex
(
Ŵk0(x, z) ; τy > k0

)
− cε
kε0

(max(z, 0) + 1 +N(x)) .

Using the point 1 of Lemma 3.8.1 and the point 2 of Lemma 3.5.2,

V (x, y) > Ex (z +Mk0 ; τy > k0)− cε
kε0

(max(z, 0) + 1 +N(x))

> zPx (τy > k0)− c
(√

k0 +N(x)
)
− cε
kε0

(max(z, 0) + 1 +N(x)) .

Since, by the union bound and the Markov inequality,

Px (τy > k0) > Px
(

max
16k6k0

|f (Xk)| <
y

k0

)
> 1− ck2

0 (1 +N(x))
y

,

we obtain that, by the definition of z,

V (x, y) >
(

1− cε
kε0

)
y − cεk2

0 (1 +N(x)) . (3.8.13)

Let δ ∈ (0, 1). Taking k0 large enough, we obtain the desired inequality.
Proof of the claim 2. By the claim 1, for any δ ∈ (0, 1) and x ∈ X, we have that

lim infy→+∞ V (x, y)/y > 1 − δ. Taking the limit as δ → 0, we obtain the lower bound.
Now by (3.7.4) and (3.7.3), for any integer k0 > 2, y ∈ R and z = y + r(x),

V (x, y) 6 Ŵ (x, z) 6
(

1 + cε
kε0

)
(max(z, 0) + cN(x)) + cεk

1/2
0 .

Using the definition of z, we conclude that

lim sup
y→+∞

V (x, y)
y

6 lim
k0→+∞

(
1 + cε

kε0

)
= 1.
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Now, for any γ > 0, consider the stopping time:

ζγ := inf {k > 1 : |y + Sk| > γ (1 +N (Xk))} . (3.8.14)

The control on the tail of ζγ is given by the following Lemma.

Lemma 3.8.7. For any γ > 0, x ∈ X, y ∈ R and n > 1,

Px (ζγ > n) 6 c e−cγn (1 +N (x)) .

Proof. The reasoning is very close to that of the proof of the Lemma 3.6.3. Let γ > 0.
Consider the integer l > 1 which will be chosen later. Define K :=

⌊
n
2l

⌋
and introduce

the event Aγk,y := ⋂
k′∈{1,...,k}

{|y + Sk′l| 6 γ (1 +N (Xk′l))}. We have

Px (ζγ > n) 6 Px
(
Aγ2K,y

)
.

By the Markov property,

Px
(
Aγ2K,y

)
=
∫
X×R

∫
X×R

Px′′
(
Aγ1,y′′

)
Px′

(
Xl ∈ dx′′ , y′ + Sl ∈ dy′′ , Aγ1,y′

)
× Px

(
X2(K−1)l ∈ dx′ , y + S2(K−1)l ∈ dy′ , Aγ2(K−1),y

)
. (3.8.15)

We write

Px′′
(
Aγ1,y′′

)
6 Px′′

(
|y′′ + Sl| 6 2γ

√
l
)

+ Px′′
(
N (Xl) >

√
l
)

6 Px′′
(
−y′′√
l
− 2γ 6

Sl√
l
6
−y′′√
l

+ 2γ
)

+ Ex′′
(
N (Xl)√

l

)
.

By Corollary 3.4.4 and the point 1 of Hypothesis M3.4, there exists ε0 ∈ (0, 1/4) such
that, for any ε ∈ (0, ε0),

Px′′
(
Aγ1,y′′

)
6
∫ −y′′√

l
+2γ

−y′′√
l
−2γ

e−
u2

2σ2
du√
2πσ

+ 2cε
lε

(1 +N(x′′)) + c√
l

(1 +N (x′′)) .

Set qγ :=
∫ 2γ
−2γ e−

u2
2σ2 du√

2πσ < 1. From (3.8.15), we obtain

Px
(
Aγ2K,y

)
6
∫
X×R

(
qγ + cε

lε
+ cε
lε
Ex′ (N (Xl))

)
× Px

(
X2(K−1)l ∈ dx′ , y + S2(K−1)l ∈ dy′ , Aγ2(K−1),y

)
6
(
qγ + cε

lε

)
Px
(
Aγ2(K−1),y

)
+ cε e−cεl Ex

(
N
(
X2(K−1)l

)
; Aγ2(K−1),y

)
.

For brevity, set pK = Px
(
Aγ2K,y

)
and EK = Ex

(
N (X2Kl) ; Aγ2K,y

)
. Then, the previous

inequality can be rewritten as

pK 6
(
qγ + cε

lε

)
pK−1 + cε e−cεlEK−1. (3.8.16)

Moreover, from (3.2.2), we have

EK 6 cpK−1 + c e−c2lEK−1. (3.8.17)
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Using (3.8.16) and (3.8.17), we write that(
pK
EK

)
6 Al

(
pK−1
EK−1

)
(3.8.18)

where
Al :=

(
qγ + cε

lε
cε e−cεl

c c e−cl
)
−→
l→+∞

A =
(
qγ 0
c 0

)
.

Since the spectral radius qγ of A is less than 1, we can choose l = l(ε, γ) large enough
such that the spectral radius ρε,γ of Al is less than 1. Iterating (3.8.18), we get

pK 6 cρKε,γ max (p1, E1) 6 cρKε,γ (1 +N(x)) .

Taking into account that K > cε,γn, we obtain

Px
(
Aγ2K,y

)
6 c e−cγn (1 +N(x)) .

Now we shall establish some properties of the set Dγ introduced in Section 3.2. It is
easy to see that, for any γ > 0,

Dγ = {(x, y) ∈ X× R : ∃n0 > 1,Px (ζγ 6 n0 , τy > n0) > 0} ,

where ζγ is defined by (3.8.14).

Proposition 3.8.8.
1. For any γ1 6 γ2, it holds Dγ1 ⊇ Dγ2.
2. For any γ > 0, there exists cγ > 0 such that

D c
γ ⊆

{
(x, y) ∈ X× R : Px (τy > n) 6 e−cγn (1 +N(x)) , n > 1

}
.

3. For any γ > 0, the domain of positivity of the function V is included in Dγ:

supp(V ) = {(x, y) ∈ X× R : V (x, y) > 0} ⊆ Dγ.

4. There exists γ0 > 0 such that for any γ > γ0,

supp(V ) = Dγ.

Moreover, {
(x, y) ∈ X× R∗+ : y > γ0

2 (1 +N(x))
}
⊆ supp(V ).

Proof. Claim 1. For any γ1 6 γ2, we have ζγ1 6 ζγ2 and the claim 1 follows.
Claim 2. Fix γ > 0. By the definition of Dγ, for any (x, y) ∈ D c

γ and n > 1,

0 = Px (ζγ 6 n , τy > n) = Px (τy > n)− Px (ζγ > n , τy > n) .

From this, using Lemma 3.8.7, we obtain

Px (τy > n) = Px (ζγ > n , τy > n) 6 Px (ζγ > n) 6 e−cγn (1 +N (x)) .
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Claim 3. Fix γ > 0. Using the claim 2 and Lemma 3.5.2, we have, for any (x, y) ∈ D c
γ,

z = y + r(x) and n > 1,

Ex (z +Mn ; τy > n) 6 |z|Px (τy > n) + E1/2
x

(
|Mn|2

)
P1/2
x (τy > n)

6 |z| (1 +N (x)) e−cγn +c
√
n (1 +N(x))3/2 e−cγn .

Taking the limit when n→ +∞, by the point 1 of Proposition 3.7.2, we get

V (x, y) = 0,

and we conclude that D c
γ ⊆ supp(V )c.

Claim 4. By the point 1 of Proposition 3.8.6, taking δ = 1/2, there exists γ0 > 0 such
that, for any x ∈ X and y > 0,

V (x, y) > y

2 −
γ0

4 (1 +N(x)) . (3.8.19)

Now, fix (x, y) ∈ Dγ0 and let n0 > 1 be an integer such that Px (ζγ0 6 n0 , τy > n0) > 0.
By the point 4 of Proposition 3.7.2,

V (x, y) = Ex (V (Xn0 , y + Sn0) ; τy > n0)
> Ex (V (Xn0 , y + Sn0) ; τy > n0 , ζγ0 6 n0) .

By the Doob optional stopping theorem, (3.8.19) and the definition of ζγ0 (see (3.8.14)),

V (x, y) > Ex
(
V
(
Xζγ0

, y + Sζγ0

)
; τy > ζγ0 , ζγ0 6 n0

)
>

1
2Ex

(
y + Sζγ0

− γ0

2
(
1 +N

(
Xζγ0

))
; τy > ζγ0 , ζγ0 6 n0

)
>

1
2Ex

(
γ0

2
(
1 +N

(
Xζγ0

))
; τy > ζγ0 , ζγ0 6 n0

)
>
γ0

4 Px (τy > n0 , ζγ0 6 n0) .

Now, since n0 has been chosen such that the last probability is strictly positive, we get
that V (x, y) > 0. This proves that Dγ0 ⊆ supp(V ). Using the claims 1 and 3, for any
γ > γ0, we obtain that Dγ ⊆ Dγ0 ⊆ supp(V ) ⊆ Dγ and so Dγ = Dγ0 = supp(V ). Using
(3.8.19) proves the second assertion of the claim 4.

Proof of Theorem 3.2.2. The claim 1 is proved by the point 1 of Proposition 3.7.2 ;
the claim 2 is proved by the point 4 of Proposition 3.7.2 ; the claim 3 is proved by the
points 2 and 3 of Proposition 3.7.2 and by Proposition 3.8.6 ; the claim 4 is proved by
the point 4 of Proposition 3.8.8.

3.9 Asymptotic behaviour of the exit time

3.9.1 Preliminary results
Lemma 3.9.1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R and
z = y + r(x),

E1 := Ex
(
z +Mνn ; τy > νn , νn 6

⌊
n1−ε

⌋)
6 cε (1 + max(y, 0) +N(x)) , n > 1,

E2 := Ex
(
z +Mνε2

n
; τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
−→
n→∞

V (x, y).
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Moreover, for any n > 1, ε ∈ (0, ε0), x ∈ X and y ∈ R,

|E2 − V (x, y)| 6 cε
nε/8

(1 + max(y, 0) +N(x)) .

Proof. Using the fact {τy > νn} ⊆ {T̂z > νn} and Lemma 3.5.4, for n > 1,

E1 6 Ex
(
z +Mbn1−εc ; T̂z >

⌊
n1−ε

⌋)
− J ′′21,

where J ′′21 is defined in (3.6.19) and by (3.6.20) the quantity −J ′′21 does not exceed
cε e−cεnε(1 + N(x)). Again, by Lemma 3.5.4 and the point 1 of Proposition 3.7.2, we
have that (Ex(z + Mn ; T̂z > n))n>0 is a non-decreasing sequence which converges to
Ŵ (x, z). So, using the point 3 of Proposition 3.7.2 and the fact that z = y + r(x),

E1 6 Ŵ (x, z) + cε e−cεnε (1 +N(x)) 6 cε (1 + max(y, 0) +N(x)) . (3.9.1)

By the point 4 of Proposition 3.7.2, we have

V (x, y) = Ex
(
V (Xn, y + Sn) ; τy > n , νε

2

n 6
⌊
n1−ε

⌋)
+ Ex

(
V (Xn, y + Sn) ; τy > n , νε

2

n >
⌊
n1−ε

⌋)
.

Using the point 3 of Proposition 3.7.2, for any k0 > 2,

V (x, y) 6 Ex
(
V
(
Xνε2

n
, y + Sνε2

n

)
; τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
+ cEx

(
max (z +Mn, 0) + 1 +N (Xn) ; τy > n , νε

2

n >
⌊
n1−ε

⌋)
6

(
1 + cε

kε0

)
E2 + cεEx

(√
k0 +N

(
Xνε2

n

)
; τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
−cεEx

(
z +Mνε2

n
; z +Mνε2

n
< 0 , τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=J ′22(ε2)

+ cEx
(
z +Mn + |r (Xn)|+ 1 +N (Xn) ; τy > n , νε

2

n >
⌊
n1−ε

⌋)
.

From the previous bound, using the Markov property, the bound (3.2.2) and the approx-
imation (3.5.1), we get

V (x, y) 6
(

1 + cε
kε0

)
E2 + J ′22(ε2) + cEx

(
z +Mn ; T̂z > n , νε

2

n >
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=J1(ε2)

+ cεEx
(√

k0 + e−cnε
2
N (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ cEx

(
1 + e−cεnN

(
Xbn1−εc

)
; τy >

⌊
n1−ε

⌋
, νε

2

n >
⌊
n1−ε

⌋)
.

Proceeding in the same way as for the bound (3.6.25),

J ′22(ε2) 6 cεEx
(

1 + e−cnε
2
N (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
6

cε
n1/2−εE1 + cε e−cεnε

2
(1 +N(x)) .

Moreover, similarly as for the bound (3.6.15), we have

J1(ε2) 6 cε e−cεnε
2

(1 +N(x)) .
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Taking into account these bounds and using Lemma 3.6.3,

V (x, y) 6
(

1 + cε
kε0

)
E2 + cε

√
k0

n1/2−εE1 + cε e−cεnε
2

(1 +N(x)) . (3.9.2)

Analagously, by (3.8.13) and (3.5.1), we have the lower bound

V (x, y) > Ex
(
V
(
Xνε2

n
, y + Sνε2

n

)
; τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
>

(
1− cε

kε0

)
E2 − cεk2

0Ex
(
1 +N

(
Xνε2

n

)
; τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
>

(
1− cε

kε0

)
E2 −

cεk
2
0

n1/2−εE1 − cεk2
0 e−cεnε

2
(1 +N(x)) . (3.9.3)

Taking k0 = n1/4−ε in (3.9.3) and (3.9.2), we conclude that, for any ε ∈ (0, 1/8),

|V (x, y)− E2| 6
cε
nε/8

E2 + cε
nε

(E1 + 1 +N(x)) .

Again, using (3.9.3),

|V (x, y)− E2| 6
cε
nε/8

V (x, y) + cε
nε

(E1 + 1 +N(x)) .

Finally, employing (3.9.1) and (3.7.5),

|V (x, y)− E2| 6
cε
nε/8

(1 + max(y, 0) +N(x)) .

Lemma 3.9.2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R and
n > 1,

Px (τy > n) 6 cε
n1/2−ε (1 + max(y, 0) +N(x)) .

Moreover, summing this bound, for any ε ∈ (0, ε0), x ∈ X, y ∈ R and n > 1, we have

bn1−εc∑
k=1

Px (τy > k) 6 cε (1 + max(y, 0) +N(x))n1/2+ε/2.

Proof. Using Lemma 3.6.3 and Lemma 3.9.1, with z = y + r(x) and n > 1,

Px (τy > n) 6 Px
(
τy > n , νn 6

⌊
n1−ε

⌋)
+ Px

(
T̂z > n , νn >

⌊
n1−ε

⌋)
6 Ex

(
z +Mνn

n1/2−ε ; τy > n , νn 6
⌊
n1−ε

⌋)
+ cε e−cεnε (1 +N(x))

6
cε

n1/2−ε (1 + max(y, 0) +N(x)) .

Lemma 3.9.3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R and
z = y + r(x),

E3 := Ex
(
z +Mνn ; z +Mνn > n1/2−ε/2 , τy > νn , νn 6

⌊
n1−ε

⌋)
−→
n→+∞

0.

More precisely, for any n > 1, ε ∈ (0, ε0), x ∈ X, y ∈ R and z = y + r(x),

E3 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

nε
.
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Proof. Notice that when νn 6= 1 the following inclusion holds:
{z +Mνn > n1/2−ε/2} ⊆ {ξνn > n1/2−ε/2 − n1/2−ε > cεn

1/2−ε/2}.
Therefore,

E3 6 Ex (z +Mνn ; νn 6 2 bnεc)︸ ︷︷ ︸
=:E30

+
bn1−εc∑

k=2bnεc+1
Ex
(
z +Mk ; ξk > cεn

1/2−ε/2 , τy > k , νn = k
)

︸ ︷︷ ︸
=:E31

. (3.9.4)

Bound of E30. For y 6 n1/2−2ε, by (3.6.5), the Markov inequality and Lemma 3.5.2,

Px (νn 6 2 bnεc) 6
2bnεc∑
k=1

Px
(
r(x) +Mk > n1/2−ε − y

)
6
cε (1 +N(x))

n1/2−3ε .

For y > n1/2−2ε, in the same way, we have Px (νn 6 2 bnεc) 6 cε(1+y+N(x))
n1/2−3ε . Putting

together these bounds, we get, for any y ∈ R,

Px (νn 6 2 bnεc) 6
cε
(
1 + y1{y>n1/2−2ε} +N(x)

)
n1/2−3ε . (3.9.5)

Using Lemma 3.5.2,

E30 6 zPx (νn 6 2 bnεc) +
2bnεc∑
k=1

E1/2
x

(
|Mk|2

)
P1/2
x (νn 6 2 bnεc)

6
cε
(
1 + y1{y>n1/2−2ε} +N(x)

)2

nε
. (3.9.6)

Bound of E31. Changing the index of summation (j = k−bnεc) and using the Markov
property,

E31 6
bn1−εc∑
j=bnεc+1

∫
X×R

max(z′, 0)Px′
(
ξbnεc > cεn

1/2−ε/2
)

×Px (Xj ∈ dx′ , z +Mj ∈ dz′ , τy > j)︸ ︷︷ ︸
=:E32

+
bn1−εc∑
j=bnεc+1

∫
X×R

E1/2
x′

(∣∣∣Mbnεc∣∣∣2)P1/2
x′

(
ξbnεc > cεn

1/2−ε/2
)

(3.9.7)

×Px (Xj ∈ dx′ , z +Mj ∈ dz′ , τy > j) .︸ ︷︷ ︸
=:E33

Bound of E32. Using (3.5.2), the Markov inequality and (3.2.3) with l =
⌊
cεn

1/2−ε/2
⌋
,

Px′
(
ξbnεc > cεn

1/2−ε/2
)
6 Px′

(
N
(
Xbnεc

)
> cεn

1/2−ε/2
)

+ Px′
(
N
(
Xbnεc−1

)
> cεn

1/2−ε/2
)

6
1
l
Ex′

(
Nl

(
Xbnεc

))
+ 1
l
Ex′

(
Nl

(
Xbnεc−1

))
6

c

l2+β + c

l
e−cnε (1 +N(x′)) .
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Choosing ε > 0 small enough we find that

Px′
(
ξbnεc > cεn

1/2−ε/2
)
6

cε
n1+β/4 + cε e−cεnε N(x′). (3.9.8)

By the definition of E32 in (3.9.7),

E32 6
cε

n1+β/4

bn1−εc∑
j=bnεc+1

[Ex (z +Mj ; τy > j) + Ex (|r (Xj)|)]

+ cε e−cεnε
bn1−εc∑
j=bnεc+1

[
max(z, 0)Ex (N (Xj)) + E1/2

x

(
|Mj|2

)
E1/2
x

(
N (Xj)2

)]
.

Using (3.6.29), Lemma 3.5.2 and the point 1 of Hypothesis M3.4, we find that

E32 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)
(1 +N(x))

nβ/4
. (3.9.9)

Bound of E33. Using (3.9.8) and Lemma 3.5.2, we have

E33 6
bn1−εc∑
j=bnεc+1

Ex
(
nε/2 (1 +N (Xj))

(
cε

n1/2+β/8 + cε e−cεnε N (Xj)1/2
)

; τy > j
)
.

By the Markov property,

E33 6 cε e−cεnε (1 +N(x))3/2 + cε
n1/2+β/8−ε/2

bn1−εc∑
j=1

Ex
(
1 + e−cnε N (Xj) ; τy > j

)
.

Using Lemma 3.9.2,

E33 6 cε
max(y, 0) + (1 +N(x))3/2

nβ/8−3ε/2 . (3.9.10)

With (3.9.10), (3.9.9) and (3.9.7), for ε > 0 small enough, we find that

E31 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)
(1 +N(x))

nε
.

This bound, together with (3.9.6) and (3.9.4), proves the lemma.

Lemma 3.9.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X, y ∈ R and
z = y + r(x),

E4 := Ex
(
z +Mνε2

n
; z +Mνε2

n
> n1/2−ε/4 , τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
−→
n→+∞

0.

More precisely, for any n > 1, ε ∈ (0, ε0), x ∈ X, y ∈ R and z = y + r(x),

E4 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

nε/2
.
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Proof. We shall apply Lemma 3.9.3. For this we write, for any n > 1,

E4 = Ex
(
z +Mνε2

n
; z +Mνε2

n
> n1/2−ε/4 , z +Mνn > n1/2−ε/2 ,

τy > νε
2

n , νε
2

n 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E41

+Ex
(
z +Mνε2

n
; z +Mνε2

n
> n1/2−ε/4 , z +Mνn 6 n1/2−ε/2 , (3.9.11)

τy > νε
2

n , νε
2

n 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E42

.

Bound of E41. By the Markov property,

E41 =
bn1−εc−

⌊
nε

2
⌋

∑
k=1

∫
X×R

Ex′
(
z′ +Mbnε2c ; z′ +Mbnε2c > n1/2−ε/4 , τy′ >

⌊
nε

2⌋)
× Px

(
Xk ∈ dx′ , z +Mk ∈ dz′ , z +Mk > n1/2−ε/2 , τy > k , νn = k

)
,

where y′ = z′ − r(x′). Moreover, for any x′ ∈ X, z′ ∈ R, using (3.6.29), we have

Ex′
(
z′ +Mbnε2c ; z′ +Mbnε2c > n1/2−ε/4 , τy′ >

⌊
nε

2⌋)
6 Ex′

(
z′ +Mbnε2c ; z′ +Mbnε2c > 0 , τy′ >

⌊
nε

2⌋)
6 Ex′

(
z′ +Mbnε2c ; τy′ >

⌊
nε

2⌋)+ Ex′
(∣∣∣r (Xnε2

)∣∣∣)
6 cε max(z′, 0) + cε (1 +N(x′)) .

Consequently,

E41 6 cεE3 + cεEx
(
1 +N (Xνn) ; z +Mνn > n1/2−ε/2 , τy > νn , νn 6

⌊
n1−ε

⌋)
6 2cεE3 + cεEx

(
N (Xνn) ; N (Xνn) > n1/2−ε , τy > νn , νn 6

⌊
n1−ε

⌋)
+ cεEx

(
n1/2−ε ; N (Xνn) 6 n1/2−ε , z +Mνn > n1/2−ε/2 ,

τy > νn , νn 6
⌊
n1−ε

⌋)
6 3cεE3 + cε Ex

(
N (Xνn) ; N (Xνn) > n1/2−ε , τy > νn , νn 6

⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E′41

. (3.9.12)

Denoting l =
⌊
n1/2−ε

⌋
and using the point 1 of M3.4 and (3.2.3), we have

E ′41 6 Ex
(
N (Xνn)2

n1/2−ε ; νn 6 bnεc
)

+
bn1−εc∑
k=bnεc+1

Ex (Nl (Xk) ; τy > k , νn = k)

6
cnε (1 +N(x))2

n1/2−ε +
bn1−εc∑
k=1

[
c

l1+βPx (τy > k) + c e−cnε Ex (1 +N (Xk))
]
.

Using Lemma 3.9.2 and taking ε > 0 small enough,

E ′41 6 cε
max(y, 0) + (1 +N(x))2

nmin(1,β)/4 . (3.9.13)
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In conjunction with Lemma 3.9.3, from (3.9.12) we obtain that, for some ε > 0,

E41 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

nε
. (3.9.14)

Bound of E42. For any z′ ∈ (0, n1/2−ε/2], we have(
z′ +Mbnε2c

)
Px′(z′ +Mbnε2c > n1/2−ε/4) 6 z′Px′(Mbnε2c > cεn

1/2−ε/4) +
∣∣∣∣Mbnε2c

∣∣∣∣ .
Therefore, by the Markov property,

E42 6
∫
X×R

z′Px′
(
Mbnε2c > cεn

1/2−ε/4
)
Px (Xνn ∈ dx′ , z +Mνn ∈ dz′ ,

z +Mνn 6 n1/2−ε/2 , τy > νn , νn 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E43

+
∫
X×R

Ex′
(∣∣∣∣Mbnε2c

∣∣∣∣)Px (Xνn ∈ dx′ , z +Mνn ∈ dz′ , (3.9.15)

z +Mνn 6 n1/2−ε/2 , τy > νn , νn 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:E44

.

Bound of E43. Using Lemma 3.5.2,

Px′
(
Mbnε2c > cεn

1/2−ε/4
)
6
cεn

ε2 (1 +N(x′))
n1/2−ε/4 .

Therefore, we have

E43 6 Ex
(

cε
n3ε/4−ε2 (z +Mνn)1{N(Xνn )6n1/2−ε} + cε

nε/4−ε2N (Xνn)1{N(Xνn )>n1/2−ε} ;

z +Mνn 6 n1/2−ε/2 , τy > νn , νn 6
⌊
n1−ε

⌋)
6

cε
n3ε/4−ε2E1 + cε

nε/4−ε2E
′
41.

By Lemma 3.9.1 and (3.9.13), we obtain for some small ε > 0,

E43 6 cε
max(y, 0) + (1 +N(x))2

nε/2
. (3.9.16)

Bound of E44. Again by Lemma 3.5.2, Ex′
(∣∣∣∣Mbnε2c

∣∣∣∣) 6 nε
2 (1 +N(x′)). Conse-

quently,

E44 6
cε

nε−ε2 Ex
(
z +Mνn ; N (Xνn) 6 n1/2−2ε , τy > νn , νn 6

⌊
n1−ε

⌋)
+ cεn

ε2Ex
(
N (Xνn) ; N (Xνn) > n1/2−2ε , τy > νn , νn 6

⌊
n1−ε

⌋)
.

Proceeding exactly as in the proof of the bound of E ′41 but with l =
⌊
n1/2−2ε

⌋
, we obtain,

by Lemma 3.9.1,

E44 6 cε
max(y, 0) + (1 +N(x))2

nε/2
.
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Putting together this bound with (3.9.16) and (3.9.15), we find that

E42 6 cε
max(y, 0) + (1 +N(x))2

nε/2
.

So, using (3.9.11) and (3.9.14), we obtain the second assertion. The first one is an easy
consequence of the second one.

The following results are similar to that provided by Lemmas 3.9.1 and 3.9.4 (see E2
and E4 respectively).
Lemma 3.9.5. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), x ∈ X and y ∈ R,

F2 := Ex
(
y + Sνε2

n
; τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
−→
n→∞

V (x, y),

F4 := Ex
(
y + Sνε2

n
; y + Sνε2

n
> n1/2−ε/8 , τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
−→
n→+∞

0.

More precisely, for any n > 1, ε ∈ (0, ε0), x ∈ X and y ∈ R,

|F2 − V (x, y)| 6 cε
nε/8

(1 + max(y, 0) +N(x))

and

F4 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

nε/2
.

Proof. By (3.5.1), for any n > 1,

|F2 − E2| 6 Ex
(∣∣∣r (Xνε2

n

)∣∣∣ ; τy > νε
2

n , νε
2

n 6
⌊
n1−ε

⌋)
︸ ︷︷ ︸

=:F ′2

.

Using the Markov property, the definition of νn and Lemma 3.9.1,

F ′2 6 cEx
(

1 + e−cnε
2
N (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
6

c

n1/2−εE1 + c e−cnε
2

(1 +N(x))

6
cε

n1/2−ε (1 + max(y, 0) +N(x)) . (3.9.17)

Therefore, by Lemma 3.9.1,

|F2 − V (x, y)| 6 |E2 − V (x, y)|+ F ′2 6
cε
nε/8

(1 + max(y, 0) +N(x)) .

Now we shall control F4. Recall the notation z = y + r(x). By equation (3.5.1), we
note that on the event{

z +Mνε2
n

6 n1/2−ε/4
}
∩
{
y + Sνε2

n
> n1/2−ε/8

}
we have

∣∣∣r (Xνε2
n

)∣∣∣ > cεn
1/2−ε/8. Therefore,

y + Sνε2
n

6 n1/2−ε/4 − r
(
Xνε2

n

)
6
(
cε
nε/8

+ 1
) ∣∣∣r (Xνε2

n

)∣∣∣ ,
which implies that

F4 6 Ex
(
y + Sνε2

n
; z +Mνε2

n
> n1/2−ε/4 , τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
+ cεF

′
2.

By (3.5.1), Lemma 3.9.4 and (3.9.17), we conclude that

F4 6 E4 + F ′2 + cεF
′
2 6 cε

max(y, 0) +
(
1 + y1{y>n1/2−2ε} +N(x)

)2

nε/2
.
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3.9.2 Proof of Theorem 3.2.3
Assume that (x, y) ∈ X× R. Let (Bt)t>0 be the Brownian motion defined by Propo-

sition 3.4.3. For any k > 1, consider the event

Ak = { sup
06t61

∣∣∣Sbtkc − σBtk

∣∣∣ 6 k1/2−2ε} (3.9.18)

and denote by Ak its complement. Let n > 1 and remind that νε2
n = νn +

⌊
nε

2
⌋
>
⌊
nε

2
⌋
.

With the previous notation, we write

Px (τy > n) = Px
(
τy > n , νε

2

n >
⌊
n1−ε

⌋)

+
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′
(
τy′ > n− k , An−k

)
Px (Xk ∈ dx′ , y + Sk ∈ dy′ ,

τy > k , νε
2

n = k
)

︸ ︷︷ ︸
=:J1

+
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′ (τy′ > n− k , An−k)Px (Xk ∈ dx′ , y + Sk ∈ dy′ ,

(3.9.19)
τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:J2

.

Bound of J1. Since n− k > cεn, for any k 6 bn1−εc, by Proposition 3.4.3, we have

Px′
(
τy′ > n− k , An−k

)
6 Px′

(
An−k

)
6
cε (1 +N(x′))

n2ε .

So, using the fact that n1/2−ε 6 z +Mνn and Lemma 3.9.1,

J1 6
cε
n2εEx

(
1 + e−cnε

2
N (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
6

cε
n1/2+εE1 + cε e−cεnε

2
(1 +N(x))

6
cε (1 + max(y, 0) +N(x))

n1/2+ε . (3.9.20)

Bound of J2. We split J2 into two terms:

J2 =
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′ (τy′ > n− k , An−k)

×Px
(
Xk ∈ dx′ , y + Sk ∈ dy′ , y + Sk > n1/2−ε/8 , τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:J3

+
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′ (τy′ > n− k , An−k) (3.9.21)

×Px
(
Xk ∈ dx′ , y + Sk ∈ dy′ , y + Sk 6 n1/2−ε/8 , τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:J4

.
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Bound of J3. With y′+ = y′ + (n− k)1/2−2ε, we have

Px′ (τy′ > n− k , An−k) 6 Px′
(
τ bmy′+ > n− k

)
, (3.9.22)

where τ bmy is defined in (3.4.1). By the point 1 of Lemma 3.4.2 and Lemma 3.9.5,

J3 6
cε√
n
Ex
(
y + Sνε2

n
+ n1/2−2ε ; y + Sνε2

n
> n1/2−ε/8 , τy > νε

2

n , νε
2

n 6
⌊
n1−ε

⌋)
6

2cε√
n
F4

6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/2 . (3.9.23)

Upper bound of J4. For y′ 6 n1/2−ε/8 and any k 6 bn1−εc, it holds y′+ 6 2n1/2−ε/8 6
cε(n−k)1/2−ε/8. Therefore, by (3.9.22) and the point 2 of Lemma 3.4.2 with θm = cεm

−ε/8

and m = n− k, we have

J4 6
bn1−εc∑

k=bnε2c+1

∫
X×R

2
(
1 + θ2

n−k

)
√

2π(n− k)σ
Ex
(
y + Sk + (n− k)1/2−2ε ;

y + Sk 6 n1/2−ε/8 , τy > k , νε
2

n = k
)
.

Since 2(1+θ2
n−k)√

2π(n−k)σ
6 2√

2πnσ

(
1 + cε

nε/4

)
and n1/2−ε 6 z +Mνn , we get

J4 6
2√

2πnσ

(
1 + cε

nε/4

)
Ex
(
y + Sνε2

n
+ n1/2−2ε ; y + Sνε2

n
6 n1/2−ε/8 ,

τy > νε
2

n , νε
2

n 6
⌊
n1−ε

⌋)
6

2√
2πnσ

(
1 + cε

nε/4

)
F2 + cε

n1/2+εE1.

By Lemmas 3.9.1, 3.9.5 and (3.7.5),

J4 6
2V (x, y)√

2πnσ
+ cε (1 + max(y, 0) +N(x))

n1/2+ε/8 . (3.9.24)

Lower bound of J4. With y′− = y′ − (n− k)1/2−2ε, we have Px′ (τy′ > n− k , An−k) >
Px′

(
τ bmy′−

> n− k
)
− Px′

(
An−k

)
. Considering the event {y + Sk > (n − k)1/2−2ε} and

repeating the arguments used to bound J1 (see (3.9.20)), we obtain

J4 >
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′
(
τ bmy′− > n− k

)
Px (Xk ∈ dx′ , y + Sk ∈ dy′ ,

y + Sk 6 n1/2−ε/8 , y + Sk > (n− k)1/2−2ε , τy > k , νε
2

n = k
)

− cε (1 + max(y, 0) +N(x))
n1/2+ε .
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Using the point 2 of Lemma 3.4.2 and Proposition 3.4.3,

J4 >
2√

2πnσ

(
1− cε

nε/4

)
Ex
(
y + Sνε2

n
− (n− νε2

n )1/2−2ε ;

y + Sνε2
n
> (n− νε2

n )1/2−2ε , y + Sνε2
n

6 n1/2−ε/8 , τy > νε
2

n , νε
2

n 6
⌊
n1−ε

⌋)
− cε (1 + max(y, 0) +N(x))

n1/2+ε

>
2√

2πnσ

(
1− cε

nε/4

)
F2 −

cε√
n
F4 −

cε
n1/2+εE1 −

cε (1 + max(y, 0) +N(x))
n1/2+ε .

By Lemmas 3.9.1, 3.9.5 and (3.7.5),

J4 >
2V (x, y)√

2πnσ
− cε

max(y, 0) +
(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/8 . (3.9.25)

Putting together (3.9.25), (3.9.24), (3.9.23) and (3.9.21),

∣∣∣∣∣J2 −
2V (x, y)√

2πnσ

∣∣∣∣∣ 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/8 .

Taking into account (3.9.20), (3.9.19) and Lemma 3.6.3, we conclude that, for any (x, y) ∈
X× R,

∣∣∣∣∣Px (τy > n)− 2V (x, y)√
2πnσ

∣∣∣∣∣ 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/8 . (3.9.26)

Taking the limit as n → +∞ in (3.9.26), we obtain the point 1 of Theorem 3.2.3. The
point 2 of Theorem 3.2.3 is an immediate consequence of the points 2 and 4 of Proposition
3.8.8.

3.9.3 Proof of Theorem 3.2.4
The point 1 of Theorem 3.2.4 is exactly (3.9.26). In order to prove the point 2 of

Theorem 3.2.4, we shall first establish a bound for Px (τy > n) when z = y+r(x) > n1/2−ε,
n > 1. Set mε = n− bnεc. By the Markov property,

Px (τy > n) =
∫
X×R

Px′ (τy′ > mε)

× Px
(
Xbnεc ∈ dx′ , y + Sbnεc ∈ dy′ , τy > bnεc

)
. (3.9.27)

For any x′ ∈ X and y′ > 0, using Amε defined by (3.9.18), we have

Px′ (τy′ > mε) 6 Px′
(
τ bmy′+ > mε

)
+ Px′

(
Amε

)
,

where τ bmy′+ is defined by (3.4.1) and y′+ = y′ + m1/2−2ε
ε . By the point 1 of Lemma 3.4.2

and Proposition 3.4.3,

Px′ (τy′ > mε) 6
cy′+√
mε

+ cε
m2ε
ε

(1 +N(x′)) 6 cεy
′

√
n

+ cε
n2ε + cε

n2εN(x′).
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Introducing this bound in (3.9.27), we get

Px (τy > n) 6 cε√
n
Ex
(
y + Sbnεc , τy > bnεc

)
+ cε
n2ε + cε

n2εEx
(
N
(
Xbnεc

))
.

Using Corollary 3.6.5, the inequality (3.2.2) and the fact that n1/2−ε 6 z, we find

Px (τy > n) 6 cε (z +N(x))√
n

. (3.9.28)

Now, for any x ∈ X, z ∈ R and y = z− r(x), using the Markov property, (3.9.28) and
the fact that

√
n− νn > cε

√
n on the event {νn 6 bn1−εc}, we have

Px (τy > n) 6 cε√
n
Ex
(
z +Mνn +N (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ Px

(
τy > n , νn >

⌊
n1−ε

⌋)
.

Using Lemma 3.6.3 and the fact that N (Xνn) 6 z+Mνn on the event {N (Xνn) 6 n1/2−ε},
with l =

⌊
n1/2−ε

⌋
, it holds

Px (τy > n) 6 cε√
n
Ex
(

(z +Mνn)
(

1 + 1{N(Xνn )6n1/2−ε}
)

; τy > νn , νn 6
⌊
n1−ε

⌋)
+ cε√

n
Ex
(
Nl (Xνn) ; τy > νn , νn 6

⌊
n1−ε

⌋)
+ cε e−cεnε (1 +N(x))

6
2cε√
n
E1 + cε√

n

bnεc∑
k=1

Ex (Nl (Xk))

+ cε√
n

bn1−εc∑
k=bnεc+1

Ex (Nl (Xk) ; τy > k) + cε e−cεnε (1 +N(x)) .

By (3.2.3) and the Markov property,

Px (τy > n) 6 cε√
n
E1 + cε√

n

(
cnε

l1+β + (1 +N(x))
)

+ cε e−cεnε (1 +N(x))

+ cε√
n

bn1−εc−bnεc∑
j=1

[
c

l1+βPx (τy > j) + c e−cnε Ex ((1 +N (Xj)))
]

6
cε√
n
E1 + cε (1 +N(x))√

n
+ cε√

n

c

l1+β

bn1−εc∑
j=1

Px (τy > j) .

Using Lemmas 3.9.1 and 3.9.2, we deduce the point 2 of Theorem 3.2.4.

3.10 Asymptotic behaviour of the conditioned walk
In this section, we prove Theorem 3.2.5. The arguments are similar to those given in

Section 3.9. We also keep the same notations. Assume that (x, y) ∈ X×R and let t0 > 0
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be a positive real. For any t ∈ [0, t0] and n > 1, we write

Px
(
y + Sn 6 t

√
n , τy > n

)
= Px

(
y + Sn 6 t

√
n , τy > n , νε

2

n >
⌊
n1−ε

⌋)

+
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)

×Px
(
Xk ∈ dx′ , y + Sk ∈ dy′ , τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:L1

+
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
. (3.10.1)

×Px
(
Xk ∈ dx′ , y + Sk ∈ dy′ , τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:L2

.

Bound of L1. With J1 defined in (3.9.19) and with the bound (3.9.20), we have,

L1 6 J1 6
cε (1 + max(y, 0) +N(x))

n1/2+ε . (3.10.2)

Bound of L2. According to whether y + Sk 6 n1/2−ε/8 or not, we write

L2 =
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)

×Px
(
Xk ∈ dx′ , y + Sk ∈ dy′ , y + Sk > n1/2−ε/8 , τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:L3

+
bn1−εc∑

k=bnε2c+1

∫
X×R

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
(3.10.3)

×Px
(
Xk ∈ dx′ , y + Sk ∈ dy′ , y + Sk 6 n1/2−ε/8 , τy > k , νε

2

n = k
)

︸ ︷︷ ︸
=:L4

.

Bound of L3. With J3 defined in (3.9.21) and with the bound (3.9.23), we have

L3 6 J3 6 cε
max(y, 0) +

(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/2 . (3.10.4)

Bound of L4. We start with the upper bound. Set y′+ = y′ + (n − k)1/2−2ε and
t+ = t + 2

n2ε . Note that on the event {y′ + Sn−k 6 t
√
n , τy′ > n − k , An−k} we have

y′+ + σBn−k 6 t+
√
n and τ bmy′+ > n− k. Therefore, by Lemma 3.4.1,

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
6

2√
2π

∫ t+
√
n

σ
√
n−k

0
e−s2/2 sh

(
s

y′+√
n− kσ

)
ds.
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We shall use the following bounds:

sh(u) 6 u

(
1 + u2

6 ch(u)
)
, for u > 0,

y′+
σ
√
n− k

6
y′+
σ
√
n

(
1 + cε

nε

)
6

cε
nε/8

, for y′ 6 n1/2−ε/8 and k 6
⌊
n1−ε

⌋
,

t+
√
n

σ
√
n− k

6
t

σ
+ cε,t0

nε
6 cε,t0 , for k 6

⌊
n1−ε

⌋
.

Consequently,

Px′
(
y′ + Sn−k 6 t

√
n , τy′ > n− k , An−k

)
6

2y′+√
2πnσ

(
1 + cε

nε

) ∫ t+
√
n

σ
√
n−k

0
s e−s2/2

(
1 + cεs

2

nε/4
ch (cεs)

)
ds

6
2y′+√
2πnσ

(
1 + cε

nε

)(
1 + cε,t0

nε/4

)∫ t
σ

0
s e−s2/2 ds+

∫ t+
√
n

σ
√
n−k

t
σ

s e−s2/2 ds


6
2y′+√
2πnσ

(
1 + cε,t0

nε/4

)(
1− e−

t2
2σ2 +cε,t0

nε

)
.

This implies the upper bound (with F2 and E1 from Lemmas 3.9.5 and 3.9.1, respectively)

L4 6
2√

2πnσ

(
1 + cε,t0

nε/4

)(
1− e−

t2
2σ2 +cε,t0

nε

)
F2 + cε,t0

n1/2+εE1

6
2V (x, y)√

2πnσ

(
1− e−

t2
2σ2

)
+ cε,t0 (1 + max(y, 0) +N(x))

n1/2+ε/8 .

The proof of the lower bound of L4, being similar, is left to the reader:

L4 >
2V (x, y)√

2πnσ

(
1− e−

t2
2σ2

)
− cε,t0

max(y, 0) +
(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/8 .

Combining the upper and the lower bounds of L4 and (3.10.4) with (3.10.3) we obtain an
asymptotic development of L2. Implementing this development and the bound (3.10.2)
into (3.10.1) and using Lemma 3.6.3, we conclude that∣∣∣∣∣Px (y + Sn 6 t

√
n , τy > n

)
− 2V (x, y)√

2πnσ

(
1− e−

t2
2σ2

)∣∣∣∣∣
6 cε,t0

max(y, 0) +
(
1 + y1{y>n1/2−2ε} +N(x)

)2

n1/2+ε/8 .

Using the asymptotic of Px(τy > n) provided by Theorem 3.2.3 finishes the proof of
Theorem 3.2.5.

3.11 Appendix: proofs for affine random walks in Rd

In this section we prove Proposition 3.3.2. For this we verify that Hypotheses M3.1-
M3.5 hold true on an appropriate Banach space which we proceed to introduce. Let
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δ > 0 be the constant from Hypothesis 3.3.1. Denote by C (Rd) the space of continuous
complex valued functions on Rd. Let ε and θ be two positive numbers satisfying

1 + ε < θ < 2 < 2 + 2ε < 2 + 2δ.

For any function h ∈ C (Rd) introduce the norm ‖h‖θ,ε = |h|θ + [h]ε, where

|h|θ = sup
x∈Rd

|h(x)|
(1 + |x|)θ

, [h]ε = sup
x 6=y

|h(x)− h(y)|
|x− y|ε (1 + |x|) (1 + |y|)

and consider the Banach space

B := Lθ,ε =
{
h ∈ C

(
Rd
)

: ‖h‖θ,ε < +∞
}
.

Proof of M3.1. Conditions 1, 2 and 3 ofM3.1 can be easily verified under the point 1
of Hypothesis 3.3.1 and the fact that θ < 2 + 2δ and ‖δx‖B′ 6 (1 + |x|)θ, for any x ∈ Rd.

We verify the point 4 of HypothesisM3.1. For any (x, y) ∈ Rd×Rd and t ∈ R, we have∣∣∣eitf(x)− eitf(y)
∣∣∣ 6 |t| |f(x)− f(y)| 6 |t| |u| |x− y| and

∣∣∣eitf(x)− eitf(y)
∣∣∣ 6 2. Therefore, we

write ∣∣∣eitf(x)− eitf(y)
∣∣∣ 6 21−ε |t|ε |u|ε |x− y|ε .

Supposing that |x| 6 |y|, we obtain, for any h ∈ Lθ,ε,∣∣∣eitf(x) h(x)− eitf(y) h(y)
∣∣∣ 6 ∣∣∣eitf(x)− eitf(y)

∣∣∣ |h|θ (1 + |x|)θ + |h(x)− h(y)| .

Since θ < 2, we have
[
eitf h− eitf h

]
ε
6 21−ε |t|ε |u|ε |h|θ+[h]ε. Consequently,

∥∥∥eitf h∥∥∥
θ,ε

6

(1 + 21−ε |t|ε |u|ε) ‖h‖θ,ε and the point 4 is verified.
Proof of M3.2 and M3.3. We shall verify that the conditions of the theorem of

Ionescu-Tulcea and Marinescu are satisfied (see [59] and [49]). We start by establishing
two lemmas.

Lemma 3.11.1. Assume Hypothesis 3.3.1.
1. There exists a constant c > 0 such that, for any t ∈ R, n > 1, and h ∈ Lθ,ε,

|Pn
t h|θ 6 c |h|θ .

2. There exist constants c1, c2 and ρ < 1 such that, for any n > 1, h ∈ Lθ,ε and t ∈ R,

[Pn
t h]ε 6 c1ρ

n [h]ε + c2 |t|ε |h|θ .

3. For any t ∈ R, the operator Pt is compact from (B, ‖·‖θ,ε) to (C
(
Rd
)
, |·|θ).

Proof. Claim 1. For any x ∈ Rd,

|Pn
t h(x)| =

∣∣∣Ex (eitSn h (Xn)
)∣∣∣ 6 3θ |h|θ

(
1 + E

(
‖Πn‖θ

)
|x|θ + E

(∣∣∣X0
n

∣∣∣θ)) ,
with Πn = AnAn−1 . . . A1 and X0

n = gn . . . g1 · 0 = ∑n
k=1An . . . Ak+1Bk. By the point 1 of

Hypothesis 3.3.1, there exist c(δ) > 0 and 0 < ρ(δ) < 1 such that, for any n > 1,

E
2+2δ
θ

(
‖Πn‖θ

)
6 E

(
‖Πn‖2+2δ

)
6 c(δ)ρ(δ)n −→

n→+∞
0,
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from which it follows that

E
(∣∣∣X0

n

∣∣∣θ) 6

(
n∑
k=1

E1/θ
(
‖Πn‖θ

)
E1/θ

(
|B1|θ

))θ
< +∞.

This proves the claim 1.
Proof of the claim 2. For any x 6= y ∈ Rd, with |x| 6 |y|, we have

|Pn
t h(x)−Pn

t h(y)|

6 E
(

21−ε |t|ε |u|ε
(

n∑
k=1
‖Πk‖

)ε
|x− y|ε |h|θ

(
1 + ‖Πn‖ |x|+

∣∣∣X0
n

∣∣∣)θ)

+ E
(
[h]ε ‖Πn‖ε |x− y|ε

(
1 + ‖Πn‖ |x|+

∣∣∣X0
n

∣∣∣) (1 + ‖Πn‖ |y|+
∣∣∣X0

n

∣∣∣)) .
Since θ < 2, we obtain that

[Pn
t h]ε 6 21−ε |t|ε |u|εC2(n) |h|θ + C1(n) [h]ε ,

where
C1(n) = E

(
‖Πn‖ε

(
1 + ‖Πn‖+

∣∣∣X0
n

∣∣∣)2
)

and
C2(n) = E

((
n∑
k=1
‖Πk‖

)ε (
1 + ‖Πn‖+

∣∣∣X0
n

∣∣∣)θ) .
Since 2 + 2ε < 2 + 2δ = p, by the Hölder inequality,

C1(n) 6 E
ε

1+ε
(
‖Πn‖1+ε

)
E

1
1+ε

((
1 + ‖Πn‖+

∣∣∣X0
n

∣∣∣)2+2ε
)

6 c(δ)
ε
pρ(δ)

nε
p 32

1 + c(δ)
2
p +

c(δ) 1
pE

1
p (|B1|p)

1− ρ(δ)
1
p

2
 ,

which shows that C1(n) converges exponentially fast to 0. In the same way, taking into
account that θ < 2 we show that C2(n) is bounded:

C2(n) 6
(

n∑
k=1

E
1

1+ε
(
‖Πk‖1+ε

))ε
E

1
1+ε

((
1 + ‖Πn‖+

∣∣∣X0
n

∣∣∣)2+2ε
)

6

 c(δ)
1
p

1− ρ(δ)
1
p

ε 32

1 + c(δ)
2
p +

c(δ) 1
pE

1
p (|B1|p)

1− ρ(δ)
1
p

2
 .

Proof of the claim 3. Let B be a bounded subset of B, (hn)n>0 be a sequence in B
and K be a compact of Rd. Using the claim 1, it follows that, for any x ∈ K and n > 0,

|Pthn(x)| 6 c |hn|θ (1 + |x|)θ 6 cK ,

which implies that the set A = {Pthn : n > 0} is uniformly bounded in (C (K) , |·|∞),
where |·|∞ is the supremum norm. By the claims 1 and 2, we have that, for any x, y ∈ K
and n > 0,

|Pthn(x)−Pthn(y)| 6 [Pthn]ε |x− y|
ε (1 + |x|)θ (1 + |y|)θ 6 cK ‖hn‖B |x− y|

ε
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and, thereby, the set A is uniformly equicontinuous. By the theorem of Arzelà-Ascoli,
we conclude that A is relatively compact in (C (K) , |·|∞). Using a diagonal extraction,
we deduce that there exist a subsequence (nk)k>1 and a function ϕ ∈ C (Rd) such that,
for any compact K ⊂ Rd,

sup
x∈K
|Pthnk(x)− ϕ(x)| −→

n→+∞
0.

Moreover, by the claims 1 and 2, for any n > 1 and x ∈ Rd,

|Pthn(x)| 6 |Pthn(0)|+ [Pthn]ε |x|
ε (1 + |x|) 6 c |hn|θ + c ‖hn‖B |x|

ε (1 + |x|) .

Since B is bounded, we have |Pthn(x)| 6 c(1 + |x|)1+ε, for any x ∈ Rd, as well as
ϕ(x) 6 c(1 + |x|)1+ε, for any x ∈ Rd. Consequently, for any k > 1 and A > 0,

sup
x∈Rd

|Pthnk(x)− ϕ(x)|
(1 + |x|)θ

6 sup
|x|6A

|Pthnk(x)− ϕ(x)|+ 2c sup
|x|>A

(1 + |x|)1+ε

(1 + |x|)θ
.

Taking the limit as k → +∞ and then the limit as A → +∞, we can conclude that
limk→+∞ |Pthnk − ϕ|θ = 0.

Lemma 3.11.2. Assume Hypothesis 3.3.1.
1. The operator P has a unique invariant probability ν which coincides with the distri-

bution of the P-a.s. convergent series Z := ∑+∞
k=1A1 . . . Ak−1Bk. Moreover, the unique

eigenvalue of modulus 1 of the operator P on B is 1 and the associated eigenspace is
generated by the function e: x 7→ 1.

2. Let t ∈ R∗. If h ∈ B and z ∈ C of modulus 1 are such that

Pth(x) = zh(x), x ∈ supp(ν),

then h = 0 on supp(ν).

Proof. We proceed as in Guivarc’h and Le Page [43] and Buraczewski, Damek and Guiv-
arc’h [12]. For any g = (A,B) ∈ GL (d,R)× Rd and x ∈ Rd, we set g · x = Ax+B.

Proof of claim 1. Since k(δ) < 1, the series ∑k E
1

2+2δ (|A1 . . . Ak−1Bk|2+2δ) converges
and so the sequence g1 . . . gn · x = A1 . . . Anx + ∑n

k=1A1 . . . Ak−1Bk converges almost
surely to Z = ∑+∞

k=1A1 . . . Ak−1Bk as n → +∞. Therefore, for any ϕ ∈ B, the sequence
ϕ(g1 . . . gn · x) converges to ϕ(Z) almost surely as n → +∞. Moreover, since |ϕ(x)| 6
|ϕ|θ (1 + |x|)θ and θ < 2 + 2δ, the sequence (ϕ(g1 . . . gn · x))n>1 is uniformly integrable.
So Pnϕ(x) converges to E(ϕ(Z)) as n → +∞. This proves that the distribution ν of Z
is the only invariant probability of P.

Fix z ∈ C such that |z| = 1 and let h 6= 0 belonging to B be an eigenfunction of P,
so that Ph = zh. From the previous argument, it follows that, for any x ∈ Rd,

znh(x) = Pnh(x) −→
n→+∞

ν(h).

Since there exists x ∈ Rd such that h(x) 6= 0, the sequence (zn)n>1 should be convergent
which is possible only if z = 1. From this, we deduce that for any x ∈ Rd, h(x) = E(h(Z))
which implies that h is constant.
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Proof of the claim 2. Our argument is by contradiction. Let t ∈ R∗, h ∈ B and z ∈ C
of modulus 1 be such that Pth(x) = zh(x), for any x ∈ supp(ν) and suppose that there
exists x0 ∈ supp(ν) such that h(x0) 6= 0.

First we establish that |h| is constant on the support of the distribution ν. Since ν
is µ-invariant, for any (g, x) ∈ supp(µ) × supp(ν) we have g · x ∈ supp(ν). From this
fact it follows that Pn

t h(x) = znh(x), for any n > 1 and x ∈ supp(ν). This implies that
|h| (x) 6 Pn |h| (x), for any x ∈ supp(ν). Note also that |h| belongs to B. Therefore,
as we have seen in the proof of the first claim, we have, limn→+∞Pn |h| (x) = ν(|h|) =
E(|h| (Z)) < +∞, for any x ∈ supp(ν). So |h| (x) 6

∫
x′∈Rd |h| (x′)ν(dx′), for any x ∈

supp(ν). Since |h| is continuous, this implies that |h| is constant on the support of ν. In
particular, this means that h(x) 6= 0 for any x ∈ supp(ν).

Since the support of ν is stable by all the elements of the support of µ, we deduce
that the random variable ξn(x) = exp(it 〈u,∑n

k=1 gk . . . g1 · x〉)h(gn . . . g1 · x) takes values
on the sphere Sν(|h|) = {a ∈ C : |a| = ν(|h|)}, for all x in the support of ν. Moreover, the
mean znh(x) of ξn(x) is also on Sν(|h|), which is possible only if ξn(x) is a constant, for
any x ∈ supp(ν). Consequently, for any pair x, y ∈ supp(ν), there exists an event Ωx,y

of P-probability one such that on Ωx,y it holds, for any n > 1,

exp
(
it

〈
u,

n∑
k=1

gk . . . g1 · v
〉)

h (gn . . . g1 · v) = znh(v),

with v ∈ {x, y}, from which we get

h (gn . . . g1 · y)
h (gn . . . g1 · x) = h(y)

h(x) exp
(
it

〈
n∑
k=1

tA1 . . .
tAku, x− y

〉)
. (3.11.1)

In addition, for any n > 1,

E
(∣∣∣∣∣h (gn . . . g1 · y)
h (gn . . . g1 · x) − 1

∣∣∣∣∣
)

= E
(∣∣∣∣∣h (g1 . . . gn · y)
h (g1 . . . gn · x) − 1

∣∣∣∣∣
)
.

Since, for v ∈ {x, y}, the sequence h(g1 . . . gn · v) converges a.s. to h(Z) and since h is
bounded with a constant modulus, we have by (3.11.1),

0 = lim
n→+∞

E
(∣∣∣∣∣h (gn . . . g1 · y)
h (gn . . . g1 · x) − 1

∣∣∣∣∣
)

= lim
n→+∞

E
(∣∣∣∣∣h(y)
h(x) exp

(
it

〈
n∑
k=1

tA1 . . .
tAku, x− y

〉)
− 1

∣∣∣∣∣
)
.

Taking into account that the series ∑n
k=1

tA1 . . .
tAk converges a.s. to a random variable

Z ′, we have for any x, y ∈ supp(ν),

E
(∣∣∣∣∣h(y)
h(x) eit〈Z′u,x−y〉−1

∣∣∣∣∣
)

= 0. (3.11.2)

Since the support of ν is invariant by all the elements of the support of µ, by the
point 2 of Hypothesis 3.3.1, we deduce that the support of ν is not contained in an
affine subspace of Rd, i.e. for any 1 6 j 6 d, there exist xj, yj ∈ supp(ν), such that the
family (vj)16j6d = (xj − yj)16j6d generates Rd. From (3.11.2), we conclude that for any
1 6 j 6 d,

h(yj)
h(xj)

eit〈Z′u,vj〉 = 1, P-a.s.



140 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

Let θj be such that h(xj)
h(yj) = eiθj . Denoting by ηu the distribution of Z ′u, we obtain

that 〈Z ′u, vj〉 ∈ θj+2πZ
t

P-a.s. and so the support of ηu is discrete. Moreover, the measure
ηu is invariant for the Markov chain X ′n+1 = tAn+1(X ′n + u) and so, for any Borel set B
of Rd,

ηu (B) = E
(∫

v∈Rd
1B

(
tA1 (v + u)

)
ηu(dv)

)
. (3.11.3)

Since ηu is discrete, the set Emax = {x ∈ Rd : ηu ({x}) = maxy∈Rd ηu ({y})} is non-empty
and finite. Moreover, using (3.11.3) with B = {x} and x ∈ Emax, we can see that the
image tA−1

1 x− u belongs to Emax P-a.s. Denoting by v0 the barycentre of Emax, we find
that

P
(
tA−1

1 v0 − u = v0
)

= 1.

The fact that u 6= 0 implies that v0 6= 0. The latter implies that tA−1
1 v0 = v0 +u = tA−1

2 v0
almost surely, which contradicts the point 3 of Hypothesis 3.3.1.

The conditions (b), (c) and (d) of the theorem of Ionescu-Tulcea and Marinescu as
stated in Chapter 3 of Norman [59] follow from points 1-3 of Lemma 3.11.1 repectively. It
remains to show the condition (a). Let (hn)n>0 be a sequence in Lθ,ε satisfying ‖hn‖θ,ε 6
K, for any n > 0 and some constant K and suppose that there exists h ∈ C (Rd) such
that limn→+∞ |hn − h|θ = 0. For any x, y, z ∈ Rd and n > 0,

|h(x)− h(y)|
|x− y|ε (1 + |x|)(1 + |y|) + |h(z)|

(1 + |z|)θ

6 |hn − h|θ

(
(1 + |x|)θ + (1 + |y|)θ
|x− y|ε (1 + |x|)(1 + |y|) + 1

)
+ [hn]ε + |hn|θ .

Taking the limit as n→ +∞, shows that h ∈ Lθ,ε and ‖h‖θ,ε 6 K.
The theorem of Ionescu-Tulcea and Marinescu and the unicity of the one-dimensional

projector proved in the point 1 of Lemma 3.11.2 imply Hypothesis M3.2. Hypothesis
M3.3 is obtained easily from Lemma 3.11.1.

The point 2 of Lemma 3.11.2 will be used latter to prove that σ2 > 0.
Proof of M3.4. By the hypothesis α = 2+2δ

1+ε > 2. Consider the function N : Rd → R+

defined by N(x) = |x|1+ε. For any x, y ∈ Rd satisfying |x| 6 |y|,

|N(x)−N(y)| 6 (1 + ε) |y|ε |x− y| .

Using the fact that |N(x)−N(y)| 6 2 |y|1+ε, we have

|N(x)−N(y)| 6 (1 + ε)ε21−ε |y|ε
2+(1+ε)(1−ε) |x− y|ε = cε |y| |x− y|ε .

Together with |N |θ < +∞, this proves that the function N is in B = Lθ,ε.
Obviously |f(x)|1+ε = |〈u, x〉|1+ε 6 |u|1+ε (1 +N(x)). Moreover, for any h ∈ Lθ,ε,

|h(x)| 6 [h]ε |x|
ε (1 + |x|) + |h(0)| 6 2 ‖h‖θ,ε (1 +N(x))

and so ‖δx‖B′ 6 2 (1 +N(x)). Note that for any p ∈ [1, α],

E1/p (N (gn . . . g1 · x)p) 6 21+ε
(
E1/p

(
‖Πn‖p(1+ε)

)
N(x) + E1/p

(
|gn . . . g1 · 0|p(1+ε)

))
.

Since p(1+ε) 6 2+2δ, the previous inequality proves that E1/p
x (N (Xn)p) 6 c (1 +N(x)).

Thus, we proved the first inequality of the point 1 of M3.4.
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For any l > 1, we consider the function φl on R+ defined by:

φl(t) =


0 if t 6 l

1
1+ε − 1,

t−
(
l

1
1+ε − 1

)
if t ∈

[
l

1
1+ε − 1, l

1
1+ε
]
,

1 if t > l
1

1+ε .

(3.11.4)

Define Nl on Rd by Nl(x) = φl(|x|)N(x). For any x ∈ Rd, we have N(x)1{N(x)>l} 6
Nl(x) 6 N(x) which implies that |Nl|θ 6 |N |θ < +∞. Moreover, for any x, y ∈ Rd

satisfying |x| 6 |y|, we have

|φl(|y|)− φl(|x|)| 6 min (|y| − |x| , 1) .

So
|Nl(y)−Nl(x)| 6 [N ]ε |x− y|

ε (1 + |x|) (1 + |y|) + |x|1+ε |y − x|ε .
Since |x| 6 |y|, we obtain that [Nl]ε 6 [N ]ε+1 < +∞. Therefore, the function Nl belongs
to B = Lθ,ε, which finishes the proof of the point 1 of M3.4.

Moreover, ‖Nl‖θ,ε 6 ‖N‖θ,ε + 1 and, so the point 2 of M3.4 is also established.
Since

∫
X |x|

p ν(dx) < +∞, for any p 6 2 + 2δ, we find that

ν (Nl) 6
∫
X
|x|1+ε

1{
|x|>l

1
1+ε−1

}ν(dx) 6
∫
X |x|

2+2δ ν(dx)(
l

1
1+ε − 1

)2+2δ−(1+ε) .

Choosing β = α− 2 > 0, we obtain the point 3 of M3.4.
Proof of M3.5. Using (3.2.5) and the point 4 of Hypothesis 3.3.1,

µ =
∫
Rd
〈u, x〉ν(dx) =

〈
u,E

(+∞∑
k=1

A1 . . . Ak−1Bk

)〉
= 0. (3.11.5)

Now we prove that σ2 > 0. For this, suppose the contrary: σ2 = 0. One can easily
check that the function f belongs to B. Using M3.2 and the fact that ν(f) = µ = 0, we
deduce that ∑n>0 ‖Pnf‖θ,ε = ∑

n>0 ‖Qnf‖θ,ε < +∞ and therefore the series ∑n>0 Pnf

converges in
(
B, ‖·‖θ,ε

)
. We denote by Θ ∈ B its limit and notice that the function Θ

satisfies the Poisson equation: Θ−PΘ = f .
Using the bound (3.2.6), we have that

∣∣∣∑N
n=1 f(x)Pnf(x)

∣∣∣ 6 c (1 +N(x))2. By the
Lebesgue dominated convergence theorem, from (3.2.5), we obtain

σ2 =
∫
Rd
f(x) (2Θ(x)− f(x)) ν(dx)

=
∫
Rd

(
Θ2(x)− (PΘ)2 (x)

)
ν(dx)

=
∫

GL(d,R)×Rd×Rd
(Θ(g1 · x)−PΘ(x))2 µ(dg1)ν(dx).

As σ2 = 0, we have Θ(g1 · x) = PΘ(x), i.e. f(g1 · x) = PΘ(x) − PΘ(g1 · x), µ × ν-a.s.
Consequently, there exists a Borel subset B0 of Rd such that ν(B0) = 1 and for any t ∈ R
and x ∈ B0, ∫

GL(d,R)×Rd
eit〈u,g1·x〉 eitPΘ(g1·x) µ(dg1) = eitPΘ(x) .

Since the functions in the both sides are continuous, this equality holds for every x ∈
supp(ν). Since Θ ∈ Lθ,ε, the function x 7→ eitPΘ(x) belongs to Lθ,εr{0}. This contradicts
the point 2 of Lemma 3.11.2 and we conclude that σ2 > 0 and so M3.5 holds true.
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3.12 Appendix: proofs for compact Markov chains
In this section we prove Proposition 3.3.7. For this we show that M3.1-M3.5 hold

true with N = Nl = 0, for the Markov chain (Xn)n>1, the function f and the Banach
space L (X) given in Section 3.3.2.

Proof of M3.1. Obviously the Dirac measure belongs to L (X)′ and ‖δx‖L (X)′ 6 1
for any x ∈ X. For any h ∈ L (X) and t ∈ R the function eitf h belongs to L (X) and∥∥∥eitf h∥∥∥

L
6 |t| [f ]X ‖h‖∞ + ‖h‖L 6 (|t| [f ]X + 1) ‖h‖L . (3.12.1)

Proof of M3.2. Let (x1, x2) and (y1, y2) be two elements of X and h ∈ L (X). Since

Ph(x1, x2) =
∫
X
h(x2, x

′)P (x2, dx′),

we have ‖Ph‖∞ 6 ‖h‖∞. Denote by hx2 the function z 7→ h(x2, z), which is an element
of L (X). Since [hx2 ]X 6 [h]X and |hx2 |∞ 6 ‖h‖∞, we obtain also that

|Ph(x1, x2)−Ph(y1, y2)| = |Phx2(x2)− Phy2(y2)|
6 [Phx2 ]X dX(x2, y2) + [h]X dX(x2, y2)
6 (|P |L→L ‖h‖X + [h]X) dX(x2, y2),

where |P |L→L is the norm of the operator P : L (X)→ L (X). Therefore P is a bounded
operator on L (X) and ‖P‖L→L 6 (1 + |P |L→L ) . Now, for any h ∈ L (X), we define
the function Fh by

Fh(x2) :=
∫
X
h(x2, x

′)P (x2, dx′) = Ph(x1, x2).

Notice that Fh belongs to L (X) and |Fh|L 6 ‖Ph‖L . So by Proposition 3.3.5, for any
n > 2, (x1, x2) ∈ X and h ∈ L (X),

Pnh(x1, x2) = P n−1Fh(x2) = ν(Fh) +Rn−1Fh(x2) = ν(h)e(x1, x2) +Qnh(x1, x2),

where the probability ν is defined on X by

ν(h) = ν(Fh) =
∫
X×X

h(x′, x′′)P (x′, dx′′)ν(dx′),

the function e is the unit function on X, e(x1, x2) = 1, ∀(x1, x2) ∈ X and Q is the linear
operator on L (X) defined by Qh = R(Fh) = Ph − ν(h). By Proposition 3.3.5, the
operator Q is bounded and for any n > 1, ‖Qn‖L→L 6 |Rn−1|L→L ‖P‖L→L 6 c e−cn.
Since ν is invariant by P , one can easily verify that ΠQ = QΠ = 0, where Π is the
one-dimensional projector defined on L (X) by Πh = ν(h)e.

Proof of M3.3. For any t ∈ R, h ∈ L (X) and (x1, x2) ∈ X,

Pth(x1, x2) =
∫
X

eitf(x2,x′) h(x2, x
′)P (x2, dx′) =

+∞∑
n=0

intn

n! Ln(h)(x1, x2),

where Ln(h) = P(fnh). Since (L (X), ‖·‖L ) is a Banach algebra, it follows that Ln
is a bounded operator on L (X) and ‖Ln‖L→L 6 ‖P‖L→L ‖f‖

n
L . Consequently, the



3.13. A BANACH SPACE FOR THE PRODUCT OF MATRICES 143

application t 7→ Pt is analytic on R and so, by the analytic perturbation theory of linear
operators (see [50]), there exists ε0 > 0 such that, for any |t| 6 κ,

Pn
t = λnt Πt +Qn

t ,

where λt is an eigenvalue of Pt, Πt is the projector on the one-dimensional eigenspace
of λt and Qt is an operator of spectral radius r(Qt) < |λt| such that ΠtQt = QtΠt = 0.
The functions t 7→ λt, t 7→ Πt and t 7→ Qt are analytic on [−κ, κ]. Furthermore, for any
h ∈ L (X) and (x1, x2) ∈ X,

|Pth| (x1, x2) =
∣∣∣∣∫
X

eitf(x2,x′) h(x2, x
′)P (x2, dx′)

∣∣∣∣ 6 ‖h‖∞
and necessarily |λt| 6 1, for any |t| 6 κ. Consequently

sup
|t|6κ,n>1

‖Pn
t ‖L→L 6 c.

Proof of M3.4 and M3.5. Since for any x ∈ X, |f(x)| 6 |f |∞ and ‖δx‖L (X)′ 6 1, we
can choose N = 0 and Nl = 0 for any l > 1 and Hypothesis M3.4 is obviously satisfied.

Finally, Hypothesis 3.3.6 ensures that M3.5 holds true.

Acknowledgements
The authors are very grateful to the anonymous referee for valuable comments and

corrections which helped them to improve the first version of this work.

The two next sections are not a part of the article Limit theorems for Markov walks
conditioned to stay positive under a spectral gap assumption [38]. However, they are
interesting developments: in Section 3.13, I show how to construct a Banach space which
satisfies HypothesesM3.1-M3.5 and in Section 3.14, I prove that it is possible to improve
Theorem 3.2.5 giving the asymptotic behaviour of the couple (Xn, y + Sn)n>1 knowing
that the Markov walk stay positive, τy > n.

3.13 A Banach space for the product of matrices
The purpose of this section is to prove that Theorems 3.2.2-3.2.5 can be applied for

the product of random matrices considered by Grama, Le Page and Peigné [41]. This
additional example and the fact that Hypotheses M3.1-M3.5 are satisfied in previous
models stress the global nature of Theorem 3.2.2-3.2.5.

Note that the Banach space constructed in [41] does not satisfy entirely Hypotheses
M3.1-M3.5. Indeed the tricky point is that in Hypothesis M3.4 we suppose that the
function f is bounded by a function belonging to the Banach space. However in the article
[41] the Banach space is included in the set of bounded function whereas the considered
function f = ρ is not bounded. Consequently in this section, we construct a new Banach
space and show that, with this Banach space, Hypotheses M3.1-M3.5 are satisfied. We
start by introducing again some notations of [41].
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3.13.1 Notations
Let G = GLd(R) be the set of invertible matrices of size d× d, with d > 1. We endow

Rd with the euclidean norm, ‖v‖ =
√∑d

i=1 v
2
i , for any v = (v1, . . . , vd) ∈ Rd and G with

the associated operator norm, ‖g‖ = supv∈Rd\{0} ‖gv‖ / ‖v‖, for any g ∈ G. Denote by
P(Rd) the associated projective space and for any v ∈ Rd, let v ∈ P(Rd) de the direction
of v. We endow P(Rd) with the angular distance d(u, v) = ‖u ∧ v‖ /(‖u‖ ‖v‖), where
u ∧ v is the vector product of u and v. The group G act on the projective space P(Rd)
by multiplication: for any v ∈ Rd, denote by g · v = gv the action of g on the direction
v. Finally, for any g ∈ G, we define

N(g) = max
(
‖g‖ ,

∥∥∥g−1
∥∥∥) .

Let (Ω,F ,P) be a probability space, E be the associated expectation and (gn)n>1
a sequence of random variable i.i.d. defined on Ω and taking its values in G where the
common low is denoted by µ. We now recall the assumptions of [41].
P3.1. There exists δ0 > 0 such that

E
(
N(g1)δ0

)
=
∫
G

exp (δ0 log (N(g))) µ(g) < +∞.

P3.2 (Strongly irreducibility). The action of the support of µ on Rd is strongly irre-
ducible i.e. there is no proper finite union of subspaces of Rd which is invariant by Γµ,
the smallest closed semigroup containing the support of µ.
P3.3 (Propriété de contraction). The semigroup Γµ contains a contacting sequence.

Let ρ be the cocycle defined by

ρ(g, v) := log
(
‖gv‖
‖v‖

)
, ∀(g, v) ∈ G× P(Rd).

Under conditions P3.1-P3.3, it is well-kownn that there exists a unique measure ν which
is µ-invariant on P(Rd).
P3.4. The upper Lyapunov exponent is equal to 0 :

∫
G×P(Rd) ρ(g, v)µ(dg)ν(dv) = 0.

The condition P5 of Grama, Le Page and Peigné [41] ensure that the harmonic func-
tion is positive for any y > 0. This assumption is not necessary in our case and Proposition
3.13.11 will make explicit the exact domain of positivity of this harmonic function.

For more details on the conditions P3.1-P3.4, we refer to the article [41]. We intro-
duce now the random walk associated to the product of random matrices. For any n > 1,
we define

Gn := gn . . . g1 and G0 = Id .
Let B be the closed unit ball of Rd. To study the first time when the product Gnv, for
v /∈ B goes into the unit ball B, on consider the logarithm of its norm

log (‖Gnv‖) =
n∑
k=1

ρ (gk, Gk−1 · v) + log(‖v‖).

Let X = G × P(Rd). For x = (g, v) ∈ X, we consider (Xn)n>0 the Markov chain on Ω
taking its values in X defined by X0 = x and

Xn = (gn, Gn−1g · v) , ∀n > 1.

The associated Markov walk is given by Sn = ρ(X1) + . . . ρ(Xn).



3.13. A BANACH SPACE FOR THE PRODUCT OF MATRICES 145

3.13.2 The Banach space
We denote by C (X,C) the set of the continuous functions from X to C. We fix the

following parameters

ε = δ0

8 , θ = 3ε = 3δ0

8 , α = 5ε = 5δ0

8 , β = 7ε = 7δ0

8 ,

where δ0 is defined by P3.1. For any function h ∈ C (X,C), we set

|h|θ = sup
(g,u)∈X

|h(g, u)|
N(g)θ ,

kε,α(h) = sup
g∈G
u6=v

|h(g, u)− h(g, v)|
d(u, v)εN(g)α , k′ε,β(h) = sup

g 6=g′
u∈P(Rd)

|h(g, u)− h(g′, u)|
‖g − g′‖εN(g)βN(g′)β ,

and we define the norm

‖h‖B := |h|θ + kε,α(h) + k′ε,β(h),

and the associated Banach space

B := {h ∈ C (X,C) : ‖h‖B < +∞} .

3.13.3 Poof of M3.1
For the ease of the reader, we gradually recall HypothesesM3.1-M3.5 by respectively

Propositions 3.13.1, 3.13.6, 3.13.7, 3.13.8 and 3.13.9.

Proposition 3.13.1 (Banach space). Assume P3.1. Then,
1. The constant function equal to 1, denoted by e belongs to B.
2. For any x ∈ X, the Dirac measure δx belongs to the dual of B, denoted by B′.
3. The Banach space B is included in L1 (P(x, ·)), for any x ∈ X.
4. For any t ∈ R and h ∈ B, the function eitρ h is in B.

Proof. Point 1. Since N(g) > 1 for any g ∈ G, it is clear that e ∈ B.
Point 2. For any x = (g, u) ∈ X and h ∈ B,

|δx(h)| = |h(x)| 6 N(g)θ |h|θ 6 N(g)θ ‖h‖θ .

So δx ∈ B′ and
‖δx‖B′ 6 N(g)θ. (3.13.1)

Point 3. For any x = (g, u) ∈ X and h ∈ B,

P |h| (x) =
∫
G
|h(g1, g · u)|µ(dg1) 6 |h|θ

∫
G
N(g1)θµ(dg1),

where P is the Markovian operator associated to (Xn)n>0. Since θ = 3δ0/8 6 δ0, by
P3.1, we have

P |h| (x) 6 c |h|θ < +∞.
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Point 4. Fix h ∈ B and t ∈ R. First we note that∣∣∣eitρ h∣∣∣
θ

= |h|θ . (3.13.2)

Next, for any (g, u) and (g, v) in X, we write that∣∣∣eitρ(g,u) h(g, u)− eitρ(g,v) h(g, v)
∣∣∣ 6 |h|θN(g)θ

∣∣∣eitρ(g,u)− eitρ(g,v)
∣∣∣+ |h(g, u)− h(g, v)| .

(3.13.3)
Let u and v be two vectors of direction u and v respectively, of norm equal to 1 and such
that 〈u, v〉 > 0. We have

∣∣∣eitρ(g,u)− eitρ(g,v)
∣∣∣ 6 |t| |ρ(g, u)− ρ(g, v)| = |t|

∣∣∣∣∣log
(
‖gu‖
‖gv‖

)∣∣∣∣∣ .
Using the fact that |log(s)| 6 |1− s| for any s > 0,

|ρ(g, u)− ρ(g, v)| 6 ‖g(u− v)‖
‖gv‖

6 ‖g‖
∥∥∥g−1

∥∥∥ ‖u− v‖ .
We recall that

‖u− v‖ 6
√

2d(u, v) and that d(u, v) 6 ‖u− v‖ . (3.13.4)

So
|ρ(g, u)− ρ(g, v)| 6

√
2N(g)2d(u, v). (3.13.5)

Consequently ∣∣∣eitρ(g,u)− eitρ(g,v)
∣∣∣ 6 √2 |t|N(g)2d(u, v).

Moreover
∣∣∣eitρ(g,u)− eitρ(g,v)

∣∣∣ 6 2, so∣∣∣eitρ(g,u)− eitρ(g,v)
∣∣∣ 6 21−ε+ε/2 |t|εN(g)2εd(u, v)ε.

From (3.13.3), we deduce that∣∣∣eitρ(g,u) h(g, u)− eitρ(g,v) h(g, v)
∣∣∣ 6 2 |t|ε |h|θN(g)θ+2εd(u, v)ε + kε,α(h)d(u, v)εN(g)α.

Since α = θ + 2ε, we have

kε,α
(
eitρ h

)
6 2 |t|ε |h|θ + kε,α(h) < +∞. (3.13.6)

We proceed in the same way for k′ε,β (eitρ h). Fix (g, u) and (g′, u) in X. We have∣∣∣eitρ(g,u) h(g, u)− eitρ(g′,u) h(g′, u)
∣∣∣ 6 |h|θN(g)θ

∣∣∣eitρ(g,u)− eitρ(g′,u)
∣∣∣+ |h(g, u)− h(g′, u)| .

As previously,
∣∣∣eitρ(g,u)− eitρ(g′,u)

∣∣∣ 6 |t| ‖(g′ − g)u‖
‖g′u‖

6 |t|N(g′) ‖g − g′‖ .

Since
∣∣∣eitρ(g,u)− eitρ(g′,u)

∣∣∣ 6 2, we deduce that∣∣∣eitρ(g,u)− eitρ(g′,u)
∣∣∣ 6 2 |t|εN(g′)ε ‖g − g′‖ε .
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Consequently,∣∣∣eitρ(g,u) h(g, u)− eitρ(g′,u) h(g′, u)
∣∣∣ 6 2 |t|ε |h|θN(g)θN(g′)ε ‖g − g′‖ε

+ k′ε,β(h) ‖g − g′‖εN(g)βN(g′)β.

Since ε 6 β and θ 6 β,

k′ε,β
(
eitρ h

)
6 2 |t|ε |h|θ + k′ε,β(h) < +∞. (3.13.7)

Using (3.13.2), (3.13.6) and (3.13.7), we conclude that eitρ h ∈ B for any t ∈ R. Moreover,∥∥∥eitρ h∥∥∥
B
6 ‖h‖B + 4 |t|ε |h|θ .

3.13.4 Proof of M3.2 and M3.3
We recall that the perturbed operator is given by Pth(x) = P(eitρ h)(x) for any t ∈ R,

h ∈ B and x ∈ X. We will prove that the perturbed operator Pt, t ∈ R satisfies the
hypotheses of the theorem of Ionescu-Tulcea and Marinescu [49]. This will imply in
particular that P have a spectral gap and from this, we will establish Proposition 3.13.6.
Previously, we recall a result of Le Page [54] (Theorem 1). One can also see an expression
of this result in Grama, Le Page and Peigné [41] (Proposition 8.6).

Proposition 3.13.2. Assume conditions P3.1-P3.3. Then there exist ε0 > 0 and rε0 ∈
(0, 1) such that

lim
n→+∞

sup
u6=v

E
(
d (Gn · u,Gn · v)ε0

d (u, v)ε0

)1/n

= rε0 .

In the following lemma we give a control of the norm of Pt.

Lemme 3.13.3. Assume conditions P3.1-P3.3. For any t ∈ R, n > 1 and h ∈ B, the
function Pn

t h belongs to B. Moreover,

‖Pn
t h‖B 6 cε (1 + |t|ε) |h|θ + cεkε,α(h)rnε .

Proof. Fix t ∈ R and n > 1. Observe that for any h ∈ B, x = (g, u) ∈ X and n > 1

Pn
t h(x) = Ex

(
eitSn h(Xn)

)
.

Since Sn ∈ R, by the definition of Xn,

|Pn
t h(x)| 6 Ex (|h(gn, Gn−1g · u)|) 6 |h|θ E

(
N(gn)θ

)
. (3.13.8)

Consequently, using the fact that θ = 3δ0/8 6 δ0 and P3.1,

|Pn
t h|θ 6 |h|θ E

(
N(g1)θ

)
< +∞. (3.13.9)
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For any x ∈ X, denote by Xx
n the Markov chain starting to X0 = x and by Sxn the

associated Markov chain. For any (g, u) and (g, v) in X,

∆n := |Pn
t h(g, u)−Pn

t h(g, v)| =
∣∣∣∣E(eitS

(g,u)
n h

(
X(g,u)
n

)
− eitS

(g,v)
n h

(
X(g,v)
n

))∣∣∣∣
6 E (|h (gn, Gn−1g · u)− h (gn, Gn−1g · v)|)

+ E
(
|h (gn, Gn−1g · u)|

∣∣∣∣eitS(g,u)
n − eitS

(g,v)
n

∣∣∣∣)
6 kε,α(h)E (d (Gn−1g · u,Gn−1g · v)εN(gn)α)

+ |h|θ E
(
N(gn)θ

∣∣∣∣eitS(g,u)
n − eitS

(g,v)
n

∣∣∣∣)
Using the fact that∣∣∣∣eitS(g,u)

n − eitS
(g,v)
n

∣∣∣∣ 6 min
(
|t|
∣∣∣S(g,u)
n − S(g,v)

n

∣∣∣ , 2) 6 21−ε |t|ε
∣∣∣S(g,u)
n − S(g,v)

n

∣∣∣ε
and the independence of gi, i > 1, we deduce that

∆n 6 kε,α(h)E (d (Gn−1g · u,Gn−1g · v)ε)E (N(gn)α)
+ 21−ε |t|ε |h|θ E

(
N(gn)θ |ρ (gn, Gn−1g · u)− ρ (gn, Gn−1g · v)|ε

)
+ 21−ε |t|ε |h|θ

n−1∑
k=1

E
(
N(gn)θ

)
E (|ρ (gk, Gk−1g · u)− ρ (gk, Gk−1g · v)|ε) .

By (3.13.5) and the fact that θ + 2ε = 5ε = α,

∆n 6
(
kε,α(h) + 21−ε/2 |t|ε |h|θ

)
E (d (Gn−1g · u,Gn−1g · v)ε)E (N(g1)α)

+ 21−ε/2 |t|ε |h|θ E
(
N(g1)θ

) n−1∑
k=1

E
(
N(g1)2ε

)
E (d (Gk−1g · u,Gk−1g · v)ε) .

(3.13.10)

Now we will use the fact that the sequence (Gk)k>0 is contracting on the directions.
Without loss of generality, we can assume that δ0/8 6 ε0. So, by Proposition 3.13.2,
there exist n0 and rε ∈ (0, 1) such that for any n > n0 and (u, v) ∈ P(Rd)2,

E (d (Gng · u,Gng · v)ε) 6 rnε d (g · u, g · v)ε .

By (3.13.4), with u and v two vectors of directions u and v respectively, with norm equal
to 1 and satisfying 〈u, v〉 > 0, we have

d (g · u, g · v) 6
∥∥∥∥∥ gu

‖gu‖
− gv

‖gv‖

∥∥∥∥∥ 6 ‖g(u− v)‖
‖gu‖

+ ‖gv‖
∣∣∣∣∣ 1
‖gu‖

− 1
‖gv‖

∣∣∣∣∣
6 N(g)2 ‖u− v‖+ |‖gv‖ − ‖gu‖|

‖gu‖
6 2N(g)2 ‖u− v‖
6 2
√

2N(g)2d (u, v) .

So, for any n > n0

E (d (Gng · u,Gng · v)ε) 6 23ε/2rnεN(g)2εd (u, v)ε ,
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In the same way, for any n 6 n0,

E (d (Gng · u,Gng · v)ε) 6 23ε/2E
(
N(Gng)2ε

)
d (u, v)ε 6 23ε/2E

(
N(g1)2ε

)n
N(g)2εd (u, v)ε

6 cεN(g)2εd (u, v)ε ,

where hereafter cε is a constant depending only on ε which its value is likely to change
every occurrence. We obtain that for any n > 1,

E (d (Gng · u,Gng · v)ε) 6 cεr
n
εN(g)2εd (u, v)ε .

Putting together this last inequality with (3.13.10),

∆n 6 cεkε,α(h)rn−1
ε N(g)2εd (u, v)ε + cε |t|ε |h|θN(g)2εd (u, v)ε

n∑
k=1

rk−1
ε .

Since 2ε 6 α = 5ε, we deduce that

kε,α(Pn
t h) 6 cε |t|ε |h|θ + cεkε,α(h)rnε < +∞. (3.13.11)

In the same way, for any (g, u) and (g′, u) in X,

∆′n := |Pn
t h(g, u)−Pn

t h(g′, u)|
6 kε,α(h)E

(
d (Gn−1g · u,Gn−1g

′ · u)ε
)
E (N(gn)α)

+ 21−ε |t|ε |h|θ E
(
N(gn)θ |ρ (gn, Gn−1g · u)− ρ (gn, Gn−1g

′ · u)|ε
)

+ 21−ε |t|ε |h|θ
n−1∑
k=1

E
(
N(gn)θ

)
E
(
|ρ (gk, Gk−1g · u)− ρ (gk, Gk−1g

′ · u)|ε
)
.

Using again (3.13.5),

∆′n 6 cεkε,α(h)E
(
d (Gn−1g · u,Gn−1g

′ · u)ε
)

+ cε |t|ε |h|θ
n∑
k=1

E
(
d (Gk−1g · u,Gk−1g

′ · u)ε
)
.

As previously, by (3.13.4),

d (g · u, g′ · u) 6
∥∥∥∥∥ gu

‖gu‖
− g′u

‖g′u‖

∥∥∥∥∥ 6 ‖(g − g′)u‖‖gu‖
+ ‖g′u‖

∣∣∣∣∣ 1
‖gu‖

− 1
‖g′u‖

∣∣∣∣∣
6 2N(g) ‖g − g′‖ .

So using Proposition 3.13.2, for any n > 1,

E (d (Gng · u,Gng · v)ε) 6 cεr
n
εN(g)ε ‖g − g′‖ε .

Thereby,
∆′n 6 cεkε,α(h)rnεN(g)ε ‖g − g′‖ε + cε |t|ε |h|θN(g)ε ‖g − g′‖ε .

Since β > ε and N(g′) > 1, we get

k′ε,β(Pn
t h) 6 cεkε,α(h)rnε + cε |t|ε |h|θ < +∞. (3.13.12)

Putting together with (3.13.9), (3.13.11) and (3.13.12), it completes the proof.
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We now show that the conditions of theorem of Ionescu-Tulcea and Marinescu [49] are
satisfied under P3.1-P3.3. For more details on the theorem of Ionescu-Tulcea and Mari-
nescu we refer to the book of Norman [59]. We define Cθ := {h ∈ C (X,C) : |h|θ < +∞.}.

Lemme 3.13.4. Assume P3.1-P3.3. The Banach space (B, ‖·‖B) is included in the set
(Cθ, |·|θ) which is also a Banach space.
1. Let (hn)n>0 ∈ BN and h ∈ Cθ be such that |hn − h|θ → 0 when n → +∞ and such

that for any n > 0, ‖hn‖B 6 C. Therefore h ∈ B and ‖h‖B 6 C.
2. For any t ∈ R and h ∈ B, we have

sup
n>0

|Pn
t h|θ
|h|θ

< +∞.

3. For any t ∈ R, there exist k > 1, r ∈ (0, 1) and c > 0 such that for any h ∈ B,∥∥∥Pk
t h
∥∥∥

B
6 r ‖h‖B + c |h|θ .

4. For any t ∈ R, the operator Pt from (B, ‖·‖) to (Cθ, |·|θ) is compact : for any bounded
subspace B of B, the set PtB is relatively compact.

Proof. Point 1. Let (hn)n>0 ∈ BN and h ∈ Cθ. We suppose that |hn − h|θ → 0 as n →
+∞ and that ‖hn‖B 6 C, for any n > 0. For any (g1, g2, g3, g

′
3) ∈ G4, (u1, u2, u2

′, u3) ∈
P(Rd)4 and n > 0, we write that

|h(g1, u1)|
N(g1)θ + |h(g2, u2)− h(g2, u2

′)|
d(u2, u2

′)εN(g2)α + |h(g3, u3)− h(g′3, u3)|
‖g3 − g′3‖

εN(g3)βN(g′3)β

6
|hn(g1, u1)|
N(g1)θ + |hn(g2, u2)− hn(g2, u2

′)|
d(u2, u2

′)εN(g2)α + |hn(g3, u3)− hn(g′3, u3)|
‖g3 − g′3‖

εN(g3)βN(g′3)β

+ |h− hn|θ

(
1 + 2N(g2)θ

d(u2, u2
′)εN(g2)α + N(g3)θ +N(g′3)θ

‖g3 − g′3‖
εN(g3)βN(g′3)β

)

Therefore

|h(g1, u1)|
N(g1)θ + |h(g2, u2)− h(g2, u2

′)|
d(u2, u2

′)εN(g2)α + |h(g3, u3)− h(g′3, u3)|
‖g3 − g′3‖

εN(g3)βN(g′3)β

6 C + |h− hn|θ

(
1 + 2N(g2)θ

d(u2, u2
′)εN(g2)α + N(g3)θ +N(g′3)θ

‖g3 − g′3‖
εN(g3)βN(g′3)β

)

Taking the limit as n→ +∞, we conclude that

‖h‖B 6 C.

Point 2. It is a straightforward consequence of (3.13.9),

sup
n>0

|Pn
t h|θ
|h|θ

6 E
(
N(g1)θ

)
< +∞.

Point 3. By Lemma 3.13.3, for any t ∈ R, n > 1 and h ∈ B

‖Pn
t h‖B 6 cε (1 + |t|ε) |h|θ + cεkε,α(h)rnε .
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Since rε ∈ (0, 1), there exists n0 > 1 such that cεrnε 6 r < 1, for any n > n0, which proves
the point 3.

Point 4. Let B be a bounded subset of B. We will show that PtB est relatively
compact: for a fixed sequence (hn)n>0 in B, we will construct a subsequence of Pthn
which converges in (Cθ, |·|θ). Fix K a compact of X. For any x = (g, u) ∈ K and n > 0,
by (3.13.8),

|Pthn(x)| 6 E
(
N(g1)θ

)
|hn|θ . (3.13.13)

Since (hn)n>0 is bounded,we deduce that (Pthn(x))n>0 is bounded in C and so relatively
compact. Let us show that (Pthn)n>0 is equicontinuous in x ∈ K. For any y = (g′, v) ∈ K
and n > 0,

|Pthn(x)−Pthn(y)| 6 |Pthn(g, u)−Pthn(g, v)|+ |Pthn(g, v)−Pthn(g′, v)|
6 kε,α (Pthn) d(u, v)εN(g)α + kε,β (Pthn) ‖g − g′‖εN(g)βN(g′)β.

Since K is compact, there exists cK such that N(g) 6 cK for any g ∈ G. So using
(3.13.11) and (3.13.12),

|Pthn(x)−Pthn(y)| 6 cε,K (|t|ε + 1) ‖hn‖B
(
d(u, v)ε + ‖g − g′‖ε

)
.

Since (|hn|θ)n>0 is bounded, we deduce that the sequence (Pthn)n>0 is equicontinuous.
Therefore, by the theorem of Ascoli-Arzelà, the set {Pthn, n > 0} is relatively compact
in (C (K,C), |·|∞). By a diagonalisation argument, there exist a subsequence (Pthnk)k>0
and a function ϕ ∈ C (X,C) such that for any compact K in X, we have

sup
x∈K
|Pthnk(x)− ϕ(x)| −→

k→+∞
0.

Moreover, by (3.13.13), |Pthn(x)| 6 cB, for any x ∈ X and n > 0. So, for any x ∈ X,
ϕ(x) 6 1 + cB. We deduce that, for any A > 0 and n > 0,

sup
x∈X

|Pthnk(x)− ϕ(x)|
N(g)θ 6 sup

N(g)6A
u∈P(Rd)

|Pthnk(g, u)− ϕ(g, u)|+ sup
N(g)>A
u∈P(Rd)

1 + 2cB
N(g)θ .

Since {(g, u) ∈ X : N(g) 6 A} is compact, we have for any A > 0,

lim sup
k→+∞

sup
x∈X

|Pthnk(x)− ϕ(x)|
N(g)θ 6

1 + 2cB
Aθ

.

Taking the limit as A → +∞, we conclude that the sequence (Pthnk)k>0 converges in
(Cθ, |·|θ) to ϕ and so, finally, the subset PtB is relatively compact in (Cθ, |·|θ).

To establishM3.2, we need one more result from Le Page [54] (Corollary 1) also stated
in Grama, Le Page and Peigné [41]. We recall that under P3.1-P3.3, there exists a unique
measure ν on P(Rd) which is µ-invariant,i.e. such that for any continuous function ϕ :
P(Rd)→ C,

(µ ∗ ν)(ϕ) =
∫
X
ϕ(g · u)ν(du)µ(dg) =

∫
P(Rd)

ϕ(u)ν(du) = ν(ϕ). (3.13.14)

Proposition 3.13.5. Assume conditions P3.1-P3.3. For any continuous function ϕ :
P(Rd)→ C, we have

lim
n→+∞

sup
u∈P(Rd)

|E (ϕ(Gn · u))− ν(ϕ)| = 0.
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Proposition 3.13.6 (Spectral gap). Assume P3.1-P3.3. Then,
1. The map h 7→ Ph is a bounded operator on B.
2. There exist two constants c1 > 0 and c2 > 0 such that

P = Π +Q,

where Π is a one-dimensional projector and Q is an operator on B such that ΠQ =
QΠ = 0. Moreover for any n > 1,

‖Qn‖B→B 6 c1 e−c2n .

Proof. Point 1. It is a straightforward consequence of Lemma 3.13.3 for n = 1 and t = 0.
Point 2. From Lemma 3.13.4 and the theorem of Ionescu-Tulcea and Marinescu [49],

we know that there exists a finite number of eigenvalues of modulus 1, say λ1, . . . , λp
and operators Π1, . . . ,Πp, Q such that P = ∑p

i=1 λiΠi +Q with Πi orthogonal projectors
satisfying ΠiQ = QΠi = 0 and the spectral radius of Q is strictly less that 1 and so

‖Qn‖B→B 6 c1 e−c2n .

It remains to prove that 1 is the unique eigenvalue of modulus 1 and that the associated
eigenspace is one-dimensional. Let λ ∈ C be an eigenvalue of P of modulus 1 and let
h ∈ B be an associated eigenvector. For any x = (g, u) ∈ X and n > 1,

λnh(x) = Pnh(x) = E (h(gn, Gn−1g · u)) .

Consider h̃(v) = E (h(g1, v)), for any v ∈ P(Rd). By the independence of gi,

λnh(x) = E
(
h̃(Gn−1g · u)

)
Since h ∈ B, h̃ is ε-Hölder: for any v and w ∈ P(Rd),∣∣∣h̃(v)− h̃(w)

∣∣∣ 6 kε,α(h)E (N(g1)α) d(v, w)ε,

we deduce that the function h̃ is continuous and so by Proposition 3.13.5,

λnh(x) −→
n→+∞

ν(h̃) =
∫
X
h(g1, v)ν(dv)µ(dg1).

Since h is an eigenvector, by definition, there exists x0 ∈ X such that h(x0) 6= 0. So λ = 1
and h(x) = ν(h̃)e is collinear to the constant function equal to 1, for any x ∈ X. This
proves that 1 is the unique eigenvalue of modulus 1 and that its associated eigenspace is
one-dimensional, which concludes the proof of the point 2.

Proposition 3.13.7 (Perturbed transition operator). Assume P3.1-P3.3 and set κ > 0.
1. For any |t| 6 κ, the map g 7→ Ptg is a bounded operator on B.
2. There exists a constant CP > 0 such that, for any n > 1 and |t| 6 κ,

‖Pn
t ‖B→B 6 CP.

Proof. It is a straightforward consequence of Lemma 3.13.3.
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3.13.5 Proof of M3.4
For any h ∈ B, we define

ν̃(h) :=
∫
X
h(g1, v)ν(dv)µ(dg1). (3.13.15)

Proposition 3.13.8 (Local integrability). Assume P3.1. The Banach space B contains
a sequence of non-negative function Ñ , Ñ1, Ñ2, . . . such that:
1. There exists pmax > 2 and γ > 0 such that, for any x ∈ X,

max
{
|ρ(x)|1+γ , ‖δx‖B′ ,E

1/pmax
x

(
Ñ (Xn)pmax

)}
6 c

(
1 + Ñ(x)

)
and

Ñ(x)1{Ñ(x)>l} 6 Ñl(x), for any l > 1.

2. There exists c > 0 such that, for any l > 1,∥∥∥Ñl

∥∥∥
B
6 c.

3. There exist δ > 0 and c > 0 such that, for any l > 1,∣∣∣ν̃ (Ñl

)∣∣∣ 6 c

l1+δ .

Proof. For any x = (g, u) ∈ X we define Ñ(x) = (‖g‖+ ‖g−1‖)θ. For any t > 0 and
l > 1, we consider

φl(t) =


0 if t 6 l − 1

t− (l − 1) if t ∈ [l − 1, l]
1 if t > l

and we define Ñl(x) = φl
(
Ñ(x)

)
Ñ(x), for any x ∈ X and l > 1, .

The function Ñ belongs to B: it is easy to see that
∣∣∣Ñ ∣∣∣

θ
6 2θ and that kε,α(Ñ) = 0.

Moreover, for any (g, g′) ∈ G and u ∈ P(Rd),∣∣∣Ñ(g, u)− Ñ(g′, u)
∣∣∣ 6 θ sup

ξ>1
ξθ−1

∣∣∣‖g‖+
∥∥∥g−1

∥∥∥− ‖g′‖ − ∥∥∥(g′)−1
∥∥∥∣∣∣

Without loss of generality, we can assume that δ0 6 8/3 i.e θ 6 1 and so∣∣∣Ñ(g, u)− Ñ(g′, u)
∣∣∣ 6 (

‖g − g′‖+
∥∥∥g−1(g − g′)(g′)−1

∥∥∥) 6 2 ‖g − g′‖N(g)N(g′).

Moreover ∣∣∣Ñ(g, u)− Ñ(g′, u)
∣∣∣ 6 2θN(g)θ + 2θN(g′)θ 6 2θ+1N(g)θN(g′)θ.

Consequently,∣∣∣Ñ(g, u)− Ñ(g′, u)
∣∣∣ 6 2(θ+1)(1−ε)+ε ‖g − g′‖εN(g)ε+(1−ε)θN(g′)ε+(1−ε)θ. (3.13.16)

Since ε+ (1− ε)θ 6 4ε 6 β, we obtain that

k′ε,β
(
Ñ
)
6 2θ+1.
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Thereby Ñ ∈ B and
∥∥∥Ñ∥∥∥

B
6 2θ+2.

We now show that Ñl ∈ B, for any l > 1. Fix l > 1. We note that Ñl(x) 6 Ñ(x),
for any x ∈ X, and so

∣∣∣Ñl

∣∣∣
θ
6
∣∣∣Ñ ∣∣∣

θ
6 2θ. Since for any g ∈ G, the function u 7→ Ñ(g, u)

is constant, the function u 7→ Ñl(g, u) is also constant and so kε,α(Ñl) = 0. For any
(g, g′) ∈ G and u ∈ P(Rd),

∣∣∣Ñl(g, u)− Ñl(g′, u)
∣∣∣ 6 Ñ(g, u)

∣∣∣φl (Ñ(g, u)
)
− φl

(
Ñ(g′, u)

)∣∣∣
+ ‖φl‖∞

∣∣∣Ñ(g, u)− Ñ(g′, u)
∣∣∣

6
(
2θN(g)θ + 1

) ∣∣∣Ñ(g, u)− Ñ(g′, u)
∣∣∣ .

Using (3.13.16),
∣∣∣Ñl(g, u)− Ñl(g′, u)

∣∣∣ 6 (
2θ + 1

)
N(g)θ2θ+1 ‖g − g′‖εN(g)ε+θN(g′)ε+θ

6 22θ+2 ‖g − g′‖εN(g)ε+2θN(g′)ε+2θ.

Finally, since ε+ 2θ = 7ε = β, we conclude that k′ε,β(Ñl) 6 22θ+2, that Ñl ∈ B and that

∥∥∥Ñl

∥∥∥
B
6 22θ+3. (3.13.17)

Point 1. Recall that ρ(x) = log (‖gu‖), for any x = (g, u) ∈ X and fix γ > 0 (γ = 1
for example). If ‖gu‖ > 1, then |ρ(x)|1+γ 6 log (‖g‖)1+γ 6 cγ,θ ‖g‖θ. If ‖gu‖ 6 1, then
|ρ(x)|1+γ 6

(
− log

(
‖g−1‖−1))1+γ

6 cγ,θ ‖g−1‖θ. In every case,

|ρ(x)|1+γ 6 cγ,θÑ(x).

By (3.13.1), we have seen that ‖δx‖B′ 6 N(g)θ 6 Ñ(x), for any x = (g, u) ∈ X. Choosing
pmax = 8/3 > 2, we get θpmax = δ0 and so

E1/pmax
x

(
Ñ(Xn)pmax

)
6 2θE1/pmax

(
N(gn)θpmax

)
= cδ0 < +∞.

By the definition of φl, it is clear that Ñ(x)1{Ñ(x)>l} 6 Ñl(x), for any l > 1 and x ∈ X,
which proves the point 1.

Point 2. This point is proved by (3.13.17).
Point 3. Fix δ = 2/3. By the definition of Ñl, we have, for any l > 2,

ν̃
(
Ñl

)
=
∫
X
Ñl(g1, v)ν(dv)µ(dg1) 6

∫
X
Ñ(g1, v)1{Ñ(g1,v)>l−1}ν(dv)µ(dg1)

6
∫
X

Ñ(g1, v)2+δ

(l − 1)1+δ ν(dv)µ(dg1)

6
2θ(2+δ)

(l − 1)1+δ

∫
G
N(g1)θ(2+δ)µ(dg1).

Since θ(2 + δ) = δ0, we conclude that ν̃
(
Ñl

)
6 cδ0/l

5/3, for any l > 1.
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3.13.6 Proof of M3.5
Let µ and σ2 de defined by the point 1 and 2, respectively, of the Proposition 3.2.1. The

measure ν̃ defined by (3.13.15) is P-invariant. Indeed for any continuous and bounded
function h : X→ C,

ν̃ (Ph) =
∫
X

Ph(g, u)ν(du)µ(dg) =
∫
X×G

h(g1, g · u)µ(dg1)µ(dg)ν(du)

=
∫
X
h̃(g · u)µ(dg)ν(du).

where h̃ is defined by h̃(v) =
∫
G h(g1, v)µ(dg1), for any v ∈ P(Rd). Since ν is bsµ-invariant

(see (3.13.14)),
ν̃ (Ph) =

∫
P(Rd)

h̃(u)ν(du) = ν̃(h).

Note that ν̃(Ñ2) 6 22θµ(N2θ) and since 2θ 6 δ0, we deduce that ν̃(Ñ2) < +∞. Thereby,
the equation (3.2.5) is satisfied.

Proposition 3.13.9 (Centring and non-degeneracy). Assume P3.1-P3.4. Then, the
walk (Sn)n>1 est centred :

ν̃(ρ) = µ = 0,
and non-degenerated:

σ2 = Varν̃ (ρ(X1)) + 2
+∞∑
k=2

Covν̃ (ρ(X1), ρ(Xk)) > 0.

Proof. The hypothesisP3.4 implies that ν̃(ρ) = 0. Moreover, by the theorem 2 of Le Page
[54] and under Hypotheses P3.1-P3.4, we know that 1

n
Ex (S2

n) converges to a positive
number, say σ̃2 > 0. So using Proposition 3.2.1, one can see that σ2 = σ̃2 > 0.

3.13.7 Results
By Propositions 3.13.1, 3.13.6, 3.13.7, 3.13.8 and 3.13.9, we see that HypothesesM3.1-

M3.5 are satisfied and so Theorem 3.2.2-3.2.5 precise the behaviour of the associated
random walk (Sn)n>1.

Proposition 3.13.10. Assume P3.1-P3.4. Theorem 3.2.2-3.2.5 hold true for the ran-
dom walk constructed by the product of random matrices Sn = log (‖Gng · x‖).

We detail here some points implied by the previous proposition. For any γ > 0, we
define

D ′γ := {(x, y) ∈ X× R : ∃n0 > 1, Px (y + Sn0 > γ , τy > n0) > 0}

Proposition 3.13.11. Assume P3.1-P3.4.
1. The function V defined by Theorem 3.2.2 satisfies, for any y ∈ R, x ∈ X and δ > 0,

(1− δ) max(y, 0)− cδ 6 V (x, y) 6 (1 + δ) max(y, 0) + cδ.

2. There exists γ′0 > 0 such that, for any γ > γ′0,

supp(V ) = D ′γ.
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Proof. Point 1. By the point 2 of Theorem 3.2.2, for any (x, y) ∈ X × R, we have
V (x, y) = Ex (V (X1, y + S1) ; τy > 1). Therefore, using the point 3 of Theorem 3.2.2,

V (x, y) 6 Ex
(
(1 + δ)(y + S1) + cδ(1 + Ñ(X1)) ; τy > 1

)
6 (1 + δ) max(y, 0) + cδEx

(
1 + |ρ(X1)|+ Ñ(X1)

)
.

By the point 1 of Proposition 3.13.8,

V (x, y) 6 (1 + δ) max(y, 0) + cδ,θE
(
N(g1)θ

)
6 (1 + δ) max(y, 0) + cδ,θ.

We proceed in a similar way to obtain the lower bound:

V (x, y) > (1− δ)Ex (y + S1 ; y + S1 > 0)− cδEx
(
1 + Ñ(X1) ; τy > 1

)
> (1− δ)y + (1− δ)Ex (S1)− (1− δ)Ex (y + S1 ; y + S1 6 0)− cδ,θ
> (1− δ)y − cδ,θ.

Since V > 0, we conclude that

V (x, y) > (1− δ) max(y, 0)− cδ,θ

Point 2. Taking δ = 1/2 in the point 1, there exists γ′0 = 4cδ > 0 such that for any
(x, y) ∈ X× R,

V (x, y) > y

2 −
γ′0
4 .

We recall that the sets Dγ are defined before Theorem 3.2.2 by

Dγ :=
{

(x, y) ∈ X× R : ∃n0 > 1, Px
(
y + Sn0 > γ

(
1 + Ñ (Xn0)

)
, τy > n0

)
> 0

}
.

Since Ñ > 0, pour tout γ > 0, we see that Dγ ⊆ D ′γ. Thereby, using the point 3 of
Proposition 3.8.8, we deduce that for any γ > 0,

supp(V ) ⊆ D ′γ. (3.13.18)

Moreover, for any γ > 0, we consider ζ ′γ := inf {k > 1 : |y + Sk| > γ} and fix (x, y) ∈
D ′γ′0 . There exists n0 > 1 such that Px (y + Sn0 > γ , τy > n0) > 0. Consequently, in a
similar way as in the proof of the point 4 of Proposition 3.8.8,

V (x, y) > Ex
(
V (Xn0 , y + Sn0) ; τy > n0 , ζ

′
γ′0

6 n0
)

>
1
2Ex

(
y + Sζ′

γ′0
− γ′0

2 ; τy > ζ ′γ′0 , ζ
′
γ′0

6 n0

)

>
γ′0
4 Px

(
τy > ζ ′γ′0 , ζ

′
γ′0

6 n0
)
> 0.

Therefore D ′γ′0 ⊆ supp(V ). Moreover, it is easy to see that D ′γ1 ⊆ D ′γ2 , for any γ1 > γ2. So
D ′γ ⊆ supp(V ), for any γ > γ′0, which, together with (3.13.18), concludes the proof.

Proposition 3.13.12. Assume P3.1-P3.4. Then, for any (x, y) /∈ supp(V ),

Px (τy > n) 6 c e−cn .



3.14. ASYMPTOTIC LAW OF THE COUPLE (XN , SN)N>0 CONDITIONED 157

Proof. Fix (x, y) /∈ supp(V ). By the point 2 of Theorem 3.2.2, we note that 0 = V (x, y) =
Ex (V (X1, y + S1) ; τy > 1). Consequently, on the event {τy > 1}, we have (X1, y+S1) /∈
supp(V ). Using the Markov property, and the point 2 of Theorem 3.2.3, for any n > 2,
we deduce that

Px (τy > n) 6 c e−c(n−1) Ex
(
1 + Ñ(X1) ; τy > 1

)
6 c e−cn E

(
N(g1)θ

)
.

Using the same ideas as in the proofs of Propositions 3.13.11 and 3.13.12 and using
Theorem 3.2.4 and 3.2.5, we obtain the following proposition.

Proposition 3.13.13. Assume P3.1-P3.4.
1. There exists ε′0 > 0 such that, for any ε′ ∈ (0, ε′0), n > 1 and (x, y) /∈ supp(V ),∣∣∣∣∣Px (τy > n)− 2V (x, y)√

2πnσ

∣∣∣∣∣ 6 cε′
(1 + max(y, 0))2

n1/2+ε′ .

2. For any (x, y) ∈ X× R and n > 1,

Px (τy > n) 6 c
1 + max(y, 0)√

n
.

3. There exists ε′0 > 0 such that for any ε′ ∈ (0, ε′0), n > 1, t0 > 0, t ∈ [0, t0] and
(x, y) ∈ X× R,∣∣∣∣∣Px (y + Sn 6 t

√
n , τy > n

)
− 2V (x, y)√

2πnσ
Φ+

(
t

σ

)∣∣∣∣∣ 6 cε′,t0
(1 + max(y, 0))2

n1/2+ε′ .

3.14 Asymptotic law of the couple (Xn, Sn)n>0 condi-
tioned

The goal of this section is to improve Theorem 3.2.5, giving the law of (Xn, y + Sn)n>0
conditionally to the fact that the random walk stays positive {τy > n}. Roughly speaking,
by the law of the iterated logarithm, the Markov walk at the time n is of order

√
n. So its

"inertia" increases with n whereas the Markov chain converges exponentially fast to the
stationary measure. The "effect" ofXn on the walk y+Sn decreases with n. This motivates
the fact that, intuitively, the chain and the walk are asymptotically independent. More
precisely, our goal is to prove the following theorem:

Theorem 3.14.1. Assume Hypotheses M3.1-M3.5.
1. For any non-negative bounded function h : X → R+ belonging to B, any (x, y) ∈

supp(V ) and t > 0, we have

Ex
(
h (Xn) ; y + Sn 6 tσ

√
n
∣∣∣ τy > n

)
−→
n→+∞

ν (h) Φ+(t),

where Φ+ is the distribution function of the Rayleigh law, Φ+(t) = 1− e− t
2
2 .



158 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

2. Moreover, there exists ε0 > 0 such that for any ε ∈ (0, ε0), non-negative bounded
function h : X→ R+ belonging to B, any n > 1, t0 > 0, t ∈ [0, t0] and (x, y) ∈ X×R,∣∣∣∣∣Ex (h (Xn) ; y + Sn 6 tσ

√
n , τy > n

)
− ν(h)2V (x, y)√

2πnσ

(
1− e− t

2
2

)∣∣∣∣∣
6 cε,t0 (‖h‖∞ + ‖h‖B)

max(y, 0) +
(
1 + y1{y>(n−k)1/2−ε} +N(x)

)2

n1/2+ε/16 .

Proof. To prove that the asymptotic law of (Xn)n>0 is the invariant measure even if we
condition by the fact that the walk stays positive, we make a "gap" between the index
of h (Xn) and of {τy > n − k} of size k = bnεc, negligible in comparison with n and we
make use the fact that the speed of the convergence of (Xn)n>0 to the stationary measure
is exponentially fast.

For any n > 0 and ε > 0 we define k = bnεc and tn = 1
nε
. Set t0 > 0. For any

t ∈ [0, t0], we will give a lower and upper control of the following expectation:

I0 := Ex
(
h (Xn) ; y + Sn 6 tσ

√
n , τy > n

)
. (3.14.1)

We denote also

I0(x, y, n, u) := Ex (h (Xn) ; y + Sn 6 u , τy > n) . (3.14.2)

Upper bound of I0. By the Markov property,

I0 =
∫
X×R

I0(x′, y′, k, tσ
√
n)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ , τy > n− k) .

Inserting the event {y′ = y + Sn−k 6 σ(t+ tn)
√
n}, we write

I0 =
∫
X×R

I0(x′, y′, k, tσ
√
n)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k 6 σ(t+ tn)
√
n , τy > n− k

)
︸ ︷︷ ︸

=:I1

+
∫
X×R

I0(x′, y′, k, tσ
√
n)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ , (3.14.3)

y + Sn−k > σ(t+ tn)
√
n , τy > n− k

)
︸ ︷︷ ︸

=:I2

.

Bound of I1. Since h is non-negative,

I0(x′, y′, k, tσ
√
n) = Ex′

(
h (Xk) ; y′ + Sk 6 tσ

√
n , τy′ > n

)
6 Ex′ (h (Xk)) .

Using the spectral gap property M3.2 and the fact that h ∈ B, we know that

Ex′ (h (Xk)) = Pkh(x′) = ν(h) +Qkh(x′). (3.14.4)

with, ∣∣∣Qkh (x′)
∣∣∣ =

∣∣∣δx′ (Qkh
)∣∣∣ 6 ‖δx′‖B′ ∥∥∥Qk

∥∥∥
B→B

‖h‖B 6 c ‖h‖B e−ck ‖δx′‖B′ .



3.14. ASYMPTOTIC LAW OF THE COUPLE (XN , SN)N>0 CONDITIONED 159

Consequently, by the point 1 of Hypothesis M3.4∣∣∣Qkh (x′)
∣∣∣ 6 c ‖h‖B e−ck (1 +N(x′)) . (3.14.5)

Thereby,

I0(x′, y′, k, tσ
√
n) 6 Ex′ (h (Xk)) 6 ν(h) + c ‖h‖B e−ck (1 +N(x′))

and so

I1 6 ν(h)Px
(
y + Sn−k 6 σ(t+ tn)

√
n , τy > n− k

)
+ c ‖h‖B e−ck Ex (1 +N(Xn−k)) . (3.14.6)

By the inequality (3.2.2), we have

Ex (N(Xn−k)) 6 c (1 +N(x)) . (3.14.7)

Moreover, using the point 2 of Theorem 3.2.5 with t′0 = supn>2 σ(t+ tn)
√
n√

n−k 6 cε(t0 +1),

I ′1 := Px
(
y + Sn−k 6 σ(t+ tn)

√
n√

n− k
√
n− k , τy > n− k

)

6
2V (x, y)√
2π(n− k)σ

(
1− e−

(t+tn)2n
2(n−k)

)
+ cε,t0

max(y, 0) +
(
1 + y1{y>(n−k)1/2−ε} +N(x)

)2

(n− k)1/2+ε/16 .

Note that n− k > n
(
1− 1

n1−ε

)
and that t+ tn = t+ 1

nε
. Therefore

I ′1 6
2V (x, y)√

2πnσ

(
1 + c

n1−ε

)(
1− e−

t2
2 (1+ c

n1−ε )− c(1+t0)
nε

)
+Rn(x, y),

where

Rn(x, y) = cε,t0
max(y, 0) +

(
1 + y1{y>n1/2−ε} +N(x)

)2

n1/2+ε/16 . (3.14.8)

So,

I ′1 6
2V (x, y)√

2πnσ

(
1 + c

n1−ε

)(
1− e− t

2
2 +ct0

nε

)
+Rn(x, y).

Using the upper bound of the point 3 of Theorem 3.2.2 and changing the constant cε,t0
in Rn(x, y), we obtain that

I ′1 6
2V (x, y)√

2πnσ

(
1− e− t

2
2

)
+Rn(x, y). (3.14.9)

Inserting (3.14.9) and (3.14.7) in (3.14.6),

I1 6 ν(h)2V (x, y)√
2πnσ

(
1− e− t

2
2

)
+ ν(h)Rn(x, y) + c ‖h‖B e−cnε (1 +N(x))

6 ν(h)2V (x, y)√
2πnσ

(
1− e− t

2
2

)
+ (‖h‖∞ + ‖h‖B)Rn(x, y). (3.14.10)
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Bound of I2. Since h is bounded, by (3.14.2) we have

I0(x′, y′, k, tσ
√
n) 6 ‖h‖∞ Px′

(
y′ + Sk 6 tσ

√
n
)
.

When y′ > σ(t+ tn)
√
n, it is clear that

I0(x′, y′, k, tσ
√
n) 6 ‖h‖∞ Px′

(
Sk < −tnσ

√
n
)
6 ‖h‖∞ Px′

(
|Sk| > tnσ

√
n
)
. (3.14.11)

This last inequality tends to 0 as n→ +∞: by the Markov inequality,

Px′
(
|Sk| > tnσ

√
n
)
6

k∑
i=1

Ex′
(
|f(Xi)|
tnσ
√
n

)
.

By the point 1 of Hypothesis M3.4 and (3.14.7),

Px′
(
|Sk| > tnσ

√
n
)
6 c (1 +N(x′)) k

tnσ
√
n

= c

n1/2−2ε (1 +N(x′)) . (3.14.12)

Using (3.14.12), (3.14.11) and the definition of I2 in (3.14.3), we deduce that

I2 6
c ‖h‖∞
n1/2−2ε Ex (1 +N(Xn−k) ; τy > n− k)︸ ︷︷ ︸

=:I′2

. (3.14.13)

By the Markov property,

I ′2 6
∫
X
Ex′ (1 +N(Xk))Px (Xn−2k ∈ dx′ , τy > n− 2k) .

Using (3.2.2), we obtain that

I ′2 6 cPx (τy > n− 2k) + c e−ck Ex (N(Xn−2k)) .

By the point 2 of Theorem 3.2.4 and the equation (3.14.7), we find that

I ′2 6 c
1 + max(y, 0) +N(x)√

n− 2k
+ c e−cnε (1 +N(x)) 6 cε

1 + max(y, 0) +N(x)√
n

. (3.14.14)

Therefore, by (3.14.13),

I2 6 cε ‖h‖∞
1 + max(y, 0) +N(x)

n1−2ε . (3.14.15)

Finally, by (3.14.3), (3.14.10) and (3.14.15), we obtain the following upper bound:

I0 6 ν(h)2V (x, y)√
2πnσ

(
1− e− t

2
2

)
+ (‖h‖∞ + ‖h‖B)Rn(x, y). (3.14.16)

Lower bound of I0. As in the upper bound, by the Markov property,

I0 =
∫
X×R

I0(x′, y′, k, tσ
√
n)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ , τy > n− k)

>
∫
X×R

I0(x′, y′, k, tσ
√
n)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k 6 σ(t− tn)
√
n , τy > n− k

)
.
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We introduce the following notation:

I0 >
∫
X×R

Ex′ (h (Xk))Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k 6 σ(t− tn)
√
n , τy > n− k

)
︸ ︷︷ ︸

=:I3

−
∫
X×R

Ex′
(
h (Xk) ; y′ + Sk > tσ

√
n
)
Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k 6 σ(t− tn)
√
n , τy > n− k

)
︸ ︷︷ ︸

=:I4

(3.14.17)

−
∫
X×R

Ex′ (h (Xk) ; τy′ 6 k)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k 6 σ(t− tn)
√
n , τy > n− k

)
︸ ︷︷ ︸

=:I5

.

Bound of I3. The term I3 is the main term. Using (3.14.4) and (3.14.5), we have

Ex′ (h (Xk)) > ν(h)− c ‖h‖B e−ck (1 +N(x′)) .

Therefore

I3 > ν(h)Px
(
y + Sn−k 6 σ(t− tn)

√
n , τy > n− k

)
︸ ︷︷ ︸

=:I′3

−c ‖h‖B e−ck Ex (1 +N(Xn−k)) .

(3.14.18)
We bound I ′3 in a similar way as in the bound of I ′1. Using the point 2 of Theorem 3.2.5
with t′0 = supn>2 σ(t− tn)

√
n√

n−k 6 cεt0 and the notation Rn(x, y) defined by (3.14.8),

I ′3 >
2V (x, y)√
2π(n− k)σ

(
1− e−

(t−tn)2n
2(n−k)

)
−Rn(x, y)

>
2V (x, y)√

2πnσ

(
1− e−

(
t2
2 −

c(1+t0)
nε

))
−Rn(x, y)

>
2V (x, y)√

2πnσ

(
1− e− t

2
2 −ct0

nε

)
−Rn(x, y)

By the upper bound of the point 3 of Theorem 3.2.2,

I ′3 >
2V (x, y)√

2πnσ

(
1− e− t

2
2

)
−Rn(x, y) (3.14.19)

So, as in bound (3.14.10) of I1 and using (3.14.18) and (3.14.19), on obtain that

I3 > ν(h)2V (x, y)√
2πnσ

(
1− e− t

2
2

)
− (‖h‖∞ + ‖h‖B)Rn(x, y). (3.14.20)

Bound of I4. The bound of I4 is very similar to the bound of I2. Since h is bounded,
we have

Ex′
(
h (Xk) ; y′ + Sk > tσ

√
n
)
6 ‖h‖∞ Px′

(
y′ + Sk > tσ

√
n
)
.
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When y′ 6 σ(t− tn)
√
n, we write that

Ex′
(
h (Xk) ; y′ + Sk > tσ

√
n
)
6 ‖h‖∞ Px′

(
Sk > tnσ

√
n
)
6 ‖h‖∞ Px′

(
|Sk| > tnσ

√
n
)
.

By (3.14.12) and the definition of I4 in (3.14.17),

I4 6
c ‖h‖∞
n1/2−2εEx (1 +N (Xn−k) ; τy > n− k) ,

which is the same upper bound as in (3.14.13). Using the bound of I ′2 in (3.14.14), we
obtain that

I4 6 cε ‖h‖∞
1 + max(y, 0) +N(x)

n1−2ε . (3.14.21)

Bound of I5. To control the term I5, we write:

I5 6
∫
X×R

Ex′ (h (Xk) ; τy′ 6 k)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k > n3ε , τy > n− k
)

︸ ︷︷ ︸
=:I51

+
∫
X×R

Ex′ (h (Xk) ; τy′ 6 k)Px (Xn−k ∈ dx′ , y + Sn−k ∈ dy′ ,

y + Sn−k 6 n3ε , τy > n− k
)

︸ ︷︷ ︸
=:I52

.

Bound of I51. When y′ > n3ε, we have

Ex′ (h (Xk) ; τy′ 6 k) 6 ‖h‖∞
k∑
i=1

Px (y′ + Si 6 0) 6 ‖h‖∞
k∑
i=1

Px
(
|Si| > n3ε

)

By the Markov inequality and (3.14.7),

Ex′ (h (Xk) ; τy′ 6 k) 6 ‖h‖∞
k∑
i=1

i∑
j=1

Ex′ (|f(Xj)|)
n3ε 6

c ‖h‖∞ k2

n3ε (1 +N(x′)) .

So,

I51 6
c ‖h‖∞
nε

Ex (1 +N (Xn−k) ; τy > n− k) = c ‖h‖∞
nε

I ′2,

where I ′2 is defined by (3.14.13). Therefore by (3.14.14),

I51 6 cε ‖h‖∞
1 + max(y, 0) +N(x)

n1/2+ε . (3.14.22)

Bound of I52. The idea is to prove that the event {y + Sn−k 6 n3ε} has a probability
which tends to 0 when n tends to infinity. We have

I52 6 ‖h‖∞ Px
(
y + Sn−k 6 n3ε , τy > n− k

)
= ‖h‖∞ Px

(
y + Sn−k 6

n3ε
√
n− k

√
n− k , τy > n− k

)
.
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Using the point 2 of Theorem 3.2.5, with t′ = n3ε
√
n−k and t′0 = cε = supn>2

n3ε
√
n−k < +∞,

I52 6 ‖h‖∞
2V (x, y)√

2πnσ

(
1− e−

n6ε
2(n−k)σ2

)

+ ‖h‖∞ cε
max(y, 0) +

(
1 + y1{y>(n−k)1/2−ε} +N(x)

)2

(n− k)1/2+ε/16

6 ‖h‖∞
2V (x, y)√

2πnσ
(
1− e−

cε
n1−6ε

)
+ ‖h‖∞Rn(x, y),

where Rn(x, y) is defined by (3.14.8). By the point 3 of Theorem 3.2.2, we obtain that

I52 6 cε ‖h‖∞
1 + max(y, 0) +N(x)

n3/2−6ε + ‖h‖∞Rn(x, y) 6 ‖h‖∞Rn(x, y). (3.14.23)

By (3.14.22) and (3.14.23), we conclude the proof of the bound of I5:

I5 6 ‖h‖∞Rn(x, y). (3.14.24)

Finally, by (3.14.17), (3.14.20), (3.14.21) and (3.14.24), we have the following lower
bound:

I0 > ν(h)2V (x, y)√
2πnσ

(
1− e− t

2
2

)
− (‖h‖∞ + ‖h‖B)Rn(x, y). (3.14.25)

Putting together (3.14.16) and (3.14.25), with the definition of I0 in (3.14.1) and of
Rn(x, y) in (3.14.8), it proves the point 2 of Theorem 3.14.1. The point 1 of Theorem
3.14.1 is a consequence of the point 1 of Theorem 3.2.3 and of the point 2 of Theorem
3.14.1.
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Chapter 4

Conditioned local limit theorems for
random walks defined on finite
Markov chains

Résumé. Soit (Xn)n>0 une chaîne de Markov à valeurs dans un espace d’états fini X
partant de X0 = x ∈ X et soit f une fonction à valeurs réelles définie sur X. On pose
Sn = ∑n

k=1 f(Xk), n > 1. Pour tout y ∈ R on considère τy le premier instant pour lequel
la marche y + Sn devient négatif. Nous étudions le comportement asymptotique de la
probabilité Px (y + Sn ∈ [z, z + a] , τy > n) lorsque n→ +∞. Nous établissons en premier
lieu une version conditionnelle du théorème local de Stone pour cette probabilité. Ensuite
nous déterminons un équivalent d’ordre n3/2. Nous décrivons également le comportement
asymptotique de la probabilité Px (τy = n) quand n→ +∞ et donnons des généralisations
très utiles dans les applications.

Abstract. Let (Xn)n>0 be a Markov chain with values in a finite state space X starting
at X0 = x ∈ X and let f be a real function defined on X. Set Sn = ∑n

k=1 f(Xk),
n > 1. For any y ∈ R denote by τy the first time when y + Sn becomes non-positive.
We study the asymptotic behaviour of the probability Px (y + Sn ∈ [z, z + a] , τy > n) as
n → +∞. We first establish for this probability a conditional version of the local limit
theorem of Stone. Then we find for it an asymptotic equivalent of order n3/2. We also
describe the asymptotic behaviour of the probability Px (τy = n) as n → +∞ and give
some generalizations which are useful in applications.

4.1 Introduction
Assume that on the probability space (Ω,F ,P) we are given a sequence of real valued

random variables (Xn)n>1. Consider the random walk Sn = ∑n
k=1Xk, n > 1. Suppose

first that (Xn)n>1 are independent identically distributed of zero mean and finite variance.
For any y > 0 denote by τy the first time when y + Sn becomes non-positive. The study
of the asymptotic behaviour of the probability P(τy > n) and of the law of y + Sn
conditioned to stay positive (i.e. given the event {τy > n}) has been initiated by Spitzer
[66] and developed subsequently by Iglehart [47], Bolthausen [9], Doney [22], Bertoin and
Doney [6], Borovkov [10, 11], to cite only a few. Important progress has been achieved by
employing a new approach based on the existence of the harmonic function in Varopoulos
[68], [69], Eichelbacher and König [27] and recently by Denisov andWachtel [18, 19, 20]. In
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this line Grama, Le Page and Peigné [41] and the authors in [36], [38] (Chapters 2 and 3)
have studied sums of functions defined on Markov chains under spectral gap assumptions.
The goal of the present paper is to complete these investigations by establishing local
limit theorems for random walks defined on finite Markov chains and conditioned to stay
positive.

Local limit theorems for the sum of independent random variables without condition-
ing have attracted much attention, since the pioneering work of Gnedenko [34] and Stone
[67]. The first local limit theorem for a random walk conditioned to stay positive has
been established in Iglehart [48] in the context of walks with negative drift EX1 < 0.
Caravenna [13] studied conditioned local limit theorems for random variables in the do-
main of attraction of the normal law and Vatutin and Wachtel [71] for random variables
Xk in the domain of attraction of the stable law. Denisov and Wachtel [20] obtained a
local limit theorem for random walks in Zd conditioned to stay in a cone based on the
harmonic function approach.

The ordinary and conditioned local limit theorems in the case of Markov chains are
less studied in the literature. Le Page [54] stated a local limit theorem for products of
random matrices and Guivarc’h and Hardy [42] have considered a local limit theorem for
sums Sn = ∑n

k=1 f(Xk) where (Xn)n>0 is a Markov chain under spectral gap assumptions
and f a real function defined on the state space of the chain. In the conditional case
we are aware only of the results of Presman [60] and [61] who has considered the case
of finite Markov chains in a more general setting but which, because of rather stringent
assumptions, does not cover the results of this paper. We note also the work of Le Page
and Peigné [55] who have proved a conditioned local limit theorem for the stochastic
recursion.

Let us briefly review main results of the paper concerning conditioned local limit
behaviour of the walk Sn = ∑n

k=1 f(Xk) defined on a finite Markov chain (Xn)n>0.
From more general statement of Theorem 4.2.4, under the conditions that the underlying
Markov chain is irreducible and aperiodic and that (Sn)n>0 is centred and non-lattice, for
fixed x ∈ X and y ∈ R, it follows that, uniformly in z > 0,

lim
n→∞

(
nPx (y + Sn ∈ [z, z + a] , τy > n)− 2aV (x, y)√

2πσ2
ϕ+

(
z√
nσ

))
= 0, (4.1.1)

where ϕ+(t) = t e− t
2
2 1{t>0} is the Rayleigh density. The relation (4.1.1) is an extension of

the classical local limit theorem by Stone [67] to the case of Markov chains. We refer to
Caravenna [13] and Vatutin and Wachtel [71], where the corresponding result has been
obtained for independent random variables in the domain of attraction of the normal law.

We note that while (4.1.1) is consistent for large z, it is not informative for z in a
compact set. A meaningful local limit behaviour for fixed values of z can be obtained
from our Theorem 4.2.5. Under the same assumptions, for any fixed x ∈ X, y ∈ R and
z > 0,

lim
n→+∞

n3/2Px (y + Sn ∈ [z, z + a] , τy > n) = 2V (x, y)√
2πσ3

∫ z+a

z

∫
X
V ∗ (x′, z′) ν(dx′) dz′.

(4.1.2)

For sums of independent random variables similar limit behaviour was found in Vatutin
and Wachtel [71]. It should be noted that (4.1.1) and (4.1.2) complement each other: the
main term in (4.1.1) is meaningful for large z such that z ∼ n1/2 as n→∞, while (4.1.2)
holds for z in compact sets.
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We also state extensions of (4.1.1) and (4.1.2) to the joint law of Xn and y+Sn. These
extensions are useful in applications, in particular, for determining the exact asymptotic
behaviour of the survival time for branching processes in a Markovian environment. They
also allow us to infer the local limit behaviour of the exit time τy (see Theorem 4.2.8):
under the assumptions mentioned before, for any x ∈ X and y ∈ R,

lim
n→+∞

n3/2Px (τy = n) = 2V (x, y)√
2πσ3

∫ +∞

0
E∗ν (V ∗(X∗1 , z) ; S∗1 > z) dz.

The approach employed in this paper is different from that in [60], [61] and [55] which
all are based on Wiener-Hopf arguments. Our technique is close to that in Denisov and
Wachtel [20], however, in order to make it work for a random walk Sn = ∑n

k=1 f(Xk)
defined on a Markov chain (Xn)n>0, we have to overcome some essential difficulties. One
of them is related to the problem of the reversibility of the Markov walk (Sn)n>0. Let us
explain this point in more details. When (Xn)n>1 are Z-valued independent identically
distributed random variables, let (S∗n)n>1 be the reverse walk given by S∗n = ∑n

k=1X
∗
k ,

where (X∗n)n>1 is a sequence of independent identically distributed random variables of
the same law as −X1. Denote by τ ∗z the first time when (z+S∗k)k>0 becomes non-positive.
Then, due to exchangeability of the random variables (Xn)n>1, we have

P(y + Sn = z, τy > n) = P(z + S∗n = y, τ ∗z > n). (4.1.3)

This relation does not hold any more for the walk Sn = ∑n
k=1 f(Xk), where (Xn)n>0 is

a Markov chain. Even though (Xn)n>0 takes values on a finite state space X and there
exists a dual chain (X∗n)n>0, the main difficulty is that the function f : X 7→ R can be
arbitrary and therefore the Markov walk (Sn)n>0 is not necessarily lattice valued. In this
case the Markov chain formed by the couple (Xn, y + Sn)n>0 cannot be reversed directly
as in (4.1.3). We cope with this by altering the arrival interval [z, z + h] in the following
two-sided bound∑
x∗∈X

E∗x∗
(
ψ∗x(X∗n)1{z+S∗n∈[y−h,y], τ∗z>n}

)
ν(x∗)

6 Px(y + Sn ∈ [z, z + h], τy > n) (4.1.4)

6
∑
x∗∈X

E∗x∗
(
ψ∗x(X∗n)1{z+h+S∗n∈[y,y+h], τ∗

z+h>n}
)

ν(x∗),

where ν is the invariant probability of the Markov chain (Xn)n>1, ψ∗x : X 7→ R+ is a func-
tion such that ν (ψ∗x) = 1 (see (4.6.2) for a precise definition) and S∗n = −∑n

k=1 f (X∗k),
∀n > 1. Following this idea, for a fixed a > 0 we split the interval [z, z + a] into p subin-
tervals of length h = a/p and we determine the exact upper and lower bounds for the
corresponding expectations in (4.1.4). We then patch up the obtained bounds to obtain
a precise asymptotic as n→ +∞ for the probabilities Px(y + Sn ∈ [z, z + a], τy > n) for
a fixed a > 0 and let then p go to +∞. This resumes very succinctly how we suggest
generalizing (4.1.3) to the non-lattice case. Together with some further developments in
Sections 4.7 and 4.8, this allows us to establish Theorems 4.2.4 and 4.2.5.

The outline of the paper is as follows:
— Section 4.2: We give the necessary notations and formulate the main results.
— Section 4.3: Introduce the dual Markov chain and state some of its properties.
— Section 4.4: Introduce and study the perturbed transition operator.
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— Section 4.5: We prove a non-asymptotic local limit theorem for sums defined on
Markov chains.

— Section 4.6: We collect some auxiliary bounds.
— Sections 4.7, 4.8 and 4.9 : Proofs of Theorems 4.2.4, 4.2.5 and 4.2.7, 4.2.8, respec-

tively.
— Section 4.10. We state auxiliary assertions which are necessary for the proofs.
Let us end this section by fixing some notations. The symbol c will denote a positive

constant depending on the all previously introduced constants. Sometimes, to stress
the dependence of the constants on some parameters α, β, . . . we shall use the notations
cα, cα,β, . . . . All these constants are likely to change their values every occurrence. The
indicator of an event A is denoted by 1A. For any bounded measurable function f on
X, random variable X in X and event A, the integral

∫
X f(x)P(X ∈ dx,A) means the

expectation E (f(X);A) = E (f(X)1A).

4.2 Notations and results
Let (Xn)n>0 be a homogeneous Markov chain on the probability space (Ω,F ,P) with

values in the finite state space X. Denote by C the set of complex functions defined
on X endowed with the norm ‖·‖∞: ‖g‖∞ = supx∈X |g(x)|, for any g ∈ C . Let P be
the transition kernel of the Markov chain (Xn)n>0 to which we associate the following
transition operator: for any x ∈ X and g ∈ C ,

Pg(x) =
∑
x′∈X

g(x′)P(x, x′).

For any x ∈ X, denote by Px and Ex the probability, respectively the expectation, gen-
erated by the finite dimensional distributions of the Markov chain (Xn)n>0 starting at
X0 = x. We assume that the Markov chain is irreducible and aperiodic, which is equiva-
lent to the following hypothesis.
Hypothesis M4.1. The matrix P is primitive: there exits k0 > 1 such that for any
x ∈ X and any non-negative and non identically zero function g ∈ C ,

Pk0g(x) > 0.

Let f be a real valued function defined on X and let (Sn)n>0 be the process defined
by

S0 = 0 and Sn = f (X1) + · · ·+ f (Xn) , ∀n > 1.
For any starting point y ∈ R we consider the Markov walk (y+Sn)n>0 and we denote by
τy the first time when the Markov walk becomes non-positive:

τy := inf {k > 1, y + Sk 6 0} .

Under M4.1, by the Perron-Frobenius theorem, there is a unique positive invariant
probability ν on X satisfying the following property: there exist c1 > 0 and c2 > 0 such
that for any function g ∈ C and n > 1,

sup
x∈X
|Ex (g (Xn))− ν(g)| = ‖Png − ν(g)‖∞ 6 ‖g‖∞ c1 e−c2n, (4.2.1)

where ν(g) = ∑
x∈X g(x)ν(x).

The following two hypotheses ensure that the Markov walk has no-drift and is non-
lattice, respectively.
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Hypothesis M4.2. The function f is centred:

ν (f) = 0.

Hypothesis M4.3. For any (θ, a) ∈ R2, there exists a sequence x0, . . . , xn in X such
that

P(x0, x1) · · ·P(xn−1, xn)P(xn, x0) > 0
and

f(x0) + · · ·+ f(xn)− (n+ 1)θ /∈ aZ.

Under HypothesisM4.1, it is shown in Section 4.4 that HypothesisM4.3 is equivalent
to the condition that the perturbed operator Pt has a spectral radius less than 1 for t 6= 0;
for more details we refer to Section 4.4. Furthermore, in the Appendix (see Lemma 4.10.3,
Section 4.10), we show that Hypotheses M4.1-M4.3 imply that the following number
σ2, which is the limit of Ex(S2

n)/n as n→ +∞ for any x ∈ X, is not zero:

σ2 := ν(f 2) + 2
+∞∑
n=1

ν (fPnf) > 0. (4.2.2)

Under spectral gap assumptions, the asymptotic behaviour of the survival probability
Px (τy > n) and of the conditional law of the Markov walk y+Sn√

n
given the event {τy > n}

have been studied in [38] (Chapter 3). It is easy to see that under M4.1, M4.2 and
(4.2.2) the conditions of [38] (Chapter 3) are satisfied (see Section 4.10). We summarize
the main results of [38] (Chapter 3) in the following propositions.

Proposition 4.2.1 (Preliminary results, part I). Assume Hypotheses M4.1-M4.3.
There exists a non-degenerate non-negative function V on X× R such that
1. For any (x, y) ∈ X× R and n > 1,

Ex (V (Xn, y + Sn) ; τy > n) = V (x, y).

2. For any x ∈ X, the function V (x, ·) is non-decreasing and for any (x, y) ∈ X× R,

V (x, y) 6 c (1 + max(y, 0)) .

3. For any x ∈ X, y ∈ R and δ ∈ (0, 1),

(1− δ) max(y, 0)− cδ 6 V (x, y) 6 (1 + δ) max(y, 0) + cδ.

Since the function V satisfies the point 1, it is said to be harmonic.

Proposition 4.2.2 (Preliminary results, part II). Assume Hypotheses M4.1-M4.3.
1. For any (x, y) ∈ X× R,

lim
n→+∞

√
nPx (τy > n) = 2V (x, y)√

2πσ
,

where σ is defined by (4.2.2).
2. For any (x, y) ∈ X× R and n > 1,

Px (τy > n) 6 c
1 + max(y, 0)√

n
.
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Define the support of V by

supp(V ) := {(x, y) ∈ X× R : V (x, y) > 0}. (4.2.3)

Note that from property 3 of Proposition 4.2.1, for any fixed x ∈ X, the function y 7→
V (x, y) is positive for large y. For further details on the properties of supp(V ) we refer
to [38] (Chapter 3).

Proposition 4.2.3 (Preliminary results, part III). Assume Hypotheses M4.1-M4.3.
1. For any (x, y) ∈ supp(V ) and t > 0,

Px
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

where Φ+(t) = 1− e− t
2
2 is the Rayleigh distribution function.

2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 1, t0 > 0, t ∈ [0, t0] and
(x, y) ∈ X× R,∣∣∣∣∣Px (y + Sn 6 t

√
nσ , τy > n

)
− 2V (x, y)√

2πnσ
Φ+(t)

∣∣∣∣∣ 6 cε,t0
(1 + max(y, 0)2)

n1/2+ε .

In the point 1 of Proposition 4.2.2 and the point 2 of Proposition 4.2.3, the function
V can be zero, so that for all pairs (x, y) satisfying V (x, y) = 0 it holds

lim
n→+∞

√
nPx (τy > n) = 0

and
lim

n→+∞

√
nPx

(
y + Sn 6 t

√
nσ , τy > n

)
= 0.

Now we proceed to formulate the main results of the paper. Our first result is an
extension of Gnedenko-Stone local limit theorem originally stated for sums of independent
random variables. The following theorem generalizes it to the case of sums of random
variables defined on Markov chains conditioned to stay positive.

Theorem 4.2.4. Assume Hypotheses M4.1-M4.3. Let a > 0 be a positive real. Then
there exists ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0), non-negative function ψ ∈ C ,
y ∈ R and n > 3ε−3, we have

sup
x∈X, z>0

n

∣∣∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)− 2aν (ψ)V (x, y)√
2πσ2n

ϕ+

(
z√
nσ

)∣∣∣∣∣
6 c (1 + max(y, 0)) ‖ψ‖∞

(
√
ε+ cε (1 + max(y, 0))

nε

)
,

where ϕ+(t) = t e− t
2
2 1{t>0} is the Rayleigh density and the constants c and cε may depend

on a.

Note that Theorem 4.2.4 is meaningful only for large values of z such that z ∼ n1/2 as
n→∞. Indeed, the remainder term is of order n−1−ε, with some small ε > 0, while for
a fixed z the leading term is of order n−3/2. When z = cn1/2 the leading term becomes of
order n−1 while the remainder is still o(n−1). To deal with the case of z in compact sets a
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more refined result will be given below. We will deduce it from Theorem 4.2.4, however
for the proof we need the concept of duality.

Let us introduce the dual Markov chain and the corresponding associated Markov
walk. Since ν is positive on X, the following dual Markov kernel P∗ is well defined:

P∗ (x, x∗) = ν (x∗)
ν(x) P (x∗, x) , ∀(x, x∗) ∈ X2. (4.2.4)

It is easy to see that ν is also P∗-invariant. The dual of (Xn)n>0 is the Markov chain
(X∗n)n>0 with values in X and transition probability P∗. Without loss of generality we can
consider that the dual Markov chain (X∗n)n>0 is defined on an extension of the probability
space (Ω,F ,P) and that it is independent of the Markov chain (Xn)n>0. We define the
associated dual Markov walk by

S∗0 = 0 and S∗n =
n∑
k=1
−f (X∗k) , ∀n > 1. (4.2.5)

For any z ∈ R, define also the exit time

τ ∗z := inf {k > 1 : z + S∗k 6 0} . (4.2.6)

For any ∈ X, denote by P∗x and E∗x the probability, respectively the expectation, generated
by the finite dimensional distributions of the Markov chain (X∗n)n>0 starting atX∗0 = x. It
is shown in Section 4.3 that the dual Markov chain (X∗n)n>0 satisfies Hypotheses M4.1-
M4.3 as do the original chain (Xn)n>0. Thus, Propositions 4.2.1-4.2.3 hold also for
(X∗n)n>0 with V, τ, (Sn)n>0 and Px replaced by V ∗, τ ∗, (S∗n)n>0 and P∗x. Note also that both
chains have the same invariant probability ν.Denote by Eν , E∗ν the expectations generated
by the finite dimensional distributions of the Markov chains (Xn)n>0 and (X∗n)n>0 in the
stationary regime.

Our second result is a conditional version of the local limit theorem for fixed x, y and
z.

Theorem 4.2.5. Assume Hypotheses M4.1-M4.3.
1. For any non-negative function ψ ∈ C , a > 0, x ∈ X, y ∈ R and z > 0,

lim
n→+∞

n3/2Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

= 2V (x, y)√
2πσ3

∫ z+a

z
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

2. Moreover, there exists c > 0 such that for any a > 0, non-negative function ψ ∈ C ,
y ∈ R, z > 0 and n > 1,

sup
x∈X

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

6
c ‖ψ‖∞
n3/2

(
1 + a3

)
(1 + z) (1 + max(y, 0)) .

In the particular case when ψ = 1, the previous theorem rewrites as follows:

Corollary 4.2.6. Assume Hypotheses M4.1-M4.3.
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1. For any a > 0, x ∈ X, y ∈ R and z > 0,

lim
n→+∞

n3/2Px (y + Sn ∈ [z, z + a] , τy > n)

= 2V (x, y)√
2πσ3

∫ z+a

z

∫
X
V ∗ (x′, z′) ν(dx′) dz′.

2. Moreover, there exists c > 0 such that for any a > 0, y ∈ R, z > 0 and n > 1,

sup
x∈X

Px (y + Sn ∈ [z, z + a] , τy > n) 6 c

n3/2

(
1 + a3

)
(1 + z) (1 + max(y, 0)) .

Note that the assertion 1 of Theorem 4.2.5 and assertion 1 of Corollary 4.2.6 hold for
fixed a > 0, x ∈ X, y ∈ R and z > 0 and that these results are no longer true when z is
not in a compact set, for instance when z ∼ n1/2.

The following result extends Theorem 4.2.5 to some functionals of the trajectories
of the chain (Xn)n>0. For any (x, x∗) ∈ X2, the probability generated by the finite di-
mensional distributions of the two dimensional Markov chain (Xn, X

∗
n)n>0 starting at

(X0, X
∗
0 ) = (x, x∗) is given by Px,x∗ = Px × P∗x∗ . Let Ex,x∗ be the corresponding ex-

pectation. For any l > 1, denote by C +(Xl × R+) the set of non-negative functions g:
Xl × R+ → R+ satisfying the following properties:
— for any (x1, . . . , xl) ∈ Xl, the function z 7→ g(x1, . . . , xl, z) is continuous,
— there exists ε > 0 such that maxx1,...xl∈X supz>0 g(x1, . . . , xl, z)(1 + z)2+ε < +∞.

Theorem 4.2.7. Assume Hypotheses M4.1-M4.3. For any x ∈ X, y ∈ R, l > 1, m > 1
and g ∈ C +

(
Xl+m × R+

)
,

lim
n→+∞

n3/2Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; τy > n)

= 2√
2πσ3

∫ +∞

0

∑
x∗∈X

Ex,x∗ (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z)

×V (Xl, y + Sl)V ∗ (X∗m, z + S∗m) ; τy > l , τ ∗z > m) ν(x∗) dz.

As a consequence of Theorem 4.2.7 we deduce the following asymptotic behaviour of
the probability of the event {τy = n} as n→ +∞.

Theorem 4.2.8. Assume Hypotheses M4.1-M4.3. For any x ∈ X and y ∈ R,

lim
n→+∞

n3/2Px (τy = n) = 2V (x, y)√
2πσ3

∫ +∞

0
E∗ν (V ∗(X∗1 , z) ; S∗1 > z) dz.

4.3 Properties of the dual Markov chain
In this section we establish some properties of the dual Markov chain and of the

corresponding Markov walk.

Lemma 4.3.1. Suppose that the operator P satisfies Hypotheses M4.1-M4.3. Then the
dual operator P∗ satisfies also M4.1-M4.3.
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Proof. By the definition of P∗, for any x∗ ∈ X,
∑
x∈X

ν(x)P∗ (x, x∗) =
∑
x∈X

P (x∗, x) ν (x∗) = ν(x∗),

which proves that ν is also P∗-invariant. Thus Hypothesis M4.2, ν(f) = ν(−f) = 0, is
satisfied for both chains. Moreover, it is easy to see that for any n > 1, (x, x∗) ∈ X2,

(P∗)n (x, x∗) = Pn(x∗, x)ν(x∗)
ν(x) .

This shows that P∗ satisfies M4.1 and M4.3.

Note that the operator P∗ is the adjoint operator of P in the space L2 (ν) : for any
functions g and h on X,

ν (g (P∗)n h) = ν (hPng) .

In particular for any n > 1, ν (f (P∗)n f) = ν (fPnf) and we note that

σ2 = ν
(
(−f)2

)
+
∑
n

ν ((−f) (P∗)n (−f)) .

The following assertion plays a key role in the proofs.

Lemma 4.3.2 (Duality). For any probability measure m on X, any n > 1 and any
function F from Xn to R,

Em (F (X1, . . . , Xn−1, Xn)) = E∗ν

F (X∗n, X∗n−1, . . . , X
∗
1

) m (X∗n+1

)
ν (X∗n+1)

 .
Proof. We write

Em (F (X1, . . . , Xn−1, Xn))
=

∑
x0,x1,...,xn−1,xn,xn+1∈X

F (x1, . . . , xn−1, xn)m(x0)

Px0 (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn, Xn+1 = xn+1) .

By the definition of P∗, we have

Px0 (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn, Xn+1 = xn+1)
= P(x0, x1)P(x1, x2) . . .P(xn−1, xn)P(xn, xn+1)

= P∗(x1, x0)ν(x1)
ν(x0)P∗(x2, x1)ν(x2)

ν(x1) . . .P
∗(xn, xn−1) ν(xn)

ν(xn−1)P∗(xn+1, xn)ν(xn+1)
ν(xn)

= ν(xn+1)
ν(x0) P∗xn+1

(
X∗1 = xn, X

∗
2 = xn−1, . . . , X

∗
n = x1, X

∗
n+1 = x0

)

and the result of the lemma follows.
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4.4 The perturbed operator
For any t ∈ R, denote by Pt the perturbed transition operator defined by

Ptg(x) = P
(
eitf g

)
(x) = Ex

(
eitf(X1) g(X1)

)
, for any g ∈ C , x ∈ X,

where i is the complex i2 = −1. Let also rt be the spectral radius of Pt. Note that for
any g ∈ C , ‖Ptg‖∞ 6

∥∥∥eitf g
∥∥∥
∞

= ‖g‖∞ and so

rt 6 1. (4.4.1)

We introduce the two following definitions:
— A sequence x0, x1, . . . , xn ∈ X, is a path (between x0 and xn) if

P(x0, x1) · · ·P(xn−1, xn) > 0.

— A sequence x0, x1, . . . , xn ∈ X, is an orbit if x0, x1, . . . , xn, x0 is a path.
Note that under Hypothesis M4.1, for any x0, x ∈ X it is always possible to connect x0
and x by a path x0, x1, . . . , xn, x in X.

Lemma 4.4.1. Assume Hypothesis M4.1. The following statements are equivalent:
1. There exists (θ, a) ∈ R2 such that for any orbit x0, . . . , xn in X, we have

f(x0) + · · ·+ f(xn)− (n+ 1)θ ∈ aZ.

2. There exist t ∈ R∗, h ∈ C \ {0} and θ ∈ R such that for any (x, x′) ∈ X2,

h(x′) eitf(x′) P(x, x′) = h(x) eitθ P(x, x′).

3. There exists t ∈ R∗ such that
rt = 1.

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix x0 ∈ X and
set h(x0) = 1. For any x ∈ X, define h(x) in the following way: for any path x0, . . . , xn, x
in X we set

h(x) = eitθ(n+1) e−it(f(x1)+···+f(xn)+f(x)),

where t = 2π
a
. Note that if a = 0, then the point 1 holds also for a = 1 and so, without

lost of generality, we assume that a 6= 0. We first verify that h is well defined on X. Recall
that under Hypothesis M4.1, for any x ∈ X it is always possible to connect x0 and x by a
path. We have to check that the value of h(x) does not depend on the choice of the path.
Let p, q > 1 and x0, x1, . . . , xp, x in X and x0, y1, . . . , yq, x in X be two paths between x0
and x. We complete these paths to orbits as follows. Under Hypothesis M4.1, there
exist n > 1 and z1, . . . , zn in X such that

P(x, z1) · · ·P(zn, x0) > 0,

i.e. the sequence x, z1, . . . , zn, x0 is a path. So, the sequences x0, x1, . . . , xp, x, z1, . . . , zn
and x0, y1, . . . , yq, x, z1, . . . , zn are orbits. By the point 1, there exist l1, l2 ∈ Z such that

f(x1) + · · ·+ f(xp) + f(x) = al1 − (f(z1) + · · ·+ f(zn) + f(x0)) + (p+ n+ 2)θ
= al1 − al2 + (f(y1) + · · ·+ f(yq) + f(x))

− (q + n+ 2)θ + (p+ n+ 2)θ.
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Therefore,

eitθ(p+1) e−it(f(x1)+···+f(xp)+f(x)) = e−it(al1−al2) eitθ(q+1) e−it(f(y1)+···+f(yq)+f(x))

and since ta = 2π it proves that h is well defined. Now let (x, x′) ∈ X2 be such that
P(x, x′) > 0. There exists a path x0, x1, . . . , xn, x between x0 and x and so

h(x) = eitθ(n+1) e−it(f(x1)+···+f(xn)+f(x)) .

Since x0, x1, . . . , xn, x, x
′ is a path between x0 and x′, we have also

h(x′) = eitθ(n+2) e−it(f(x1)+···+f(xn)+f(x)+f(x′)) = h(x) eitθ e−itf(x′) .

Note that since the modulus of h is 1, this function belongs to C \ {0}.
The point 2 implies the point 1. Suppose that the point 2 holds and let x0, . . . , xn be

an orbit. Using the point 2 repeatedly, we have

h(x0) = h(xn) eitθ e−itf(x0) = · · · = h(x0) eitθ(n+1) e−it(f(x0)+···+f(xn)) .

Since h is a non-identically zero function with a constant modulus, necessarily, h is never
equal to 0 and so f(x0) + · · ·+ f(xn)− (n+ 1)θ ∈ 2π

t
Z.

The point 2 implies the point 3. Suppose that the point 2 holds. Summing on x′ we
have, for any x ∈ X,

P
(
h eitf

)
(x) = Pth(x) = h(x) eitθ .

Therefore h is an eigenvector of Pt associated to the eigenvalue eitθ which implies that
rt >

∣∣∣eitθ
∣∣∣ = 1 and by (4.4.1), rt = 1.

The point 3 implies the point 2. Suppose that the point 3 holds. There exist h ∈
C \ {0} and θ ∈ R such that Pth = h eitθ. Without loss of generality, we suppose that
‖h‖∞ = 1. Since Pn

t h = h eitnθ for any n > 1, by (4.2.1), for any x ∈ X, we have

|h(x)| = |Pn
t h(x)| 6 Pn |h| (x) −→

n→+∞
ν (|h|) . (4.4.2)

From (4.4.2), letting x0 ∈ X be such that |h(x0)| = ‖h‖∞ = 1, it is easy to see that

|h(x0)| 6
∑
x∈X
|h(x)|ν(x) 6 |h(x0)| .

From this it follows that the modulus of h is constant on X: |h(x)| = |h(x0)| = 1 for any
x ∈ X. Consequently, there exists α: X→ R such that for any x ∈ X,

h(x) = eiα(x) . (4.4.3)

With (4.4.3) the equation Pth = h eitθ can be rewritten as

∀x ∈ X,
∑
x′∈X

eiα(x′) eitf(x′) P(x, x′) = eiα(x) eitθ .

Since eiα(x) eitθ ∈ {z ∈ C : |z| = 1} and eiα(x′) eif(x′) ∈ {z ∈ C : |z| = 1}, for any x′ ∈ X,
the previous equation holds only if h(x′) eitf(x′) = eiα(x′) eitf(x′) = eiα(x) eitθ = h(x) eitθ for
any x′ ∈ X such that P(x, x′) > 0.
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Define the operator norm ‖·‖C→C on C as follows: for any operator R: C → C , set

‖R‖C→C := sup
g∈C \{0}

‖R(g)‖∞
‖g‖∞

.

Lemma 4.4.2. Assume Hypotheses M4.1 and M4.3. For any compact set K included
in R∗ there exist constants cK > 0 and c′K > 0 such that for any n > 1,

sup
t∈K
‖Pn

t ‖C→C 6 cK e−c′Kn .

Proof. By Lemma 4.4.1, under HypothesesM4.1 andM4.3, we have rt 6= 1 for any t 6= 0
and hence, using (4.4.1),

rt < 1, ∀t ∈ R∗.

It is well known that
rt = lim

n→+∞
‖Pn

t ‖
1/n
C→C .

Since t 7→ Pt is continuous, the function t 7→ rt is the infimum of the sequence of upper
semi-continuous functions t 7→ ‖Pn

t ‖
1/n
C→C and therefore is itself upper semi-continuous.

In particular, for any compact set K included in R∗, there exists t0 ∈ K such that

sup
t∈K

rt = rt0 < 1.

We deduce that for ε = (1 − supt∈K rt)/2 > 0 there exists n0 > 1 such that for any
n > n0,

‖Pn
t ‖

1/n
C→C 6 sup

t∈K
rt + ε < 1.

Choosing cK′ = − ln (supt∈K rt + ε) and cK = maxn6n0 ‖Pn
t ‖C→C ecK′n +1, the lemma is

proved.

In the proofs we make use of the following assertion which is a consequence of the
perturbation theory of linear operator (see for example [50]). The point 5 is proved in
Lemma 2 of Guivarc’h and Hardy [42].

Proposition 4.4.3. Assume Hypotheses M4.1 and M4.2. There exist a real ε0 > 0 and
operator valued functions Πt and Qt acting from [−ε0, ε0] to the set of operators onto C
such that
1. the maps t 7→ Πt, t 7→ Qt and t 7→ λt are analytic at 0,
2. the operator Pt has the following decomposition,

Pt = λtΠt +Qt, ∀t ∈ [−ε0, ε0],

3. for any t ∈ [−ε0, ε0], Πt is a one-dimensional projector and ΠtQt = QtΠt = 0,
4. there exist c1 > 0 and c2 > 0 such that, for any n ∈ N∗,

sup
t∈[−ε0,ε0]

‖Qn
t ‖C→C 6 c1 e−c2n,

5. the function λt has the following expansion at 0: for any t ∈ [−ε0, ε0],∣∣∣∣∣λt − 1 + t2σ2

2

∣∣∣∣∣ 6 c |t|3 .
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Note that λ0 = 1 and Π0(·) = Π(·) = ν(·)e, where e is the unit function of X: e(x) = 1,
for any x ∈ X.

Lemma 4.4.4. Assume Hypotheses M4.1 and M4.2. There exists ε0 > 0 such that for
any n > 1 and t ∈ [−ε0

√
n, ε0
√
n],∥∥∥∥Pn

t√
n
− e− t

2σ2
2 Π

∥∥∥∥
C→C

6
c√
n

e− t
2σ2
4 +c e−cn .

Proof. By the points 2 and 3 of Proposition 4.4.3, for any t/
√
n ∈ [−ε0, ε0],

Pn
t√
n

= λnt√
n
Π t√

n
+Qn

t√
n
.

By the points 1 and 4 of Proposition 4.4.3, for n > 1,∥∥∥∥Π t√
n
− Π

∥∥∥∥
C→C

6 sup
u∈[−ε0,ε0]

‖Π′u‖C→C

|t|√
n
6 c
|t|√
n
, (4.4.4)

sup
t∈[−ε0,ε0]

∥∥∥∥Qn
t√
n

∥∥∥∥
C→C

6 c e−cn . (4.4.5)

Let α be the complex valued function defined on [−ε0, ε0] by α(t) = 1
t3

(
λt − 1 + t2σ2

2

)
for any t ∈ [−ε0, ε0] \ {0} and α(0) = 0. By the point 5 of Proposition 4.4.3, there exists
c > 0 such that

∀t ∈ [−ε0, ε0], |α(t)| 6 c. (4.4.6)
With this notation, we have for any t/

√
n ∈ [−ε0, ε0],∣∣∣∣λnt√

n
− e− t

2σ2
2

∣∣∣∣ 6
∣∣∣∣∣
(

1− t2σ2

2n + t3

n3/2α

(
t√
n

))n
−
(

1− t2σ2

2n

)n∣∣∣∣∣︸ ︷︷ ︸
=:I1

+
∣∣∣∣∣
(

1− t2σ2

2n

)n
− e− t

2σ2
2

∣∣∣∣∣︸ ︷︷ ︸
=:I2

. (4.4.7)

Without loss of generality, the value of ε0 > 0 can be chosen such that ε2
0σ

2 6 1 and so
for any t/

√
n ∈ [−ε0, ε0], we have 1− t2σ2

2n > 1/2. Therefore,

I1 6

(
1− t2σ2

2n

)n ∣∣∣∣∣∣
1 + t3

n3/2
(
1− t2σ2

2n

)α( t√
n

)n − 1

∣∣∣∣∣∣
6

(
1− t2σ2

2n

)n n∑
k=1

(
n
k

) ∣∣∣∣∣∣ t3

n3/2
(
1− t2σ2

2n

)α( t√
n

)∣∣∣∣∣∣
k

=
(

1− t2σ2

2n

)n 1 + |t|3

n3/2
(
1− t2σ2

2n

) ∣∣∣∣∣α
(

t√
n

)∣∣∣∣∣
n − 1

 .
Using the inequality 1 + u 6 eu for u ∈ R, the fact that 1 − t2σ2

2n > 1/2 and the bound
(4.4.6), we have

I1 6 e− t
2σ2
2

(
e
c|t|3√
n −1

)
.
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Next, using the inequality eu−1 6 u eu for u > 0 and the fact that |t| /
√
n 6 ε0,

I1 6 e− t
2σ2
2

c√
n
|t|3 ecε0t2 . (4.4.8)

Again, without loss of generality, the value of ε0 > 0 can be chosen such that cε2
0 6 σ2/8

(this have no impact on (4.4.6) which holds for any [−ε′0, ε′0] ⊆ [−ε0, ε0]). Thus, from
(4.4.8) it follows that

I1 6
c√
n

e− t
2σ2
4 . (4.4.9)

Using the inequalities 1− u 6 e−u for u ∈ R and ln(1− u) > −u− u2 for u 6 1, we have

I2 = e− t
2σ2
2 −

(
1− t2σ2

2n

)n
6 e− t

2σ2
2 − e− t

2σ2
2 −

t4σ4
4n 6

t4σ4

4n e− t
2σ2
2 6

c√
n

e− t
2σ2
4 . (4.4.10)

Putting together (4.4.7), (4.4.9) and (4.4.10), we obtain that, for any t/
√
n ∈ [−ε0, ε0],∣∣∣∣λnt√

n
− e− t

2σ2
2

∣∣∣∣ 6 c√
n

e− t
2σ2
4 . (4.4.11)

In the same way, one can prove that

|t|
∣∣∣∣λnt√

n

∣∣∣∣ 6 e− t
2σ2
4 . (4.4.12)

The right hand side in the assertion of the lemma can be bounded as follows:∥∥∥∥Pn
t√
n
− e− t

2σ2
2 Π

∥∥∥∥
C→C

6
∣∣∣∣λnt√

n

∣∣∣∣ ∥∥∥∥Π t√
n
− Π

∥∥∥∥
C→C

+
∣∣∣∣λnt√

n
− e− t

2σ2
2

∣∣∣∣ ‖Π‖C→C +
∥∥∥∥Qn

t√
n

∥∥∥∥
C→C

.

Using (4.4.4), (4.4.5), (4.4.11) and (4.4.12), we obtain that, for any t/
√
n ∈ [ε0, ε0],∥∥∥∥Pn

t√
n
− e− t

2σ2
2 Π

∥∥∥∥
C→C

6
c√
n

e− t
2σ2
4 +c e−cn .

4.5 A non asymptotic local limit theorem
In this section we establish a local limit theorem for the Markov walk jointly with

the Markov chain. Our result is similar to that in Grama and Le Page [39] where the
case of sums of independent random variables is considered under the Cramér condition.
We refer to Guivarc’h and Hardy [42] for local limit theorem for a Markov chain with
compact state space. In contrast to [42] our local limit theorem gives a control of the
remainder term.

We first establish a local limit theorem for integrable functions with Fourier transforms
with compact supports. For any integrable function h: R → R denote by ĥ its Fourier
transform:

ĥ(t) =
∫
R

e−itu h(u) du, ∀t ∈ R.

When ĥ is integrable, by the inversion formula,

h(u) = 1
2π

∫
R

eitu ĥ(t) dt, ∀u ∈ R.
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For any integrable functions h and g, let

h ∗ g(u) =
∫
R
h(v)g(u− v) dv

be the convolution of h and g. Denote by ϕσ the density of the centred normal law with
variance σ2:

ϕσ(u) = 1√
2πσ

e−
u2

2σ2 , ∀u ∈ R. (4.5.1)

Lemma 4.5.1. Assume Hypotheses M4.1-M4.3. For any A > 0, any integrable function
h on R whose Fourier transform ĥ has a compact support included in [−A,A], any real
function ψ defined on X and any n > 1,

sup
y∈R

√
n
∣∣∣Ex (h (y + Sn)ψ (Xn))− h ∗ ϕ√nσ(y)ν (ψ)

∣∣∣
6 ‖ψ‖∞

(
c√
n
‖h‖L1 +

∥∥∥ĥ∥∥∥
L1 cA e−cAn

)
.

Proof. By the inversion formula and the Fubini theorem,

I0 :=
√
n
∣∣∣Ex (h (y + Sn)ψ (Xn))− h ∗ ϕ√nσ(y)ν (ψ)

∣∣∣
=
√
n

2π

∣∣∣∣Ex (∫
R

eit(y+Sn) ĥ(t) dtψ (Xn)
)
−
∫
R
ĥ(t)ϕ̂√nσ(t) eity dtν (ψ)

∣∣∣∣
=
√
n

2π

∣∣∣∣∫
R

eity
(
Pn
t ψ(x)− e− t

2σ2n
2 ν (ψ)

)
ĥ(t) dt

∣∣∣∣ .
Since ĥ(t) = 0 for any t /∈ [−A,A], we write

I0 6

√
n

2π

∣∣∣∣∣
∫
ε06|t|6A

eity
(
Pn
t ψ(x)− e− t

2σ2n
2 ν (ψ)

)
ĥ(t) dt

∣∣∣∣∣︸ ︷︷ ︸
=:I1

+
√
n

2π

∣∣∣∣∣
∫
|t|6ε0

eity
(
Pn
t ψ(x)− e− t

2σ2n
2 ν (ψ)

)
ĥ(t) dt

∣∣∣∣∣︸ ︷︷ ︸
=:I2

, (4.5.2)

where ε0 is defined by Lemma 4.4.4.
Bound of I1. By Lemma 4.4.2, for any ε0 6 |t| 6 A, we have

‖Pn
t ψ‖∞ 6 ‖ψ‖∞ cA,ε0 e−cA,ε0n .

Consequently,

I1 6

√
n

2π

(
‖ψ‖∞ cA,ε0 e−cA,ε0n + e−

ε2
0σ

2n
2 |ν(ψ)|

)∥∥∥ĥ∥∥∥
L1

6 ‖ψ‖∞
∥∥∥ĥ∥∥∥

L1 cA,ε0 e−cA,ε0n . (4.5.3)

Bound of I2. Substituting s = t
√
n, we write

I2 = 1
2π

∣∣∣∣∣
∫
|s|6ε0

√
n

ei
sy√
n

(
Pn

s√
n
ψ(x)− e− s

2σ2
2 ν (ψ)

)
ĥ

(
s√
n

)
ds
∣∣∣∣∣

6
1

2π

∫
|s|6ε0

√
n

∣∣∣∣Pn
s√
n
ψ(x)− e− s

2σ2
2 ν (ψ)

∣∣∣∣
∣∣∣∣∣ĥ
(
s√
n

)∣∣∣∣∣ ds.
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By Lemma 4.4.4, for any |s| 6 ε0
√
n, we have∣∣∣∣Pn

s√
n
ψ(x)− e− s

2σ2
2 ν (ψ)

∣∣∣∣ 6 ∥∥∥∥Pn
s√
n

(ψ)− e− s
2σ2
2 Π (ψ)

∥∥∥∥
∞

6 ‖ψ‖∞
∥∥∥∥Pn

s√
n
− e− s

2σ2
2 Π

∥∥∥∥
C→C

6 ‖ψ‖∞

(
c√
n

e− s
2σ2
4 +c e−cn

)
.

Therefore,

I2 6 ‖ψ‖∞

(
c√
n

∫
R

e− s
2σ2
4
∥∥∥ĥ∥∥∥

∞
ds+ c e−cn

∥∥∥ĥ∥∥∥
L1

)

6 ‖ψ‖∞

(
c√
n
‖h‖L1 + c e−cn

∥∥∥ĥ∥∥∥
L1

)
. (4.5.4)

Putting together (4.5.2), (4.5.3) and (4.5.4), concludes the proof.

We extend the result of Lemma 4.5.1 for any integrable function (with not necessarily
integrable Fourier transform). As in Stone [67], we introduce the kernel κ defined on R
by

κ(u) = 1
2π

sin
(
u
2

)
u
2

2

, ∀u ∈ R∗ and κ(0) = 1
2π .

The function κ is integrable and its Fourier transform is given by

κ̂(t) = 1− |t| , ∀t ∈ [−1, 1], and κ̂(t) = 0 otherwise.

Note that ∫
R
κ(u) du = κ̂(0) = 1 =

∫
R
κ̂(t) dt.

For any ε > 0, we define the function κε on R by

κε(u) = 1
ε
κ
(
u

ε

)
.

Its Fourier transform is given by κ̂ε(t) = κ̂(εt). Note also that, for any ε > 0, we have∫
|u|> 1

ε

κ(u) du 6
1
π

∫ +∞

1
ε

4
u2 du = 4

π
ε. (4.5.5)

For any non-negative and locally bounded function h defined on R and any ε > 0, let
hε and hε be the "thickened" functions: for any u ∈ R,

hε(u) = sup
v∈[u−ε,u+ε]

h(v) and hε(u) = inf
v∈[u−ε,u+ε]

h(v).

For any ε > 0, denote by Hε the set of non-negative and locally bounded functions h
such that h, hε and hε are measurable from (R,B (R)) to (R+,B (R+)) and Lebesgue-
integrable (where B (R), B (R+) are the Borel σ-algebras).

Lemma 4.5.2. For any function h ∈Hε, ε ∈ (0, 1/4) and u ∈ R,

hε ∗ κε2(u)−
∫
|v|>ε

hε (u− v)κε2(v) dv 6 h(u) 6 (1 + 4ε)hε ∗ κε2(u).
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Proof. Note that for any |v| 6 ε and u ∈ R, we have u ∈ [u− v − ε, u− v + ε]. So,

hε (u− v) 6 h(u) 6 hε (u− v) . (4.5.6)

Using the fact that
∫
R κε2(u) du = 1 and (4.5.5), we write

h(u) =
∫
|v|6ε

h(u)κε2(v) dv + h(u)
∫
|v|>ε

κε2(v) dv

6
∫
|v|6ε

hε (u− v)κε2(v) dv + h(u) 4
π
ε.

Therefore,
h(u)

(
1− 4

π
ε
)
6
∫
R
hε (u− v)κε2(v) dv = hε ∗ κε2(u).

For any ε ∈ (0, 1/4),

h(u) 6 1
1− 2εhε ∗ κε

2(u) 6 (1 + 4ε)hε ∗ κε2(u).

Moreover, from (4.5.6),

h(u) >
∫
|v|6ε

h(u)κε2(v) dv

>
∫
|v|6ε

hε (u− v)κε2(v) dv

= hε ∗ κε2(u)−
∫
|v|>ε

hε (u− v)κε2(v) dv.

Lemma 4.5.3. Let ε > 0 and h ∈Hε.
1. For any y ∈ R and n > 1,

√
n
(
hε ∗ κε2

)
∗ ϕ√nσ(y) 6

√
n
(
h ∗ ϕ√nσ

)
(y) + c

∥∥∥h2ε − h
∥∥∥

L1 + cε ‖h‖L1 ,

where ϕ√nσ(·) is defined by (4.5.1).
2. For any y ∈ R and n > 1,

√
n
(
hε ∗ κε2

)
∗ ϕ√nσ(y) 6 c

∥∥∥hε∥∥∥L1 .

3. For any y ∈ R and n > 1,
√
n (hε ∗ κε2) ∗ ϕ√nσ(y) >

√
n
(
h ∗ ϕ√nσ

)
(y)− c ‖h− h2ε‖L1 − cε ‖h‖L1 .

Proof. For any ε > 0, |v| 6 ε and u ∈ R it holds [u− v − ε, u− v + ε] ⊂ [u− 2ε, u+ 2ε].
Therefore,

hε(u− v) > h2ε(u) and hε(u− v) 6 h2ε(u). (4.5.7)
Consequently, for any u ∈ R,

hε ∗ κε2(u) 6 h2ε(u)
∫
|v|6ε

κε2(v) dv +
∫
|v|>ε

hε(u− v)κε2(v) dv

6 h2ε(u) +
∫
|v|>ε

hε(u− v)κε2(v) dv.
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From this, using the bound
√
nϕ√nσ(·) 6 1/(

√
2πσ) and (4.5.5), we obtain that

√
n
(
hε ∗ κε2

)
∗ ϕ√nσ(y) 6

√
n
(
h2ε ∗ ϕ√nσ

)
(y)

+ 1√
2πσ

∫
R

∫
|v|>ε

hε(u− v)κε2(v) dv du

=
√
n
(
h2ε ∗ ϕ√nσ

)
(y) + 2

√
2

π3/2σ
ε
∥∥∥hε∥∥∥L1 .

Using again the bound
√
nϕ√nσ(·) 6 1/(

√
2πσ), we get

√
n
(
hε ∗ κε2

)
∗ ϕ√nσ(y) 6

√
n
(
h ∗ ϕ√nσ

)
(y) +

∫
R

∣∣∣h2ε(u)− h(u)
∣∣∣ du√

2πσ
+ cε

∥∥∥hε∥∥∥L1

6
√
n
(
h ∗ ϕ√nσ

)
(y) + c

∥∥∥h2ε − h
∥∥∥

L1 + cε
∥∥∥h2ε

∥∥∥
L1

6
√
n
(
h ∗ ϕ√nσ

)
(y) + (c+ cε)

∥∥∥h2ε − h
∥∥∥

L1 + cε ‖h‖L1 ,

which proves the claim 1.
In the same way,

√
n
(
hε ∗ κε2

)
∗ ϕ√nσ(y) 6 1√

2πσ

∥∥∥hε ∗ κε2

∥∥∥
L1 = 1√

2πσ

∥∥∥hε∥∥∥L1 ,

which establishes the claim 2.
By (4.5.7) and (4.5.5),

hε ∗ κε2(u) > h2ε(u)
∫
|v|6ε

κε2(v) dv >
(

1− 4
π
ε
)
h2ε(u).

Integrating this inequality and using once again the bound
√
nϕ√nσ(·) 6 1√

2πσ , we have
√
n (hε ∗ κε2) ∗ ϕ√nσ(y) >

√
n
(

1− 4
π
ε
)
h2ε ∗ ϕ√nσ(y)

>
√
n
(
h2ε ∗ ϕ√nσ

)
(y)− 4

π
ε

1√
2πσ
‖h2ε‖L1 .

Inserting h, we conclude that
√
n (hε ∗ κε2) ∗ ϕ√nσ(y) >

√
n
(
h ∗ ϕ√nσ

)
(y)− 1√

2πσ
‖h− h2ε‖L1 − cε ‖h2ε‖L1

>
√
n
(
h ∗ ϕ√nσ

)
(y)− c ‖h− h2ε‖L1 − cε ‖h‖L1 .

We are now equipped to prove a non-asymptotic theorem for a large class of functions
h.
Lemma 4.5.4. Assume Hypotheses M4.1-M4.3. Let ε ∈ (0, 1/4). For any function
h ∈Hε, any non-negative function ψ ∈ C and any n > 1,

sup
x∈X, y∈R

√
n
∣∣∣Ex (h (y + Sn)ψ (Xn))− h ∗ ϕ√nσ(y)ν (ψ)

∣∣∣
6 c ‖ψ‖∞

(
‖h− h2ε‖L1 +

∥∥∥h2ε − h
∥∥∥

L1

)
+ c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1√
n

+ ε+ cε e−cεn
)
,

where ϕ√nσ(·) is defined by (4.5.1). Moreover,

sup
x∈X, y∈R

√
nEx (h (y + Sn)ψ (Xn)) 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1 + cε e−cεn

)
.
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Proof. We prove upper and lower bounds for
√
nEx (h (y + Sn)ψ (Xn)) from which the

claim wills follow.
The upper bound. By Lemma 4.5.2, we have, for any x ∈ X, n > 1, y ∈ R and

ε ∈ (0, 1/4),

Ex (h (y + Sn)ψ (Xn)) 6 (1 + 4ε)Ex
(
hε ∗ κε2 (y + Sn)ψ (Xn)

)
Since hε is integrable, the function u 7→ hε ∗κε2(u) is integrable and its Fourier transform
u 7→ ĥε(u)κ̂ε2(u) has a support included in [−1/ε2, 1/ε2]. Consequently, by Lemma 4.5.1,

I0 :=
√
nEx (h (y + Sn)ψ (Xn))

6
√
n (1 + 4ε)

(
hε ∗ κε2

)
∗ ϕ√nσ(y)ν (ψ)

+ 2 ‖ψ‖∞

(
c√
n

∥∥∥hε ∗ κε2

∥∥∥
L1 +

∥∥∥∥ĥεκ̂ε2

∥∥∥∥
L1
cε e−cεn

)
.

Using the points 1 and 2 of Lemma 4.5.3 and the fact that |ν (ψ)| 6 ‖ψ‖∞, we deduce
that

I0 6
√
n
(
h ∗ ϕ√nσ

)
(y)ν (ψ) + ‖ψ‖∞

(
c
∥∥∥h2ε − h

∥∥∥
L1 + cε ‖h‖L1

)
+ 4εc

∥∥∥hε∥∥∥L1 ‖ψ‖∞

+ 2 ‖ψ‖∞

(
c√
n

∥∥∥hε ∗ κε2

∥∥∥
L1 +

∥∥∥∥ĥεκ̂ε2

∥∥∥∥
L1
cε e−cεn

)
.

Note that
∥∥∥hε ∗ κε2

∥∥∥
L1 =

∥∥∥hε∥∥∥L1 and∥∥∥∥ĥεκ̂ε2

∥∥∥∥
L1

6
∥∥∥hε∥∥∥L1

∫
R
κ̂ε2(t) dt =

∥∥∥hε∥∥∥L1

∫
R
κ̂(ε2t) dt = 1

ε2

∥∥∥hε∥∥∥L1 .

Consequently,

I0 6
√
n
(
h ∗ ϕ√nσ

)
(y)ν (ψ) + c ‖ψ‖∞

∥∥∥h2ε − h
∥∥∥

L1

+ c ‖ψ‖∞
∥∥∥hε∥∥∥L1

(
1√
n

+ ε+ cε e−cεn
)
. (4.5.8)

From (4.5.8), taking into account that
√
n
(
h ∗ ϕ√nσ

)
(y) 6 c ‖h‖L1 , we deduce, in addi-

tion, that
I0 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1 + cε e−cεn

)
. (4.5.9)

The lower bound. By Lemma 4.5.2, we write that

I0 >
√
nEx (hε ∗ κε2 (y + Sn)ψ (Xn))︸ ︷︷ ︸

=:I1

−
√
nEx

(∫
|v|>ε

hε (y + Sn − v)κε2(v) dvψ (Xn)
)

︸ ︷︷ ︸
=:I2

. (4.5.10)

Bound of I1. The Fourier transform of hε ∗ κε2 has a compact support included in
[−1/ε2, 1/ε2]. So by Lemma 4.5.1,

I1 >
√
n (hε ∗ κε2) ∗ ϕ√nσ(y)ν (ψ)− ‖ψ‖∞

(
c√
n
‖hε ∗ κε2‖L1 +

∥∥∥ĥε ∗ κε2

∥∥∥
L1 cε e−cεn

)
,
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Using the point 3 of Lemma 4.5.3 and the fact that |ν (ψ)| 6 ‖ψ‖∞,

I1 >
√
n
(
h ∗ ϕ√nσ

)
(y)ν (ψ)− c ‖ψ‖∞ (‖h− h2ε‖L1 + ε ‖h‖L1)

− ‖ψ‖∞

(
c√
n
‖hε ∗ κε2‖L1 +

∥∥∥ĥε ∗ κε2

∥∥∥
L1 cε e−cεn

)
.

Since ‖hε ∗ κε2‖L1 = ‖hε‖L1 6 ‖h‖L1 and since
∥∥∥ĥε ∗ κε2

∥∥∥
L1 6 ‖hε‖L1 ‖κ̂ε2‖L1 = 1

ε2 ‖hε‖L1

6 1
ε2 ‖h‖L1 , we deduce that

I1 >
√
n
(
h ∗ ϕ√nσ

)
(y)ν (ψ)− c ‖ψ‖∞ ‖h− h2ε‖L1

− c ‖ψ‖∞ ‖h‖L1

(
1√
n

+ ε+ cε e−cεn
)
. (4.5.11)

Bound of I2. With the notation gε,v(u) = hε (u− v), we have

I2 =
∫
|v|>ε

√
nEx (gε,v (y + Sn)ψ (Xn))κε2(v) dv.

Consequently, using (4.5.9), we find that

I2 6 c ‖ψ‖∞
(
1 + cε e−cεn

) ∫
|v|>ε

∥∥∥(gε,v)2ε

∥∥∥
L1 κε2(v) dv.

Note that, for any u and v ∈ R,

(gε,v)2ε(u) = sup
w∈[u−2ε,u+2ε]

hε (w − v) 6 sup
w∈[u−2ε,u+2ε]

h (w − v) = h2ε(u− v).

So,
∥∥∥(gε,v)2ε

∥∥∥
L1 6

∥∥∥h2ε

∥∥∥
L1 and

I2 6 c ‖ψ‖∞
∥∥∥h2ε

∥∥∥
L1

(
1 + cε e−cεn

) ∫
|v|>ε

κε2(v) dv.

By (4.5.5),
I2 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
ε+ cε e−cεn

)
. (4.5.12)

Putting together (4.5.10), (4.5.11) and (4.5.12), we obtain that

I0 >
√
n
(
h ∗ ϕ√nσ

)
(y)ν (ψ)− c ‖ψ‖∞ ‖h− h2ε‖L1

− c ‖ψ‖∞
∥∥∥h2ε

∥∥∥
L1

(
1√
n

+ ε+ cε e−cεn
)
. (4.5.13)

Putting together the upper bound (4.5.8) and the lower bound (4.5.13), the first
inequality of the lemma follows. The second inequality is proved in (4.5.9).

We now apply Lemma 4.5.4 when the function h is an indicator of an interval.

Corollary 4.5.5. Assume Hypotheses M4.1-M4.3. For any a > 0, ε ∈ (0, 1/4), any
non-negative function ψ ∈ C and any n > 1,

sup
x∈X, y∈R, z>0

√
n
∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a])− aϕ√nσ(z − y)ν (ψ)

∣∣∣
6 c(a+ ε) ‖ψ‖∞

(
1√
n

+ a

n
+ ε+ cε e−cεn

)
,
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where ϕ√nσ(·) is defined by (4.5.1). In particular, there exists c > 0 such that for any
a > 0,

sup
x∈X, y∈R, z>0

√
nEx (ψ (Xn) ; y + Sn ∈ [z, z + a]) 6 c(1 + a2) ‖ψ‖∞ . (4.5.14)

Proof. Let z > 0, a > 0, ε ∈ (0, 1/4). For any y ∈ R set

h(y) = 1[z,z+a](y).

It is clear that

hε(y) = 1[z−ε,z+a+ε](y) and hε(y) = 1[z+ε,z+a−ε](y),

where by convention 1[z+ε,z+a−ε](y) = 0 when a 6 2ε. It is also easy to see that

‖h− h2ε‖L1 =
∥∥∥h2ε − h

∥∥∥
L1 = 4ε and

∥∥∥h2ε

∥∥∥
L1 = a+ 4ε.

Taking into account these last equalities and using Lemma 4.5.4, we find that∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a])− 1[z,z+a] ∗ ϕ√nσ(y)ν (ψ)
∣∣∣

6 c(a+ ε) ‖ψ‖∞

(
1√
n

+ ε+ cε e−cεn
)
. (4.5.15)

Moreover, the convolution 1[z,z+a] ∗ ϕ√nσ is equal to

1[z,z+a] ∗ ϕ√nσ(y) =
∫
R
1{z6y−u6z+a}

e−
u2

2nσ2

√
2πnσ

du = Φ√nσ(y − z)− Φ√nσ(y − z − a),

where Φ√nσ(t) =
∫ t
−∞

e
− u2

2nσ2
√

2πnσ du is the distribution function of the centred normal law of
variance nσ2. By the Taylor-Lagrange formula, there exists ξ ∈ (y − z − a, y − z) such
that

Φ√nσ(y − z − a) = Φ√nσ(y − z)− aϕ√nσ(y − z) + a2

2 ϕ
′√
nσ(ξ).

Using the fact that supu∈R |u| e−u
2
6 c,

∣∣∣1[z,z+a] ∗ ϕ√nσ(y)− aϕ√nσ(z − y)
∣∣∣ 6 ca2

n
. (4.5.16)

Putting together (4.5.15) and (4.5.16), we conclude that
∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a])− aϕ√nσ(z − y)ν (ψ)

∣∣∣
6 c(a+ ε) ‖ψ‖∞

(
1√
n

+ a

n
+ ε+ cε e−cεn

)
.
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4.6 Auxiliary bounds
We state two bounds on the expectation Ex (ψ(Xn) ; y + Sn ∈ [z, z + a] , τy > n). The

first one is of order 1/n and independent of z. Then we reverse the Markov chain to
improve it to a bound of order 1/n3/2. We refer to Denisov and Wachtel [20] for related
results in the case of lattice valued independent random variables.

Lemma 4.6.1. Assume Hypotheses M4.1-M4.3. There exists c > 0 such that for any
a > 0, non-negative function ψ ∈ C , y ∈ R and n > 1

sup
x∈X, z>0

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6 c

n
‖ψ‖∞ (1 + a2) (1 + max(y, 0)) .

Proof. We split the time n into two parts k := bn/2c and n−k. By the Markov property,

E0 := Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

=
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xk) ; y′ + Sk ∈ [z, z + a] , τy′ > k)

× Px (Xn−k = x′ , y + Sn−k ∈ dy′ , τy > n− k)

6
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xk) ; y′ + Sk ∈ [z, z + a])

× Px (Xn−k = x′ , y + Sn−k ∈ dy′ , τy > n− k) .

Using the uniform bound (4.5.14) in Corollary 4.5.5, we obtain that

E0 6
c ‖ψ‖∞√

k
(1 + a2)Px (τy > n− k) .

By the point 2 of Proposition 4.2.2, we get

E0 6
c ‖ψ‖∞ (1 + a2) (1 + max(y, 0))√

k
√
n− k

.

Since n− k > n/2 and k > n/4 for any n > 4, the lemma is proved (the case when n 6 4
is trivial).

Lemma 4.6.2. Assume Hypotheses M4.1-M4.3. There exists c > 0 such that for any
a > 0, non-negative function ψ ∈ C , y ∈ R, z > 0 and n > 1

sup
x∈X

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6 c ‖ψ‖∞
n3/2 (1 + a3) (1 + z) (1 + max(y, 0)) .

Proof. Set again k = bn/2c. By the Markov property

E0 := Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

=
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xk) ; y′ + Sk ∈ [z, z + a] , τy′ > k)︸ ︷︷ ︸

=:E′0

(4.6.1)

× Px (Xn−k = x′ , y + Sn−k ∈ dy′ , τy > n− k) .

Using Lemma 4.3.2 with m = δx′ and

F (x1, . . . , xk) = ψ(xk)1{y′+f(x1)···+f(xk)∈[z,z+a] ,∀i∈{1,...,k}, y′+f(x1)+···+f(xi)>0},
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we have

E ′0 = E∗ν

ψ (X∗1 )
1{x′}

(
X∗k+1

)
ν
(
X∗k+1

) ; y′ + f (X∗k) + · · ·+ f (X∗1 ) ∈ [z, z + a] ,

∀i ∈ {1, . . . , k}, y′ + f (X∗k) + · · ·+ f
(
X∗k−i+1

)
> 0

 .
By the Markov property,

E ′0 = E∗ν (ψ (X∗1 )ψ∗x′ (X∗k) ; y′ + f (X∗k) + · · ·+ f (X∗1 ) ∈ [z, z + a] ,
∀i ∈ {1, . . . , k}, y′ + f (X∗k) + · · ·+ f

(
X∗k−i+1

)
> 0

)
.

where

ψ∗x′(x∗) = E∗x∗
(
1{x′} (X∗1 )

ν (X∗1 )

)
= P∗(x∗, x′)

ν(x′) = P(x′, x∗)
ν(x∗) 6

1
infx∈X ν(x) . (4.6.2)

On the event {y′ + f (X∗k) + · · ·+ f (X∗1 ) ∈ [z, z + a]} = {z + a+ S∗k ∈ [y′, y′ + a]}, we
have{
∀i ∈ {1, . . . , k}, y′ + f (X∗k) + · · ·+ f

(
X∗k−i+1

)
> 0, y′ > 0

}
⊂
{
∀i ∈ {1, . . . , k − 1}, z + a− f

(
X∗k−i

)
− · · · − f (X∗1 ) > 0, z + a+ S∗k > 0

}
=
{
τ ∗z+a > k

}
.

So, for any y′ > 0,

E ′0 6 c ‖ψ‖∞ P∗ν
(
z + a+ S∗k ∈ [y′, y′ + a] , τ ∗z+a > k

)
.

Using Lemma 4.6.1 we have uniformly in y′ > 0,

E ′0 6
c ‖ψ‖∞
k

(1 + a2) (1 + max(z + a, 0)) 6 c ‖ψ‖∞
k

(1 + a3) (1 + z) . (4.6.3)

Putting together (4.6.3) and (4.6.1) and using the point 2 of Proposition 4.2.2,

E0 6
c ‖ψ‖∞
k

(1 + a3) (1 + z)Px (τy > n− k) 6 c ‖ψ‖∞
k
√
n− k

(1 + a3) (1 + z) (1 + max(y, 0)) .

Since n− k > n/2 and k > n/4 for any n > 4, the lemma is proved.

4.7 Proof of Theorem 4.2.4
The aim of this section is to bound

E0 := Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) (4.7.1)

uniformly in the end point z. The point is to split the time n into n = n1 + n2, where
n2 = bε3nc and n1 = n − bε3nc, and ε ∈ (0, 1). Using the Markov property, we shall
bound the process between n1 and n by the local limit theorem (Corollary 4.5.5) and
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between 1 and n1 by the integral theorem (Proposition 4.2.3). Following this idea we
write

E0 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n1)︸ ︷︷ ︸
=:E1

− Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , n1 < τy 6 n)︸ ︷︷ ︸
=:E2

. (4.7.2)

For the ease of reading the bounds of E1 and E2 are given in separate sections.

4.7.1 Control of E1

Lemma 4.7.1. Assume Hypotheses M4.1-M4.3. For any a > 0 and ε ∈ (0, 1/4) there
exist c = ca > 0 depending only on a and cε > 0 such that for any non-negative function
ψ ∈ C , any y ∈ R and n ∈ N, such that ε3n > 1 we have

sup
x∈X,z>0

n

∣∣∣∣∣E1 −
a
√
n2σ

ν (ψ)Ex
(
ϕ

(
y − z + Sn1√

n2σ

)
; τy > n1

)∣∣∣∣∣
6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+ cε√

n

)
.

where E1 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n1), n2 = bε3nc, n1 = n − bε3nc and
ϕ(t) = e− t

2
2 /
√

2π.

Proof. By the Markov property,

E1 =
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a])︸ ︷︷ ︸

=:E′1

× Px (y + Sn1 ∈ dy′ , Xn1 = x′ , τy > n1) . (4.7.3)

From now on we consider that the real a > 0 is fixed. By Corollary 4.5.5, for any
ε5/2 6 ε ∈ (0, 1/4),

√
n2

∣∣∣E ′1 − aϕ√n2σ(z − y′)ν (ψ)
∣∣∣ 6 c ‖ψ‖∞

(
1
√
n2

+ ε5/2 + cε e−cεn2

)
,

with c depending only on a. Consequently, using (4.7.3) and the fact that n2 = bε3nc >
cεn, ∣∣∣E1 − aν (ψ)Ex

(
ϕ√n2σ (y − z + Sn1) ; τy > n1

)∣∣∣
6
c ‖ψ‖∞√

n2

(
cε√
n

+ ε5/2 + cε e−cεn
)
Px (τy > n1) .

Therefore, by (4.5.1) and the point 2 of Proposition 4.2.2, we obtain that∣∣∣∣∣E1 −
a
√
n2σ

ν (ψ)Ex
(
ϕ

(
y − z + Sn1√

n2σ

)
; τy > n1

)∣∣∣∣∣
6 c ‖ψ‖∞

1 + max(y, 0)
√
n2
√
n1

(
cε√
n

+ ε5/2
)
.
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Since n2 > ε3n
(
1− 1

ε3n

)
and n1 > n

2 , we have

c ‖ψ‖∞
1 + max(y, 0)
√
n2
√
n1

(
cε√
n

+ ε5/2
)
6 c ‖ψ‖∞

1 + max(y, 0)
ε3/2n

(
1 + cε

n

)(
cε√
n

+ ε5/2
)

6 c ‖ψ‖∞
1 + max(y, 0)

n

(
ε+ cε√

n

)

and the lemma follows.

To find the limit behaviour of E1, we will develop 1√
n2
Ex
(
ϕ
(
y+Sn1−z√

n2σ

)
; τy > n1

)
. To

this aim, we prove the following lemma which we will apply first with the standard normal
density function ϕ, and later on with the Rayleigh density ϕ+.

Lemma 4.7.2. Assume Hypotheses M4.1-M4.3. Let Ψ : R → R be a non-negative
derivable function such that Ψ(t) → 0 as t → +∞. Moreover we suppose that Ψ′ is
a continuous function on R such that max(|Ψ(t)| , |Ψ′(t)|) 6 c e− t

2
4 . There exists ε0 ∈

(0, 1/2) such that for any ε ∈ (0, ε0), y ∈ R, m1 > 1 and m2 > 1, we have

sup
x∈X, z>0

∣∣∣∣∣Ex
(

Ψ
(
y + Sm1 − z√

m2σ

)
; τy > m1

)

− 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ
(√

m1

m2
t− z
√
m2σ

)
ϕ+(t) dt

∣∣∣∣∣
6 cε

(1 + max(y, 0))2

mε
1
√
m2

+ c
1 + max(y, 0)
√
m1

(
e−c

m1
m2 +ε4

)
,

where ϕ+(t) = t e− t
2
2 .

Proof. Let x ∈ X, y ∈ R, z > 0, m1 > 1 and m2 > 1 and fix ε1 ∈ (0, 1). We consider two
cases. Assume first that z 6

√
m1σ/ε1. Using the regularity of the function Ψ, we note

that

J0 := Ex
(

Ψ
(
y + Sm1 − z√

m2σ

)
; τy > m1

)

= −
∫ +∞

0

√
m1

m2
Ψ′
(√

m1

m2
t− z
√
m2σ

)
Px
(
y + Sm1√
m1σ

6 t , τy > m1

)
dt.

Denote by J1 the following integral:

J1 := − 2V (x, y)√
2πm1σ

∫ +∞

0

√
m1

m2
Ψ′
(√

m1

m2
t− z
√
m2σ

)(
1− e− t

2
2

)
dt. (4.7.4)

Using the point 2 of Proposition 4.2.3, with t0 = 2/ε1, there exists ε0 > 0 such that for
any ε ∈ (0, ε0),

|J0 − J1| 6 cε,ε1

(1 + max(y, 0))2

m
1/2+ε
1

∫ 2
ε1

0

√
m1

m2

∣∣∣∣∣Ψ′
(√

m1

m2
t− z
√
m2σ

)∣∣∣∣∣ dt
+
(

2V (x, y)√
2πm1σ

+ Px (τy > m1)
)∫ +∞

2
ε1

√
m1

m2

∣∣∣∣∣Ψ′
(√

m1

m2
t− z
√
m2σ

)∣∣∣∣∣ dt.
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Using the point 2 of Proposition 4.2.1 and the point 2 of Proposition 4.2.2, with ‖Ψ′‖∞ =
supt∈R |Ψ′(t)|,

|J0 − J1| 6 cε,ε1

(1 + max(y, 0))2

mε
1
√
m2

‖Ψ′‖∞ + c
1 + max(y, 0)
√
m1

√
m1

m2

∫ +∞

2
ε1

e−
(√

m1
m2

t− z√
m2σ

)2

4 dt

6 cε,ε1

(1 + max(y, 0))2

mε
1
√
m2

+ c
1 + max(y, 0)
√
m1

∫ +∞√
m1
m2

(
2
ε1
− z√

m1σ

) e− s
2
4 ds.

Since z 6
√
m1σ
ε1

, we have 2
ε1
− z√

m1σ
> 1

ε1
> 1 and so

|J0 − J1| 6 cε,ε1

(1 + max(y, 0))2

mε
1
√
m2

+ c
1 + max(y, 0)
√
m1

e−
m1

8m2

∫
R

e− s
2
8 ds. (4.7.5)

Moreover, by the definition of J1 in (4.7.4), we have

J1 = 2V (x, y)√
2πm1σ

[
−Ψ

(√
m1

m2
t− z
√
m2σ

)(
1− e− t

2
2

)]t=+∞

t=0

+ 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ
(√

m1

m2
t− z
√
m2σ

)
t e− t

2
2 dt

= 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ
(√

m1

m2
t− z
√
m2σ

)
ϕ+(t) dt. (4.7.6)

Now, assume that z >
√
m1σ
ε1

. We write

J0 6 cEx
(

e−
(y+Sm1−z)

2

4m2σ2 ; y + Sm1 6
√
m1σ

2ε1
, τy > m1

)

+ ‖Ψ‖∞ Px
(
y + Sm1 >

√
m1σ

2ε1
, τy > m1

)

6 c e
− m1

16m2ε2
1 Px (τy > m1) + ‖Ψ‖∞

2ε1√
m1σ

Ex (y + Sm1 ; τy > m1) .

Using the points 3 and 1 of Proposition 4.2.1, we can verify that

Ex (y + Sm1 ; τy > m1) 6 Ex (2V (y + Sm1 , Xm1) + c ; τy > m1) 6 2V (x, y) + c.

So by the point 2 of Proposition 4.2.2 and the point 2 of Proposition 4.2.1,

J0 6 c
1 + max(y, 0)
√
m1

e−
cm1
m2 + cε1√

m1
(1 + max(y, 0)) .

In the same way,

J1 = 2V (x, y)√
2πm1σ

∫ +∞

0
Ψ
(√

m1

m2
t− z
√
m2σ

)
ϕ+(t) dt

6
c (1 + max(y, 0))

√
m1

∫ 1
2ε1

0
e−

m1
4m2

(
t− z√

m1σ

)2

ϕ+(t) dt+ ‖Ψ‖∞
∫ +∞

1
2ε1

t e− t
2
2 dt


6
c (1 + max(y, 0))

√
m1

[
e
− m1

16m2ε2
1

∫ +∞

0
ϕ+(t) dt+ ‖Ψ‖∞ e

− 1
16ε2

1

∫ +∞

0
t e− t

2
4 dt

]

6
c (1 + max(y, 0))

√
m1

(
e−

cm1
m2 + e

− c

ε2
1

)
.
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From the last two bounds it follows that for any z >
√
m1σ
ε1

,

|J0 − J1| 6 J0 + J1 6
c (1 + max(y, 0))

√
m1

(
e−

cm1
m2 +ε1

)
. (4.7.7)

Putting together (4.7.6), (4.7.7) and (4.7.5) and taking ε1 = ε4, we obtain the desired
inequality for any z > 0,

|J0 − J1| 6 cε
(1 + max(y, 0))2

mε
1
√
m2

+ c (1 + max(y, 0))
√
m1

(
e−

cm1
m2 +ε4

)
.

Lemma 4.7.3. Assume Hypotheses M4.1-M4.3. There exists ε0 ∈ (0, 1/2) such that
for any ε ∈ (0, ε0), y ∈ R, n ∈ N such that ε3n > 1, we have

sup
x∈X, z>0

∣∣∣∣∣ n
√
n2

Ex
(
ϕ

(
y + Sn1 − z√

n2σ

)
; τy > n1

)
− 2V (x, y)√

2πσ
ϕ+

(
z√
nσ

)∣∣∣∣∣
6 cε

(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,

where ϕ(t) = e− t
2
2 /
√

2π, ϕ+(t) = t e− t
2
2 1{t>0}, n2 = bε3nc and n1 = n− bε3nc.

Proof. Denote

J0 := Ex
(
ϕ

(
y + Sn1 − z√

n2σ

)
; τy > n1

)
and

J1 := 2V (x, y)√
2πn1σ

∫ +∞

0
ϕ

(√
n1

n2
t− z
√
n2σ

)
ϕ+(t) dt

= 2V (x, y)√
2πn1σ

∫ +∞

0

√
n2

n1
ϕ√n2

n1

(
t− z
√
n1σ

)
ϕ+(t) dt

= 2V (x, y)√
2πσ

√
n2

n1
ϕ√n2

n1

∗ ϕ+

(
z
√
n1σ

)
, (4.7.8)

where ϕ{·}(·) is defined in (4.5.1). By Lemma 4.7.2 we have

n1√
n2
|J0 − J1| 6 cεn1

(1 + max(y, 0))2

nε1n2
+ cn1

1 + max(y, 0)
√
n1
√
n2

(
e−c

n1
n2 +ε4

)
.

Since n
2 6 n1 6 n and ε3n− 1 6 n2 6 ε3n,

n
√
n2
|J0 − J1| 6 cε

(1 + max(y, 0))2

nε
+ c

1 + max(y, 0)
ε3/2

(
1 + cε

n

) (
e−

c
ε3 +ε4

)

6 cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε. (4.7.9)

Let J2 be the following term:

J2 := 2V (x, y)√
2πσ

√
n2

n1
ϕ+

(
z
√
n1σ

)
. (4.7.10)



192 CHAPTER 4. CONDITIONED LOCAL LIMIT THEOREMS

Using (4.7.8),

|J1 − J2| 6
2V (x, y)√

2πσ

√
n2

n1

∫
R
ϕ√n2

n1

(t)
∣∣∣∣∣ϕ+

(
z
√
n1σ
− t

)
− ϕ+

(
z
√
n1σ

)∣∣∣∣∣ dt.
By the point 2 of Proposition 4.2.1, we write

n
√
n2
|J1 − J2| 6 c (1 + max(y, 0))

∥∥∥ϕ′+∥∥∥∞
∫
R
ϕ√n2

n1

(t) |t| dt

6 c (1 + max(y, 0))
√
n2

n1

∫
R
ϕ(s) |s| ds

6 c (1 + max(y, 0)) ε3/2. (4.7.11)

Putting together (4.7.9) and (4.7.11), we obtain that

sup
x∈X,z>0

n
√
n2
|J0 − J2| 6 cε

(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε. (4.7.12)

It remains to link J2 from (4.7.10) to the desired equivalent. We distinguish two cases.
If z

σ
6
√
n
ε
,∣∣∣∣∣ n

√
n2
J2 −

2V (x, y)√
2πσ

ϕ+

(
z√
nσ

)∣∣∣∣∣ 6 cV (x, y)
∣∣∣∣∣ nn1

ϕ+

(
z
√
n1σ

)
− ϕ+

(
z√
nσ

)∣∣∣∣∣
6 cV (x, y)

(
‖ϕ+‖∞

∣∣∣∣ nn1
− 1

∣∣∣∣+
∣∣∣∣∣ 1
√
n1
− 1√

n

∣∣∣∣∣
∣∣∣∣ zσ
∣∣∣∣ ∥∥∥ϕ′+∥∥∥∞

)

6 cV (x, y)
(
n2

n1
+ 1
√
n1

∣∣∣∣1−√1− n2

n

∣∣∣∣
√
n

ε

)

6 cV (x, y)
(
ε3 + ε3

ε

)
.

If z
σ
>
√
n
ε

>
√
n1
ε
, we have∣∣∣∣∣ n

√
n2
J2 −

2V (x, y)√
2πσ

ϕ+

(
z√
nσ

)∣∣∣∣∣ 6 cV (x, y) sup
u> 1

ε

ϕ+ (u) 6 cV (x, y) e−
c
ε2 .

Therefore, using the point 2 of Proposition 4.2.1, we obtain that in each case∣∣∣∣∣ n
√
n2
J2 −

2V (x, y)√
2πσ

ϕ+

(
z√
nσ

)∣∣∣∣∣ 6 c (1 + max(y, 0)) ε2. (4.7.13)

Putting together (4.7.12) and (4.7.13), proves the lemma.

Another consequence of Lemma 4.7.2 is the following lemma which will be used in
Section 4.8.

Lemma 4.7.4. Assume Hypotheses M4.1-M4.3. There exists ε0 ∈ (0, 1/2) such that
for any ε ∈ (0, ε0), y ∈ R, n ∈ N such that ε3n > 2, we have

sup
x∈X

∣∣∣∣∣ n3/2

n2 − 1Ex
(
ϕ+

(
y + Sn1√
n2 − 1σ

)
; τy > n1

)
− V (x, y)

σ

∣∣∣∣∣
6 cε

(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,
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where ϕ+(t) = t e− t
2
2 1{t>0} is the Rayleigh density function, n1 = n − bε3nc and n2 =

bε3nc.

Proof. Using Lemma 4.7.2 with Ψ = ϕ+, m1 = n1, m2 = n2 − 1 and z = 0,

n3/2

n2 − 1 |J0 − J1| 6 cε
(1 + max(y, 0))2 n3/2

(n2 − 1)3/2nε1
+ c

(1 + max(y, 0))n3/2

(n2 − 1)√n1

(
e−c

n1
(n2−1) +ε4

)

6 cε
(1 + max(y, 0))2

nε
+ c

(1 + max(y, 0))
ε3

(
1 + cε

n

) (
e−

c
ε3 +ε4

)
6 cε

(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε, (4.7.14)

where
J0 := Ex

(
ϕ+

(
y + Sn1√
n2 − 1σ

)
; τy > n1

)
and

n3/2

n2 − 1J1 := n3/2

n2 − 1
2V (x, y)√

2πn1σ

∫ +∞

0
ϕ+

(√
n1

n2 − 1t
)
ϕ+(t) dt

= n3/2

n2 − 1
2V (x, y)√

2πn1σ

√
n1

n2 − 1

∫ +∞

0
t2 e−

( n1
n2−1 +1)t2

2 dt

= n3/2

(n2 − 1)3/2
2V (x, y)√

2πσ

∫ +∞

0
t2
√

2π(n2 − 1)
n− 1 ϕ√

n2−1
n−1

(t) dt

where ϕ{·}(·) is defined in (4.5.1). So,

n3/2

n2 − 1J1 = n3/2
√
n− 1(n2 − 1)

2V (x, y)
σ

n2 − 1
2(n− 1)

= n3/2

(n− 1)3/2
V (x, y)
σ

.

By the point 2 of Proposition 4.2.1,∣∣∣∣∣ n3/2

n2 − 1J1 −
V (x, y)
σ

∣∣∣∣∣ 6 c

n
(1 + max(y, 0)) . (4.7.15)

The lemma follows from (4.7.14) and (4.7.15).

Thanks to Lemmata 4.7.1 and 4.7.3 we can bound E1 from (4.7.2) as follows.

Lemma 4.7.5. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N
such that ε3n > 1, we have

sup
x∈X, z>0

n

∣∣∣∣∣E1 −
2aν (ψ)V (x, y)√

2πσ2
ϕ+

(
z√
nσ

)∣∣∣∣∣
6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+ cε (1 + max(y, 0))

nε

)
,

where E1 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n1), n1 = n − bε3nc and ϕ+ is the
Rayleigh density function: ϕ+(t) = t e− t

2
2 1{t>0}.
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Proof. From Lemmas 4.7.1 and 4.7.3, it follows that

n

∣∣∣∣∣E1 −
2aν (ψ)V (x, y)√

2πσ2
ϕ+

(
z√
nσ

)∣∣∣∣∣
6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+ cε√

n

)

+
∣∣∣∣∣aν (ψ)

σ

∣∣∣∣∣
(
cε

(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε

)

6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+ cε (1 + max(y, 0))

nε

)
.

4.7.2 Control of E2

In this section we bound the term E2 defined by (4.7.2). To this aim let us recall and
introduce some notations: for any ε ∈ (0, 1), we consider n2 = bε3nc, n1 = n − n2 =
n− bε3nc, n3 =

⌊
n2
2

⌋
and n4 = n2 − n3. We define also

E21 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 6 ε

√
n , n1 < τy 6 n

)
(4.7.16)

E22 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 < τy 6 n1 + n3

)
(4.7.17)

E23 := Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 + n3 < τy 6 n

)
(4.7.18)

and we note that
E2 = E21 + E22 + E23. (4.7.19)

Lemma 4.7.6. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N
such that ε3n > 1, we have

sup
x∈X,z>0

nE21 6 c ‖ψ‖∞ (1 + max(y, 0))
(
√
ε+ cε (1 + max(y, 0))

nε

)

where E21 is given as in (4.7.16) by

E21 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 6 ε

√
n , n1 < τy 6 n

)
and n1 = n− bε3nc.

Proof. Using the Markov property and the uniform bound (4.5.14) of Corollary 4.5.5,
with n2 = bε3nc,

E21 =
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , τy′ 6 n2)

× Px
(
Xn1 = x′ , y + Sn1 ∈ dy′ , y + Sn1 6 ε

√
n , τy > n1

)
6
c ‖ψ‖∞√

n2
Px
(
y + Sn1 6 ε

√
n , τy > n1

)
.
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We note that ε
√
n

σ
√
n1

6 ε
σ
√

1−ε3 6 2
σ
ε and so by the point 2 of Proposition 4.2.3 with

t0 = 2ε/σ:

E21 6
c ‖ψ‖∞√

n2

(
cV (x, y)
√
n1

Φ+
(
ε
√
n

σ
√
n1

)
+ cε (1 + max(y, 0)2)

n
1/2+ε
1

)
.

Using the point 2 of Proposition 4.2.1 and taking into account that n2 > ε3n
(
1− cε

n

)
,

n1 > n/2 and that Φ+(t) 6 Φ+(t0) 6 t20
2 for any t ∈ (0, t0),

nE21 6
c ‖ψ‖∞
ε3/2

(
1 + cε

n

)
(1 + max(y, 0))

(
ε2 + cε (1 + max(y, 0))

nε

)

6 c ‖ψ‖∞ (1 + max(y, 0))
(
√
ε+ cε (1 + max(y, 0))

nε

)
,

which implies the assertion of the lemma.

Lemma 4.7.7. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R, and n ∈ N
satisfying ε3n > 2, we have

sup
x∈X,z>0

nE22 6 c ‖ψ‖∞ (1 + max(y, 0))
(

e− cε + cε
nε

)
,

where E22 is given as in (4.7.17) by

E22 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 < τy 6 n1 + n3

)
and n1 = n− bε3nc, n2 = bε3nc and n3 =

⌊
n2
2

⌋
.

Proof. By the Markov property,

E22 =
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , τy′ 6 n3)︸ ︷︷ ︸

E′22

(4.7.20)

× Px
(
Xn1 = x′ , y + Sn1 ∈ dy′ , y + Sn1 > ε

√
n , τy > n1

)
.

Bound of E ′22. By the Markov property and the uniform bound (4.5.14) in Corollary
4.5.5, with n4 = n2 − n3 = n− n1 − n3,

E ′22 =
∑
x′′∈X

∫
R
Ex′′ (ψ (Xn4) ; y′′ + Sn4 ∈ [z, z + a])

× Px′ (Xn3 = x′′ , y′ + Sn3 ∈ dy′′ , τy′ 6 n3)

6
c ‖ψ‖∞√

n4
Px′ (τy′ 6 n3) .

Let (Bt)t>0 be the Brownian motion defined by Proposition 4.10.4. Denote by An the
following event:

An =
{

sup
t∈[0,1]

∣∣∣Sbtnc − σBtn

∣∣∣ 6 n1/2−ε
}
,
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and by An its complement. We have

E ′22 6
c ‖ψ‖∞√

n4

[
Px′ (τy′ 6 n3 , An3) + Px′

(
τy′ 6 n3 , An3

)]
. (4.7.21)

Note that for any x′ ∈ X and any y′ > ε
√
n,

Px′ (τy′ 6 n3 , An3) 6 P
(
τ bm
y′−n1/2−ε

3
6 n3

)
,

where, for any y′′ > 0, τ bmy′′ is the exit time of the Brownian motion starting at y′′ defined
by (4.10.7). Since y′ > ε

√
n, it implies that

Px′ (τy′ 6 n3 , An3) 6 P
(

inf
t∈[0,1]

σBtn3 6 n
1/2−ε
3 − y′

)

6 P

 inf
t∈[0,1]

σBtn3 6

(
ε3n

2

)1/2−ε

− ε
√
n


6 P

(
inf
t∈[0,1]

σBtn3 6 −ε
√
n

(
1− ε1/2−3ε

nε

))
.

Since
√
n/
√
n3 >

√
2/ε3/2,

Px′ (τy′ 6 n3 , An3) 6 P
(∣∣∣∣∣ Bn3√

n3

∣∣∣∣∣ > ε
√
n

σ
√
n3

(
1− 1

nε

))

6 P
(
|B1| >

√
2

σ
√
ε

(
1− 1

nε

))

6 c e−
c
ε(1− c

nε ) . (4.7.22)

Therefore, putting together (4.7.21) and (4.7.22) and using Proposition 4.10.4,

E ′22 6
c ‖ψ‖∞√

n4

(
c e−

c
ε(1− c

nε ) +Px′
(
An3

))
6
c ‖ψ‖∞√

n4

(
e−

c
ε(1− c

nε ) + cε
nε3

)
.

Since n4 > n2/2 > ε3n
2

(
1− cε

n

)
and n3 > n2/2− 1 > ε3n

2

(
1− cε

n

)
, we have

E ′22 6
c ‖ψ‖∞
ε3/2√n

(
1 + cε

n

)(
e− cε e

cε
nε + cε

nε

)
6
c ‖ψ‖∞√

n

(
e− cε + cε

nε

)
. (4.7.23)

Inserting (4.7.23) in (4.7.20) and using the point 2 of Proposition 4.2.2 and the fact
that n1 > n/2, we conclude that

E22 6
c ‖ψ‖∞ (1 + max(y, 0))

n

(
e− cε + cε

nε

)
.

Lemma 4.7.8. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R, and n ∈ N
such that ε3n > 3, we have

sup
x∈X,z>0

nE23 6 c ‖ψ‖∞ (1 + max(y, 0))
(
ε+ cε

nε

)
,
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where E23 is given as in (4.7.18) by

E23 = Ex
(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 + n3 < τy 6 n

)
and n1 = n− bε3nc, n2 = bε3nc and n3 =

⌊
n2
2

⌋
.

Proof. By the Markov property,

E23 6
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , n3 < τy′ 6 n2)︸ ︷︷ ︸

=:E′23

Px
(
Xn1 = x′ , y + Sn1 ∈ dy′ , y + Sn1 > ε

√
n , τy > n1

)
. (4.7.24)

We consider two cases: when z 6 ε
√
n

2 and when z > ε
√
n

2 .
Fix first 0 6 z 6 ε

√
n

2 . Using Corollary 4.5.5, we have for any y′ > ε
√
n,

E ′23 6 Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a])

6
aν(ψ)√
2πn2σ

e−
(z−y′)2

2n2σ2 +c ‖ψ‖∞√
n2

(
1
√
n2

+ ε5/2 + cε e−cεn2

)

6
c ‖ψ‖∞
ε3/2√n

(
1 + cε

n

)(
e−

ε2n
8n2σ2 + cε√

n
+ ε5/2 + cε e−cεn

)

6
c ‖ψ‖∞
ε3/2√n

(
1 + cε

n

)(
e− cε + cε√

n
+ ε5/2

)
.

So, when 0 6 z 6 ε
√
n

2 , we have

E ′23 6
c ‖ψ‖∞√

n

(
cε√
n

+ ε

)
. (4.7.25)

Now we consider that z > ε
√
n

2 . Using Lemma 4.3.2 with m = δx′ and

F (x1, . . . , xn2)
= ψ(xn2)1{y′+f(x1)+···+f(xn2 )∈[z,z+a] , ∃k∈{n3+1,...,n2−1}, y′+f(x1)+···+f(xk)60},

we obtain

E ′23 := Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , n3 < τy′ 6 n2)

6 E∗ν

ψ (X∗1 )
1{x′}

(
X∗n2+1

)
ν
(
X∗n2+1

) ; y′ + f
(
X∗n2

)
+ · · ·+ f (X∗1 ) ∈ [z, z + a] ,

∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f
(
X∗n2

)
+ · · ·+ f

(
X∗n2−k+1

)
6 0

 .
By the Markov property,

E ′23 6 ‖ψ‖∞ E∗ν
(
ψ∗x′

(
X∗n2

)
; y′ + f

(
X∗n2

)
+ · · ·+ f (X∗1 ) ∈ [z, z + a] ,

∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f
(
X∗n2

)
+ · · ·+ f

(
X∗n2−k+1

)
6 0

)
.
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where ψ∗x′ is a function defined on X by the equation (4.6.2). We note that, on the event{
y′ + f

(
X∗n2

)
+ · · ·+ f (X∗1 ) ∈ [z, z + a]

}
=
{
z + S∗n2 ∈ [y′ − a, y′]

}
, we have{

∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f
(
X∗n2

)
+ · · ·+ f

(
X∗n2−k+1

)
6 0

}
⊂
{
∃k ∈ {n3 + 1, . . . , n2 − 1}, z − f

(
X∗n2−k

)
− · · · − f (X∗1 ) 6 0

}
= {τ ∗z 6 n2 − n3 − 1} .

Consequently,

E ′23 6 c ‖ψ‖∞ P∗ν
(
z + S∗n2 ∈ [y′ − a, y′] , τ ∗z 6 n4 − 1

)
,

with n4 = n2−n3 = bε3nc−
⌊
ε3n
2

⌋
> ε3n

2

(
1− cε

n

)
. Proceeding in the same way as for the

term E ′22 in (4.7.23) and using the fact that z is larger than cε
√
n, we have

E ′23 6
c ‖ψ‖∞√

n

(
e− cε + cε

nε

)
. (4.7.26)

Putting together (4.7.25) and (4.7.26), for any z > 0, we obtain

E ′23 6
c ‖ψ‖∞√

n

(
ε+ cε

nε

)
.

Inserting this bound in (4.7.24) and using the point 2 of Proposition 4.2.2, we conclude
that

E23 6
c ‖ψ‖∞ (1 + max(y, 0))

n

(
ε+ cε

nε

)
.

Putting together Lemmas 4.7.6, 4.7.7 and 4.7.8, by (4.7.19), we obtain the following
bound for E2:

Lemma 4.7.9. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists ε0 ∈ (0, 1/4)
such that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N
such that ε3n > 3, we have

sup
x∈X,z>0

nE2 6 c ‖ψ‖∞ (1 + max(y, 0))
(
√
ε+ cε (1 + max(y, 0))

nε

)
,

where E2 is given as in (4.7.2) by

E2 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , n1 < τy 6 n)

and n1 = n− bε3nc.

4.7.3 Proof of Theorem 4.2.4
By (4.7.1) and (4.7.2),

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) = E1 + E2.

Lemma 4.7.5 estimates E1 and Lemma 4.7.9 bounds E2. Taking into account these two
lemmas, Theorem 4.2.4 follows.
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4.8 Proof of Theorem 4.2.5

4.8.1 Preliminary results
Lemma 4.8.1. Assume Hypotheses M4.1-M4.3. For any a > 0 and p ∈ N∗, there
exists ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0) there exists n0(ε) > 1 such that any
non-negative function ψ ∈ C , any y′ > 0, z > 0, k ∈ {0, . . . , p − 1} and n > n0(ε), we
have

sup
x′∈X

E ′k 6
2a√

2πp(n2 − 1)σ2
ϕ+

(
y′

σ
√
n2 − 1

)

× E∗ν

(
ψ (X∗1 )V ∗

(
X∗1 , zk + a

p
+ S∗1

)
; τ ∗zk+a

p
> 1

)

+ c ‖ψ‖∞
n

(1 + z)
(
ε+ cε (1 + z)

nε8

)

and

inf
x′∈X

E ′k >
2a√

2πp(n2 − 1)σ2
ϕ+

(
y′

σ
√
n2 − 1

)
E∗ν
(
ψ (X∗1 )V ∗ (X∗1 , zk + S∗1) ; τ ∗zk > 1

)
− c ‖ψ‖∞

n
(1 + z)

(
ε+ cε (1 + z)

nε8

)

where E ′k = Ex′
(
ψ (Xn2) ; y′ + Sn2 ∈

(
zk, zk + a

p

]
, τy′ > n2

)
, zk = z+ ka

p
and n2 = bε3nc.

Proof. Using Lemma 4.3.2 with m = δx′ and

F (x1, . . . , xn2) = ψ(xn2)1{y′+f(x1)···+f(xn2 )∈(zk,zk+a
p ] , ∀i∈{1,...,n2}, y′+f(x1)+···+f(xi)>0},

we have

E ′k = E∗ν

(
ψ (X∗1 )ψ∗x′

(
X∗n2

)
; y′ + f

(
X∗n2

)
+ · · ·+ f (X∗1 ) ∈

(
zk, zk + a

p

]
,

∀i ∈ {1, . . . , n2}, y′ + f
(
X∗n2

)
+ · · ·+ f

(
X∗n2−i+1

)
> 0

 .
where ψ∗x′ is the function defined on X by (4.6.2).

The upper bound. Note that, on the event{
y′ + f

(
X∗n2

)
+ · · ·+ f (X∗1 ) ∈

(
zk, zk + a

p

]}
=
{
zk + a

p
+ S∗n2 ∈

[
y′, y′ + a

p

)}
,

we have{
∀i ∈ {1, . . . , n2}, y′ + f

(
X∗n2

)
+ · · ·+ f

(
X∗n2−i+1

)
> 0, y′ > 0

}
⊂
{
∀i ∈ {1, . . . , n2 − 1}, zk + a

p
− f

(
X∗n2−i

)
− · · · − f (X∗1 ) > 0,

zk + a

p
+ S∗n2 > 0

}

=
{
τ ∗zk+a

p
> n2

}
. (4.8.1)
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So, for any y′ > 0,

E ′k 6 E∗ν

(
ψ (X∗1 )ψ∗x′

(
X∗n2

)
; zk + a

p
+ S∗n2 ∈

[
y′, y′ + a

p

)
, τ ∗zk+a

p
> n2

)

6
∑
x′′∈X

∫ +∞

0
ψ (x′′)E∗x′′

(
ψ∗x′

(
X∗n2−1

)
; z′′ + S∗n2−1 ∈

[
y′, y′ + a

p

]
, τ ∗z′′ > n2 − 1

)

× P∗ν

(
X∗1 = dx′′ , zk + a

p
+ S∗1 ∈ dz′′ , τ ∗zk+a

p
> 1

)
.

Using Theorem 4.2.4 for the reverse chain with ε′ = ε8, we obtain that

E ′k 6
2aν (ψ∗x′)√

2π(n2 − 1)pσ2
ϕ+

(
y′√

n2 − 1σ

) ∑
x′′∈X

∫ +∞

0
ψ (x′′)V ∗ (x′′, z′′)

× P∗ν

(
X∗1 = dx′′ , zk + a

p
+ S∗1 ∈ dz′′ , τzk+a

p
> 1

)

+ c ‖ψ∗x′‖∞ ‖ψ‖∞
n2 − 1 E∗ν

((
1 + max

(
zk + a

p
+ S∗1 , 0

))

×

√ε8 +
cε
(
1 + max

(
zk + a

p
+ S∗1 , 0

))
(n2 − 1)ε8

 , τ ∗zk+a
p
> 1

 .
Note that by (4.6.2), ν (ψ∗x′) = 1 and ‖ψ∗x′‖∞ 6 c. So,

E ′k 6
2a√

2π(n2 − 1)pσ2
ϕ+

(
y′√

n2 − 1σ

)
E∗ν

(
ψ (X∗1 )V ∗

(
X∗1 , zk + a

p
+ S∗1

)
, τ ∗zk+a

p
> 1

)

+ c ‖ψ‖∞
ε3n

(
1 + cε

n

)
(1 + z)

(
ε4 + cε (1 + z)

nε8

)

and the upper bound of the lemma is proved.
The lower bound. Similarly as in the proof of the upper bound we note that, on the

event
{
y′ + f

(
X∗n2

)
+ · · ·+ f (X∗1 ) ∈

(
zk, zk + a

p

]}
=
{
zk + S∗n2 ∈

[
y′ − a

p
, y′
)}

, we have

{
∀i ∈ {1, . . . , n2}, y′ + f

(
X∗n2

)
+ · · ·+ f

(
X∗n2−i+1

)
> 0

}
⊃
{
∀i ∈ {1, . . . , n2 − 1}, zk − f

(
X∗n2−i

)
− · · · − f (X∗1 ) > 0

}
=
{
τ ∗zk > n2 − 1

}
⊃
{
τ ∗zk > n2

}
. (4.8.2)

Let y′+ := max(y′ − a/p, 0) and a′ := min(y′, a/p) ∈ (0, a]. For any η ∈ (0, a′),

E ′k > E∗ν

(
ψ (X∗1 )ψ∗x′

(
X∗n2

)
; zk + S∗n2 ∈

[
y′ − a

p
, y′
)
, τ ∗zk > n2

)

>
∑
x′′∈X

∫ +∞

0
ψ (x′′)E∗x′′

(
ψ∗x′

(
X∗n2−1

)
; z′′ + S∗n2−1 ∈

[
y′+, y

′
+ + a′ − η

]
, τ ∗z′′ > n2 − 1

)
× P∗ν

(
X∗1 = dx′′ , zk + S∗1 ∈ dz′′ , τ ∗zk > 1

)
.
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Using Theorem 4.2.4,

E ′k >
2(a′ − η)ν (ψ∗x′)√

2π(n2 − 1)σ2
ϕ+

(
y′+√

n2 − 1σ

) ∑
x′′∈X

∫ +∞

0
ψ (x′′)V ∗ (x′′, z′′)

× P∗ν
(
X∗1 = dx′′ , zk + S∗1 ∈ dz′′ , τ ∗zk > 1

)
− c ‖ψ∗x′‖∞ ‖ψ‖∞

n2 − 1 E∗ν ((1 + max (zk + S∗1 , 0))

×
(√

ε8 + cε (1 + max (zk + S∗1 , 0))
(n2 − 1)ε8

)
, τ ∗zk > 1

)

>
2(a′ − η)√

2π(n2 − 1)σ2
ϕ+

(
y′+√

n2 − 1σ

)
E∗ν
(
ψ (X∗1 )V ∗ (X∗1 , zk + S∗1) , τ ∗zk > 1

)
− c ‖ψ‖∞

ε3n

(
1 + cε

n

)
(1 + z)

(
ε4 + cε (1 + z)

nε8

)
.

Note that, if y′ > a/p we have

(a′ − η)ϕ+

(
y′+√

n2 − 1σ

)
=
(
a

p
− η

)
ϕ+

(
y′ − a

p√
n2 − 1σ

)

>

(
a

p
− η

)
ϕ+

(
y′√

n2 − 1σ

)
−
∥∥∥ϕ′+∥∥∥∞ a2

p2√n2 − 1σ

and if 0 < y′ 6 a/p we have

(a′ − η)ϕ+

(
y′+√

n2 − 1σ

)
= 0 >

(
a

p
− η

)
ϕ+

(
y′√

n2 − 1σ

)
−
∥∥∥ϕ′+∥∥∥∞ ay′

p
√
n2 − 1σ

>

(
a

p
− η

)
ϕ+

(
y′√

n2 − 1σ

)
−
∥∥∥ϕ′+∥∥∥∞ a2

p2√n2 − 1σ .

Moreover, using the points 1 and 2 of Proposition 4.2.1, we observe that

E∗ν
(
ψ (X∗1 )V ∗ (X∗1 , zk + S∗1) , τ ∗zk > 1

)
6 c ‖ψ‖∞ (1 + z) .

Consequently, for any y′ > 0,

E ′k >
2
(
a
p
− η

)
√

2π(n2 − 1)σ2
ϕ+

(
y′√

n2 − 1σ

)
E∗ν
(
ψ (X∗1 )V ∗ (X∗1 , zk + S∗1) , τ ∗zk > 1

)
− cε ‖ψ‖∞

n3/2 (1 + z)− c ‖ψ‖∞
n

(1 + z)
(
ε+ cε (1 + z)

nε8

)
.

Taking the limit as η → 0, the lower bound of the lemma follows.

Lemma 4.8.2. Assume Hypotheses M4.1-M4.3. For any a > 0 and p ∈ N∗, there
exists ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0) there exists n0(ε) > 1 such that any
non-negative function ψ ∈ C , any y ∈ R, z > 0 and n > n0(ε), we have

sup
x∈X

n3/2E0 6
2aV (x, y)
p
√

2πσ3

p−1∑
k=0

E∗ν

(
ψ (X∗1 )V ∗

(
X∗1 , zk + a

p
+ S∗1

)
; τ ∗zk+a

p
> 1

)

+ pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))
(
ε+ cε (1 + z + max(y, 0))

nε8

)
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and

inf
x∈X

n3/2E0 >
2aV (x, y)
p
√

2πσ3

p−1∑
k=0

E∗ν
(
ψ (X∗1 )V ∗ (X∗1 , zk + S∗1) ; τ ∗zk > 1

)

− pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))
(
ε+ cε (1 + z + max(y, 0))

nε8

)

where E0 = Ex (ψ (Xn) ; y + Sn ∈ (z, z + a] , τy > n) and for any k ∈ {0, . . . , p − 1},
zk = z + ka

p
.

Proof. Set n1 = n− bε3nc and n2 = bε3nc. By the Markov property, for any p > 1,

E0 =
∑
x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ (z, z + a] , τy′ > n2)

× Px (Xn1 = dx′ , y + Sn1 ∈ dy′ , τy > n1)

=
∑
x′∈X

∫ +∞

0

p−1∑
k=0

E ′k × Px (Xn1 = dx′ , y + Sn1 ∈ dy′ , τy > n1) ,

where for any k ∈ {0, . . . , p− 1},

E ′k = Ex′
(
ψ (Xn2) ; y′ + Sn2 ∈

(
zk, zk + a

p

]
, τy′ > n2

)

and zk = z + ka
p
.

The upper bound. By Lemma 4.8.1,

E0 6
2a

p(n2 − 1)
√

2πσ2

p−1∑
k=0

Ex
(
ϕ+

(
y + Sn1

σ
√
n2 − 1

)
; τy > n1

)
J1(k)

+
p−1∑
k=0

c ‖ψ‖∞
n

(1 + z)
(
ε+ cε (1 + z)

nε8

)
Px (τy > n1) ,

where J1(k) = E∗ν
(
ψ (X∗1 )V ∗

(
X∗1 , zk + a

p
+ S∗1

)
; τ ∗zk+a

p
> 1

)
, for any k ∈ {0, . . . , p− 1}.

By Lemma 4.7.4 and the point 2 of Proposition 4.2.2,

n3/2E0 6
2a

p
√

2πσ2

p−1∑
k=0

J1(k)V (x, y)
σ

+ 1
p

p−1∑
k=0

J1(k)
(
cε (1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε

)

+ pc ‖ψ‖∞ (1 + z)
(
ε+ cε (1 + z)

nε8

)
(1 + max(y, 0)) .

Note that, using the points 1 and 2 of Proposition 4.2.1, we have

1
p

p−1∑
k=0

J1(k) 6 c ‖ψ‖∞ (1 + z).



4.8. PROOF OF THEOREM 4.2.5 203

Therefore

n3/2E0 6
2aV (x, y)
p
√

2πσ3

p−1∑
k=0

J1(k)

+ pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))
(
ε+ cε (1 + z + max(y, 0))

nε8

)

and the upper bound of the lemma is proved.
The lower bound. The proof of the lower bound is similar to the proof of the upper

bound and therefore will not be detailed.

4.8.2 Proof of Theorem 4.2.5.
The second point of Theorem 4.2.5 was proved by Lemma 4.6.2. It remains to prove

the first point. Let ψ ∈ C , a > 0, x ∈ X, y ∈ R and z > 0. Suppose first that z > 0. For
any n > 1 and η ∈ (0,min(z, 1)),

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6 E0(η), (4.8.3)

where E0(η) = Ex (ψ (Xn) ; y + Sn ∈ (z − η, z + a] , τy > n). Taking the limit as n →
+∞ in Lemma 4.8.2, we have, for any p ∈ N∗ and ε ∈ (0, ε0(p)),

lim sup
n→+∞

n3/2E0(η)

6
2(a+ η)V (x, y)√

2πpσ3

p−1∑
k=0

E∗ν

(
ψ (X∗1 )V ∗

(
X∗1 , zk,η + a+ η

p
+ S∗1

)
; τ ∗

zk,η+a+η
p
> 1

)
+ pc ‖ψ‖∞ (1 + z − η) (1 + max(y, 0)) ε,

with zk,η = z − η + k(a+η)
p

for k ∈ {0, . . . , p− 1}. Taking the limit as ε→ 0,

lim sup
n→+∞

n3/2E0(η)

6
2(a+ η)V (x, y)√

2πpσ3

p−1∑
k=0

E∗ν

(
ψ (X∗1 )V ∗

(
X∗1 , zk,η + a+ η

p
+ S∗1

)
; τ ∗

zk,η+a+η
p
> 1

)
.

By the point 2 of Proposition 4.2.1, the function u 7→ V ∗ (x∗, u− f(x∗))1{u−f(x∗)>0} is
monotonic and so is Riemann integrable. Since X is finite, we have

lim
p→+∞

a+ η

p

p−1∑
k=0

E∗ν

(
ψ (X∗1 )V ∗

(
X∗1 , zk,η + a+ η

p
+ S∗1

)
; τ ∗

zk,η+a+η
p
> 1

)

= E∗ν
(
ψ (X∗1 )

∫ z+a

z−η
V ∗ (X∗1 , z′ + S∗1)1{z′+S∗1>0} dz′

)
=
∫ z+a

z−η
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Therefore,

lim sup
n→+∞

n3/2E0(η) 6 2V (x, y)√
2πσ3

∫ z+a

z−η
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.
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Taking the limit as η → 0 and using (4.8.3), we obtain that, for any z > 0,

lim sup
n→+∞

n3/2Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

= 2V (x, y)√
2πσ3

∫ z+a

z
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′. (4.8.4)

If z = 0, we have

Ex (ψ (Xn) ; y + Sn ∈ [0, a] , τy > n) = Ex (ψ (Xn) ; y + Sn ∈ (0, a] , τy > n) .

Using Lemma 4.8.2 and the same arguments as before, it is easy to see that (4.8.4) holds
for z = 0.

Since [z, z + a] ⊃ (z, z + a] we have obviously

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) > Ex (ψ (Xn) ; y + Sn ∈ (z, z + a] , τy > n) .

Using this and Lemma 4.8.2 we obtain (4.8.4) with lim inf instead of lim sup, which
concludes the proof of the theorem.

4.9 Proof of Theorems 4.2.7 and 4.2.8

4.9.1 Preliminaries results.
Lemma 4.9.1. Assume Hypotheses M4.1-M4.3. For any x ∈ X, y ∈ R, z > 0, a > 0,
any non-negative function ψ: X→ R+ and any non-negative and continuous function g:
[z, z + a]→ R+, we have

lim
n→+∞

n3/2Ex (g (y + Sn)ψ (Xn) ; y + Sn ∈ [z, z + a) , τy > n)

= 2V (x, y)√
2πσ3

∫ z+a

z
g(z′)E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Proof. Fix x ∈ X, y ∈ R, z > 0, a > 0, and let ψ: X → R+ be a non-negative function
and g: [z, z + a] → R+ be a non-negative and continuous function. For any measurable
non-negative and bounded function ϕ: R→ R+, we define

I0(ϕ) := n3/2Ex (ψ (Xn)ϕ (y + Sn) ; τy > n) .

We first prove that for any 0 6 α < β we have

I0
(
1[α,β)

)
−→
n→+∞

2V (x, y)√
2πσ3

∫ β

α
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′. (4.9.1)

Since [α, β) ⊂ [α, β], the upper limit is a straightforward consequence of Theorem 4.2.5:

lim sup
n→+∞

I0
(
1[α,β)

)
6 lim sup

n→+∞
n3/2Ex (ψ (Xn) ; y + Sn ∈ [α, β] , τy > n)

= 2V (x, y)√
2πσ3

∫ β

α
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.
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and for the lower limit, we write for any η ∈ (0, β − α),

lim inf
n→+∞

I0
(
1[α,β)

)
> lim inf

n→+∞
n3/2Ex (ψ (Xn) ; y + Sn ∈ [α, β − η] , τy > n)

= 2V (x, y)√
2πσ3

∫ β−η

α
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Taking the limit as η → 0, it proves (4.9.1).
From (4.9.1), it is clear that by linearity, for any non-negative step function ϕ =∑N

k=1 γk1[αk,βk), where N > 1, γ1, . . . , γN ∈ R+ and 0 < α1 < β1 = α2 < · · · < βN , we
have

lim
n→+∞

I0 (ϕ) = 2V (x, y)√
2πσ3

∫ βN

α1
ϕ(z′)E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Since g is continuous on [z, z+a], for any ε ∈ (0, 1) there exists ϕ1,ε and ϕ2,ε two stepwise
functions on [z, z + a) such that g − ε 6 ϕ1,ε 6 g 6 ϕ2,ε 6 g + ε. Consequently,∣∣∣∣∣ lim

n→+∞
I0(g)− 2V (x, y)√

2πσ3

∫ z+a

z
g(z′)E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′

∣∣∣∣∣
6

2V (x, y)√
2πσ3

ε
∫ z+a

z
E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Taking the limit as ε→ 0, concludes the proof of the lemma.

For any l > 1 we denote by C +
b

(
Xl × R

)
the set of measurable non-negative functions

g: Xl × R → R+ bounded and such that for any (x1, . . . , xl) ∈ Xl, the function z 7→
g(x1, . . . , xl, z) is continuous.

Lemma 4.9.2. Assume Hypotheses M4.1-M4.3. For any x ∈ X, y ∈ R, z > 0, a > 0,
l > 1, any non-negative functions ψ: X→ R+ and g ∈ C +

b

(
Xl × R

)
, we have

lim
n→+∞

n3/2Ex (g (X1, . . . , Xl, y + Sn)ψ (Xn) ; y + Sn ∈ [z, z + a) , τy > n)

= 2√
2πσ3

∫ z+a

z
Ex (g (X1, . . . , Xl, z

′)V (Xl, y + Sl) ; τy > l)

× E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Proof. We reduce the proof to the previous case using the Markov property. Fix x ∈ X,
y ∈ R, z > 0, a > 0, l > 1, ψ: X→ R+ and g ∈ C +

b

(
Xl × R

)
. For any n > l + 1, by the

Markov property,

I0 := n3/2Ex (g (X1, . . . , Xl, y + Sn)ψ (Xn) ; y + Sn ∈ [z, z + a) , τy > n)
= Ex

(
n3/2Jn−l (X1, . . . , Xl, y + Sl) , τy > l

)
,

where for any (x1, . . . , xl) ∈ Xl, y′ ∈ R and k > 1,

Jk(x1, . . . , xl, y
′) = Exl (g (x1, . . . , xl, y

′ + Sk)ψ (Xk) ; y′ + Sk ∈ [z, z + a) , τy′ > k) .

By the point 2 of Theorem 4.2.5,

n3/2Jn−l (X1, . . . , Xl, y + Sl) 6 c ‖g‖∞ ‖ψ‖∞ (1 + z) (1 + max (y + Sl, 0)) .
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Consequently, by the Lebesgue dominated convergence theorem (in fact the expectation
Ex is a finite sum) and Lemma 4.9.1,

lim
n→+∞

I0 = 2√
2πσ3

∫ z+a

z
Ex (g (X1, . . . , Xl, z

′)V (Xl, y + Sl) ; τy > l)

× E∗ν (ψ (X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

Lemma 4.9.2 can be reformulated for the dual Markov walk as follows:

Lemma 4.9.3. Assume Hypotheses M4.1-M4.3. For any x′ ∈ X, z > 0, y′ > 0, a > 0,
m > 1 and any function g ∈ C +

b (Xm × R), we have

lim
n→+∞

n3/2E∗ν

g (X∗m, . . . , X∗1 , y′ − S∗n)
1{X∗n+1=x′}
ν (X∗n+1) ; z + S∗n ∈ [y′, y′ + a) , τ ∗z > n


= 2√

2πσ3

∫ y′+a

y′
E∗ν (g (X∗m, . . . , X∗1 , y′ − y′′ + z)V ∗ (X∗m, z + S∗m) ; τ ∗z > m)

× V (x′, y′′) dy′′.

Proof. Fix x′ ∈ X, z > 0, y′ > 0, a > 0, m > 1 and g ∈ C +
b (Xm × R). Let ψ∗x′ be the

function defined on X by (4.6.2) and consider for any n > m+ 1,

I0 := n3/2E∗ν (g (X∗m, . . . , X∗1 , y′ − S∗n)ψ∗x′ (X∗n) ; z + S∗n ∈ [y′, y′ + a) , τ ∗z > n) .

By Lemma 4.9.2 applied to the dual Markov walk, we have

I0 −→
n→+∞

2√
2πσ3

∑
x∗∈X

∫ y′+a

y′
E∗x∗ (g (X∗m, . . . , X∗1 , y′ + z − y′′)V ∗ (X∗m, z + S∗m) ; τ ∗z > m)

× Eν (ψ∗x′ (X1)V (X1, y
′′ + S1) ; τy′′ > 1) ν(x∗) dy′′.

Moreover, using (4.6.2) and the fact that ν is P-invariant, for any x′ ∈ X, y′′ > 0,

Eν (ψ∗x′ (X1)V (X1, y
′′ + S1) ; τy′′ > 1)

=
∑
x1∈X

P(x′, x1)
ν(x1) V (x1, y

′′ + f(x1))1{y′′+f(x1)>0}ν(x1)

= Ex′ (V (X1, y
′′ + S1) ; τy′′ > 1) .

By the point 1 of Proposition 4.2.1, the function V is harmonic and so

lim
n→+∞

I0 = 2√
2πσ3

∫ y′+a

y′
E∗ν (g (X∗m, . . . , X∗1 , y′ − y′′ + z)V ∗ (X∗m, z + S∗m) ; τ ∗z > m)

× V (x′, y′′) dy′′.

Lemma 4.9.4. Assume Hypotheses M4.1-M4.3. For any x ∈ X, y ∈ R, z > 0, a > 0,
m > 1 and any function g ∈ C +

b (Xm × R), we have

lim
n→+∞

n3/2Ex (g (Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n)

= 2V (x, y)√
2πσ3

∫ z+a

z
E∗ν (g (X∗m, . . . , X∗1 , z′)V ∗ (X∗m, z′ + S∗m) ; τ ∗z′ > m) dz′.
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Proof. Fix x ∈ X, y ∈ R, z > 0, a > 0, m > 1 and g ∈ C +
b (Xm × R). For any n > m,

consider

In(x, y) := Ex (g (Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n) . (4.9.2)

For any l > 1 and n > l +m, by the Markov property, we have

n3/2In(x, y) = Ex
(
n3/2In−l (Xl, y + Sl) ; τy > l

)
. (4.9.3)

For any p > 1 and 0 6 k 6 p we define zk := z + ak
p
. For any x′ ∈ X, y′ > 0, n > l + m

and p > 1, we write

n3/2In−l(x′, y′) =
p−1∑
k=0

n3/2Ex′ (g (Xn−l−m+1, . . . , Xn−l, y
′ + Sn−l) ;

y′ + Sn−l ∈ (zk, zk+1] , τy′ > n− l) .

Using Lemma 4.3.2, we get

n3/2In−l(x′, y′) =
p−1∑
k=0

n3/2E∗ν
(
g
(
X∗m, . . . , X

∗
1 , y

′ − S∗n−l
)
ψ∗x′

(
X∗n−l

)
;

y′ − S∗n−l ∈ (zk, zk+1] , ∀i ∈ {1, . . . , n− l}, y′ + f
(
X∗n−l

)
+ · · ·+ f

(
X∗n−l−i+1

)
> 0

)
,

where ψ∗x′ is defined by (4.6.2).
The upper bound. Using (4.8.1), we have

n3/2In−l(x′, y′) 6
p−1∑
k=0

n3/2E∗ν
(
g
(
X∗m, . . . , X

∗
1 , y

′ − S∗n−l
)
ψ∗x′

(
X∗n−l

)
;

zk+1 + S∗n−l ∈ [y′, y′ + a/p) , τ ∗zk+1
> n− l

)
.

By Lemma 4.9.3,

lim sup
n→+∞

n3/2In−l(x′, y′) 6
2√

2πσ3

p−1∑
k=0

∫ y′+a/p

y′
Jk(y′ − y′′)V (x′, y′′) dy′′,

where for any k > 0 and t ∈ R,

Jk(t) := E∗ν
(
g (X∗m, . . . , X∗1 , t+ zk+1)V ∗ (X∗m, zk+1 + S∗m) ; τ ∗zk+1

> m
)
.

Note that for any t ∈ [−a/p, 0]

Jk(t) 6 E∗ν

(
sup

t∈[−a/p,0]
g (X∗m, . . . , X∗1 , t+ zk+1)V ∗ (X∗m, zk+1 + S∗m) ; τ ∗zk+1

> m

)
︸ ︷︷ ︸

=:Jp
k

. (4.9.4)

Since y′′ 7→ V (x′, y′′) is non-decreasing (see the point 2 of Proposition 4.2.1), we have

lim sup
n→+∞

n3/2In−l(x′, y′) 6
a

p

p−1∑
k=0

2Jpk√
2πσ3

V

(
x′, y′ + a

p

)
.
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Moreover, by (4.9.2) and the point 2 of Theorem 4.2.5,

n3/2In−l(Xl, y + Sl) 6 ‖g‖∞ c (1 + z) (1 + max(y + Sl, 0)) .

Consequently, by (4.9.3) and the Lebesgue dominated convergence theorem (or using just
the fact that X is finite),

lim sup
n→+∞

n3/2In(x, y) 6 a

p

p−1∑
k=0

2Jpk√
2πσ3

Ex
(
V

(
Xl, y + Sl + a

p

)
; τy > l

)
.

Using the point 3 of Proposition 4.2.1, for any δ ∈ (0, 1),

lim sup
n→+∞

n3/2In(x, y) 6 a

p

p−1∑
k=0

2Jpk√
2πσ3

Ex
(

(1 + δ)
(
y + Sl + a

p

)
+ cδ ; τy > l

)

and again using the point 3 of Proposition 4.2.1, for any δ ∈ (0, 1),

lim sup
n→+∞

n3/2In(x, y) 6 a

p

p−1∑
k=0

2Jpk√
2πσ3

Ex
(

1 + δ

1− δV (Xl, y + Sl) + 2a
p

+ cδ ; τy > l

)
.

Using the point 1 of Proposition 4.2.1 and the point 2 of Proposition 4.2.2 and taking
the limit as l→ +∞,

lim sup
n→+∞

n3/2In(x, y) 6 a

p

p−1∑
k=0

2Jpk√
2πσ3

1 + δ

1− δV (x, y).

Taking the limit as δ → 0,

lim sup
n→+∞

n3/2In(x, y) 6 a

p

p−1∑
k=0

2Jpk√
2πσ3

V (x, y). (4.9.5)

For any (x∗1, . . . , x∗m) ∈ Xm and u ∈ R, let

gm(u) := g (x∗m, . . . , x∗1, u) ,
V ∗m(u) := V ∗(x∗m, u− f(x∗1)− · · · − f(x∗m))1{u−f(x∗1)>0,...,u−f(x∗1)−···−f(x∗m)>0}. (4.9.6)

The function u 7→ gm(u) is uniformly continuous on [z, z + a]. Consequently, for any
ε > 0, there exists p0 > 1 such that for any p > p0,

a

p

p−1∑
k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V ∗m(zk+1) 6 a

p

p−1∑
k=0

(gm (zk+1) + ε)V ∗m(zk+1).

Moreover, using the point 2 of Proposition 4.2.1, it is easy to see that the function
u 7→ V ∗m(u) is non-decreasing and so is Riemann-integrable. Therefore, as p → +∞, we
have

lim sup
p→+∞

a

p

p−1∑
k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V ∗m(zk+1) 6
∫ z+a

z
(gm (z′) + ε)V ∗m(z′) dz′.

Thus, when ε→ 0,

lim sup
p→+∞

a

p

p−1∑
k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V ∗m(zk+1) 6
∫ z+a

z
gm (z′)V ∗m(z′) dz′. (4.9.7)
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Moreover, since u 7→ V ∗m(u) is non-decreasing,

a

p

p−1∑
k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V ∗m(zk+1) 6 ‖g‖∞ V
∗
m(z + a)a.

Consequently, by the Lebesgue dominated convergence theorem, (4.9.4), (4.9.7) and the
Fubini theorem,

lim sup
p→+∞

a

p

p−1∑
k=0

2Jpk√
2πσ3

V (x, y)

= 2V (x, y)√
2πσ3

E∗ν

lim sup
p→+∞

a

p

p−1∑
k=0

sup
t∈[−a/p,0]

g (X∗m, . . . , X∗1 , t+ zk+1)

×V ∗ (X∗m, zk+1 + S∗m) ; τ ∗zk+1
> m

)
6

2V (x, y)√
2πσ3

∫ z+a

z
E∗ν (g (X∗m, . . . , X∗1 , z′)V ∗ (X∗m, z′ + S∗m) ; τ ∗z′ > m) dz′.

By (4.9.5), we obtain that,

lim sup
n→+∞

n3/2In(x, y)

6
2V (x, y)√

2πσ3

∫ z+a

z
E∗ν (g (X∗m, . . . , X∗1 , z′)V ∗ (X∗m, z′ + S∗m) ; τ ∗z′ > m) dz′.

The lower bound. Repeating similar arguments as in the upper bound, by (4.8.2), we
have for any x′ ∈ X, y′ > 0, l > 1, n > l +m+ 1, p > 1,

n3/2In−l(x′, y′) >
p−1∑
k=0

n3/2E∗ν
(
g
(
X∗m, . . . , X

∗
1 , y

′ − S∗n−l
)
ψ∗x′

(
X∗n−l

)
;

zk + S∗n−l ∈ [y′ − a/p, y′) , τ ∗zk > n− l
)

=
p−1∑
k=0

n3/2E∗ν
(
g
(
X∗m, . . . , X

∗
1 , y

′
+ + a′ − S∗n−l

)
ψ∗x′

(
X∗n−l

)
;

zk + S∗n−l ∈ [y′+, y′+ + a′) , τ ∗zk > n− l
)
,

where y′+ = max(y′ − a/p, 0) and a′ = min(y′, a/p) ∈ (0, a/p). Using Lemma 4.9.3,

lim inf
n→+∞

n3/2In−l(x′, y′) >
p−1∑
k=0

2√
2πσ3

∫ y′++a′

y′+

Lk(y′+ + a′ − y′′)V (x′, y′′) dy′′,

where, for any t ∈ R,

Lk(t) := E∗ν
(
g (X∗m, . . . , X∗1 , t+ zk)V ∗ (X∗m, zk + S∗m) ; τ ∗zk > m

)
.

Since y′′ 7→ V (x′, y′′) is non-decreasing (see the point 2 of Proposition 4.2.1), we have

lim inf
n→+∞

n3/2In−l(x′, y′) > a′
p−1∑
k=0

2Lpk√
2πσ3

V
(
x′, y′+

)
,
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where

Lpk := E∗ν

(
inf

t∈[0,a/p]
g (X∗m, . . . , X∗1 , t+ zk)V ∗ (X∗m, zk + S∗m) ; τ ∗zk > m

)
. (4.9.8)

Moreover, by the point 3 of Proposition 4.2.1, for any δ ∈ (0, 1),

a′V (x′, y′+) > (1−δ)a′y′+−cδ > (1−δ)
(
y′ − a

p

)
a

p
−cδ >

a

p

1− δ
1 + δ

V (x′, y′)−a
p
cδ−

(
a

p

)2

−cδ.

Consequently, using (4.9.3) and the Fatou Lemma,

lim inf
n→+∞

n3/2In(x, y) >
p−1∑
k=0

2Lpk√
2πσ3

Ex
(
a

p

1− δ
1 + δ

V (Xl, y + Sl)− cδ
(
1 + a2

)
; τy > l

)
.

Using the point 1 of Proposition 4.2.1 and the point 2 of Proposition 4.2.2 and taking
the limit as l→ +∞ and then as δ → 0,

lim inf
n→+∞

n3/2In(x, y) > a

p

p−1∑
k=0

2Lpk√
2πσ3

V (x, y). (4.9.9)

Using the notation from (4.9.6) and the fact that u 7→ gm(u) is uniformly continuous on
[z, z + a], for any ε > 0,

lim inf
p→+∞

a

p

p−1∑
k=0

inf
t∈[0,a/p]

gm (t+ zk)V ∗m(zk) >
∫ z+a

z
(gm (z′)− ε)V ∗m(z′) dz′.

Taking the limit as ε→ 0,

lim inf
p→+∞

a

p

p−1∑
k=0

inf
t∈[0,a/p]

gm (t+ zk)V ∗m(zk) >
∫ z+a

z
gm (z′)V ∗m(z′) dz′.

By the Fatou lemma, (4.9.8) and (4.9.9), we conclude that

lim inf
n→+∞

n3/2In(x, y) > 2V (x, y)√
2πσ3

E∗ν

lim inf
p→+∞

a

p

p−1∑
k=0

inf
t∈[0,a/p]

g (X∗m, . . . , X∗1 , t+ zk)

× V ∗ (X∗m, zk + S∗m) ; τ ∗zk > m


>

2V (x, y)√
2πσ3

∫ z+a

z
E∗ν (g (X∗m, . . . , X∗1 , z′)V ∗ (X∗m, z′ + S∗m) ; τ ∗z′ > m) dz′.

From now on, we consider that the dual Markov chain (X∗n)n>0 is independent of
(Xn)n>0. Recall that its transition probability P∗ is defined by (4.2.4) and that, for any
z > 0, the associated Markov walk (z+S∗n)n>0 and the associated exit time τ ∗z are defined
by (4.2.5) and (4.2.6) respectively. Recall also that for any (x, x∗) ∈ X2, we denote by
Px,x∗ and Ex,x∗ the probability and the expectation generated by the finite dimensional
distributions of the Markov chains (Xn)n>0 and (X∗n)n>0 starting at X0 = x and X∗0 = x∗

respectively.
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Lemma 4.9.5. Assume Hypotheses M4.1-M4.3. For any x ∈ X, y ∈ R, z > 0, a > 0,
l > 1, m > 1 and any function g ∈ C +

b

(
Xl+m × R

)
, we have

lim
n→+∞

n3/2Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n)

= 2√
2πσ3

∫ z+a

z

∑
x∗∈X

Ex,x∗ (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z
′)

×V (Xl, y + Sl)V ∗ (X∗m, z′ + S∗m) ; τy > l , τ ∗z′ > m) dz′ν(x∗).

Proof. Fix x ∈ X, y ∈ R, z > 0, a > 0, l > 1, m > 1 and g ∈ C +
b

(
Xl+m × R

)
. For any

n > l +m, by the Markov property,

I0 := n3/2Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n)
=

∑
x1,...,xl∈Xl

n3/2Exl (g (x1, . . . , xl, Xn−l−m+1, . . . , Xn−l, yl + Sn−l) ;

yl + Sn−l ∈ (z, z + a] , τyl > n− l)× Px (X1 = x1, . . . , Xl = xl, τy > l) ,

where yl = x1 + · · ·+ xl. Using the Lebesgue dominated convergence theorem (or simply
the fact that Xl is finite) and Lemma 4.9.4, we conclude that

lim
n→+∞

I0 = 2√
2πσ3

∑
x1,...,xl∈Xl

V (xl, yl)Px (X1 = x1, . . . , Xl = xl, τy > l)

×
∫ z+a

z
E∗ν (g (x1, . . . , xl, X

∗
m, . . . , X

∗
1 , z
′)V ∗ (X∗m, z′ + S∗m) ; τ ∗z′ > m) dz′.

4.9.2 Proof of Theorem 4.2.7.
For any l > 1, denote by C +(Xl×R+) the set of non-negative functions g: Xl×R+ →

R+ satisfying the following properties:
— for any (x1, . . . , xl) ∈ Xl, the function z 7→ g(x1, . . . , xl, z) is continuous,
— there exists ε > 0 such that maxx1,...xl∈X supz>0 g(x1, . . . , xl, z)(1 + z)2+ε < +∞.

Fix x ∈ X, y ∈ R, l > 1, m > 1 and g ∈ C +
(
Xl+m × R

)
. For brevity, denote

gl,m(y + Sn) = g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) .

Set

I0 := n3/2Ex (gl,m(y + Sn) ; τy > n)

=
+∞∑
k=0

n3/2Ex (gl,m(y + Sn) ; y + Sn ∈ (k, k + 1] , τy > n)︸ ︷︷ ︸
=:Ik(n)

.

Since g ∈ C +
(
Xl+m × R

)
, we have

Ik(n) 6 N(g)
(1 + k)2+εn

3/2Px (y + Sn ∈ (k, k + 1] , τy > n) ,
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where N(g) = maxx1,...,xl+m∈X supz>0 g(x1, . . . , xl+m, z)(1 + z)2+ε < +∞. By the point 2
of Theorem 4.2.5, we have

Ik(n) 6 cN(g)(1 + max(y, 0))
(k + 1)1+ε .

Consequently, by the Lebesgue dominated convergence theorem,

lim
n→+∞

I0 =
+∞∑
k=0

lim
n→+∞

n3/2Ex (gl,m(y + Sn) ; y + Sn ∈ (k, k + 1] , τy > n) ,

By Lemma 4.9.5,

lim
n→+∞

I0 = 2√
2πσ3

+∞∑
k=0

∫ k+1

k

∑
x∗∈X

Ex,x∗ (gl,m(z′)V (Xl, y + Sl)V ∗ (X∗m, z′ + S∗m) ;

τy > l , τ ∗z′ > m) dz′ν(x∗),

which establishes Theorem 4.2.7.

4.9.3 Proof of Theorem 4.2.8.
Theorem 4.2.8 will be deduced from Theorem 4.2.7.
Let x ∈ X, y ∈ R and n > 1. Since X is finite we note that ‖f‖∞ = supx∈X |f(x)|

exists. This implies

Px (τy = n+ 1) = Px (y + Sn + f(Xn+1) 6 0 , y + Sn ∈ [0, ‖f‖∞] , τy > n) .

By the Markov property,

Px (τy = n+ 1) = Ex (g(Xn, y + Sn) ; τy > n) ,

where, for any (x′, y′) ∈ X× R,

g(x′, y′) = Px′ (y′ + f(X1) 6 0)1{y′∈[0,‖f‖∞]} = 1{y′∈[0,‖f‖∞]}
∑
x1∈X

P(x′, x1)1{y′+f(x1)60}.

Since g(x′, ·) is a staircase function, for any ε > 0 there exist two functions ϕε and ψε on
X× R and N ⊂ X× R such that
— for any x′ ∈ X, the functions ϕε(x′, ·) and ψε(x′, ·) are continuous and have a

compact support included in [−1, ‖f‖∞ + 1],
— for any (x′, y′) ∈ (X× R) \N , it holds ϕε(x′, y′) = g(x′, y′) = ψε(x′, y′),
— for any (x′, y′) ∈ X× R, it holds 0 6 ϕε(x′, y′) 6 g(x′, y′) 6 ψε(x′, y′) 6 1,
— the set N is sufficiently small:∫ ‖f‖∞+1

−1
E∗ν (V ∗ (X1, z + S∗1) ; τ ∗z > 1 , (X1, z) ∈ N) dz 6 ε. (4.9.10)

The upper bound. For any ε > 0, using Theorem 4.2.7, we have

I+ := lim sup
n→+∞

n3/2Px (τy = n+ 1)

6 lim sup
n→+∞

n3/2Ex (ψε(Xn, y + Sn) ; τy > n)

= 2√
2πσ3

∫ +∞

0

∑
x∗∈X

Ex,x∗ (ψε (X∗1 , z)V (X1, y + S1)

V ∗(X∗1 , z + S∗1) ; τy > 1 , τ ∗z > 1) ν(x∗) dz.
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Using the point 1 of Proposition 4.2.1,

I+ 6
2V (x, y)√

2πσ3

∫ ‖f‖∞+1

0
E∗ν (ψε (X∗1 , z)V ∗(X∗1 , z + S∗1) ; τ ∗z > 1) dz

6
2V (x, y)√

2πσ3

∫ ‖f‖∞
0

E∗ν (g (X∗1 , z)V ∗(X∗1 , z + S∗1) ; τ ∗z > 1) dz︸ ︷︷ ︸
=:I1

+ 2V (x, y)√
2πσ3

∫ ‖f‖∞+1

0
E∗ν (V ∗(X∗1 , z + S∗1) ; τ ∗z > 1 , (X∗1 , z) ∈ N) dz︸ ︷︷ ︸

=:I2

. (4.9.11)

Since ν is P∗-invariant, we have

I1 = 2V (x, y)√
2πσ3

∫ ‖f‖∞
0

∑
x∗∈X

g (x∗, z)V ∗(x∗, z − f(x∗))1{z−f(x∗)>0}ν(x∗) dz

= 2V (x, y)√
2πσ3

∫ ‖f‖∞
0

∑
x∗,x1∈X

1{z+f(x1)60}P(x∗, x1)ν(x∗)V ∗(x∗, z − f(x∗))1{z−f(x∗)>0} dz

= 2V (x, y)√
2πσ3

∫ ‖f‖∞
0

∑
x∗,x1∈X

1{z+f(x1)60}P∗(x1, x
∗)ν(x1)V ∗(x∗, z − f(x∗))1{z−f(x∗)>0} dz

= 2V (x, y)√
2πσ3

∫ ‖f‖∞
0

∑
x1∈X

1{z+f(x1)60}ν(x1)E∗x1 (V ∗(X∗1 , z + S∗1) ; τ ∗z > 1) dz.

Using the point 1 of Proposition 4.2.1,

I1 = 2V (x, y)√
2πσ3

∫ ‖f‖∞
0

E∗ν (V ∗(X∗1 , z) ; S∗1 > z) dz. (4.9.12)

Moreover, by (4.9.10), we get

I2 6
2V (x, y)√

2πσ3
ε. (4.9.13)

Putting together (4.9.11), (4.9.12) and (4.9.13) and taking the limit as ε→ 0, we obtain
that

I+ 6
2V (x, y)√

2πσ3

∫ ‖f‖∞
0

E∗ν (V ∗(X∗1 , z) ; S∗1 > z) dz. (4.9.14)

Lower bound. In a similar way, using Theorem 4.2.7, we write

I− := lim inf
n→+∞

n3/2Px (τy = n+ 1)

> lim inf
n→+∞

n3/2Ex (ϕε(Xn, y + Sn) ; τy > n)

= 2V (x, y)√
2πσ3

∫ ‖f‖∞+1

0
E∗ν (ϕε (X∗1 , z)V ∗(X∗1 , z + S∗1) ; τ ∗z > 1) dz

> I1 − I2.

Using (4.9.12) and (4.9.13) and taking the limit as ε→ 0, we obtain that

I− >
2V (x, y)√

2πσ3

∫ ‖f‖∞
0

E∗ν (V ∗(X∗1 , z) ; S∗1 > z) dz,

which together with (4.9.14) concludes the proof.
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4.10 Appendix

4.10.1 The non degeneracy of the Markov walk
In [38] (Chapter 3), it is proved that the statements of Propositions 4.2.1-4.2.3 hold

under more general assumptions (see Hypotheses M1-M5 of [38]/Chapter 3). We will
link these assumptions to our Hypotheses M4.1-M4.3. The assumptions M1-M3 in [38]
(Chapter 3), with the Banach space C , are well known consequences of Hypothesis M4.1
of this paper. Hypothesis M4 in [38] (Chapter 3) is also obvious with N = N1 = · · · = 0.
By Hypothesis M4.2, to obtain Hypothesis M5 of [38] (Chapter 3), it remains only to
prove that σ defined by (4.2.2) is strictly positive. First we give a necessary and sufficient
condition. Recall that the words path and orbit are defined in Section 4.4.

Lemma 4.10.1. Assume Hypothesis M4.1. The following statements are equivalent:
1. The Cesáro mean of f on the orbits is constant: there exists m ∈ R such that for any

orbit x0, . . . , xn we have

f(x0) + · · ·+ f(xn) = (n+ 1)m.

2. There exist a constant m ∈ R and a function h ∈ C such that for any (x, x′) ∈ X2,

P(x, x′)f(x′) = P(x, x′) (h(x)− h(x′) +m) .

3. The following real σ̃2 is equal to 0

σ̃2 = ν
(
f 2
)
− ν (f)2 + 2

+∞∑
n=1

[
ν (fPnf)− ν (f)2

]
= 0.

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix x0 ∈ X
and set h(x0) = 0. For any x ∈ X, we define h(x) in the following way: for any path
x0, x1, . . . , xn, x in X, we set

h(x) = −f(x)− f(xn)− · · · − f(x1) + (n+ 1)m.

We shall verify that h is well defined. By Hypothesis M4.1, we can find at least a path
to define h(x). Now we have to check that this definition does not depend on the choice
of the path. Let x0, x1, . . . , xp, x and x0, y1, . . . , yq, x be two paths. By Hypothesis M4.1,
there exists a path x, z1, . . . , zn, x0 in X between x and x0. Since x0, x1, . . . , xp, x, z1, . . . , zn
and x0, y1, . . . , yp, x, z1, . . . , zn are two orbits, by the point 1, we have

−f(x)− f(xp)− · · · − f(x1) + (p+ 1)m = f(x0) + f(z1) + · · ·+ f(zn)− (n+ 1)m
= −f(x)− f(yq)− · · · − f(y1) + (q + 1)m

and so the function h is well defined on X. Now let (x, x′) ∈ X2 such that P(x, x′) >
0. By Hypothesis M4.1, there exists x0, x1, . . . , xn, x a path between x0 and x. Since
P(x0, x1) · · ·P(xn, x)P(x, x′) > 0, by the definition of h, we have

h(x) = −f(x)− f(xn)− · · · − f(x1) + (n+ 1)m
h(x′) = −f(x′)− f(x)− f(xn)− · · · − f(x1) + (n+ 2)m.
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In particular
h(x′) = −f(x′) + h(x) +m.

The point 2 implies the point 1. Suppose that the point 2 holds and let x0, . . . , xn be
an orbit. Using the point 2,

h(x0) = h(xn)− f(x0) +m = · · · = h(x0)− f(x0)− f(xn)− · · · − f(x1) + (n+ 1)m,

and the point 1 follows.
The point 2 implies the point 3. Suppose that the point 2 holds. Denote by f̃ the

ν-centred function:
f̃(x) = f(x)− ν(f), ∀x ∈ X. (4.10.1)

By the point 2, for any x ∈ X,

Pf̃(x) = h(x)−Ph(x) +m− ν(f). (4.10.2)

Using the fact that ν is P-invariant, we obtain that ν
(
f̃
)

= 0 = m− ν(f) and so,

m = ν(f). (4.10.3)

Consequently, by (4.10.2), Pnf̃ = Pn−1h−Pnh for any n > 1 and therefore,
n∑
k=1

Pkf̃ = h−Pnh. (4.10.4)

Let
Θ̃ :=

+∞∑
k=0

Pkf̃

be the solution of the Poisson equation Θ̃ − PΘ̃ = f̃ , which by (4.2.1), is well defined.
Taking the limit as n→ +∞ in (4.10.4) and using (4.2.1),

PΘ̃ = Θ̃− f̃ = h− ν(h).

Therefore, for any (x, x′) ∈ X2,

Θ̃(x′)−PΘ̃(x) = f̃(x′) + PΘ̃(x′)−PΘ̃(x) = f̃(x′) + h(x′)− h(x).

Using the point 2 and (4.10.3), it follows that

Θ̃(x′)−PΘ̃(x) = 0, (4.10.5)

for any (x, x′) ∈ X2 such that P(x, x′) > 0. Moreover,

σ̃2 = ν
(
f̃ 2
)

+ 2
+∞∑
n=1

ν
(
f̃Pnf̃

)
= ν

(
f̃
(
f̃ + 2PΘ̃

))
= ν

((
Θ̃−PΘ̃

) (
Θ̃ + PΘ̃

))
.

Since ν is P-invariant,

σ̃2 = ν
(
P
(
Θ̃2
))
− 2ν

((
PΘ̃

)2
)

+ ν
((

PΘ̃
)2
)

=
∑

(x,x′)∈X

[
Θ̃(x′)2 − 2Θ̃(x′)PΘ̃(x) +

(
PΘ̃(x)

)2
]
P(x, x′)ν(x)

=
∑

(x,x′)∈X

(
Θ̃(x′)−PΘ̃(x)

)2
P(x, x′)ν(x). (4.10.6)
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By (4.10.5), we conclude that σ̃2 = 0.
The point 3 implies the point 2. Suppose that the point 3 holds. By (4.10.6), for any

(x, x′) ∈ X such that P(x, x′) > 0 we have

Θ̃(x′)−PΘ̃(x) = 0.

Let h = PΘ̃. Since Θ̃ is the solution of the Poisson equation,

f̃(x′) + h(x′)− h(x) = 0.

By the definition of f̃ in (4.10.1), for any (x, x′) ∈ X such that P(x, x′) > 0,

f(x′) = h(x)− h(x′) +m,

with m = ν(f).

Note that under Hypothesis M4.2, Lemma 4.10.1 can be rewritten as follows.

Lemma 4.10.2. Assume Hypotheses M4.1 and M4.2. The following statements are
equivalent:

1. The mean of f on the orbits is equal to zero: for any orbit x0, . . . , xn, we have

f(x0) + · · ·+ f(xn) = 0.

2. There exists a function h ∈ C such that for any (x, x′) ∈ X2,

P(x, x′)f(x′) = P(x, x′) (h(x)− h(x′)) .

3. The real σ2 is equal to 0:

σ2 = ν
(
f 2
)

+ 2
+∞∑
n=1

ν (fPnf) = 0.

Now we prove that the Hypothesis M4.3 ("non-lattice condition"), implies that the
Markov walk is non-degenerated.

Lemma 4.10.3. Under Hypotheses M4.1-M4.3, we have

σ2 = ν
(
f 2
)

+ 2
+∞∑
n=1

ν (fPnf) > 0

Proof. We proceed by reductio ad absurdum. Suppose that σ2 = 0. By Lemma 4.10.2,
for any orbit x0, . . . , xn, we have

f(x0) + · · ·+ f(xn) = 0,

which implies the negation of Hypothesis M4.3 with θ = a = 0.
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4.10.2 Strong approximation
Let (Bt)t>0 be the standard Brownian motion on R defined on the probability space

(Ω,F ,P). Consider the exit time

τ bmy := inf{t > 0, y + σBt 6 0}, (4.10.7)

where σ is defined by (4.2.2). It is proved in Grama, Le Page and Peigné [40] that there
is a version of the Markov walk (Sn)n>0 and of the standard Brownian motion (Bt)t>0
living on the same probability space which are close enough in the following sense:

Proposition 4.10.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0], x ∈ X and
n > 1, without loss of generality (on an extension of the initial probability space) one can
reconstruct the sequence (Sn)n>0 with a continuous time Brownian motion (Bt)t∈R+, such
that

Px
(

sup
06t61

∣∣∣Sbtnc − σBtn

∣∣∣ > n1/2−ε
)
6
cε
nε
.
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Chapter 5

The survival probability of critical
and subcritical branching processes
in finite state space Markovian
environment

Résumé. Soit (Zn)n>0 un processus de branchement en environnement aléatoire défini
par une chaîne de Markov (Xn)n>0 prenant ses valeurs dans un espace d’états fini X et
partant de X0 = i ∈ X. Nous étudions le comportement asymptotique de la probabilité
que Zn > 0 lorsque n → +∞. Nous montrons que l’ordre de convergence dépend de
la fonction k(λ) := limn→+∞ E1/n

i

(
eλSn

)
, λ ∈ R et i ∈ X, où (Sn)n>0 correspond à la

marche markovienne associée. Dans la classification qui en découle, nous étudions quatre
cas différents : critique, fortement, intermédiaire et faiblement sous-critique.

Abstract. Let (Zn)n>0 be a branching process in a random environment defined by
a Markov chain (Xn)n>0 with values in a finite state space X starting at X0 = i ∈ X.
We study the asymptotic behaviour of the probability that Zn > 0 as n → +∞. We
found that it depends on the values of the function k(λ) := limn→+∞ E1/n

i

(
eλSn

)
, λ ∈ R

and i ∈ X, where (Sn)n>0 is the associated Markov walk. The function k permits to
give a classification of types of the asymptotic behaviours of the survival probability. In
particular we analyse four different cases: critical and strongly, intermediate and weakly
subcritical regimes.

5.1 Introduction
Galton-Watson branching process is one of the most used models in the dynamic of

populations. It has numerous applications in different areas such as biology, medicine,
physics, economics etc; for an introduction we refer to Harris [46] or Athreya and Ney [5]
and to the references therein. A significant advancement in the theory and practice was
made with the introduction of the branching process in which the offspring distributions
vary according to a random environment, see Smith and Wilkinson [62] and Athreya and
Karlin [4, 3]. This allowed a more adequate modeling and turned out to be very fruitful
from the practical as well as from the mathematical points of view. The recent advances
in the study of conditioned limit theorems for sums of functions defined on Markov chains
in [41], [36], [38] and [37] (Chapters 2, 3 and 4) open the way to treat some unsolved
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questions in the case of Markovian environments. The problem we are interested here is
to study the asymptotic behaviour of the survival probability.

Assume first that on the probability space (Ω,F ,P) we are given a branching pro-
cess (Zn)n>0 in a random environment represented by the i.i.d. sequence (Xn)n>0 with
values in the space X. Let fi(·) be the probability generating function of the offspring
distributions of (Zn)n>0, provided the value of the environment is i ∈ X. In a remark-
able series of papers Afanasyev [1], Dekking [14], Kozlov [53], Liu [58], D’Souza and
Hambly [23], Geiger and Kersting [32], Guivarc’h and Liu [44] and Geiger, Kersting and
Vatutin [33] under various assumptions have determined the asymptotic behaviour as
n → +∞ of the survival probability P(Zn > 0). Let φ(λ) be the Laplace transform of
the random variable ln f ′X1(1): φ(λ) = E

(
eλ ln f ′X1

(1)
)
, λ ∈ R, where E is the expectation

pertaining to P. In function of the values of the derivatives φ′(0) = E(ln f ′X1(1)) and
φ′(1) = E(f ′X1(1) ln f ′X1(1)) and under some additional moment assumptions on the vari-
ables ln f ′X1(1) and Z1, the following asymptotic results have been found. In the critical
case, φ′(0) = 0, it was shown in [53] and [32] that P(Zn > 0) ∼ c√

n
; hereafter c stands

for a constant and ∼ means equivalence of sequences as n → +∞. The behaviour in
the subcritical case, φ′(0) < 0, turns out to depend on the value φ′(1). The strongly
subcritical case, φ′(0) < 0 & φ′(1) < 0, has been studied in [23] and [44] where it was
shown that P(Zn > 0) ∼ cφ(1)n, with 0 < φ(1) = Ef ′X1(1) < 1. In the intermediate and
weakly subcritical cases, φ′(0) < 0 & φ′(1) = 0 and φ′(0) < 0 & φ′(1) > 0, respectively,
it was shown in [33] that P(Zn > 0) ∼ cn−1/2φ(1)n and P(Zn > 0) ∼ cn−3/2φ(λ)n, where
λ is the unique critical point of φ: φ′(λ) = 0.

The goal of the present paper is to determine the asymptotic behaviour as n→ +∞ of
the survival probability Pi(Zn > 0) when the environment (Xn)n>0 is a Markov chain with
values in a finite state space X. Hereafter Pi and Ei are the probability and expectation
generated by the trajectories of (Xn)n>0 starting at X0 = i ∈ X. Set ρ(i) = ln f ′i(1),
i ∈ X. Consider the associated Markov walk Sn = ∑n

k=1 ρ (X1), n > 0. In the case of a
Markovian environment the behaviour of the survival probability Pi(Zn > 0) depends on
the function

k(λ) := lim
n→+∞

E1/n
i

(
eλSn

)
,

which is well defined, analytic in λ ∈ R and does not depend on i ∈ X (see Section 5.3.4).
In some sense the function k plays the same role that the function φ in the case of i.i.d.
environment.

Let us present briefly the main results of the paper. Under appropriate conditions,
we show the asymptotic behaviour of the survival probability Pi(Zn > 0) in function of
the following classification:
— Critical case: if k′(0) = 0, then, for any i, j ∈ X,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

ν(j)u(i)√
n

,

where u(i) is a constant depending on i and ν is the stationary probability measure
of the Markov chain (Xn)n>0.

— Strongly subcritical case: if k′(0) < 0 and k′(1) < 0, then, for any i, j ∈ X,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

v1(i)u(j)k(1)n.

where u(j) and v1(i) are depending only on j and i respectively.
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— Intermediate subcritical case: if k′(0) < 0 and k′(1) = 0, then, for any i, j ∈ X,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

v1(i)u(j)k(1)n√
n
.

where u(i) depends only on i.
— Weakly subcritical case: if k′(0) < 0 and k′(1) > 0, then, for any i, j ∈ X,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(λ)nu(i, j)
n3/2 ,

where u(i, j) depends only on i and j and λ is the critical point of k: k′(λ) = 0.
The critical case has been considered in Le Page and Ye [56] in a more general setting.
However, the conditions in their paper do not cover the present situation and the employed
method is different from ours.

From the results of Section 5.3.4 it follows that the classification stated above coincides
with the usual classification for branching processes when the environment is i.i.d. Indeed,
Lemma 5.3.15 implies that k′(0) = Eν

(
ln f ′X1(1)

)
, where Eν is the expectation generated

by the finite dimensional distributions of the Markov chain (Xn)n>0 in the stationary
regime. For an i.i.d. environment this is exactly E(ln f ′X1(1)) = φ′(0). The value k′(1)
can also be related to the first moment of the random variable ln f ′X1(1). For this we
need the transfer operator Pλ related to the Markov chain (Xn)n>0, see Section 5.3.4 for
details. The normalized transfer operator P̃λ generates a Markov chain whose invariant
probability is denoted by ν̃λ. Again by Lemma 5.3.15, it holds k′(1)

k(1) = Ẽν̃λ

(
ln f ′X1(1)

)
,

where Ẽν̃λ is the expectation generated by the finite dimensional distributions of the
Markov chain (Xn)n>0 with transition probabilities P̃λ in the stationary regime. For an
i.i.d. environment, we have k′(1)

k(1) = E
(
f ′X1(1) ln f ′X1(1)

)
= φ′(1), which shows that both

classifications are equivalent.
Now we shall shortly explain the approach of the paper. We start with a well known

relation between the survival probability Pi(Zn > 0) and the associated random walk
(Sn)n>0 which goes back to Agresti [2] and which is adapted it to the Markov environment
as follows: for any initial state X0 = i,

Pi(Zn > 0) = Ei(qn), where q−1
n = e−Sn +

n−1∑
k=0

e−Sk ηk+1,n (5.1.1)

and under the assumptions of the paper the random variables ηk+1,n are bounded. Our
proof is essentially based on three tools: conditioned limit theorems for Markov chains
which have been obtained recently in [38] and [37] (Chapters 3 and 4), the exponential
change of measure which is defined with the help of the transfer operator, see Guivarc’h
and Hardy [42], and the duality for Markov chains which we develop in Section 5.3.2.

Let us first consider the critical case. Let τy be the first moment when the random walk
(y + Sn)n>0 becomes negative. In the critical case, one can show that only the trajectories
that stay positive (i.e. when τy > n) have impact on the survival probability, so that the
probability

√
nP (Zn > 0, τy 6 n) is negligible as n→ +∞ and y → +∞. This permits to

replace the expectation
√
nEi(qn) by

√
nEi (qn ; τy > n) =

√
nEi (qn | τy > n)Pi (τy > n).

The asymptotic behaviour of
√
nPi (τy > n) is given in [38] (Chapter 3) and using the

local limit theorem from [37] (Chapter 4) we show that Ei (qn | τy > n) converges to a
positive constant.
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The subcritical case is much more delicate. Using the normalized transfer operator
P̃λ we apply a change of the probability measure, say P̃i, under which (5.1.1) reduces to
the study of the expectation k(λ)nẼi

(
e−λSnqn

)
. Choosing λ = 1, we have Ẽi

(
e−Snqn

)
=

Ẽ∗i (q∗n), where Ẽ∗i is the expectation generated by the dual Markov walk (S∗n)n>0,

(q∗n)−1 = 1 +
n∑
k=1

e−S∗k η∗k (5.1.2)

and the random variables η∗k are bounded. In the strongly subcritical case the series in
(5.1.2) converges by the law of large numbers for (S∗n)n>0, so the resulting rate of conver-
gence is determined only by k(1)n. To find the asymptotic behaviour of the expectation
Ẽ∗i (q∗n) in the intermediate subcritical case we proceed basically in the same way as in the
critical case which explains the apparition of the factor n−1/2. In the weakly subcritical
case we choose λ to be the critical point of k: k′(λ) = 0. We make use of the conditioned
local limit theorem which, in addition to k(λ)n, contributes with the factor n−3/2.

The outline of the paper is as follows:
— Section 5.2: We give the necessary notations and formulate the main results.
— Section 5.3: Introduce the associated Markov chain and relate it to the survival

probability. Introduce the dual Markov chain. State some useful assertions for
walks on Markov chains conditioned to stay positive and on the transfer operator.

— Sections 5.4, 5.5, 5.6 and 5.7: Proofs in the critical, strongly subcritical, intermedi-
ate subcritical and weakly subcritical cases, respectively.

Let us end this section by fixing some notations. The symbol c will denote a positive
constant depending on the all previously introduced constants. Sometimes, to stress
the dependence of the constants on some parameters α, β, . . . we shall use the notations
cα, cα,β, . . . . All these constants are likely to change their values every occurrence. The
indicator of an event A is denoted by 1A. For any bounded measurable function f on X,
random variable X in some measurable space X and event A, the integral

∫
X f(x)P(X ∈

dx,A) means the expectation E (f(X);A) = E (f(X)1A).

5.2 Notations and main results
Assume that (Xn)n>0 is a homogeneous Markov chain defined on the probability space

(Ω,F ,P) with values in the finite state space X. Let C be the set of functions from X
to C. Denote by P the transition operator of the chain (Xn)n>0: Pg(i) = Ei (g(X1)) , for
any g ∈ C and i ∈ X. Set P(i, j) = P(δj)(i), where δj(i) = 1 if i = j and δj(i) = 0 else.
Note that the iterated operator Pn, n > 0 is given by Png(i) = Ei (g(Xn)) . Let Pi be the
probability on (Ω,F ) generated by the finite dimensional distributions of the Markov
chain (Xn)n>0 starting at X0 = i. Denote by E and Ei the corresponding expectation
associated to P and Pi.

We assume in the sequel that (Xn)n>0 is irreducible and aperiodic. This is known to
be equivalent to the following condition:

Condition 5.1. The matrix P is primitive, which means that there exists k0 > 1 such
that, for any non-negative and non-identically zero function g ∈ C and i ∈ X,

Pk0g(i) > 0.
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By the Perron-Frobenius theorem, under Condition 5.1, there exist positive constants
c1 and c2, a unique positive P-invariant probability ν on X and an operator Q on C such
that for any g ∈ C and n > 1,

Pg(i) = ν(g) +Q(g)(i) and ‖Qn(g)‖∞ 6 c1 e−c2n ‖g‖∞ ,

where ν(g) := ∑
i∈X g(i)ν(i), Q (1) = ν (Q(g)) = 0 and ‖g‖∞ = maxi∈X |g(i)|. In partic-

ular, for any (i, j) ∈ X2, we have

|Pn(i, j)− ν(j)| 6 c1 e−c2n . (5.2.1)

The branching process in the Markov environment (Xn)n>0 is defined with the help
of a collection of generating functions

fi(s) := E
(
sξi
)
, ∀i ∈ X, s ∈ [0, 1], (5.2.2)

where the random variable ξi takes its values in N and means the total offspring of one
individual when the environment is i ∈ X. For any i ∈ X, let (ξn,ji )j,n>1 be independent
and identically distributed random variables with the same generating function fi living
on the same probability space (Ω,F ,P). We assume that the sequence (ξn,ji )j,n>1 is
independent of the Markov chain (Xn)n>0 .

Assume that the offspring distribution satisfies the following moment constraints.

Condition 5.2. For any i ∈ X, the random variable ξi is non-identically zero and has a
finite variance:

0 < E (ξi) and E(ξ2
i ) < +∞, ∀i ∈ X.

Note that, under Condition 5.2 we have,

∀i ∈ X, 0 < E (ξi) = f ′i(1) < +∞.

and
∀i ∈ X, f ′′i (1) = E(ξ2

i )− E (ξi) < +∞.

Define the branching process (Zn)n>0 iteratively: for each time n = 1, 2, . . . , given the
environment Xn = i, the total offspring of each individual j ∈ {1, . . . Zn−1} is given by
the random variable ξn,ji , so that the total population is

Z0 = 1 and Zn =
Zn−1∑
j=1

ξn,jXn , ∀n > 1. (5.2.3)

We shall consider branching processes (Zn)n>0 in one of the following two regimes:
critical or subcritical (see below for the precise definition). In both cases the probability
that the population survives until the n-th generation tends to zero, P (Zn > 0) → 0 as
n→ +∞, see Smith and Wilkinson [63]. As noted in the introduction, when the environ-
ment is i.i.d., the question of determining the speed of this convergence was answered in
[32], [44] and [33]. The key point in establishing their results is a close relation between
the branching process and the associated random walk. Let us introduce the associated
Markov walk corresponding to our setting. Define the real function ρ on X by

ρ(i) = ln f ′i(1), ∀i ∈ X. (5.2.4)
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The associated Markov walk (Sn)n>0 is defined as follows:

S0 := 0 and Sn := ln
(
f ′X1(1) · · · f ′Xn(1)

)
=

n∑
k=1

ρ (Xk) , ∀n > 1. (5.2.5)

In order to state the precise results we need one more condition, namely that the
Markov walk (Sn)n>0 is non-lattice:

Condition 5.3. For any (θ, a) ∈ R2, there exist x0, . . . , xn in X such that

P(x0, x1) · · ·P(xn−1, xn)P(xn, x0) > 0

and
ρ(x0) + · · ·+ ρ(xn)− (n+ 1)θ /∈ aZ.

The following function plays an important role in determining the asymptotic be-
haviour of the branching processes when the environment is Markovian. It will be shown
in Section 5.3.4 that under Conditions 5.1 and 5.3, for any λ ∈ R and any i ∈ X, the
following limit exists and does not depend on the initial state of the Markov chain X0 = i:

k(λ) := lim
n→+∞

E1/n
i

(
eλSn

)
.

Le us recall some facts on the function k which will be discussed in details in Section
5.3.4 and which are used here for the formulation of the main results. The function k is
closely related to the so-called transfer operator Pλ which is defined for any λ ∈ R on C
by the relation

Pλg(i) := P
(
eλρ g

)
(i) = Ei

(
eλS1 g(X1)

)
, for g ∈ C , i ∈ X. (5.2.6)

In particular, k(λ) is an eigenvalue of the operator Pλ corresponding to an eigenvector
vλ and is equal to its spectral radius. Moreover, the function k(λ) is analytic on R, see
Lemma 5.3.15. Note also that the transfer operator Pλ is not Markov, but it can be
easily normalized so that the operator P̃λg = Pλ(gvλ)

k(λ)vλ
is Markovian. We shall denote by

ν̃λ its unique invariant probability measure.
The branching process in Markovian environment is said to be subcritical if k′(0) < 0,

critical if k′(0) = 0 and supercritical if k′(0) > 0. This definition at first glance may
appear different from what is expected in the case of branching processes with i.i.d.
environment. With a closer look, however, the relation to the usual i.i.d. classification
becomes clear from the following identity, which is established in Lemma 5.3.15:

k′(0) = ν(ρ) = Eν (ρ(X1)) = Eν

(
ln f ′X1(1)

)
, (5.2.7)

where Eν is the expectation generated by the finite dimensional distributions of the
Markov chain (Xn)n>0 in the stationary regime, i.e. when the starting point X0 is a
random variable distributed according to the P-invariant measure ν. In particular, when
the environment (Xn)n>0 is just an i.i.d. sequence of random variables with common law
ν, it follows from (5.2.7) that the two classifications coincide.

We proceed to formulate our main result in the critical case.
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Theorem 5.2.1 (Critical case). Assume Conditions 5.1-5.3 and

k′(0) = 0.

Then, there exists a positive function u on X such that for any (i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

ν(j)u(i)√
n

.

The asymptotic for the probability that Zn > 0 in the case of i.i.d. environment has
been established earlier by Geiger and Kersting [32] under some moment assumptions
on the random variable ρ(X1) = ln

(
f ′X1(1)

)
, which are weaker that our assumption on

finiteness of the state space X. Since we deal with dependent environment, Theorem 5.2.1
is not covered by the results in [32].

Now we consider the subcritical case. The classification of the asymptotic behaviours
of the survival time of a branching process (Zn)n>0 in the subcritical case k′(0) < 0 is
made in function of the values of k′(1). We say that the branching process in Markovian
environment is strongly subcritical if k′(0) < 0, k′(1) < 0, intermediately subcritical if
k′(0) < 0, k′(1) = 0 and weakly subcritical if k′(0) < 0, k′(1) > 0. In order to relate these
definitions to the values of some moments of the random variable ln f ′X1(1), we note that,
again by Lemma 5.3.15,

k′(1)
k(1) = ν̃1(ρ) = Eν̃1 (ρ(X1)) = Eν̃1

(
ln f ′X1(1)

)
, (5.2.8)

where Eν̃λ is the expectation generated by the finite dimensional distributions of the
Markov chain (Xn)n>0 with transition probabilities P̃λ in the stationary regime, i.e. when
the starting point X0 is a random variable distributed according to the unique positive
P̃λ-invariant probability ν̃λ. Since k(1) > 0, the equivalent classification can be done
according to the value of the expectation Eν̃1

(
ln
(
f ′X1(1)

))
. When the environment is an

i.i.d. sequence of common law ν̃ we have in addition

k′(1)
k(1) = Eν̃1

(
ln f ′X1(1)

)
= Eν

(
f ′X1(1) ln f ′X1(1)

)
= φ′ν(1), (5.2.9)

where φν(λ) = Eν

(
eλ ln f ′X1

(1)
)
, λ ∈ R. This shows that both classifications (the one ac-

cording to the values of k′(1) and the other according to the values of φ′ν(1)) for branching
processes with i.i.d. environment are equivalent. We would like to stress that, in general,
the identity (5.2.9) is not fulfilled for a Markovian environment and therefore the function
φν(λ) is not the appropriate one for the classification. For a Markovian environment the
classification equally can be done using the function K ′(λ), where K(λ) = ln k(λ), λ ∈ R.

Note that by Lemma 5.3.15 the function λ 7→ K(λ) is strictly convex. In the strongly
and intermediate subcritical cases, this implies that 0 < k(λ) < 1.

The following theorem gives the asymptotic behaviour of the survival probability
jointly with the state of the Markov chain in the strongly subcritical case.

Theorem 5.2.2 (Strongly subcritical case). Assume Conditions 5.1-5.3 and

k′(0) < 0, k′(1) < 0.

Then, there exists a positive function u on X such that for any (i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(1)nv1(i)u(j).
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Recall that v1 is the eigenfunction of the transfer operator P1 (see also Section 5.3.4
eq. (5.3.31) for details). Note also that in the formulation of the Theorem 5.2.2 we
can drop the assumption k′(0) < 0, since it is implied by the assumption k′(1) < 0, by
strict convexity of K(λ). The corresponding result in the case when the environment is
i.i.d. has been established by Guivarc’h and Liu [44] under some moment assumptions
on the random variable ρ(X1) = ln

(
f ′X1(1)

)
. Our result extends [44] to finite dependent

environments.
A break trough in determining the behaviour of the survival probability for inter-

mediate subcritical and weakly subcritical cases for branching processes with i.i.d. envi-
ronment was made by Geiger, Kersting and Vatutin [33]. Note that the original results
in [33] have been established under some moment assumptions on the random variable
ρ(X1) = ln

(
f ′X1(1)

)
. For these two cases and finite Markovian environments we give

below the asymptotic of the survival probability jointly with the state of the Markov
chain.

Theorem 5.2.3 (Intermediate subcritical case). Assume Conditions 5.1-5.3 and

k′(0) < 0, k′(1) = 0.

Then, there exists a positive function u on X such that for any (i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(1)nv1(i)u(j)√
n

.

As in the previous Theorem 5.2.2, k′(1) = 0 implies the assumption k′(0) < 0, since
the function λ 7→ K(λ) = ln(k(λ)) is strictly convex (see Lemma 5.3.15).

Theorem 5.2.4 (Weakly subcritical case). Assume Conditions 5.1-5.3 and

k′(0) < 0, k′(1) > 0.

Then, there exist a unique λ ∈ (0, 1) satisfying k′(λ) = 0 and a positive function u on X2

such that for any (i, j) ∈ X2,

Pi (Zn > 0 , Xn = j) ∼
n→+∞

k(λ)nu(i, j)
n3/2 .

The existence and the unicity of λ ∈ (0, 1) satisfying k′(λ) = 0 and 0 < k(λ) < 1
in Theorem 5.2.4 is an obvious consequence of the strict convexity of K. Note that
Theorems 5.2.1 , 5.2.2, 5.2.3 and 5.2.4 give the asymptotic behaviour of the joint prob-
abilities Pi (Zn > 0 , Xn = j). By summing both sides of the corresponding equivalences
in j we obtain the asymptotic behaviour of the survival probability Pi (Zn > 0). The
corresponding results for the survival probability when the Markovian environment is in
the stationary regime are easily obtained by integrating the previous ones with respect
to the invariant measure ν.

5.3 Preliminary results on the Markov walk
The aim of this section is to provide necessary assertions on the Markov chain (Xn)n>0

and on the associated Markov walk (Sn)n>0 defined by (5.2.5) and to relate them to the
survival probability of (Zn)n>0 at generation n. For the ease of the reader we recall the
outline of the section:
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— Subsection 5.3.1: Relate the branching process (Zn)n>0 to the associated Markov
walk (Sn)n>0.

— Subsection 5.3.2: Construct the dual Markov chain (X∗n)n>0.
— Subsection 5.3.3: Recall results on the Markov walks conditioned to stay positive.
— Subsection 5.3.4: Introduce the transfer operator of the Markov chain (Xn)n>0

and the change of the probability measure. State the properties of the associated
Markov walk (Sn)n>0 under the changed measure.

5.3.1 The link between the branching process and the associ-
ated Markov walk

In this section we recall some identities on the branching process. Some of them are
stated for the commodity of the reader and are merely adaptations to the Markovian
environments of the well-known statements in the i.i.d. case.

The first one is a representation of the conditioned probability generating function
given the environment:

Lemma 5.3.1 (Conditioned generating function). For any s ∈ [0, 1] and n > 1,

Ei
(
sZn

∣∣∣X1, . . . , Xn

)
= fX1 ◦ · · · ◦ fXn(s).

Proof. For all s ∈ [0, 1], n > 1, (z1, . . . , zn−1) ∈ Nn−1 and (i1, . . . , in) ∈ Xn, by (5.2.3), we
have

Ei
(
sZn

∣∣∣Z1 = z1, . . . , Zn−1 = zn−1, X1 = i1, . . . , Xn = in
)

= E
(
s
∑zn−1

j=1 ξn,jin

)
.

Since
(
ξn,jin

)
j>1

are i.i.d., by (5.2.2),

Ei
(
sZn

∣∣∣Z1 = z1, . . . , Zn−1 = zn−1, X1 = i1, . . . , Xn = in
)

= fin(s)zn−1 .

From this we get,

Ei
(
sZn

∣∣∣X1 = i1, . . . , Xn = in
)

= Ei
(
fin(s)Zn−1

∣∣∣X1 = i1, . . . , Xn−1 = in−1
)
.

By induction, for any (i1, . . . , in) ∈ Xn,

Ei
(
sZn

∣∣∣X1 = i1, . . . , Xn = in
)

= fi1 ◦ · · · ◦ fin(s).

and the assertion of the lemma follows.

For any n > 1 and s ∈ [0, 1] set

qn(s) := 1− fX1 ◦ · · · ◦ fXn(s) and qn := qn(0). (5.3.1)

Lemma 5.3.1 implies that

Pi (Zn > 0 |X1, . . . , Xn ) = qn. (5.3.2)

Taking the expectation in (5.3.2), we obtain the well-known equality, which will be the
starting point for our study:

Pi (Zn > 0) = Ei (qn) . (5.3.3)
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Under Condition 5.2, for any i ∈ X and s ∈ [0, 1), we have fi(s) ∈ [0, 1). Therefore
fX1 ◦ · · · ◦ fXn(s) ∈ [0, 1) and in particular

qn ∈ (0, 1], ∀n > 1. (5.3.4)

Introduce some additional notations, which will be used all over the paper:

fk,n := fXk ◦ · · · ◦ fXn , ∀n > 1, ∀k ∈ {1, . . . , n}, (5.3.5)
fn+1,n := id, ∀n > 1, (5.3.6)

gi(s) := 1
1− fi(s)

− 1
f ′i(1)(1− s) , ∀i ∈ X, ∀s ∈ [0, 1), (5.3.7)

ηk,n(s) := gXk (fk+1,n(s)) , ∀n > 1, ∀k ∈ {1, . . . , n}, ∀s ∈ [0, 1), (5.3.8)
ηk,n := ηk,n(0) = gXk (fk+1,n(0)) , ∀n > 1, ∀k ∈ {1, . . . , n}. (5.3.9)

The key point in proving our main results is the following assertion which relies the
random variable qn(s) to the associated Markov walk (Sn)n>0, see (5.2.5). This relation
is known from Agresti [2] in the case of linear fractional generating functions. It turned
out to be very useful for studying general branching processes and was generalized in
Geiger and Kersting [32]. We adapt their argument to the case when the environment is
Markovian.

Lemma 5.3.2. For any s ∈ [0, 1) and n > 1,

qn(s)−1 = e−Sn
1− s +

n−1∑
k=0

e−Sk ηk+1,n(s).

Proof. With the notations (5.3.6)-(5.3.9) we write for any s ∈ [0, 1) and n > 1,

qn(s)−1 := 1
1− fX1 ◦ · · · ◦ fXn(s)

= 1
1− f1,n(s)

= gX1 (f2,n(s)) +
f ′X1(1)−1

1− f2,n(s)
= . . .

=

(
f ′X1(1) · · · f ′Xn(1)

)−1

1− s + gX1 (f2,n(s))

+
n∑
k=2

(
f ′X1(1) · · · f ′Xk−1

(1)
)−1

gXk (fk+1,n(s))

= e−Sn
1− s +

n−1∑
k=0

e−Sk ηk+1,n(s).

Taking s = 0 in Lemma 5.3.2 we obtain the following identity which will play the
central role in the proofs:

q−1
n = e−Sn +

n−1∑
k=0

e−Sk ηk+1,n, ∀n > 1. (5.3.10)
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Since fi is convex on [0, 1] for all i ∈ X, the function gi is non-negative,

∀s ∈ [0, 1), gi(s) = f ′i(1)(1− s)− (1− fi(s))
(1− fi(s)) f ′i(1)(1− s) > 0, (5.3.11)

which, in turn, implies that the random variables ηk+1,n are non-negative for any n > 1
and k ∈ {0, . . . , n− 1}.
Lemma 5.3.3. Assume Condition 5.2. For any n > 2, (i1, . . . , in) ∈ Xn and s ∈ [0, 1),
we have

0 6 gi1 (fi2 ◦ · · · ◦ fin(s)) 6 η := max
i∈X

f ′′i (1)
f ′i(1)2 < +∞.

Moreover, for any (in)n>1 ∈ XN∗, and any k > 1,

lim
n→+∞

gik
(
fik+1 ◦ · · · ◦ fin(0)

)
∈ [0, η]. (5.3.12)

Proof. Fix (in)n>1 ∈ XN∗ . For any i ∈ X and s ∈ [0, 1), we have fi(s) ∈ [0, 1). So
fi2 ◦ · · · ◦fin(s) ∈ [0, 1). In addition, by (5.3.11), gi is non-negative on [0, 1) for any i ∈ X,
therefore gi1 (fi2 ◦ · · · ◦ fin(s)) > 0. Moreover by the lemma 2.1 of [32], for any i ∈ X and
any s ∈ [0, 1),

gi(s) 6
f ′′i (1)
f ′i(1)2 . (5.3.13)

By Condition 5.2, η < +∞ and so gi1 (fi2 ◦ · · · ◦ fin(s)) ∈ [0, η], for any s ∈ [0, 1).
Since fi is increasing on [0, 1) for any i ∈ X, it follows that for any k > 1 and any

n > k + 1,
0 6 fik+1 ◦ · · · ◦ fin(0) 6 fik+1 ◦ · · · ◦ fin ◦ fin+1(0) 6 1,

and the sequence
(
fik+1 ◦ · · · ◦ fin(0)

)
n>k+1

converges to a limit, say l ∈ [0, 1]. For any
i ∈ X, the function gi is continuous on [0, 1) and we have

lim
s→1
s<1

gi(s) = lim
s→1
s<1

f ′i(1)(1− s)− (1− fi(s))
f ′(1) (1− fi(s)) (1− s) = lim

s→1
s<1

1
f ′i(1)

fi(s)− 1− f ′i(1)(s− 1)
(s− 1)2

1− s
1− fi(s)

= 1
f ′i(1)

f ′′i (1)
2

1
f ′i(1) = f ′′i (1)

2f ′i(1)2 < +∞. (5.3.14)

Denoting gi(l) = f ′′i (1)
2f ′i(1)2 if l = 1, we conclude that gik

(
fik+1 ◦ · · · ◦ fin(0)

)
converges to

gik(l) as n→ +∞. By (5.3.11) and (5.3.13), we obtain that gik(l) ∈ [0, η].

5.3.2 The dual Markov walk
We will introduce the dual Markov chain (X∗n)n>0 and the associated dual Markov

walk (S∗n)n>0 and state some of their properties.
Since ν is positive on X, the following dual Markov kernel P∗ is well defined:

P∗ (i, j) = ν (j)
ν(i) P (j, i) , ∀(i, j) ∈ X2. (5.3.15)

Let (X∗n)n>0 be a dual Markov chain, independent of the chain (Xn)n>0, defined on
(Ω,F ,P), living on X and with transition probability P∗. We define the dual Markov
walk by

S∗0 = 0 and S∗n = −
n∑
k=1

ρ (X∗k) , ∀n > 1. (5.3.16)
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For any z ∈ R, let τ ∗z be the associated exit time

τ ∗z := inf {k > 1 : z + S∗k 6 0} . (5.3.17)

For any i ∈ X, denote by P∗i and E∗i the probability, respectively the expectation generated
by the finite dimensional distributions of the Markov chain (X∗n)n>0 starting at X∗0 = i.

It is easy to see that ν is also P∗-invariant and for any n > 1, (i, j) ∈ X2,

(P∗)n (i, j) = Pn(j, i)ν(j)
ν(i) .

This last formula implies in particular the following result.

Lemma 5.3.4. Assume Conditions 5.1 and 5.3 for the Markov kernel P. Then Condi-
tions 5.1 and 5.3 hold also for dual kernel P∗.

Similarly to (5.2.1), we have for any (i, j) ∈ X2,

|(P∗)n (i, j)− ν(j)| 6 c e−cn . (5.3.18)

Note that the operator P∗ is the adjoint of P in the space L2 (ν) : for any functions
f and g on X,

ν (f (P∗)n g) = ν (gPnf) .
For any measure m on X, let Em (respectively E∗m) be the expectation associated to the
probability generated by the finite dimensional distributions of the Markov chain (Xn)n>0
(respectively (X∗n)n>0) with the initial law m.

Lemma 5.3.5 (Duality). For any probability measure m on X, any n > 1 and any
function g: Xn → C,

Em (g (X1, . . . , Xn)) = E∗ν

g (X∗n, . . . , X∗1 )
m
(
X∗n+1

)
ν (X∗n+1)

 .
Moreover, for any n > 1 and any function g: Xn → C,

Ei (g (X1, . . . , Xn) ; Xn+1 = j) = E∗j
(
g (X∗n, . . . , X∗1 ) ; X∗n+1 = i

) ν(j)
ν(i) .

Proof. The first equality is proved in Lemma 3.2 of [37] (Lemma 4.3.2 of Chapter 4). The
second can be deduced from the first as follows. Taking m = δi and g̃(i1, · · · , in, in+1) =
g(i1, · · · , in)1{in+1=j}, from the first equality of the lemma, we see that

Ei (g (X1, . . . , Xn) ; Xn+1 = j) = E∗ν
(
g̃
(
X∗n+1, . . . , X

∗
1

)
; X∗n+2 = i

) 1
ν(i)

= E∗ν
(
g
(
X∗n+1, . . . , X

∗
2

)
; X∗1 = j , X∗n+2 = i

) 1
ν(i) .

Since ν is P∗-invariant, we obtain

Ei (g (X1, . . . , Xn) ; Xn+1 = j) =
∑
i1∈X

E∗i1
(
g (X∗n, . . . , X∗1 ) ; X∗n+1 = i

) 1
ν(i)1{i1=j}ν(i1)

= E∗j
(
g (X∗n, . . . , X∗1 ) ; X∗n+1 = i

) ν(j)
ν(i) .
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5.3.3 Markov walks conditioned to stay positive
In this section we recall the main results from [38] and [37] (Chapters 3 and 4) for

Markov walks conditioned to stay positive. We complement these results by some new
assertions which will be used in the proofs.

For any y ∈ R define the first time when the Markov walk (Sn)n>0 becomes non-
positive by setting

τy := inf {k > 1 : y + Sk 6 0} .
Under Conditions 5.1, 5.3 and ν(ρ) = 0 the stopping time τy is well defined and finite
Pi-almost surely for any i ∈ X.

The following three assertions deal with the existence of the harmonic function, the
limit behaviour of the probability of the exit time and of the law of the random walk
y + Sn, conditioned to stay positive and are taken from [38] (Chapter 3).

Proposition 5.3.6 (Preliminary results, part I). Assume Conditions 5.1, 5.3 and ν(ρ) =
0. There exists a non-negative function V on X× R such that
1. For any (i, y) ∈ X× R and n > 1,

Ei (V (Xn, y + Sn) ; τy > n) = V (i, y).

2. For any i ∈ X, the function V (i, ·) is non-decreasing and for any (i, y) ∈ X× R,

V (i, y) 6 c (1 + max(y, 0)) .

3. For any i ∈ X, y > 0 and δ ∈ (0, 1),

(1− δ) y − cδ 6 V (i, y) 6 (1 + δ) y + cδ.

We define
σ2 := ν

(
ρ2
)
− ν (ρ)2 + 2

+∞∑
n=1

[
ν (ρPnρ)− ν (ρ)2

]
. (5.3.19)

It is known that under Conditions 5.1 and 5.3 we have σ2 > 0, see Lemma 10.3 in [37]
(Lemma 4.10.3 of Chapter 4).

Proposition 5.3.7 (Preliminary results, part II). Assume ν(ρ) = 0, Conditions 5.1 and
5.3.
1. For any (i, y) ∈ X× R,

lim
n→+∞

√
nPi (τy > n) = 2V (i, y)√

2πσ
,

where σ is defined by (5.3.19).
2. For any (i, y) ∈ X× R and n > 1,

Pi (τy > n) 6 c
1 + max(y, 0)√

n
.

We denote by supp(V ) = {(i, y) ∈ X× R : V (i, y) > 0} the support of the function
V . Note that from property 3 of Proposition 5.3.6, for any fixed i ∈ X, the function
y 7→ V (i, y) is positive for large y. For more details on the properties of supp(V ) see [38]
(Chapter 3).
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Proposition 5.3.8 (Preliminary results, part III). Assume Conditions 5.1, 5.3 and
ν(ρ) = 0.
1. For any (i, y) ∈ supp(V ) and t > 0,

Pi
(
y + Sn
σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→
n→+∞

Φ+(t),

where Φ+(t) = 1− e− t
2
2 is the Rayleigh distribution function.

2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 1, t0 > 0, t ∈ [0, t0] and
(i, y) ∈ X× R,∣∣∣∣∣Pi (y + Sn 6 t

√
nσ , τy > n

)
− 2V (i, y)√

2πnσ
Φ+(t)

∣∣∣∣∣ 6 cε,t0
(1 + max(y, 0)2)

n1/2+ε .

The next assertions are two local limit theorems for the associated Markov walk y+Sn
from [37] (Chapter 4).

Proposition 5.3.9 (Preliminary results, part IV). Assume Conditions 5.1, 5.3 and
ν(ρ) = 0.
1. For any i ∈ X, a > 0, y ∈ R, z > 0 and any non-negative function ψ: X→ R+,

lim
n→+∞

n3/2Ei (ψ(Xn) ; y + Sn ∈ [z, z + a] , τy > n)

= 2V (i, y)√
2πσ3

∫ z+a

z
E∗ν (ψ(X∗1 )V ∗ (X∗1 , z′ + S∗1) ; τ ∗z′ > 1) dz′.

2. Moreover, for any a > 0, y ∈ R, z > 0, n > 1 and any non-negative function ψ:
X→ R+,

sup
i∈X

Ei (ψ(Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6 c (1 + a3)
n3/2 ‖ψ‖∞ (1 + z) (1 + max(y, 0)) .

Recall that the dual chain (X∗n)n>0 is constructed independently of the chain (Xn)n>0.
For any (i, j) ∈ X2, the probability generated by the finite dimensional distributions of
the two dimensional Markov chain (Xn, X

∗
n)n>0 starting at (X0, X

∗
0 ) = (i, j) is given by

Pi,j = Pi × Pj. Let Ei,j be the corresponding expectation. For any l > 1 we define
C +

(
Xl × R+

)
the set of non-negative function g: Xl×R+ → R+ satisfying the following

properties:
— for any (i1, . . . , il) ∈ Xl, the function z 7→ g(i1, . . . , il, z) is continuous,
— there exists ε > 0 such that maxi1,...il∈X supz>0 g(i1, . . . , il, z)(1 + z)2+ε < +∞.

Proposition 5.3.10 (Preliminary results, part V). Assume Conditions 5.1, 5.3 and
ν(ρ) = 0. For any i ∈ X, y ∈ R, l > 1, m > 1 and g ∈ C +

(
Xl+m × R+

)
,

lim
n→+∞

n3/2Ei (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; τy > n)

= 2√
2πσ3

∫ +∞

0

∑
j∈X

Ei,j (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z)

×V (Xl, y + Sl)V ∗ (X∗m, z + S∗m) ; τy > l , τ ∗z > m) ν(j) dz.
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We complete these results by determining the asymptotic behaviour of the law of the
Markov chain (Xn)n>1 jointly with {τy > n}.

Lemma 5.3.11. Assume Conditions 5.1, 5.3 and ν(ρ) = 0. Then, for any (i, y) ∈ X×R
and j ∈ X, we have

lim
n→+∞

√
nPi (Xn = j , τy > n) = 2V (i, y)ν(j)√

2πσ
.

Proof. Fix (i, y) ∈ X× R and j ∈ X. We will prove that

2V (i, y)ν(j)√
2πσ

6 lim inf
n→+∞

√
nPi (Xn = j , τy > n)

6 lim sup
n→+∞

√
nPi (Xn = j , τy > n) 6 2V (i, y)ν(j)√

2πσ
.

The upper bound. By the Markov property, for any n > 1 and k =
⌊
n1/4

⌋
we have

Pi (Xn = j , τy > n) 6 Pi (Xn = j , τy > n− k) = Ei
(
Pk (Xn−k, j) ; τy > n− k

)
.

Using (5.2.1), we obtain that

Pi (Xn = j , τy > n) 6
(
ν(j) + c e−ck

)
Pi (τy > n− k) .

Using the point 1 of Proposition 5.3.7 and the fact that k =
⌊
n1/4

⌋
,

lim sup
n→+∞

√
nPi (Xn = j , τy > n) 6 2V (i, y)ν(j)√

2πσ
. (5.3.20)

The lower bound. Again, let n > 1 and k =
⌊
n1/4

⌋
. We have

Pi (Xn = j , τy > n) > Pi (Xn = j , τy > n− k)− Pi (n− k < τy 6 n) . (5.3.21)

As for the upper bound, using the Markov property and (5.2.1),

Pi (Xn = j , τy > n− k) = Ei
(
Pk (Xn−k, j) ; τy > n− k

)
>
(
ν(j)− c e−ck

)
Pi (τy > n− k) .

Using the point 1 of Proposition 5.3.7 and using the fact that k =
⌊
n1/4

⌋
,

lim inf
n→+∞

√
nPi (Xn = j , τy > n− k) > 2V (i, y)ν(j)√

2πσ
. (5.3.22)

Furthermore, on the event {n− k < τy 6 n}, we have

0 > min
n−k<i6n

y + Si > y + Sn−k − k ‖ρ‖∞ ,

where ‖ρ‖∞ is the maximum of |ρ| on X. Consequently,

Pi (n− k < τy 6 n) 6 Pi (y + Sn−k 6 ck , τy > n− k)

= Pi
(
y + Sn−k 6

ck√
n− k

√
n− k , τy > n− k

)
.
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Now, using the point 2 of Proposition 5.3.8 with t0 = maxn>1
ck√
n−k , we obtain that, for

ε > 0 small enough,

Pi (n− k < τy 6 n) 6 2V (i, y)√
2π(n− k)σ

(
1− e−

ck2
2(n−k)

)
+ cε

(1 + y2)
(n− k)1/2+ε .

Therefore, since k =
⌊
n1/4

⌋
,

lim
n→+∞

√
nPi (n− k < τy 6 n) = 0. (5.3.23)

Putting together (5.3.21), (5.3.22) and (5.3.23), we conclude that

lim inf
n→+∞

√
nPi (Xn = j , τy > n) > 2V (i, y)ν(j)√

2πσ
,

which together with (5.3.20) concludes the proof of the lemma.

Now, with the help of the function V from Proposition 5.3.6, for any (i, y) ∈ supp(V ),
we define a new probability P+

i,y on σ (Xn, n > 1) and the corresponding expectation E+
i,y,

which are characterized by the following property: for any n > 1 and any g: Xn → C,

E+
i,y (g (X1, . . . , Xn)) := 1

V (i, y)Ei (g (X1, . . . , Xn)V (Xn, y + Sn) ; τy > n) . (5.3.24)

The fact that P+
i,y is a probability measure and that it does not depend on n follows easily

from the point 1 of Proposition 5.3.6. The probability P+
i,y is extended obviously to the

hole probability space (Ω,F ,P). The corresponding expectation is again denoted by E+
i,y.

Lemma 5.3.12. Assume Conditions 5.1, 5.3 and ν(ρ) = 0. Let m > 1. For any n > 1,
bounded measurable function g: Xm → C, (i, y) ∈ supp(V ) and j ∈ X,

lim
n→+∞

Ei (g (X1, . . . , Xm) ; Xn = j | τy > n) = E+
i,y (g (X1, . . . , Xm)) ν(j).

Proof. For the sake of brevity, for any (i, j) ∈ X2, y ∈ R and n > 1, set

Jn(i, j, y) := Pi (Xn = j , τy > n) .

Fix m > 1 and let g be a function Xm → C. By the point 1 of Proposition 5.3.7, it is
clear that for any (i, y) ∈ supp(V ) and n large enough, Pi (τy > n) > 0. By the Markov
property, for any j ∈ X and n > m+ 1 large enough,

I0 := Ei (g (X1, . . . , Xm) ; Xn = j | τy > n)

= Ei
(
g (X1, . . . , Xm) Jn−m (Xm, j, y + Sm)

Pi (τy > n) ; τy > m

)
.

Using Lemma 5.3.11 and the point 1 of Proposition 5.3.7, by the Lebesgue dominated
convergence theorem,

lim
n→+∞

I0 = Ei
(
g (X1, . . . , Xm) V (Xm, y + Sm)

V (i, y) ; τy > m

)
ν(j)

= E+
i,y (g (X1, . . . , Xm)) ν(j).
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Lemma 5.3.13. Assume Conditions 5.1, 5.3 and ν(ρ) = 0. For any (i, y) ∈ supp(V ),
we have, for any k > 1,

E+
i,y

(
e−Sk

)
6
c (1 + max(y, 0)) ey

k3/2V (i, y) .

In particular,

E+
i,y

(+∞∑
k=0

e−Sk
)
6
c (1 + max(y, 0)) ey

V (i, y) .

Proof. By (5.3.24), for any k > 1,

E+
i,y

(
e−Sk

)
= Ei

(
e−Sk V (Xk, y + Sk)

V (i, y) ; τy > k

)
.

Using the point 2 of Proposition 5.3.6,

E+
i,y

(
e−Sk

)
6 ey Ei

(
e−(y+Sk) c (1 + max (0, y + Sk))

V (i, y) ; τy > k

)

= ey
+∞∑
p=0

Ei
(

e−(y+Sk) c (1 + max (0, y + Sk))
V (i, y) ; y + Sk ∈ (p, p+ 1] , τy > k

)

6 ey
+∞∑
p=0

e−p c(1 + p)
V (i, y) Pi (y + Sk ∈ [p, p+ 1] , τy > k) .

By the point 2 of Proposition 5.3.9,

E+
i,y

(
e−Sk

)
6

c

k3/2

+∞∑
p=0

e−p(1 + p)2 ey (1 + max(0, y))
V (i, y)

= c (1 + max(0, y)) ey
k3/2V (i, y) .

This proves the first inequality of the lemma. Summing both sides in k and using the
Lebesgue monotone convergence theorem, it proves also the second inequality of the
lemma.

5.3.4 The change of measure related to the Markov walk
In this section we shall establish some useful properties of the Markov chain under

the exponential change of the probability measure, which will be crucial in the proofs of
the results of the paper.

For any λ ∈ R, let Pλ be the transfer operator defined on C by, for any g ∈ C and
i ∈ X,

Pλg(i) := P
(
eλρ g

)
(i) = Ei

(
eλS1 g(X1)

)
. (5.3.25)

From the Markov property, it follows easily that, for any g ∈ C , i ∈ X and n > 0,

Pn
λg(i) = Ei

(
eλSn g(Xn)

)
. (5.3.26)

For any non-negative function g > 0, λ ∈ R, i ∈ X and n > 1, we have

Pn
λg(i) > min

x1,...,xn∈Xn
eλ(ρ(x1)+···+ρ(xn)) Png(i). (5.3.27)
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Therefore the matrix Pλ is primitive i.e. satisfies the Condition 5.1. By the Perron-
Frobenius theorem, there exists a positive number k(λ) > 0, a positive function vλ :
X→ R∗+, a positive linear form νλ: C → C and a linear operator Qλ on C such that for
any g ∈ C , and i ∈ X,

Pλg(i) = k(λ)νλ(g)vλ(i) +Qλ(g)(i), (5.3.28)
νλ (vλ) = 1 and Qλ (vλ) = νλ (Qλ(g)) = 0, (5.3.29)

where the spectral radius of Qλ is strictly less than k(λ):

‖Qn
λ(g)‖∞
k(λ)n 6 cλ e−cλn ‖g‖∞ . (5.3.30)

Note that, in particular, k(λ) is equal to the spectral radius of Pλ, and, moreover, k(λ)
is an eigenvalue associated to the eigenvector vλ:

Pλvλ(i) = k(λ)vλ(i). (5.3.31)

From (5.3.28) and (5.3.29), we have for any n > 1,

Pn
λg(i) = k(λ)nνλ(g)vλ(i) +Qn

λ(g)(i). (5.3.32)

By (5.3.30), for any g ∈ C and i ∈ X,

lim
n→+∞

Pn
λg(i)
k(λ)n = νλ(g)vλ(i)

and so for any non-negative and non-identically zero function g ∈ C and i ∈ X,

k(λ) = lim
n→+∞

(Pn
λg(i))1/n = lim

n→+∞
E1/n
i

(
eλSn g(Xn)

)
. (5.3.33)

Note that when λ = 0, we have k(0) = 1, v0(i) = 1 and ν0(i) = ν(i), for any i ∈ X.
However, in general case, the operator Pλ is no longer a Markov operator and we define
P̃λ for any λ ∈ R by

P̃λg(i) = Pλ(gvλ)(i)
k(λ)vλ(i)

=
P
(
eλρ gvλ

)
(i)

k(λ)vλ(i)
=

Ei
(
eλS1 g(X1)vλ(X1)

)
k(λ)vλ(i)

, (5.3.34)

for any g ∈ C and i ∈ X. It is clear that P̃λ is a Markov operator: by (5.3.31),

P̃λv0(i) = Pλ(vλ)(i)
k(λ)vλ(i)

= 1,

where for any i ∈ X, v0(i) = 1. Iterating (5.3.34) and using (5.3.26), we see that for any
n > 1, g ∈ C and i ∈ X.

P̃n
λg(i) = Pn

λ(gvλ)(i)
k(λ)nvλ(i)

=
Ei
(
eλSn g(Xn)vλ(Xn)

)
k(λ)nvλ(i)

. (5.3.35)

In particular, as in (5.3.27),

P̃n
λg(i) > min

x1,...,xn∈Xn
eλ(ρ(x1)+···+ρ(xn)) vλ(xn) Png(i)

k(λ)nvλ(i)
.

The following lemma is an easy consequence of this last inequality.
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Lemma 5.3.14. Assume Conditions 5.1 and 5.3 for the Markov kernel P. Then for any
λ ∈ R, Conditions 5.1 and 5.3 hold also for the operator P̃λ.

Using (5.3.32) and (5.3.35), the spectral decomposition of P̃λ is given by

P̃n
λg(i) = νλ (gvλ) v0(i) + Qn

λ(gvλ)(i)
k(λ)nvλ(i)

= ν̃λ(g)v0(i) + Q̃n
λ(g)(i),

with, for any λ ∈ R, g ∈ C and i ∈ X,

ν̃λ(g) := νλ (gvλ) and Q̃λ(g)(i) := Qλ(gvλ)(i)
k(λ)vλ(i)

. (5.3.36)

By (5.3.29),

ν̃λ
(
Q̃λ(g)

)
= νλ

(
Qλ(gvλ)
k(λ)

)
= 0 and Q̃λ(v0) = Qλ(vλ)(i)

k(λ)vλ(i)
= 0.

Consequently, ν̃λ is the positive invariant measure of P̃λ and since by (5.3.30),∥∥∥Q̃n
λ(g)

∥∥∥
∞

6
‖Qn

λ(gvλ)‖∞
k(λ)n mini∈X vλ

6 cλ e−cλn ‖g‖∞ ,

we can conclude that for any (i, j) ∈ X2,∣∣∣P̃n
λ(i, j)− ν̃λ(j)

∣∣∣ 6 cλ e−cλn .

Fix λ ∈ R and let P̃i and Ẽi be the probability, respectively the expectation, gener-
ated by the finite dimensional distributions of the Markov chain (Xn)n>0 with transition
operator P̃λ and starting at X0 = i. For any n > 1, g: Xn → C and i ∈ X,

Ẽi (g(X1, . . . , Xn)) :=
Ei
(
eλSn g(X1, . . . , Xn)vλ(Xn)

)
k(λ)nvλ(i)

. (5.3.37)

We are now interested in establishing some properties of the function λ 7→ k(λ) which
are important to distinguish between the different subcritical cases.
Lemma 5.3.15. Assume Conditions 5.1 and 5.3. The function λ 7→ k(λ) is analytic on
R. Moreover the function K: λ 7→ ln (k(λ)) is strictly convex and satisfies for any λ ∈ R,

K ′(λ) = k′(λ)
k(λ) = ν̃λ(ρ), (5.3.38)

and

K ′′(λ) = ν̃λ
(
ρ2
)
− ν̃λ (ρ)2 + 2

+∞∑
n=1

[
ν̃λ
(
ρP̃n

λρ
)
− ν̃λ (ρ)2

]
=: σ̃2

λ. (5.3.39)

Proof. It is clear that λ 7→ Pλ is analytic on R and consequently, by the perturbation
theory for linear operators (see for example [50] or [24]) λ → k(λ), λ → vλ and λ 7→ νλ
are also analytic on R. In particular we write for any h ∈ R,

Pλ+h = Pλ + hP′λ + h2

2 P′′λ + o(h2),

vλ+h = vλ + hv′λ + h2

2 v
′′
λ + o(h2),

k(λ+ h) = k(λ) + hk′(λ) + h2

2 k
′′(λ) + o(h2),
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where for any h ∈ R, o(h2) refers to an operator, a function or a real such that o(h2)/h2 →
0 as h→ 0. Since vλ+h is an eigenvector of Pλ+h we have Pλ+hvλ+h = k(λ+ h)vλ+h and
its development gives

Pλvλ = k(λ)vλ,
Pλv

′
λ + P′λvλ = k(λ)v′λ + k′(λ)vλ, (5.3.40)

1
2Pλv

′′
λ + P′λv′λ + 1

2P′′λvλ = 1
2k(λ)v′′λ + k′(λ)v′λ + 1

2k
′′(λ)vλ. (5.3.41)

Since νλ is an invariant measure, νλ (Pλg) = k(λ)νλ(g) and (5.3.40) implies that

k(λ)νλ (v′λ) + νλ (P′λvλ) = k(λ)νλ (v′λ) + k′(λ).

In addition, by (5.3.25), P′λvλ = Pλ (ρvλ). Therefore,

k(λ)νλ (ρvλ) = k′(λ),

which, with the definition of ν̃λ in (5.3.36), proves (5.3.38).
From (5.3.41) and the fact that νλ (Pλg) = k(λ)νλ(g), we have

k(λ)
2 νλ (v′′λ) + k(λ)νλ (ρv′λ) + k(λ)

2 νλ
(
ρ2vλ

)
= 1

2k(λ)νλ (v′′λ) + k′(λ)νλ (v′λ) + 1
2k
′′(λ).

So,
k′′(λ)
k(λ) = νλ

(
ρ2vλ

)
+ 2

[
νλ (ρv′λ)−

k′(λ)
k(λ) νλ (v′λ)

]
.

By (5.3.38), we obtain that

K ′′(λ) = k′′(λ)
k(λ) −

(
k′(λ)
k(λ)

)2

= νλ
(
ρ2vλ

)
− ν2

λ (ρvλ) + 2 [νλ (ρv′λ)− νλ (ρvλ) νλ (v′λ)] . (5.3.42)

It remains to determine v′λ. By (5.3.40), we have

v′λ −
Pλv

′
λ

k(λ) = Pλ (ρvλ)
k(λ) − k′(λ)

k(λ) vλ

and for any n > 0, using (5.3.38),

Pn
λv
′
λ

k(λ)n −
Pn+1
λ v′λ

k(λ)n+1 = Pn+1
λ (ρvλ)
k(λ)n+1 − νλ (ρvλ) vλ. (5.3.43)

Note that

Pn+1
λ (ρvλ)
k(λ)n+1 − νλ (ρvλ) vλ = Qn+1

λ (ρvλ)
k(λ)n+1 .

By (5.3.30),∥∥∥∥∥Pn+1
λ (ρvλ)
k(λ)n+1 − νλ (ρvλ) vλ

∥∥∥∥∥
∞

6 cλ e−cλ(n+1) ‖ρvλ‖∞ = cλ e−cλ(n+1) .



5.4. PROOFS IN THE CRITICAL CASE 239

Consequently, by (5.3.43), the series ∑n>0

[
Pnλv

′
λ

k(λ)n −
Pn+1
λ

v′λ
k(λ)n+1

]
converges absolutely and we

deduce that
v′λ =

+∞∑
n=0

[
Pn+1
λ (ρvλ)
k(λ)n+1 − νλ (ρvλ) vλ

]
.

In particular,

νλ (v′λ) =
+∞∑
n=0

[νλ (ρvλ)− νλ (ρvλ)] = 0,

and

νλ (ρv′λ) =
+∞∑
n=0

νλ
(
ρPn+1

λ (ρvλ)
)

k(λ)n+1 − νλ (ρvλ)2

 .
Therefore (5.3.42) becomes

K ′′(λ) = νλ
(
ρ2vλ

)
− ν2

λ (ρvλ) + 2
+∞∑
n=0

νλ
(
ρPn+1

λ (ρvλ)
)

k(λ)n+1 − νλ (ρvλ)2

 .
To conclude the proof of the lemma, we establish that K ′′(λ) > 0, from which the strict
convexity of K follows. By (5.3.36),

K ′′(λ) = ν̃λ
(
ρ̃2
λ

)
+ 2

+∞∑
n=1

[
ν̃λ
(
ρ̃λP̃n

λρ̃λ
)]
, (5.3.44)

where for any λ ∈ R, ρ̃λ = ρ − ν̃λ(ρ)v0. Moreover, Conditions 5.1 and 5.3 and Lemma
5.3.14 imply that the normalized transfer operator P̃λ together with the function ρ̃λ
satisfies Conditions 5.1 and 5.3. In conjunction with (5.3.44) and Lemma 10.3 of [37],
this proves that (5.3.44) and so (5.3.39) is positive.

5.4 Proofs in the critical case
In this section we prove Theorem 5.2.1. By (5.3.3) and (5.3.10), the survival proba-

bility of the branching process is related to the study of the sum

q−1
n = e−Sn +

n−1∑
k=0

e−Sk ηk+1,n

where (Sn)n>0 is a Markov walk defined by (5.2.5). Very roughly speaking, the sum q−1
n

converges mainly when the walk stays positive: Sk > 0 for any k > 1 and we will see that
(at least in the critical case) only positive trajectories of the Markov walk (Sn)n>0 count
for the survival of the branching process.

Recall that the hypotheses of Theorem 5.2.1 are Conditions 5.1-5.3 and k′(0) = ν(ρ) =
0. Under these assumptions the conclusions of all the theorems of Section 5.3.3 hold for
the probability Pi, for any i ∈ X. Recall also that E+

i,y is the expectation corresponding
to the probability measure (5.3.24). We carry out the proof through a series of lemmata.

Lemma 5.4.1. Assume conditions of Theorem 5.2.1. For any m > 1, (i, y) ∈ supp(V ),
and j ∈ X, we have

lim
n→+∞

Pi (Zm > 0 ; Xn = j | τy > n) = E+
i,y (qm) ν(j).
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Proof. Fix m > 1, (i, y) ∈ supp(V ), and j ∈ X. By (5.3.2), for any n > m+ 1,

Pi (Zm > 0 , Xn = j , τy > n) = Ei (Pi (Zm > 0 |X1, . . . , Xn ) ; Xn = j , τy > n)
= Ei (Ei (qm |X1, . . . , Xn ) ; Xn = j , τy > n)
= Ei (qm ; Xn = j , τy > n) .

Thereby, using Lemma 5.3.12, we conclude that

lim
n→+∞

Pi (Zm > 0 ; Xn = j | τy > n) = lim
n→+∞

Ei (qm ; Xn = j | τy > n) = E+
i,y (qm) ν(j).

By Lemma 5.3.3, we have for any (i, y) ∈ supp(V ), k > 1 and n > k + 1,

0 6 ηk,n 6 η := max
x∈X

f ′′x (1)
f ′x(1)2 < +∞ P+

i,y-a.s. (5.4.1)

By (5.3.11) and (5.3.13), this equation holds also when n = k. Moreover, by Lemma
5.3.3,

ηk,∞ := lim
n→+∞

ηk,n ∈ [0, η] P+
i,y-a.s. (5.4.2)

Let q∞ be the following random variable:

q∞ :=
[+∞∑
k=0

e−Sk ηk+1,∞

]−1

∈ [0,+∞]. (5.4.3)

The random variable q−1
∞ is P+

i,y-integrable for any (i, y) ∈ supp(V ): indeed by (5.4.2),

q−1
∞ 6

+∞∑
k=0

e−Sk η.

Using Lemma 5.3.13, for any (i, y) ∈ supp(V )

E+
i,y

(
q−1
∞

)
6 ηE+

i,y

(+∞∑
k=0

e−Sk
)
6 η

c (1 + max(y, 0)) ey
V (i, y) < +∞. (5.4.4)

Lemma 5.4.2. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ),

lim
m→+∞

E+
i,y

(∣∣∣q−1
m − q−1

∞

∣∣∣) = 0, (5.4.5)

and
lim

m→+∞
E+
i,y (|qm − q∞|) = 0. (5.4.6)

Proof. Let (i, y) ∈ supp(V ) and fix l > 1. By (5.3.10) and (5.4.3), we have for all
m > l + 2,

E+
i,y

(∣∣∣q−1
m − q−1

∞

∣∣∣) = E+
i,y

(∣∣∣∣∣e−Sm +
m−1∑
k=0

e−Sk ηk+1,m −
+∞∑
k=0

e−Sk ηk+1,∞

∣∣∣∣∣
)

6 E+
i,y

(
e−Sm

)
+ E+

i,y

(
l∑

k=0
e−Sk |ηk+1,m − ηk+1,∞|

)

+ E+
i,y

 m−1∑
k=l+1

e−Sk |ηk+1,m − ηk+1,∞|

+ E+
i,y

(+∞∑
k=m

e−Sk ηk+1,∞

)
.
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By (5.4.1) and (5.4.2),

E+
i,y

(∣∣∣q−1
m − q−1

∞

∣∣∣) 6 E+
i,y

(
e−Sm

)
+ E+

i,y

(
l∑

k=0
e−Sk |ηk+1,m − ηk+1,∞|

)
+ ηE+

i,y

 +∞∑
k=l+1

e−Sk
 .

Using Lemma 5.3.13 and the Lebesgue monotone convergence theorem,

E+
i,y

(∣∣∣q−1
m − q−1

∞

∣∣∣)
6
c (1 + max(y, 0)) ey

V (i, y)

 1
m3/2 + η

+∞∑
k=l+1

1
k3/2

+ E+
i,y

(
l∑

k=0
e−Sk |ηk+1,m − ηk+1,∞|

)

6
c (1 + max(y, 0)) ey

V (i, y)

(
1

m3/2 + η√
l

)
+ E+

i,y

(
l∑

k=0
e−Sk |ηk+1,m − ηk+1,∞|

)
.

Moreover, by (5.4.1) and (5.4.2), we have ∑l
k=0 e−Sk |ηk+1,m − ηk+1,∞| 6 η

∑+∞
k=0 e−Sk

which is P+
i,y-integrable by Lemma 5.3.13. Consequently, using the Lebesgue dominated

convergence theorem and (5.4.2), when m→ +∞, we obtain that for any l > 1,

lim sup
m→+∞

E+
i,y

(∣∣∣q−1
m − q−1

∞

∣∣∣) 6 cη (1 + max(y, 0)) ey

V (i, y)
√
l

.

Letting l→ +∞ it proves (5.4.5).
Now, it follows easily from (5.3.4) that q∞ 6 1: for any ε > 0 and m > 1, we

write that P+
i,y (q−1

∞ < 1− ε) 6 P+
i,y (q−1

∞ − q−1
m < −ε). Since by (5.4.5), q−1

m converges in
P+
i,y-probability to q−1

∞ , it follows that for any ε > 0, P+
i,y (q−1

∞ < 1− ε) = 0 and so

q∞ 6 1 P+
i,y-a.s. (5.4.7)

Consequently, |qm − q∞| = qmq∞ |q−1
m − q−1

∞ | 6 |q−1
m − q−1

∞ | and by (5.4.5), it proves
(5.4.6).

Let U be a function defined on supp(V ) by

U(i, y) = E+
i,y (q∞) .

Note that for any (i, y) ∈ supp(V ), by (5.4.4), q∞ > 0 P+
i,y-a.s. and so

U(i, y) > 0. (5.4.8)

By (5.4.7), we have also U(i, y) 6 1.

Lemma 5.4.3. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ) and
j ∈ X, we have

lim
m→+∞

lim
n→+∞

Pi (Zm > 0 ; Xn = j | τy > n) = ν(j)U(i, y).

Proof. By Lemma 5.4.1, for any (i, y) ∈ supp(V ), j ∈ X and m > 1, we have

lim
n→+∞

Pi (Zm > 0 ; Xn = j | τy > n) = ν(j)E+
i,y (qm) .

By (5.4.6), we obtain the desired equality.
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Lemma 5.4.4. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ) and
θ ∈ (0, 1),

lim
m→+∞

lim sup
n→+∞

Pi
(
Zm > 0 , Zbθnc = 0

∣∣∣ τy > n
)

= 0.

Proof. Fix (i, y) ∈ supp(V ) and θ ∈ (0, 1). For any m > 1 and any n > 1 such that
bθnc > m+ 1 we define θn = bθnc and we write

I0 := Pi (Zm > 0 , Zθn = 0 , τy > n)
= Pi (Zm > 0 , τy > n)− Pi (Zθn > 0 , τy > n)
= Ei (Pi (Zm > 0 |X1, . . . , Xm ) ; τy > n)− Ei (Pi (Zθn > 0 |X1, . . . , Xθn ) ; τy > n) .

By (5.3.2),
I0 = Ei (|qm − qθn| ; τy > n) .

We define Jp(i, y) := Pi (τy > p) for any (i, y) ∈ X× R and p > 0 and consider

I1 := Pi (Zm > 0 , Zθn = 0 | τy > n)

for any (i, y) ∈ supp(V ). By the Markov property, for any (i, y) ∈ supp(V ),

I1 = I0

Jn(i, y) = Ei
(
|qm − qθn|

Jn−θn (Xθn , y + Sθn)
Jn(i, y) ; τy > θn

)
.

By the point 2 of Proposition 5.3.7,

I1 6
c√

(1− θ)nJn(i, y)
Ei (|qm − qθn| (1 + y + Sθn) ; τy > θn) .

Using also the point 3 of Proposition 5.3.6, we have

I1 6
c√

(1− θ)nJn(i, y)
Ei (|qm − qθn| (1 + V (Xθn , y + Sθn)) ; τy > θn) .

Using (5.3.4) and (5.3.24), we obtain that

I1 6
c√

(1− θ)nJn(i, y)

(
Pi (τy > θn) + V (i, y)E+

i,y (|qm − qθn|)
)
.

Using the point 1 of Proposition 5.3.7, for any (i, y) ∈ supp(V ),

1√
(1− θ)nJn(i, y)

= 1√
(1− θ)nPi (τy > n)

∼
n→+∞

√
2πσ

2
√

1− θV (i, y)
.

Moreover using again the point 1 of Proposition 5.3.7 and using (5.4.6),

Pi (τy > θn) + V (i, y)E+
i,y (|qm − qθn|) −→n→+∞

V (i, y)E+
i,y (|qm − q∞|) .

Therefore, we obtain that, for any m > 1 and θ ∈ (0, 1),

lim sup
n→+∞

I1 6
c√

1− θ
E+
i,y (|qm − q∞|) .

Letting m go to +∞ and using (5.4.6), we conclude that

lim
m→+∞

lim sup
n→+∞

I1 = lim
m→+∞

lim sup
n→+∞

Pi (Zm > 0 , Zθn = 0 | τy > n) = 0.
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Lemma 5.4.5. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ), j ∈ X,
and θ ∈ (0, 1),

lim
n→+∞

Pi
(
Zbθnc > 0 , Xn = j

∣∣∣ τy > n
)

= ν(j)U(i, y).

In particular,
lim

n→+∞
Pi
(
Zbθnc > 0

∣∣∣ τy > n
)

= U(i, y). (5.4.9)

Proof. Fix (i, y) ∈ supp(V ) and j ∈ X. Let θn := bθnc for any θ ∈ (0, 1) and n > 1. For
any m > 1 and n > 1 such that θn > m+ 1, we write

Pi (Zθn > 0 , Xn = j | τy > n)
= Pi (Zm > 0 , Zθn > 0 , Xn = j | τy > n)
= Pi (Zm > 0 , Xn = j | τy > n)− Pi (Zm > 0 , Zθn = 0 , Xn = j | τy > n) .

By Lemma 5.4.4,

lim
m→+∞

lim sup
n→+∞

Pi (Zm > 0 , Zθn = 0 , Xn = j | τy > n)

6 lim
m→+∞

lim sup
n→+∞

Pi (Zm > 0 , Zθn = 0 | τy > n) = 0.

Therefore, using Lemma 5.4.3, it follows that

lim
n→+∞

Pi (Zθn > 0 , Xn = j | τy > n) = ν(j)U(i, y).

Lemma 5.4.6. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ),

lim
p→+∞

Pi (Zp > 0 | τy > p) = U(i, y).

Proof. Fix (i, y) ∈ supp(V ). For any p > 1 and θ ∈ (0, 1), we have

Pi (Zp > 0 | τy > p) =
Pi
(
Zp > 0 , τy > p

θ
+ 1

)
+ Pi

(
Zp > 0 , p < τy 6

p
θ

+ 1
)

Pi (τy > p) .

Let n =
⌊
p
θ

⌋
+ 1 and note that bθnc = p. So, by (5.4.9),

lim
p→+∞

Pi (Zp > 0 | τy > p) = U(i, y) lim
p→+∞

Pi (τy > n)
Pi (τy > p) + lim

p→+∞

Pi (Zp > 0 , p < τy 6 n)
Pi (τy > p) .

By the point 1 of Proposition 5.3.7, we obtain that

lim
p→+∞

Pi (Zp > 0 | τy > p) = U(i, y)
√
θ + lim

p→+∞

Pi (Zp > 0 , p < τy 6 n)
Pi (τy > p) .

Moreover, using again the point 1 of Proposition 5.3.7, for any θ ∈ (0, 1),

Pi (Zp > 0 , p < τy 6 n)
Pi (τy > p) 6

Pi (τy > p)− Pi (τy > n)
Pi (τy > p) −→

p→+∞
1−
√
θ.

Letting θ → 1, we conclude that

lim
p→+∞

Pi (Zp > 0 | τy > p) = U(i, y).
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Lemma 5.4.7. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ) and
θ ∈ (0, 1),

lim
n→+∞

Pi
(
Zbθnc > 0 , Zn = 0

∣∣∣ τy > n
)

= 0.

Proof. For any (i, y) ∈ supp(V ), θ ∈ (0, 1) and n > 1,

Pi
(
Zbθnc > 0 , Zn = 0

∣∣∣ τy > n
)

= Pi
(
Zbθnc > 0

∣∣∣ τy > n
)
− Pi (Zn > 0 | τy > n) .

From (5.4.9) and Lemma 5.4.6, it follows

Pi
(
Zbθnc > 0 , Zn = 0

∣∣∣ τy > n
)
−→
n→+∞

U(i, y)− U(i, y) = 0.

Lemma 5.4.8. Assume conditions of Theorem 5.2.1. For any (i, y) ∈ supp(V ) and
j ∈ X,

lim
n→+∞

Pi (Zn > 0 , Xn = j | τy > n) = ν(j)U(i, y).

Proof. For any (i, y) ∈ supp(V ), j ∈ X, θ ∈ (0, 1) and n > 1,

Pi (Zn > 0 , Xn = j | τy > n) = Pi
(
Zbθnc > 0 , Xn = j

∣∣∣ τy > n
)

− Pi
(
Zbθnc > 0 , Zn = 0 , Xn = j

∣∣∣ τy > n
)

Using Lemmas 5.4.5 and 5.4.7, the result follows.

Proof of Theorem 5.2.1. Fix (i, j) ∈ X2. For any y ∈ R, we have

0 6 Pi (Zn > 0 , Xn = j)−Pi (Zn > 0 , Xn = j , τy > n) 6 Pi (Zn > 0 , τy 6 n) . (5.4.10)

Using (5.3.2),
Pi (Zn > 0 , τy 6 n) = Ei (qn ; τy 6 n) .

Moreover, by the definition of qn in (5.3.1), for any k > 1,

qk 6 f ′Xk(1)× · · · × f ′X1(1) = eSk .

Since (qk)k>1 is non-increasing, we have qn = min16k6n qk 6 emin16k6n Sk . Therefore

Pi (Zn > 0 , τy 6 n)
6 Ei

(
emin16k6n Sk ; τy 6 n

)
= e−y

+∞∑
p=0

Ei
(

emin16k6n{y+Sk} ; −(p+ 1) < min
16k6n

{y + Sk} 6 −p , τy 6 n
)

6 e−y
+∞∑
p=0

e−p Pi (τy+p+1 > n) . (5.4.11)

By the point 2 of Proposition 5.3.7,

Pi (Zn > 0 , τy 6 n) = c e−y√
n

+∞∑
p=0

e−p (1 + p+ 1 + max(y, 0)) 6 c e−y (1 + max(y, 0))√
n

.

(5.4.12)
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Note that from the point 3 of Proposition 5.3.6, it is clear that there exits y0 = y0(i) < +∞
such that for any y > y0, we have V (i, y) > 0 i.e. (i, y) ∈ supp(V ) (for more information
on supp(V ) see [38]/Chapter 3). Using Lemma 5.4.8 and the point 1 of Proposition 5.3.7,
for any y > y0,

√
nPi (Zn > 0 , Xn = j , τy > n) −→

n→+∞

2ν(j)U(i, y)V (i, y)√
2πσ

. (5.4.13)

Let
I(i, j) = lim inf

n→+∞

√
nPi (Zn > 0 , Xn = j)

and
J(i, j) = lim sup

n→+∞

√
nPi (Zn > 0 , Xn = j) .

Using (5.4.10), (5.4.12) and (5.4.13), we obtain that, for any y > y0(i),

2ν(j)U(i, y)V (i, y)√
2πσ

6 I(i, j)

6 J(i, j) 6 2ν(j)U(i, y)V (i, y)√
2πσ

+ c e−y (1 + max(y, 0)) < +∞.

(5.4.14)

From (5.4.13), it is clear that y 7→ 2U(i,y)V (i,y)√
2πσ is non-decreasing and from (5.4.14) the

function is bounded by I(i, j)/ν(j) < +∞. Therefore

u(i) := lim
y→+∞

2U(i, y)V (i, y)√
2πσ

exists. Moreover by (5.4.8), for any y > y0(i),

u(i) > 2U(i, y)V (i, y)√
2πσ

> 0.

Taking the limit as y → +∞ in (5.4.14), we conclude that

lim
n→+∞

√
nPi (Zn > 0 , Xn = j) = ν(j)u(i),

which finishes the proof of Theorem 5.2.1.

5.5 Proofs in the strongly subcritical case
Assume the hypotheses of Theorem 5.2.2 that is Conditions 5.1-5.3 and k′(1) < 0. We

fix λ = 1 and define the probability P̃i and the corresponding expectation Ẽi by (5.3.37),
such that, for any n > 1 and any g: Xn → C,

Ẽi (g(X1, . . . , Xn)) =
Ei
(
eSn g(X1, . . . , Xn)v1(Xn)

)
k(1)nv1(i) . (5.5.1)
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By (5.3.2), we have, for any (i, j) ∈ X2 and n > 1,

Pi (Zn+1 > 0 , Xn+1 = j) = Ei (qn+1 , Xn+1 = j)

= Ẽi
(

e−Sn+1

v1 (Xn+1)qn+1 ; Xn+1 = j

)
k(1)n+1v1(i)

= Ẽi
(
e−Sn qn (fj(0)) ; Xn+1 = j

)
k(1)n+1v1(i) e−ρ(j)

v1(j) ,

where qn(s) is defined for any s ∈ [0, 1] by (5.3.1). From Lemma 5.3.2, we write

e−Sn qn (fj(0)) =
[

1
1− fj(0) +

n−1∑
k=0

eSn−Sk ηk+1,n (fj(0))
]−1

=
[

1
1− fj(0) +

n∑
k=1

eSn−Sn−k ηn−k+1,n (fj(0))
]−1

. (5.5.2)

As in Section 5.3.2, we define the dual Markov chain (X∗n)n>0, where the dual Markov
kernel is given, for any (i, j) ∈ X2, by

P̃∗1(i, j) = P̃1(j, i) ν̃1(j)
ν̃1(i) = P(j, i)eρ(i) ν1(j)

k(1)ν1(i) .

Let (S∗n)n>0 be the associated Markov walk defined by (5.3.16) and

q∗n(j) :=
[

1
1− fj(0) +

n∑
k=1

e−S∗k η∗k(j)
]−1

, (5.5.3)

where

η∗k(j) := gX∗
k

(
fX∗

k−1
◦ · · · ◦ fX∗1 ◦ fj(0)

)
and η∗1(j) := gX∗1 (fj(0)) . (5.5.4)

Following the proof of Lemma 5.3.2, we obtain

q∗n(j) = eS∗n
(
1− fX∗n ◦ · · · ◦ fX∗1 ◦ fj(0)

)
. (5.5.5)

We are going to apply duality Lemma 5.3.5. The following correspondences designed by
the two-sided arrow ←→ are included for the ease of the reader:

X∗k ←→ Xn−k+1,

S∗k ←→ Sn−k − Sn,
η∗k(j)←→ ηn−k+1,n (fj(0)) ,
q∗n(j)←→ e−Sn qn (fj(0)) .

Now Lemma 5.3.5 implies,

Pi (Zn+1 > 0 , Xn+1 = j) = Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

)
k(1)n+1 ν̃1(j)v1(i) e−ρ(j)

ν̃1(i)v1(j) , (5.5.6)

where Ẽ∗j is the expectation generated by the trajectories of the Markov chain (X∗n)n>0
starting at X∗0 = j.
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Note that, under Condition 5.2, by Lemma 5.3.3 we have, for any j ∈ X and k > 1,

0 6 η∗k(j) 6 η = max
i∈X

f ′′i (1)
f ′i(1)2 < +∞ P̃∗j -a.s. (5.5.7)

In particular, by (5.5.3),
q∗n(j) ∈ (0, 1], ∀n > 1.

For any j ∈ X, consider the random variable

q∗∞(j) :=
[

1
1− fj(0) +

∞∑
k=1

e−S∗k η∗k(j)
]−1

∈ [0, 1]. (5.5.8)

Lemma 5.5.1. Assume that the conditions of Theorem 5.2.2 are satisfied. For any j ∈ X,

lim
n→+∞

q∗n(j) = q∗∞(j) ∈ (0, 1], P̃∗j -a.s. (5.5.9)

and
lim

n→+∞
Ẽ∗j (|q∗n(j)− q∗∞(j)|) = 0. (5.5.10)

Proof. Fix j ∈ X. By the law of large numbers for finite Markov chains,

S∗k
k
−→
k→+∞

ν̃1(−ρ), P̃∗j -a.s.

This means that there exists a set N of null probability P̃∗j(N) = 0, such that for any
ω ∈ Ω \N and any ε > 0, there exists k0(ω, ε) such that for any k > k0(ω, ε),

e−S∗k(ω) η∗k(j)(ω) 6 ekν̃1(ρ)+kε η,

where for the last inequality we used the bound (5.5.7). By Lemma 5.3.15, we have
ν̃1(ρ) = k′(1)/k(1) < 0. Taking ε = −ν̃1(ρ)/2 we obtain that, for any k > k0(ω),

0 6 e−S∗k(ω) η∗k(j)(ω) 6 ek
ν̃1(ρ)

2 η.

Consequently, the series (q∗n(j))−1 converges a.s. to (q∗∞(j))−1 ∈ [1,+∞) which proves
(5.5.9).

Now the sequence (q∗n(j))n>1 belongs to [0, 1) a.s. and so by the Lebesgue dominated
convergence theorem,

lim
n→+∞

Ẽ∗j (|q∗n(j)− q∗∞(j)|) = 0.

Lemma 5.5.2. Assume that the conditions of Theorem 5.2.2 are satisfied. For any
(i, j) ∈ X2,

lim
n→+∞

Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

)
= ν̃1(i)Ẽ∗j (q∗∞(j)) .

Proof. Let m > 1. For any (i, j) ∈ X2, and n > m,

Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

)
= Ẽ∗j

(
q∗m(j) ; X∗n+1 = i

)
+ Ẽ∗j

(
q∗n(j)− q∗m(j) ; X∗n+1 = i

)
. (5.5.11)

By the Markov property,

Ẽ∗j
(
q∗m(j) ; X∗n+1 = i

)
= Ẽ∗j

(
q∗m(j)

(
P̃∗1
)n−m+1

(X∗m, i)
)
.
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Using (5.3.18) (which holds also for P̃∗1 by Lemmas 5.3.14 and 5.3.4) and (5.5.10), we
have

lim
m→+∞

lim
n→+∞

Ẽ∗j
(
q∗m(j) ; X∗n+1 = i

)
= lim

m→+∞
Ẽ∗j (q∗m(j)) ν̃1(i) = Ẽ∗j (q∗∞(j)) ν̃1(i). (5.5.12)

Moreover, again by (5.5.10),

lim
m→+∞

lim
n→+∞

∣∣∣Ẽ∗j (q∗n(j)− q∗m(j) ; X∗n+1 = i
)∣∣∣ 6 lim

m→+∞
lim

n→+∞
Ẽ∗j (|q∗n(j)− q∗m(j)|)

= lim
m→+∞

Ẽ∗j (|q∗∞(j)− q∗m(j)|)

= 0.

Together with (5.5.11) and (5.5.12), this concludes the lemma.

Proof of Theorem 5.2.2. By (5.5.9), the function

u(j) =
ν̃1(j) e−ρ(j) Ẽ∗j (q∗∞(j))

v1(j)

is positive. The result of the theorem follows from Lemma 5.5.2 and the identity (5.5.6).

5.6 Proofs in the intermediate subcritical case
We assume the conditions of Theorem 5.2.3, that is Conditions 5.1-5.3 and k′(1) = 0.

As in the critical case the proof is carried out through a series of lemmata.
The beginning of the reasoning is the same as in the strongly subcritical case. Keeping

the same notation as in Section 5.5 (see (5.5.1)-(5.5.6)), we have

Pi (Zn+1 > 0 , Xn+1 = j) = Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

)
k(1)n+1 ν̃1(j)v1(i) e−ρ(j)

ν̃1(i)v1(j) . (5.6.1)

Under the hypotheses of Theorem 5.2.3, the Markov walk (S∗n)n>0 is centred under
the probability P̃∗j for any j ∈ X: indeed ν̃1(−ρ) = −k′(1)/k(1) = 0 (see Lemma 5.3.15)
and by Lemma 5.3.14, Conditions 5.1 and 5.3 hold for P̃1. In this case, by Lemma 5.3.4,
Conditions 5.1 and 5.3 hold also for P̃∗1. Therefore all the results of Section 5.3.3 hold
for the probability P̃∗. Let τ ∗z be the exit time of the Markov walk (z + S∗n)n>0:

τ ∗z := inf {k > 1 : z + S∗k 6 0} .

Denote by Ṽ ∗1 the harmonic function defined by Proposition 5.3.6 with respect to the
probability P̃∗. As in (5.3.24), for any (j, z) ∈ supp(Ṽ ∗1 ), define a new probability P̃∗+j,z
and its associated expectation E∗+j,z on σ (X∗n, n > 1) by

Ẽ∗+j,z (g (X∗1 , . . . , X∗n)) := 1
Ṽ ∗1 (j, z)

Ẽ∗j
(
g (X∗1 , . . . , X∗n) Ṽ ∗1 (X∗n, z + S∗n) ; τ ∗z > n

)
,

for any n > 1 and any g: Xn → C.

Lemma 5.6.1. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
m > 1, (j, z) ∈ supp(Ṽ ∗1 ), and i ∈ X, we have

lim
n→+∞

Ẽ∗j
(
q∗m(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= Ẽ∗+j,z (q∗m(j)) ν̃1(i).
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Proof. The equation (5.5.5) gives an explicit formula for q∗m(j) in terms of (X∗1 , . . . , X∗m).
Therefore, the assertion of the lemma is a straightforward consequence of Lemma 5.3.12.

As in Section 5.5, using Lemma 5.3.3 we have for any (j, z) ∈ supp(Ṽ ∗1 ) and k > 1,

0 6 η∗k(j) 6 η = max
i∈X

f ′′i (1)
f ′i(1)2 < +∞ and q∗n(j) ∈ (0, 1], P̃∗+j,z -a.s. (5.6.2)

Consider the random variable

q∗∞(j) :=
[

1
1− fj(0) +

+∞∑
k=1

e−S∗k η∗k(j)
]−1

∈ [0, 1]. (5.6.3)

Lemma 5.6.2. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 )

lim
m→+∞

Ẽ∗+j,z
(∣∣∣(q∗m(j))−1 − (q∗∞(j))−1

∣∣∣) = 0, (5.6.4)

and
lim

m→+∞
Ẽ∗+j,z (|q∗m(j)− q∗∞(j)|) = 0. (5.6.5)

Proof. Fix (j, z) ∈ supp(Ṽ ∗1 ). By (5.5.3), (5.6.3) and (5.6.2), for any m > 1,

Ẽ∗+j,z
(∣∣∣(q∗m(j))−1 − (q∗∞(j))−1

∣∣∣) 6 ηẼ∗+j,z

 +∞∑
k=m+1

e−S∗k
 .

From this bound, by Lemma 5.3.13 and the dominated convergence theorem when m→
+∞, we obtain (5.6.4).

Now by (5.6.2) and (5.6.3) we have for any m > 1,

Ẽ∗+j,z (|q∗m(j)− q∗∞(j)|) = Ẽ∗+j,z
(
|q∗m(j)q∗∞(j)|

∣∣∣(q∗m(j))−1 − (q∗∞(j))−1
∣∣∣)

6 Ẽ∗+j,z
(∣∣∣(q∗m(j))−1 − (q∗∞(j))−1

∣∣∣) ,
which proves (5.6.5).

Let U be the function defined on supp(Ṽ ∗1 ) by

U∗(j, z) = Ẽ∗+j,z (q∗∞(j)) .

Using (5.6.2) and Lemma 5.3.13, we have

Ẽ∗+j,z
(
(q∗∞(j))−1

)
6

1
1− fj(0) + ηẼ∗+j,z

(+∞∑
k=1

e−S∗k
)
< +∞. (5.6.6)

Therefore q∗∞ > 0 P+
i,y-a.s. and so U∗(j, z) > 0. In addition, by (5.6.3), U∗(j, z) 6 1. For

any (j, z) ∈ supp(Ṽ ∗1 ),
U∗(j, z) ∈ (0, 1]. (5.6.7)

Lemma 5.6.3. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 ) and i ∈ X, we have

lim
m→+∞

lim
n→+∞

Ẽ∗j
(
q∗m(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= U∗(j, z)ν̃1(i).
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Proof. The assertion of the lemma is straightforward consequence of Lemmas 5.6.1 and
5.6.2.

Lemma 5.6.4. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 ) and θ ∈ (0, 1), we have

lim
m→+∞

lim sup
n→+∞

Ẽ∗j
(∣∣∣q∗m(j)− q∗bθnc(j)

∣∣∣ ∣∣∣ τ ∗z > n+ 1
)

= 0.

Proof. Fix (j, z) ∈ supp(Ṽ ∗1 ) and θ ∈ (0, 1). Letm > 1 and n > 1 be such that θn > m+1.
Set θn = bθnc. Denote

I0 := Ẽ∗j
(∣∣∣q∗m(j)− q∗θn(j)

∣∣∣ ∣∣∣ τ ∗z > n+ 1
)

and Jn(j, z) := P̃∗j (τ ∗z > n) .

Note that by the point 1 of Proposition 5.3.7, we have Jn(j, z) > 0 for any n large enough.
By the Markov property and the point 2 of Proposition 5.3.7,

I0 = 1
Jn+1(j, z)Ẽ

∗
j

(∣∣∣q∗m(j)− q∗θn(j)
∣∣∣ Jn+1−θn

(
X∗θn , z + S∗θn

)
; τ ∗z > θn

)
6

c

Jn+1(j, z)
√
n+ 1− θn

Ẽ∗j
(∣∣∣q∗m(j)− q∗θn(j)

∣∣∣ (1 + z + S∗θn

)
; τ ∗z > θn

)
.

Using the point 3 of Proposition 5.3.6 and (5.6.2),

I0 6
c

Jn+1(j, z)
√
n(1− θ)

Ẽ∗j
(∣∣∣q∗m(j)− q∗θn(j)

∣∣∣ (1 + Ṽ ∗1
(
X∗θn , z + S∗θn

))
; τ ∗z > θn

)
6

c

Jn+1(j, z)
√
n(1− θ)

(
P̃∗j (τ ∗z > θn) + Ṽ1(j, z)Ẽ∗+j,z

(∣∣∣q∗m(j)− q∗θn(j)
∣∣∣)) .

By the point 1 of Proposition 5.3.7 and (5.6.5), we obtain that

lim sup
n→+∞

I0 6 lim sup
n→+∞

c
√
n+ 1√

n(1− θ)
Ẽ∗+j,z

(∣∣∣q∗m(j)− q∗θn(j)
∣∣∣) = c√

(1− θ)
Ẽ∗+j,z (|q∗m(j)− q∗∞(j)|) .

Taking the limit as m→ +∞ and using (5.6.5), we conclude that

lim
m→+∞

lim sup
n→+∞

Ẽ∗j
(∣∣∣q∗m(j)− q∗bθnc(j)

∣∣∣ ∣∣∣ τ ∗z > n+ 1
)

= 0.

Lemma 5.6.5. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 ), i ∈ X and θ ∈ (0, 1), we have

lim
n→+∞

Ẽ∗j
(
q∗bθnc(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= U∗(j, z)ν̃1(i).

Proof. For any (j, z) ∈ supp(Ṽ ∗1 ), i ∈ X, θ ∈ (0, 1), m > 1 and n > m + 1 such that
bθnc > m, we have

I0 := Ẽ∗j
(
q∗bθnc(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= Ẽ∗j
(
q∗m(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

+ Ẽ∗j
(
q∗bθnc(j)− q∗m(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

︸ ︷︷ ︸
=:I1

.
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By Lemma 5.6.4,

lim sup
m→+∞

lim sup
n→+∞

|I1| 6 lim
m→+∞

lim sup
n→+∞

Ẽ∗j
(∣∣∣q∗bθnc(j)− q∗m(j)

∣∣∣ ∣∣∣ τ ∗z > n+ 1
)

= 0.

Consequently, using Lemma 5.6.3,

lim
n→+∞

I0 = lim
m→+∞

lim
n→+∞

Ẽ∗j
(
q∗m(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= U∗(j, z)ν̃1(i).

Lemma 5.6.6. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 ), we have

lim
p→+∞

Ẽ∗j
(
q∗p(j)

∣∣∣ τ ∗z > p+ 1
)

= U∗(j, z).

Proof. Fix (j, z) ∈ supp(Ṽ ∗1 ). For any p > 1 and θ ∈ (0, 1) set n = bp/θc+ 1. Note that
p = bθnc. We write, for any p > 1,

Ẽ∗j
(
q∗p(j)

∣∣∣ τ ∗z > p+ 1
)

=
Ẽ∗j
(
q∗p(j) ; τ ∗z > n+ 1

)
+ Ẽ∗j

(
q∗p(j) ; p+ 1 < τ ∗z 6 n+ 1

)
P̃∗j (τ ∗z > p+ 1)

.

By Lemma 5.6.5 and the point 1 of Proposition 5.3.7,

Ẽ∗j
(
q∗p(j) ; τ ∗z > n+ 1

)
P̃∗j (τ ∗z > p+ 1)

=
∑
i∈X

Ẽ∗j
(
q∗p(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
) P̃∗j (τ ∗z > n+ 1)
P̃∗j (τ ∗z > p+ 1)

−→
p→+∞

U∗(j, z)
√
θ.

Moreover, using (5.6.2) and the point 1 of Proposition 5.3.7,

Ẽ∗j
(
q∗p(j) ; p+ 1 < τ ∗z 6 n+ 1

)
P̃∗j (τ ∗z > p+ 1)

6 1−
P̃∗j (τ ∗z > n+ 1)
P̃∗j (τ ∗z > p+ 1)

−→
p→+∞

1−
√
θ.

Therefore, for any θ ∈ (0, 1),∣∣∣∣ lim
p→+∞

Ẽ∗j
(
q∗p(j)

∣∣∣ τ ∗z > p+ 1
)
− U∗(j, z)

√
θ
∣∣∣∣ 6 1−

√
θ.

Taking the limit as θ → 1 it concludes the proof.

Lemma 5.6.7. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 ) and θ ∈ (0, 1), we have

lim
n→+∞

Ẽ∗j
(∣∣∣q∗bθnc(j)− q∗n(j)

∣∣∣ ∣∣∣ τ ∗z > n+ 1
)

= 0.

Proof. Using the fact that η∗k(j) are non-negative and the definition of q∗n(j) in (5.5.3),
we see that (q∗n(j))n>1 is non-increasing. Therefore, using Lemmas 5.6.5 and 5.6.6,

I0 := lim
n→+∞

Ẽ∗j
(∣∣∣q∗bθnc(j)− q∗n(j)

∣∣∣ ∣∣∣ τ ∗z > n+ 1
)

= lim
n→+∞

∑
i∈X

Ẽ∗j
(
q∗bθnc(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)
− lim

n→+∞
Ẽ∗j (q∗n(j) | τ ∗z > n+ 1)

= U∗(j, z)− U∗(j, z) = 0.
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Lemma 5.6.8. Assume that the conditions of Theorem 5.2.3 are satisfied. For any
(j, z) ∈ supp(Ṽ ∗1 ) and i ∈ X, we have

lim
n→+∞

Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= U∗(j, z)ν̃1(i).

Proof. By Lemmas 5.6.5 and 5.6.7, for any (j, z) ∈ supp(Ṽ ∗1 ), i ∈ X and θ ∈ (0, 1),

I0 := lim
n→+∞

Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= lim
n→+∞

Ẽ∗j
(
q∗bθnc(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

+ lim
n→+∞

Ẽ∗j
(
q∗n(j)− q∗bθnc(j) ; X∗n+1 = i

∣∣∣ τ ∗z > n+ 1
)

= U∗(j, z)ν̃1(i).

Lemma 5.6.9. Assume that the conditions of Theorem 5.2.3 are satisfied. There exists
ũ a positive function on X such that, for any (i, j) ∈ X2, we have

Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

)
∼

n→+∞

ũ(j)ν̃1(i)√
n

.

Proof. Fix (i, j) ∈ X2. For any z ∈ R and n > 1,

0 6 Ẽ∗j
(
q∗n(j) ; X∗n+1 = i

)
−Ẽ∗j

(
q∗n(j) ; X∗n+1 = i , τ ∗z > n+ 1

)
6 Ẽ∗j (q∗n(j) ; τ ∗z 6 n+ 1) . (5.6.8)

Since q∗n(j) 6 1 (see (5.6.2)), we have

Ẽ∗j (q∗n(j) ; τ ∗z 6 n+ 1) 6 Ẽ∗j (q∗n(j) ; τ ∗z 6 n) + P̃j (τ ∗z = n+ 1) . (5.6.9)

By (5.5.5), q∗k(j) 6 eS∗k , for any k 6 n. Since (q∗n(j))n>1 is non-increasing, we have
q∗n(j) = min16k6n q

∗
k(j) 6 emin16k6n S

∗
k . Consequently,

Ẽ∗j (q∗n(j) ; τ ∗z 6 n) 6 e−z Ẽ∗j
(
emin16k6n z+S∗k ; τ ∗z 6 n

)
6 e−z

+∞∑
p=0

e−p P̃∗j
(
−(p+ 1) < min

16k6n
z + S∗k 6 −p , τ ∗z 6 n

)

6 e−z
+∞∑
p=0

e−p P̃∗j
(
τ ∗z+p+1 > n

)
.

Using the point 2 of Proposition 5.3.7,

Ẽ∗j (q∗n(j) ; τ ∗z 6 n) 6 c e−z (1 + max(0, z))√
n

. (5.6.10)

By the point 3 of Proposition 5.3.6, there exists z0 ∈ R such that for any z > z0,
Ṽ ∗1 (j, z) > 0, which means that (j, z) ∈ supp(Ṽ ∗1 ). Therefore, using the point 1 of
Proposition 5.3.7, for any z > z0,

lim
n→+∞

√
nP̃j (τ ∗z = n+ 1) = lim

n→+∞

√
nP̃j (τ ∗z > n)− lim

n→+∞

√
nP̃j (τ ∗z > n+ 1) = 0.

(5.6.11)
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Putting together (5.6.9), (5.6.10) and (5.6.11), we obtain that, for any z > z0,

lim
n→+∞

√
nẼ∗j (q∗n(j) ; τ ∗z 6 n+ 1) 6 c e−z (1 + max(0, z)) . (5.6.12)

Moreover, using Lemma 5.6.8 and the point 1 of Proposition 5.3.7,

lim
n→+∞

√
nẼ∗j

(
q∗n(j) ; X∗n+1 = i , τ ∗z > n+ 1

)
= 2Ṽ ∗1 (j, z)√

2πσ̃1
U∗(j, z)ν̃1(i), (5.6.13)

where σ̃1 is defined in (5.3.39). Denoting

I(i, j) = lim inf
n→+∞

√
nẼ∗j

(
q∗n(j) ; X∗n+1 = i

)
and

J(i, j) = lim sup
n→+∞

√
nẼ∗j

(
q∗n(j) ; X∗n+1 = i

)
and using (5.6.8), (5.6.12) and (5.6.13), we obtain that, for any z > z0,

2Ṽ ∗1 (j, z)√
2πσ̃1

U∗(j, z)ν̃1(i) 6 I(i, j) (5.6.14)

6 J(i, j) 6 2Ṽ ∗1 (j, z)√
2πσ̃1

U∗(j, z)ν̃1(i) + c e−z (1 + max(0, z)) .

By (5.6.13), we observe that z 7→ 2Ṽ ∗1 (j,z)U∗(j,z)√
2πσ̃1

is non-decreasing and by (5.6.14), this
function is bounded by I(i, j)/ν̃1(i). Consequently the limit

ũ(j) := lim
z→+∞

2Ṽ ∗1 (j, z)U∗(j, z)√
2πσ̃1

exists and for any z > z0, by (5.6.7),

ũ(j) > 2Ṽ ∗1 (j, z)U∗(j, z)√
2πσ̃1

> 0. (5.6.15)

Taking the limit as z → +∞ in (5.6.14), we conclude that

I(i, j) = J(i, j) = ũ(j)ν̃1(i).

Proof of Theorem 5.2.3. By (5.6.15) the function

u(j) = ũ(j) ν̃1(j) e−ρ(j)

v1(j) , ∀j ∈ X,

is positive on X. The assertion of Theorem 5.2.3 is a consequence of (5.6.1) and Lemma
5.6.9.
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5.7 Proofs in the weakly subcritical case
We assume the conditions of Theorem 5.2.4, that is Conditions 5.1-5.3 and ν(ρ) =

k′(0) < 0, k′(1) > 0. By Lemma 5.3.15, the function λ 7→ K ′(λ) is non-decreasing (in
fact increasing under Condition 5.3, see Lemma 10.3 in [37]/Lemma 4.10.3 of Chapter
4). Consequently, there exists λ ∈ (0, 1) such that

K ′(λ) = k′(λ)
k(λ) = ν̃λ(ρ) = 0. (5.7.1)

For this λ and any i ∈ X, define the changed probability measure P̃i and the corresponding
expectation Ẽi by (5.3.37), such that for any n > 1 and any g: Xn → C,

Ẽi (g(X1, . . . , Xn)) =
Ei
(
eλSn g(X1, . . . , Xn)vλ(Xn)

)
k(λ)nvλ(i)

. (5.7.2)

Our starting point is the following formula which is a consequence of (5.3.1): for any
(i, j) ∈ X2 and n > 1,

Ei (qn+1 ; Xn+1 = j , τy > n)

= Ẽi
(
e−λSn qn (fj(0)) ; Xn+1 = j , τy > n

)
k(λ)n+1 vλ(i)

vλ(j)
e−λρ(j) . (5.7.3)

The transition probabilities of (Xn)n>0 under the changed measure are given by (5.3.34):

P̃λ(i, j) = eλρ(j) vλ(j)
k(λ)vλ(i)

P(i, j).

By (5.7.1), the Markov walk (Sn)n>0 is centred under P̃i. Note that under the hypotheses
of Theorem 5.2.4, by Lemma 5.3.14, Conditions 5.1 and 5.3 hold also for P̃λ. Therefore
all the results of Section 5.3.3 hold for the Markov walk (Sn)n>0 under P̃i.

Let (X∗n)n>0 be the dual Markov chain independent of (Xn)n>0, with transition prob-
abilities P̃∗λ defined by (cp. (5.3.15))

P̃∗λ(i, j) = ν̃λ(j)
ν̃λ(i)

P̃(j, i) = νλ(j)
νλ(i)

eρ(i)

k(λ)P(j, i). (5.7.4)

As in Section 5.3.2, we define the dual Markov walk (S∗n)n>0 by (5.3.16) and its exit time
τ ∗z for any z ∈ R by (5.3.17). Let P̃i,j be the probability on (Ω,F ) generated by the
finite dimensional distributions of (Xn, X

∗
n)n>0 starting at (X0, X

∗
0 ) = (i, j). By (5.7.1),

the Markov walk (S∗n)n>1 is centred under P̃i,j:

ν̃λ(ρ) = ν̃λ(−ρ) = 0

and by Lemma 5.3.4, Conditions 5.1 and 5.3 hold for P̃∗λ. Let Ṽλ and Ṽ ∗λ be the harmonic
functions of the Markov walks (Sn)n>0 and (S∗n)n>0, respectively (see Proposition 5.3.6).

The idea of the proof is in the line with that of the previous sections: the positive
trajectories (corresponding to the event {τy > n}) affect the asymptotic behaviour of
the survival probability. However, in the weakly subcritical case, the factor e−λSn in
the expectation Ẽi(e−λSn qn (fj(0)) ; Xn+1 = j) contributes in such a way that, only the
trajectories starting at y ∈ R conditioned to stay positive and to finish nearby 0, have an
impact on the asymptotic of Ẽi

(
e−λSn qn (fj(0)) ; Xn+1 = j

)
.

We start by some preliminary bounds. The following assertion is similar to Lemma
5.3.13.
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Lemma 5.7.1. Assume that the conditions of Theorem 5.2.4 are satisfied. For any i ∈ X,
y ∈ R, k > 1 and n > k + 1, we have

n3/2Ẽi
(
e−Sk e−λSn ; τy > n

)
6 e(1+λ)y(1 + max(y, 0)) cn3/2

(n− k)3/2k3/2 .

Proof. Fix i ∈ X, y ∈ R, k > 1 and n > k + 1. By the Markov property,

I0 := n3/2Ẽi
(
e−Sk e−λSn ; τy > n

)
6

+∞∑
p=0

n3/2 eλy e−λp Ẽi
(
e−Sk ; y + Sn ∈ [p, p+ 1] , τy > n

)

=
+∞∑
p=0

n3/2 eλy e−λp Ẽi
(
e−Sk Jn−k (Xk, y + Sk) ; τy > k

)
,

where for any i′ ∈ X, y′ ∈ R and p > 1

Jn−k(i′, y′) = P̃i′ (y′ + Sn−k ∈ [p, p+ 1] , τy′ > n− k) .

By the point 2 of Proposition 5.3.9,

Jn−k(i′, y′) 6
c

(n− k)3/2 (1 + p)(1 + max(y′, 0)).

Consequently,

I0 6 eλy cn3/2

(n− k)3/2 Ẽi
(
e−Sk (1 + y + Sk) ; τy > k

) +∞∑
p=0

e−λp(1 + p)

6 eλy cn3/2

(n− k)3/2 Ẽi
(
e−Sk (1 + y + Sk) ; τy > k

)
6 e(1+λ)y cn3/2

(n− k)3/2

+∞∑
p=0

e−p(2 + p)P̃i (y + Sk ∈ [p, p+ 1] ; τy > k) .

Again by the point 2 of Proposition 5.3.9,

I0 6 e(1+λ)y(1 + max(y, 0)) cn3/2

(n− k)3/2k3/2

+∞∑
p=0

e−p(2 + p)(1 + p).

This concludes the proof of the lemma.

For any l > 1 and n > l + 1, set

ql,n (fj(0)) := 1− fl+1,n (fj(0)) = 1− fXl+1 ◦ · · · ◦ fXn ◦ fj(0),

In the same way as in Lemma 5.3.2, we obtain:

ql,n (fj(0))−1 = eSl−Sn
1− fj(0) +

n−1∑
k=l

eSl−Sk ηk+1,n (fj(0)) , (5.7.5)

where ηk+1,n(s) are defined by (5.3.8). Moreover, similarly to (5.3.4), we have for any
n > l + 1 > 2,

ql,n (fj(0)) ∈ (0, 1] P̃i-a.s. (5.7.6)
In addition, by Lemma 5.3.3, for any k 6 n− 1,

0 6 ηk+1,n (fj(0)) 6 η P̃i-a.s. (5.7.7)
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Lemma 5.7.2. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i, j) ∈ X2 and y ∈ R, we have

lim
l,m→+∞

lim sup
n→+∞

n3/2Ẽi
(∣∣∣e−Sn−m qn−m,n (fj(0))−1 − e−Sl ql,n (fj(0))−1

∣∣∣ e−λSn ; τy > n
)

= 0.

Proof. Fix (i, j) ∈ X2 and y ∈ R. For any l > 1, m > 1 and n > l +m+ 1, we have

I0 := n3/2Ẽi
(∣∣∣e−Sn−m qn−m,n (fj(0))−1 − e−Sl ql,n (fj(0))−1

∣∣∣ e−λSn ; τy > n
)

= n3/2Ẽi
(
n−m−1∑
k=l

e−Sk ηk+1,n (fj(0)) e−λSn ; τy > n

)
.

Using (5.7.7) and Lemma 5.7.1,

I0 6 η
n−m−1∑
k=l

e(1+λ)y(1 + max(y, 0)) cn3/2

(n− k)3/2k3/2 .

Let n1 := bn/2c. We note that
n−m−1∑
k=l

cn3/2

(n− k)3/2k3/2 6
cn3/2

(n− n1)3/2

n1∑
k=l

1
k3/2 + cn3/2

n
3/2
1

n−m−1∑
k=n1+1

1
(n− k)3/2

6 c
+∞∑
k=l

1
k3/2 + c

+∞∑
k=m

1
k3/2 .

Consequently,

lim sup
n→+∞

I0 6 cη e(1+λ)y(1 + max(y, 0))
(+∞∑
k=l

1
k3/2 +

+∞∑
k=m

1
k3/2

)
.

Taking the limits as l→ +∞ and m→ +∞, proves the lemma.

For any l > 1, m > 1 and n > l +m+ 1, consider the random variables

r(l,m)
n (j) := 1− f1,l

([
1− f ′l+1,n−m(1) (1− fn−m+1,n (fj(0)))

]+)
= 1− fX1 ◦ · · · ◦ fXl

([
1− f ′Xl+1

(1)× . . .

· · · × f ′Xn−m(1)
(
1− fXn−m+1 ◦ · · · ◦ fXn ◦ fj(0)

)]+)
where [t]+ = max(t, 0) for any t ∈ R. The random variable r(l,m)

n (j) approximates
qn (fj(0)) in the following sense:

Lemma 5.7.3. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i, j) ∈ X2 and y ∈ R,

lim
l,m→+∞

lim sup
n→+∞

n3/2Ẽi
(∣∣∣qn (fj(0))− r(l,m)

n (j)
∣∣∣ e−λSn ; τy > n

)
= 0.

Proof. Fix (i, j) ∈ X2 and y ∈ R. Since for any i′ ∈ X, fi′ is increasing and convex, the
function fl+1,n−m is convex. So, for any l > 1, m > 1 and n > l +m+ 1,

fl+1,n (fj(0)) = fl+1,n−m (fn−m+1,n (fj(0))) >
[
1− f ′l+1,n−m(1) (1− fn−m+1,n (fj(0)))

]+
.
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Since f1,l is increasing,

qn (fj(0)) = 1− f1,n (fj(0)) 6 r(l,m)
n (j),

or equivalently
0 6 r(l,m)

n (j)− qn (fj(0)) .

Moreover, by the convexity of f1,l,

r(l,m)
n (j)− qn (fj(0))

= f1,l ◦ fl+1,n (fj(0))− f1,l

([
1− f ′l+1,n−m(1) (1− fn−m+1,n (fj(0)))

]+)
6 f ′1,l(1)

(
fl+1,n (fj(0))−

[
1− f ′l+1,n−m(1) (1− fn−m+1,n (fj(0)))

]+)
6 f ′1,l(1)

(
f ′l+1,n−m(1)qn−m,n (fj(0))− ql,n (fj(0))

)
= eSn−m qn−m,n (fj(0))− eSl ql,n (fj(0))
= eSn−m qn−m,n (fj(0)) eSl ql,n (fj(0))
×
(
e−Sl ql,n (fj(0))−1 − e−Sn−m qn−m,n (fj(0))−1

)
.

By (5.7.5), we have ql,n (fj(0)) 6 eSn−Sl and so

r(l,m)
n (j)− qn (fj(0)) 6 e2Sn

(
e−Sl ql,n (fj(0))−1 − e−Sn−m qn−m,n (fj(0))−1

)
.

In addition, by the definition of r(l,m)
n (j) and qn (fj(0)), we have r(l,m)

n (j)− qn (fj(0)) 6 1.
Therefore, P̃i-a.s. it holds,

r(l,m)
n (j)− qn (fj(0)) 6 min

(
1, e2Sn

(
e−Sl ql,n (fj(0))−1 − e−Sn−m qn−m,n (fj(0))−1

))
.

Using the previous bound, it follows that, for any integer N > 1,

I0 := n3/2Ẽi
(∣∣∣qn (fj(0))− r(l,m)

n (j)
∣∣∣ e−λSn ; τy > n

)
6 e2(N−y) n3/2Ẽi

(∣∣∣e−Sl ql,n (fj(0))−1 − e−Sn−m qn−m,n (fj(0))−1
∣∣∣ e−λSn ; τy > n

)
+ n3/2Ẽi

(
e−λSn ; y + Sn > N , τy > n

)
.

Moreover, using the point 2 of Proposition 5.3.9,

n3/2Ẽi
(
e−λSn ; y + Sn > N , τy > n

)
6

+∞∑
p=N

eλy e−λp n3/2P̃i (y + Sn ∈ [p, p+ 1] , τy > n)

6 c eλy(1 + max(y, 0))
+∞∑
p=N

e−λp(1 + p).

Consequently, using Lemma 5.7.2, we obtain that

lim
l,m→+∞

lim sup
n→+∞

I0 6 c eλy(1 + max(y, 0))
+∞∑
p=N

e−λp(1 + p).

Taking the limit as N → +∞, proves the lemma.
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We now introduce the following random variable: for any j ∈ X, u ∈ R, l > 1 and
m > 1

r(l,m)
∞ (j, u) := 1− fX1 ◦ · · · ◦ fXl

([
1− e−Sl eu q∗m(j)

]+)
∈ [0, 1],

where, as in (5.5.3) and (5.5.5), for any m > 1,

q∗m(j) := eS∗m
(
1− fX∗m ◦ · · · ◦ fX∗1 ◦ fj(0)

)
=
[

1
1− fj(0) +

n∑
k=1

e−S∗k η∗k(j)
]−1

and as in (5.5.4), for any k > 2,

η∗k(j) := gX∗
k

(
fX∗

k−1
◦ · · · ◦ fX∗1 ◦ fj(0)

)
and η∗1 := gX∗1 (fj(0)) .

For any (i, y) ∈ supp(Ṽλ) and (j, z) ∈ supp(Ṽ ∗λ ), let P̃+
i,y,j,z and Ẽ+

i,y,j,z be, respectively,
the probability and its associated expectation defined for any n > 1 and any function g:
Xl,m → C by

Ẽ+
i,y,j,z (g (X1, . . . , Xl, X

∗
m, . . . , X

∗
1 )) = Ẽi,j

(
g (X1, . . . , Xl, X

∗
m, . . . , X

∗
1 ) Ṽλ (Xl, y + Sl)

Ṽλ(i, y)
×

Ṽ ∗λ (X∗m, z + S∗m)
Ṽ ∗λ (j, z)

; τy > l , τ ∗z > m

)
.

(5.7.8)

For any j ∈ X let z0(j) ∈ R be the unique real such that (j, z) ∈ supp
(
Ṽ ∗λ
)
for any

z > z0 and (j, z) /∈ supp
(
Ṽ ∗λ
)
for any z < z0 (see [38]/Chapter 3 for details on the domain

of positivity of the harmonic function). Set z0(j)+ = max {z0(j), 0}.

Lemma 5.7.4. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i, y) ∈ supp

(
Ṽλ
)
, j ∈ X, l > 1 and m > 1,

lim
n→+∞

n3/2Ẽi
(
r(l,m)
n (j) e−λSn ; Xn+1 = j , τy > n

)
= 2√

2πσ3
eλy

∫ +∞

z0(j)+
e−λz Ẽ+

i,y,j,z

(
r(l,m)
∞ (j, z − y)

)
Ṽλ(i, y)Ṽ ∗λ (j, z) dzν̃λ(j).

Proof. Fix (i, y) ∈ supp
(
Ṽλ
)
, j ∈ X, l > 1 and m > 1 and let g be a function Xl+m×R→

R+ defined by

g(i1, . . . , il, in−m+1, . . . , in, z) = eλy e−λz 1{z>0}P̃λ(in, j)
[
1− fi1 ◦ · · ·

· · · ◦ fil
([

1− ez−y−ρ(in)−···−ρ(in−m+1)−ρ(il)−···−ρ(i1)
(
1− fin−m+1 ◦ · · · ◦ fin ◦ fj(0)

)]+)]
for all (i1, . . . , il, in−m+1, . . . , in, z) ∈ Xl+m × R and note that on {τy > n},

g(X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) = r(l,m)
n (j) e−λSn P̃λ(in, j).

Observe also that since 0 6 g(i1, . . . , il, in−m+1, . . . , in, z) 6 eλy e−λz 1{z>0}, the function
g belongs to the set, say C +

(
Xl+m × R+

)
, of non-negative function g: Xl+m×R+ → R+

satisfying the following properties:
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— for any (i1, . . . , il+m) ∈ Xl+m, the function z 7→ g(i1, . . . , il+m, z) is continuous,
— there exists ε > 0 such that maxi1,...il+m∈X supz>0 g(i1, . . . , il+m, z)(1 + z)2+ε < +∞.

Therefore, by the Markov property and Proposition 5.3.10, we obtain that
I0 := lim

n→+∞
n3/2Ẽi

(
r(l,m)
n (j) e−λSn ; Xn+1 = j , τy > n

)
= lim

n→+∞
n3/2Ẽi (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; τy > n)

= 2√
2πσ3

∫ +∞

0
e−λ(z−y) ∑

j′∈X
Ẽi,j′

(
r(l,m)
∞ (j, z − y)P̃λ(X∗1 , j)Ṽλ (Xl, y + Sl)

×Ṽ ∗λ (X∗m, z + S∗m) ; τy > l , τ ∗z > m
)

ν̃λ(j′) dz.

Since ν̃λ is P̃∗λ-invariant, we write

I0 = 2√
2πσ3

∫ +∞

0
e−λ(z−y) ∑

j1∈X
P̃λ(j1, j)ν̃λ(j1)Ẽi

(
r(l,m)
∞ (j, z − y)Ṽλ (Xl, y + Sl)

× Ṽ ∗λ (X∗m, z + S∗m) ; τy > l , τ ∗z > m
∣∣∣X∗1 = j1

)
dz.

Using the definition of P̃∗λ in (5.7.4), we have

I0 = 2√
2πσ3

∫ +∞

0
e−λ(z−y) ν̃λ(j)Ẽi,j

(
r(l,m)
∞ (j, z − y)Ṽλ (Xl, y + Sl)

×Ṽ ∗λ (X∗m, z + S∗m) ; τy > l , τ ∗z > m
)

dz.

Now, note that when (j, z) /∈ supp
(
Ṽ ∗λ
)
, using the point 1 of Proposition 5.3.6,

Ẽi,j
(
r(l,m)
∞ (j, z − y)Ṽλ (Xl, y + Sl) Ṽ ∗λ (X∗m, z + S∗m) ; τy > l , τ ∗z > m

)
6 Ẽi

(
Ṽλ (Xl, y + Sl) ; τy > l

)
Ẽ∗j
(
Ṽ ∗λ (X∗m, z + S∗m) ; τ ∗z > m

)
= Ṽλ(i, y)Ṽ ∗λ (j, z) = 0.

Together with (5.7.8), it proves the lemma.

Consider for any l > 1, j ∈ X and u ∈ R,

r(l,∞)
∞ (j, u) = 1− fX1 ◦ · · · ◦ fXl

([
1− e−Sl eu q∗∞(j)

]+)
∈ [0, 1], (5.7.9)

where as in (5.5.8),

q∗∞(j) =
[

1
1− fj(0) +

∞∑
k=1

e−S∗k η∗k(j)
]−1

.

Lemma 5.7.5. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i, y) ∈ supp

(
Ṽλ
)
, (j, z) ∈ supp

(
Ṽ ∗λ
)
, l > 1 and u ∈ R,

lim
m→+∞

Ẽ+
i,y,j,z

(∣∣∣r(l,m)
∞ (j, u)− r(l,∞)

∞ (j, u)
∣∣∣) = 0.

Proof. Fix (i, y) ∈ supp
(
Ṽλ
)
, (j, z) ∈ supp

(
Ṽ ∗λ
)
, l > 1 and u ∈ R. By the convexity of

f1,l, for any m > 1, we have P̃+
i,y,j,z a.s.,∣∣∣r(l,m)

∞ (j, u)− r(l,∞)
∞ (j, u)

∣∣∣
6 (fX1 ◦ · · · ◦ fXl)

′ (1)
∣∣∣∣[1− e−Sl eu q∗m(j)

]+
−
[
1− e−Sl eu q∗∞(j)

]+∣∣∣∣
6 eSl

∣∣∣e−Sl eu q∗m(j)− e−Sl eu q∗∞(j)
∣∣∣

= eu |q∗m(j)q∗∞(j)|
∣∣∣(q∗∞(j))−1 − (q∗m(j))−1

∣∣∣ .
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Moreover, for any m > 1,

q∗m(j) =
[

1
1− fj(0) +

m∑
k=1

e−S∗k η∗k(j)
]−1

∈ (0, 1],

q∗∞(j) =
[

1
1− fj(0) +

∞∑
k=1

e−S∗k η∗k(j)
]−1

∈ [0, 1]

and by Lemma 5.3.3, for any k > 1,

0 6 η∗k(j) 6 η. (5.7.10)

Therefore, ∣∣∣r(l,m)
∞ (j, u)− r(l,∞)

∞ (j, u)
∣∣∣ 6 eu η

+∞∑
k=m+1

e−S∗k .

Using Lemma 5.3.13 and the Lebesgue dominated convergence theorem,

Ẽ+
i,y,j,z

(∣∣∣r(l,m)
∞ (j, u)− r(l,∞)

∞ (j, u)
∣∣∣) 6 eu η

+∞∑
k=m+1

Ẽ+
i,y,j,z

(
e−S∗k

)
.

By Lemma 5.3.13, we conclude that

lim
m→+∞

Ẽ+
i,y,j,z

(∣∣∣r(l,m)
∞ (j, u)− r(l,∞)

∞ (j, u)
∣∣∣) = 0.

For any l > 1, j ∈ X and u ∈ R, set

sl(j, u) =
[
1− e−Sl eu q∗∞(j)

]+
. (5.7.11)

Note that, by Lemma 5.3.13, (q∗∞(j))−1 is integrable and so finite a.s. (see (5.6.6)). There-
fore sl(j, u) ∈ [0, 1). In addition, by the convexity of fXl+1 , we have for any j ∈ X, u ∈ R
and l > 1,

fXl+1(sl+1(j, u)) > 1− f ′Xl+1
(1) (1− sl+1(j, u))

> 1− eρ(Xl+1) e−Sl+1 eu q∗∞(j) = 1− e−Sl eu q∗∞(j).

Since fXl+1 is non-negative on [0, 1], we see that fXl+1(sl+1(j, u)) > sl(j, u) and so for any
k > 1, (fk+1,l(sl(j, u)))l>k is non-decreasing and bounded by 1. Using the continuity of
gXk and (5.3.14), we deduce that (ηk,l(sl(j, u)))l>k converges and we denote for any k > 1,

ηk,∞(j, u) := lim
l→+∞

ηk,l(sl(j, u)). (5.7.12)

Moreover, by Lemma 5.3.3, we have for any k > 1, l > k and u ∈ R,

0 6 ηk,l(sl(j, u)) 6 η and 0 6 ηk,∞(j, u) 6 η. (5.7.13)

For any j ∈ X and u ∈ R, set

r∞(j, u) :=
[

e−u
q∗∞(j) +

+∞∑
k=0

e−Sk ηk+1,∞(j, u)
]−1

.
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Lemma 5.7.6. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i, y) ∈ supp

(
Ṽλ
)
, (j, z) ∈ supp

(
Ṽ ∗λ
)
and u ∈ R,

lim
l→+∞

Ẽ+
i,y,j,z

(∣∣∣r(l,∞)
∞ (j, u)− r∞(j, u)

∣∣∣) = 0.

Proof. Fix (i, y) ∈ supp
(
Ṽλ
)
, (j, z) ∈ supp

(
Ṽ ∗λ
)
and u ∈ R. By (5.7.9), Lemma 5.3.2

and (5.7.11), we have
(
r(l,∞)
∞ (j, u)

)−1
= e−Sl

1− sl(j, u) +
l−1∑
k=0

e−Sk ηk+1,l(sl(j, u)).

So, for any p > 1 and l > p, using (5.7.13),∣∣∣∣(r(l,∞)
∞ (j, u)

)−1
− r∞(j, u)−1

∣∣∣∣ 6 p∑
k=0

e−Sk |ηk+1,l(sl(j, u))− ηk+1,∞(j, u)|

+
∣∣∣∣∣ e−u
q∗∞(j) −

e−Sl
1− sl(j, u)

∣∣∣∣∣+ 2η
+∞∑

k=p+1
e−Sk .

Therefore,

I0 := Ẽ+
i,y,j,z

(∣∣∣∣(r(l,∞)
∞ (j, u)

)−1
− r∞(j, u)−1

∣∣∣∣)
6

p∑
k=0

Ẽ+
i,y,j,z

(
e−Sk |ηk+1,l(sl(j, u))− ηk+1,∞(j, u)|

)

+ Ẽ+
i,y,j,z

(∣∣∣∣∣ e−u
q∗∞(j) − e−Sl

∣∣∣∣∣ ; e−Sl > e−u
q∗∞(j)

)
+ 2ηẼ+

i,y

 +∞∑
k=p+1

e−Sk
 ,

where P̃+
i,y is the marginal law of P̃+

i,y,j,z on σ (Xn , n > 1). Using Lemma 5.3.13 and the
Lebesgue dominated convergence theorem,

I0 6 Ẽ+
i,y

(
e−Sl

)
+

p∑
k=0

Ẽ+
i,y,j,z

(
e−Sk |ηk+1,l (sl(j, u))− ηk+1,∞(j, u)|

)
+ 2η

+∞∑
k=p+1

Ẽ+
i,y

(
e−Sk

)

6
c (1 + max(y, 0)) ey

V (i, y)

 1
l3/2

+
+∞∑

k=p+1

η

k3/2


+

p∑
k=0

Ẽ+
i,y,j,z

(
e−Sk |ηk+1,l(sl(j, u))− ηk+1,∞(j, u)|

)
.

Since |ηk+1,l(sl(j, u))− ηk+1,∞(j, u)| 6 2η, by the Lebesgue dominated convergence theo-
rem and (5.7.12)

lim sup
l→+∞

I0 6
c (1 + max(y, 0)) ey

V (i, y)

+∞∑
k=p+1

η

k3/2 .

Letting p → +∞, we obtain that liml→+∞ I0 = 0. Moreover, by (5.7.9) for any l > 1,
r(l,∞)
∞ (j, u) ∈ [0, 1]. In the same manner as we proved (5.4.7), we have also

r∞(j, u) 6 1.

Consequently,

lim
l→+∞

Ẽ+
i,y,j,z

(∣∣∣r(l,∞)
∞ (j, u)− r∞(j, u)

∣∣∣) 6 lim
l→+∞

I0 = 0.
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We now consider the function

U(i, y, j) := 2 eλ(y−ρ(j))
√

2πσ3

vλ(i)
vλ(j)

∫ +∞

z0(j)+
e−λz Ẽ+

i,y,j,z (r∞(j, z − y)) Ṽλ(i, y)Ṽ ∗λ (j, z) dzν̃λ(j).

Using (5.7.10), (5.7.13) and Lemma 5.3.13, for any (i, y) ∈ supp
(
Ṽλ
)
, (j, z) ∈ supp

(
Ṽ ∗λ
)

and u ∈ R,

Ẽ+
i,y,j,z

(
r∞(j, u)−1

)
6 e−u

(
1

1− fj(0) + ηẼ+
i,y,j,z

(+∞∑
k=1

e−S∗k
))

+ ηẼ+
i,y,j,z

(+∞∑
k=1

e−Sk
)
< +∞.

So r∞(j, u) > 0 P̃+
i,y,j,z-a.s. and therefore, for any (i, y) ∈ supp

(
Ṽλ
)
, j ∈ X,

U(i, y, j) > 0. (5.7.14)

Lemma 5.7.7. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i, y) ∈ supp

(
Ṽλ
)
and j ∈ X, we have

Ei (qn+1 ; Xn+1 = i , τy > n) ∼
n→+∞

U(i, y, j)k(λ)n+1

(n+ 1)3/2 .

Proof. Fix (i, y) ∈ supp
(
Ṽλ
)
and j ∈ X. By (5.7.3), for any n > 1,

I0 := (n+ 1)3/2

k(λ)n+1 Ei (qn+1 ; Xn+1 = i , τy > n)

= vλ(i) e−λρ(j)

vλ(j)
(n+ 1)3/2Ẽi

(
e−λSn qn+1 ; Xn+1 = j , τy > n

)
.

Using Lemmas 5.7.3 and 5.7.4,

lim
n→+∞

I0 = lim
(l,m)→+∞

lim
n→+∞

vλ(i) e−λρ(j)

vλ(j)
(n+ 1)3/2Ẽi

(
r(l,m)
n (j) e−λSn ; Xn+1 = j , τy > n

)
= lim

(l,m)→+∞

2vλ(i)√
2πσ3vλ(j)

eλ(y−ρ(j))
∫ +∞

z0(j)+
e−λz Ẽ+

i,y,j,z

(
r(l,m)
∞ (j, z − y)

)
× Ṽλ(i, y)Ṽ ∗λ (j, z) dzν̃λ(j).

Since for any l > 1, m > 1 and u ∈ R, r(l,m)
∞ (j, u) 6 1, by the Lebesgue dominated

convergence theorem and Lemmas 5.7.5 and 5.7.6,

lim
n→+∞

I0 = 2vλ(i)√
2πσ3vλ(j)

eλ(y−ρ(j))
∫ +∞

z0(j)+
e−λz lim

l→+∞
Ẽ+
i,y,j,z

(
r(l,∞)
∞ (j, z − y)

)
× Ṽλ(i, y)Ṽ ∗λ (j, z) dzν̃λ(j)

= 2vλ(i)√
2πσ3vλ(j)

eλ(y−ρ(j))
∫ +∞

z0(j)+
e−λz Ẽ+

i,y,j,z (r∞(j, z − y)) Ṽλ(i, y)Ṽ ∗λ (j, z) dzν̃λ(j)

= U(i, y, j).
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Proof of Theorem 5.2.4. We use arguments similar to those of the proof of Lemma
5.6.9. Fix (i, j) ∈ X2. For any y ∈ R and n > 1, let

I0 := (n+ 1)3/2

k(λ)n+1 Ei (qn+1 ; Xn+1 = j)

and

I1 := I0 −
(n+ 1)3/2

k(λ)n+1 Ei (qn+1 ; Xn+1 = j , τy > n) (5.7.15)

= (n+ 1)3/2

k(λ)n+1 Ei (qn (fj(0)) ; Xn+1 = j , τy 6 n) .

Since fj(0) > 0, it is easy to see that qn (fj(0)) 6 qn(0). Using the fact that (qk(0))k>1
is non-increasing and Lemma 5.3.2, it holds qn (fj(0)) 6 min16k6n qk(0) 6 emin16k6n Sk .
Therefore, as in (5.4.11),

I1 6
(n+ 1)3/2

k(λ)n+1 Ei
(
emin16k6n Sk ; Xn+1 = j , τy 6 n

)
6

(n+ 1)3/2

k(λ)n+1 e−y
+∞∑
p=0

e−p Pi (Xn+1 = j , τy+p+1 > n) .

By (5.7.2),

I1 6
(n+ 1)3/2

n3/2
vλ(i)
vλ(j)

e−y−λρ(j)
+∞∑
p=0

e−p Ẽi
(
e−λSn ; τy+p+1 > n

)

6 c
vλ(i)
vλ(j)

e−y−λρ(j)
+∞∑
p=0

e−p
+∞∑
l=0

eλ(y+p+1) e−λl

× n3/2P̃i (y + p+ 1 + Sn ∈ [l, l + 1] ; τy+p+1 > n) .

Using the point 2 of Proposition 5.3.9,

I1 6 c
vλ(i) e−λρ(j)

vλ(j)
e−(1−λ)y

+∞∑
p=0

e−(1−λ)p
+∞∑
l=0

e−λl(1 + max(y + p+ 1, 0))(1 + l)

6 c
vλ(i) e−λρ(j)

vλ(j)
e−(1−λ)y(1 + max(y, 0)).

Moreover, there exists y0(i) ∈ R such that, for any y > y0(i) it holds (i, y) ∈ supp
(
Ṽλ
)
.

Using (5.7.15) and Lemma 5.7.7, we obtain that, for any y > y0(i),

U(i, y, j) 6 lim inf
n→+∞

I0 6 lim sup
n→+∞

I0 6 U(i, y, j)

+ c
vλ(i) e−λρ(j)

vλ(j)
e−(1−λ)y(1 + max(y, 0)). (5.7.16)

This proves that lim supn→+∞ I0 is a finite real which does not depend on y and so
y 7→ U(i, y, j) is a bounded function. Moreover, by Lemma 5.7.7,

U(i, y, j) = lim
n→∞

(n+ 1)3/2

k(λ)n+1 Ei (qn+1 ; Xn+1 = j , τy > n)



264 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

and so y 7→ U(i, y, j) is non-decreasing. Let u be its limit:

u(i, j) := lim
y→+∞

U(i, y, j) ∈ R.

By (5.7.14), for any y > y0(i),

u(i, j) > U(i, y, j) > 0.

Taking the limit as y → +∞ in (5.7.16),

lim
n→+∞

I0 = u(i, j).

Finally, by (5.3.2),

lim
n→+∞

(n+ 1)3/2

k(λ)n+1 Pi (Zn+1 > 0 , Xn+1 = j) = lim
n→+∞

(n+ 1)3/2

k(λ)n+1 Ei (qn+1 ; Xn+1 = j)

= u(i, j).
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