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Théoremes limites pour des marches
aléatoires markoviennes
conditionnées a rester positives

Résumé

Sur un espace probabilisé (€2,.%#,P), on se munit d'une chaine de Markov (X,,),>0 &
valeurs dans un espace mesurable abstrait X. Pour tout point initial de la chalne z € X,
on désigne par P, la probabilité engendrée par les lois fini-dimensionnelles de la chaine
lorsqu’elle est issue de Xy = x. On fixe une fonction réelle f : X — R et on construit la
marche aléatoire associée S, = >p_; f(Xk), n = 1. Pour tout point de départ y € R de
la marche, on définit le premier temps 7, pour lequel la marche markovienne (y + S, )n>1
sort de la demi-droite des réels positifs R’ . L’objectif de la présente these est d’établir
sous des hypotheses assez générales sur la chaine de Markov (X,,),>0, 'asymptotique
de la probabilité de survie de la marche markovienne P, (7, > n). On montre également
que la loi de la marche markovienne (y + S, ),>1 renormalisée lorsqu’elle est condition-
née a rester positive {7, > n} est donnée asymptotiquement par la loi de Rayleigh :
limy, 400 Po(y + S, < ty/no| 7y >n)=1-— e 2 ¢ eR.

Lorsque 'espace X est fini, on va plus loin et 'on donne des théorémes locaux pour
la marche markovienne conjointement avec le fait qu’elle reste positive. On détermine en
particulier lim,,_, o P, (y + S, € [a,b], 7y > n), ol [a, b] est un intervalle fixé de R.

Enfin, on s’intéresse aux processus de branchement (Z,),>o critiques ou sous-critiques
soumis a un environnement markovien (X,),>o lorsque 'espace d’états X est fini. On
établit les comportements asymptotiques de la probabilité de survie de tels processus de
branchement P, (Z,, > 0).

Pour information, au début de chaque chapitre, les notations sont redéfinies et les
résultats préliminaires sont rappelés. En conséquence la lecture de chacun des chapitres
peut se faire indépendamment des autres.
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Limit theorems for Markov walks
conditioned to stay positive

Abstract

On a probability space (€2, .7, P), we consider a Markov chain (X,,),>o taking its values
in a measurable space X. For any initial point x € X of the Markov chain, let P, be the
probability generated by the finite dimensional distributions of the Markov chain starting
at Xo = x. Fix a real function f: X — R and consider the associated Markov walk
Sn = r_1 f(X%), n > 1. For any starting point y € R of the walk, we define the first time
7, when the Markov walk (y+.5,,),>1 exit the real half-line R? . In this thesis, we establish
under general assumptions on the Markov chain (X,,),>0, the asymptotic behaviour of
the survival probability of the Markov walk P, (7, > n). We prove also that the law of
the renormalized Markov walk (y +5,),>1 conditioned to stay positive {7, > n} is given
asymptotically by the Rayleigh law: lim, oo Po(y + S, < ty/no |7 >n) =1— e /2,
teR.

When the space X is finite, we go further and give local theorems for the Markov chain
conjointly with the fact that the Markov walk stays positive. We determine in particular
lim,, 400 Po(y + Sy, € [a, 0], 7, > n), where [a, b] is a fix interval of R.

Finally, we care about critical and subcritical branching processes (Z,),>0 under a
Markov environment (X,),>o when the state space X is finite. We establish the asymp-
totic behaviours of the survival probability of such branching processes P, (Z,, > 0).

For information, at the beginning of each chapter, notations are redefined and
preliminary results are recalled. Consequently, each chapter should be read independently
of the others.
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Chapitre 1

Introduction

1.1 Contexte

Qu’elles soient dites simples ou a valeurs dans des groupes plus exotiques, les marches
aléatoires occupent une place largement privilégiée dans le vaste paysage des probabilités.
Formalisme direct de nombreux problémes concrets (trajectoire d'une particule, évolution
d’un capital d'un joueur...), la marche aléatoire peut également apparaitre comme un
processus plus abstrait mais dont 1’étude renseigne de fagon cruciale sur le modele de
départ. C’est le cas notamment des processus de branchement en environnement aléatoire
qui font I'objet d'un chapitre de ce manuscrit. Cependant, au-dela méme de leur immense
champ d’application, les marches aléatoires ont ceci de tres intéressant : elles soulevent
dans une formulation assez simple des questions non triviales dont la résolution exige de
développer des outils et des techniques un peu élaborés. Un premier exemple scolaire est
la ruine du joueur dont 1’énoncé tres simple requiert dans sa résolution ’appareillage des
martingales et du théoreme de Doob.

La généralisation de I'asymptotique de la probabilité de survivre a n’importe quelle
marche aléatoire réelle centrée avec un moment d’ordre 2, dont I’énoncé reste élémentaire,
a été démontrée en 1960 par Spitzer [65] comme conséquence de lemmes d’analyse et de
combinatoire [64]. Il précise que la loi du processus conditionné est asymptotiquement
celle de Rayleigh sans le démontrer. Iglehart apportera une premiere formulation complete
de cette démonstration en 1974 [47] et Bolthausen une version avec des hypothéses plus
faibles en 1976 [9]. D’autres auteurs comme par exemple Bertoin et Doney [6] ou Borovkov
[10, 11] ont participé a I’émergence et a I'enrichissement de toute la théorie des marches
aléatoires réelles centrées et indépendantes qui est désormais bien connue. On trouvera
notamment une description compléte des principes de base dans les célebres livres de
Spitzer [66] et de Feller [29].

Pourtant, le point clé pour obtenir ces résultats est la factorisation de Wiener-Hopf
qui, au moins dans ses conséquences directes, se préte assez mal a des modeles plus
élaborés. Malgré d’intéressantes considérations sur la marche lorsque les accroissements
sont markoviens comme dans les travaux de Presman [60, 61] par exemple, il faudra
attendre plusieurs décennies pour voir apparaitre de nouvelles avancées importantes a ce
sujet. Motivée en particulier par des modeles physiques importants, I’étude des marches
aléatoires en dimensions supérieures a suscité ces dernieres années un intérét croissant
et beaucoup de réponses ont été apportées par de nombreux auteurs dont Varopoulos
(68, 69, 70], Eichelsbacher et Konig [27], Garbit [31], Duraj et Wachtel [26] ou encore
Denisov et Wachtel [18, 20]. Ces ingénieux travaux sont largement novateurs dans leur
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globale approche du probléme par rapport au cas unidimensionnel. Dans [18, 20], Denisov
et Wachtel développent une méthode articulée sur deux grandes étapes : la construction
d’une fonction harmonique d’une part et ’approximation de la marche par un mouvement
brownien par le théoreme de Komlés-Major-Tusnady [51, 52] d’autre part.

La puissance de cette méthode, affranchie de la factorisation de Wiener-Hopf, suggé-
rait des applications dans de nouveaux modeles, plus généraux que le seul cadre ou les
accroissements de la marche sont indépendants. La marche intégrée, ou 1'on considere la
somme de la somme de variables aléatoires indépendantes et identiquement distribuées
(.7.d. en abrégé), est un premier exemple traité par Dembo, Ding et Gao [15] et perfec-
tionné par Denisov et Wachtel [19]. Cependant pour continuer de développer la méthode
en question et afin de I’étendre a d’autres modeles markoviens, il était absolument né-
cessaire de généraliser le théoreme de Komlés-Major-Tusnady dit KMT aux chaines de
Markov. Ce remarquable travail a été accompli récemment par mes responsables de these
Grama et Le Page en collaboration avec Peigné [40] ce qui leur a permis de résoudre
I'étude d’un produit de matrices [41].

C’est dans cette conjonction tres favorable qu’a débuté ma these et les travaux as-
sociés. En m’appuyant sur la méthode de Denisov et Wachtel avec le KMT établi par
Grama, Le Page et Peigné, j’ai principalement pu avec I'aide de mes responsables étendre
les résultats sur les marches aléatoires unidimensionnelles a une large classe de marches
markoviennes unidimensionnelles. Un exemple de la portée de ces travaux sera donné en
généralisant les résultats des processus de branchement critiques et sous-critiques a des
environnements markoviens finis.

1.2 Présentation des objectifs

Soit (£2, %, P) un espace probabilisé et (X)), ., une suite de variables aléatoires définie
sur cet espace et a valeurs dans un espace mesurable (X, 27). Pour une fonction f : X — R
fixée, on considere la marche aléatoire associée, définie par

So:=0 et  S,:=> f(Xip), Vn>1 (1.2.1)
k=1

Pour tout réel y € R, interprété comme le point de départ de la marche, on pose
1, =inf{k >1:y+ 5, <0}. (1.2.2)

Cette variable aléatoire correspond au premier instant pour lequel la marche (y + Sn)@l
sort de la demi-droite des réels strictement positifs |0; +00[. Il est facile de voir que pour
pour la filtration naturelle (.%,),., canoniquement associée a la suite (X,),-, le temps
7, est un temps d’arrét. La premiere interrogation qui s’offre a nous, au dela d'un calcul
explicite de la loi de 7, qu’il n’est pas raisonnable d’envisager dans un cadre général, est
de savoir si 7, est fini presque slirement (p.s. en abrégé) ou non :

P(r, < +oo) =17 (Q1/1.2.3)

Lorsque c’est le cas, on sait que la marche va nécessairement passer dans les négatifs,
que le joueur sera nécessairement ruiné, que la population s’éteindra nécessairement en
emps fini. La probabilité de survivre P (7, > n) jusqu’au temps/a la génération n ten

t fini. L babilité d P(r, > au t 1 t tend
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donc par définition vers 0. La question suivante est de savoir avec quelle vitesse s’effectue
cette convergence vers 0, id est trouver (v,),., € RY telle que
~ ?
P (7, >n) W U (Q2/1.2.4)
Le symbole ~ signifie que le rapport des deux termes de chaque co6té du symbole tend
vers 1 lorsque n — +00. Ensuite, lorsque cette probabilité n’est pas strictement nulle (&

n fixé!), on peut s’intéresser a la loi asymptotique des trajectoires, renormalisées, sachant
que la marche est restée positive :

Vt€j0;+ool,  lim P (y+Su<tvn|ry>n)=7 (Q3/1.2.5)

Notons que, si la réponse a (Q1/1.2.3) est affirmative, la probabilité que la marche reste
positive infiniment longtemps est nulle. Plutdt que de conditionner par I'évenement {7, =
+00}, il nous faut considérer que la marche reste positive jusqu’au temps n, puis faire
tendre ce temps vers l'infini. Je donne ici la renormalisation en ﬁ car nous nous placerons
toujours dans le cadre de modeles dont la loi asymptotique (sans conditionnement) est
la loi normale (TCL). Méme si l'on interdit aux trajectoires d’intersecter le demi-plan
inférieur, la hauteur « typique » de la marche au temps n reste de lordre de y/n. Si
'on s’intéresse a la probabilité que la marche y + S, soit dans l'intervalle [z, z + a|, avec
z =2 0 et a > 0, le bon point de vue est de dire que l'on regarde la probabilité que
(y + Sn)/\/n appartienne & lintervalle [z/y/n, (z + a)/+/n] qui est de longueur a/+/n.
En ce sens, on s’intéresse a la marche localement. Si ’on obtient une loi non-dégénérée a
la question (Q3/1.2.5), on comprend bien que cette probabilité d’étre dans [z/y/n, (z +
a)/+/n] tend vers 0. La question de savoir la vitesse avec laquelle la probabilité tend vers
0 sera également un objet d’intérét de ce manuscrit : quelle est la vitesse (wy),,., € RN
pour laquelle on ait

P(y+ S, € [Z7Z+a]|7-y>n)n~:\;roo wy, 7 (Q4/1.2.6)
Cette question est donc plus fine que le résultat dit intégrale de (Q3/1.2.5). Cependant
lorsqu’elle est résolue pour a fixé (ce qui sera notre cas), elle ne répond pas a la question
(Q3/1.2.5) (qui nécessiterait de prendre z = 0 et a = t\/n).

D’autres questions ou des versions différentes (notamment pour le résultat local)
peuvent étre considérées et en abordant les questions (QQ1/1.2.3)-(Q4/1.2.6) nous parle-
rons également de nombreux autres résultats qui gravitent autour de la méme thématique.
Pour une plus grande unité de mes propos, les considérations sur les processus de bran-
chement qui découlent des réponses (Q1/1.2.3)-(Q4/1.2.6) seront abordées ultérieurement
dans les Sections 1.3.4 et 1.4.6.

Dans la Section 1.3.2, nous allons voir que toutes ces questions ont déja été résolues en
particulier lorsque les accroissements (X,,),>1 sont supposés i.i.d., centrés (de moyenne
nulle) avec un moment d’ordre 2 fini. Au sujet de ’hypothése de moment, précisons que
contrairement aux cas multidimensionnels ou markoviens pour lesquels un moment un
peu plus grand que 2 est toujours de rigueur, il est possible dans le cas unidimensionnel de
formuler des hypotheses plus faibles n’exigeant pas nécessairement un moment d’ordre 2.
En dehors du cadre centré, indépendant et unidimensionnel, de nombreuses autres situa-
tions plus élaborées (marche avec dérive, en dimension supérieure...) ont également été
traitées. Cependant, a 'exception de quelques modeéles précis (marche intégrée, produit
de matrices), ces questions restaient en suspens lorsque 1’'on généralise de fagon naturelle
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I’hypotheése d’accroissements i.i.d. par des accroissements markoviens. Insistons sur le
fait que si le cadre i.7.d. a été posé dans les années 60-70, le cadre markovien lui, méme
dans sa formulation la plus simple d’un espace d’états fini, avait jusqu’a présent résisté a
toute généralisation. En s’appuyant tres largement sur les récentes grandes avancées, la
présente these propose de répondre aux questions (Q1/1.2.3), (Q2/1.2.4) et (Q3/1.2.5)
pour une large classe de chaine de Markov et de répondre a la question (Q4/1.2.6) (plus
délicate) dans le cadre d’une chaine de Markov a espace d’états fini. Nous verrons néan-
moins que notre réponse a (Q4/1.2.6) permet de généraliser les résultats sur les processus
de branchement critiques et sous-critiques en environnement aléatoire.

1.3 Résultats antérieurs

1.3.1 Le cas brownien

Avant de donner les premiéres réponses a (Q1/1.2.3)-(Q4/1.2.6) pour des marches
aléatoires indépendantes, observons que les homologues continus fournissent une excel-
lente idée des résultats que I'on doit obtenir. Pour le mouvement brownien, les résultats
sont bien connus et méme plus précis puisque non-asymptotique.

Soit (Bi),», un mouvement brownien défini sur un espace probabilisé¢ (€2, %#,P) a
valeurs dans R. Pour tout y > 0 et ¢ > 0, on définit

T;jm =inf{t>0:y+ 0B, <0}.

On trouvera le résultat suivant dans [57].

Proposition 1.3.1 (Lévy). Pour touty >0,0<a<betn>1,

1 b (s—v)? (s+9)?
]P (T;m > n7 y + UBn E [a7 b]) - 2/ <e 2"52 _ei 2::’/2 ) dS.
™Mo Ja

De cette unique formule, on résout nos quatre questions (Q1/1.2.3)-(Q4/1.2.6). Des
égalités non-asymptotiques que 1’on ne précise pas peuvent également étre obtenues.
Corollaire 1.3.2. Soity > 0 et o > 0.

1. Ona T;m < 400 p.s.
2. Pour toutn > 1,

P (Tbm > n) = 2 /oy e 22?2 ds ~ 2y

2mno n—+00 \/2Tno

3. Pour tout t > 0,

+2

lim P(y+aBn<t\/ﬁ‘T;’m>n):1—e_ﬁ.

n—-+00

4. Pour tout z >0 et a > 0,

. 2z+a)a
]P’(y—I—O'BnE [Z,Z‘f‘a]’Tllj >n) n—;:-oo (W
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Le point 2 nous dit que la probabilité de survivre est de l'ordre d'une constante
dépendant de y divisée par \/n. Mais si I'on suppose malgré tout que la trajectoire de la
marche reste strictement positive alors la loi asymptotique donnée par le point 3 est la loi
de Rayleigh. Le point 4 quant a lui nous fournit le théoreme local, souvent écrit dans sa
formulation de la probabilité conjointe, ou la vitesse est alors une constante dépendant
du point de départ y et du point d’arrivée z divisé par n/? :

2y(22 +a)a
P(y+aBn€[z,z+a],T§m>n) Q

n—+00 AQmo3n3/2
Tous ces résultats nous guideront pour nos marches aléatoires et nous verrons que dans
nos modeles, nous obtenons exactement les mémes vitesses mais que les constantes se
complexifient.

1.3.2 Le cas indépendant unidimensionnel

Revenons au temps discret et supposons que les accroissements (Xn)n>1 de la marche
définie en (1.2.1) sont i.i.d. Dans ce cas, puisque la suite (f(X,)),>, est aussi i.i.d., on
peut supposer sans perte de généralité que X = R et que f = id (I'introduction dune
fonction f est utile dans le cadre des chaines de Markov). Avec ce formalisme, le résultat
suivant répond aux questions (Q1/1.2.3) et (Q2/1.2.4). L’existence de la série donnée dans
(1.3.2) ci-dessous est issue du théoréme 3.4 de Spitzer [65]. L’asymptotique du temps de
sortie lorsque 1’on suppose 'existence d’'un moment d’ordre 2 est un cas particulier du
théoreme 1 d’Emery [28] ou encore du théoreme 2 de Bingham [7]. On pourra également
se référer a Doney [22] ou au théoreme 8.9.12 page 381 du livre de Bingham, Goldie et
Teugels [8]. Lorsque la marche est & valeurs entiéres, une version de la proposition suivante
est aussi exprimée dans le livre de Spitzer [66] (cf P4 page 382). Soit 7 le premier instant
pour lequel la marche (S,), ., issue de 0 passe dans les positifs :

T=min{k >1:5, <0}.

Sous les hypotheses de la proposition suivante, 7 est fini p.s. et on définit yq,...x, une
suite de variables aléatoires i.7.d. de loi commune celle de —S... De cette facon, pour tout
y = 0, la fonction de renouvellement est donnée par,

—+00

H(y) =1+ P(xi+-+xe <y). (1.3.1)

On note naturellement [E ’espérance associée a P.

Proposition 1.3.3 (Spitzer, Emery, Bingham). Supposons E(X;) =0 et E(X?) =02 €

(0,00). Alors la série Y-y 1 (IP’ (S, >0) — %) converge vers un réel noté

o= i; (]P (5% > 0) - ;) € R. (1.3.2)

De plus, pour tout y > 0,
“H
P(r,>n) ~ SHW)

n——+o0o \/TTN



6 CHAPITRE 1. INTRODUCTION

Pour comprendre dans une certaine mesure l'origine de ce résultat, la Section 1.5
propose de reprendre la démonstration historique de cette proposition lorsque y = 0.
Cette étape avait été obtenue par Spitzer dans le théoreme 3.5 de [65].

Annoncée par Spitzer également, la réponse a la question (Q3/1.2.5) a été démontrée
par Iglehart [47] sous la condition d’avoir un moment d’ordre 3 et d’étre non-lattice. La
version ci-dessous avec un moment d’ordre 2 uniquement est due a Bolthausen [9].

Proposition 1.3.4 (Iglehart, Bolthausen). Supposons que E(X;) = 0 et que E(X?) =
0% € (0,00). Alors, pour tout t > 0,

+2

dim P(y+S, <tvn|n>n)=1-ca7.

En ce qui concerne le théoréme local et la réponse a la question (Q4/1.2.6), Caravenna
[13] apporte un premier résultat. Cependant contrairement a son homologue sans condi-
tionnement (théoreme de Stone classique), le théoreme obtenu ne fournit un équivalent
que pour des points d’arrivée de tailles suffisantes (dans (Q4/1.2.6), z doit étre de I'ordre
de ¢y/n, avec ¢ une constante positive). La proposition suivante provient du théoréme 4
de Vatutin et Wachtel [71]. On dit que X; est non-lattice si sa fonction caractéristique
est strictement plus petite que 1 en dehors de 0 : pour tout 6 € R*,

E (ei9X> < 1.

Proposition 1.3.5 (Vatutin, Wachtel). Supposons X non-lattice, que E(X;) = 0 et que
E(X?) = 0® € (0,00). Alors, pour tout suite (0,),,, convergeant vers 0 et tout réel a > 0,

z+a ! /
H(Z')d
lim sSup n3/2P(Sn€[z,z+a),To>n)—w =0,
n—+00 5 /27'('0'
ze(&W}

ou H est définie par (1.3.1).

Apres ce petit tour d’horizon (non exhaustif) des résultats du cas indépendant uni-
dimensionnel, nous allons nous rapprocher des travaux de cette theése en introduisant
quelques résultats antérieurs traitant de modeles pour lesquels I'indépendance tombe en
défaut.

1.3.3 Les premiers modeles markoviens

Des factorisations pour les chaines de Markov. Quelques généralisations des
factorisations, indispensables dans la démonstration du cas indépendant, sont obtenues
lorsque 'on remplace ’hypothese d’indépendance par I'hypothese selon laquelle la suite
(Xn),s, est une chaine de Markov a espace d’états fini. Pour de tels travaux, on se
reportera & Presman [60, 61] et les références associées.

La marche intégrée. Grace a leurs travaux sur les marches aléatoires en dimensions
supérieures [18, 20], Denisov et Wachtel ont récemment obtenu dans [19] des théorémes
limites pour la marche intégrée conditionnée a rester positive : si (X,),., est une suite
de variables aléatoires i.7.d. la marche intégrée est définie par

SO =G +... 48,  Vn>1,
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ou pour tout n > 1, on a toujours S, = X; + --- + X,,. Naturellement, si les X,, sont
indépendants, ce n’est plus le cas pour leurs sommes S,,. Les accroissements (5,),., de
la marche intégrée (S?),~; forment en réalité dans ce cas une chaine de Markov. La
dépendance de S,, par rapport au passé, id est aux états précédents Si,...,S,_1, étant
« forte » asymptotique du temps de survie possede une vitesse en n~1/4, différente de celle
en n~'/2 présentée dans le Corollaire 1.3.2 et la Proposition 1.3.3. Sans étre rigoureux sur
la définition d’une « dépendance forte », je précise que les modeles markoviens que nous
considérerons auront une dépendance dite « faible » (un trou spectral) et les vitesses
associées aux réponses de (Q2/1.2.4)-(Q4/1.2.6) resteront les mémes que dans le cas
indépendant. Dans ce parallele, notons que la marche intégrée correspond a une récursion
stochastique particuliere (voir la Section 1.4.1 ou le Chapitre 2 dévolu justement a ce type
de chaines de Markov).

Le produit de matrices. Terminons cette section par un dernier modele qui a
largement influencé mes travaux. Soit (g, ),>1 € GL4(R) une suite de matrices inversibles
de taille d x d. Pour tout vecteur de départ v € R?, on s’intéresse au premier instant pour
lequel le produit g, . ..g;v appartient & la boule unité B(0,1) = {u € R?: |lul| < 1} :

T,=inf{k>1:g;...q1v € B(0,1)}.

Pour tout v € R?, on note T son projeté dans l'espace des directions de R?, espace noté
P(RY). A v fixé, on définit Xy = (id, D) et pour tout n > 1, X,, = (¢n, Gn_1 - 010) € X =
GL4(R) x P(R?). On écrit alors que

In (gn- - gro]) = In (“gg”) e tn (”f’“’”) (ol

|gn—1-""g1v]] [v]]

lgwll
[[w]]

quel vecteur non nul de direction w. Puisque la suite (g, ...g1v),>1 reste strictement a
I'extérieur de la boule unité si et seulement si le logarithme de sa norme reste strictement
positif, on remarque que 7, = 7, avec 7, défini en (1.2.2). Dans ce modele, on voit bien
que la suite (X,,),>0 n'est plus 7.7.d. mais est une chaine de Markov. En appliquant la
démarche de Denisov et Wachtel [20] couplée avec une récente version (voir [40]) du
théoreme de Komlos-Major-Tusnddy [51], Grama, Le Page et Peigné [41] ont montré le
résultat suivant.

avec = In(||v|]) et le cocycle défini par w) = In ou w est n’importe
y ([vll) et f y p g, p

Proposition 1.3.6 (Grama, Le Page, Peigné). Sous les hypothéses P1-P5 de [/1], il
existe une fonction V' strictement positive sur le complémentaire de B(0,1), telle que

1. Pour tout v ¢ B(0,1),
2V (v)

~ )
n—=+00 \/2Tno

P (7, >n)

ot o est une constante strictement positive.
2. De plus, pour tout v ¢ B(0,1) et t > 0,

+2

lim P (In()lgn---guvl) < tvn|7y>n) ~ 1—e 2z,

n—-+o0o n—-+o0o

Tous ces travaux apportent des réponses aux questions (Q1/1.2.3)-(Q3/1.2.5). Pour-
tant une formulation plus globale restait a poser. La marche intégrée est un modele assez
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précis et puisque la dépendance de la chaine de Markov (S,),., est explicite, il n’est
pas clair que les calculs puissent étre étendus directement a d’autres chaines de Markov.
Pour le produit de matrices, la formulation qui concerne la chaine de Markov semble plus
générale. Cependant un examen plus attentif nous montre qu’en réalité les moments des
accroissements (f(X,)),-, par exemple (cf M4 de [41]) sont bornés uniformément par
rapport au point de départ = de la chaine de Markov (X,),~g = ((9n, Gn—1" " 910)),0-
Tout se passe donc comme si la chaine de Markov vivait dans un espace compact. L’ex-
tension des résultats a d’autres chaines de Markov restait une étape a franchir et des
techniques particulieres que je détaillerai dans la suite ont dii étre mises en place pour
obtenir les résultats que je vais présenter dans la Section 1.4.

1.3.4 Les processus de branchement en environnement aléatoire

Avant de présenter mes propres travaux, finissons notre petit tour des résultats anté-
rieurs que nous nous proposons d’affiner. Méme si le lien n’est pas explicite au premier
abord, I’étude des marches aléatoires a de profondes implications dans les processus de
branchement en milieu aléatoire. En quelques mots, un processus de branchement en
environnement aléatoire est I’étude d’une population qui se reproduit de fagon aléatoire
chaque année selon une loi qui est elle-méme déterminée par un tirage annuel aléatoire.
Puisque c’est ce tirage de l'environnement qui va nous donner la loi de reproduction
de tous les individus, I'environnement a un poids tres important sur la taille de la po-
pulation. Ainsi, pour que la population ne s’éteigne pas, il faut que les environnements
restent favorables. Or une suite d’environnements favorables a la population peut étre vue
comme une marche qui reste positive. Donc si ’on connait la probabilité que cette marche
reste positive on acceéde a la probabilité que I’environnement reste favorable et donc a la
probabilité que la population survive. Ce lien tres important entre marche aléatoire et
processus de branchement, nous permettra d’illustrer dans la Section 1.4.6 le fait que les
réponses aux questions (Q1/1.2.3)-(Q4/1.2.6) ont des conséquences intéressantes.

Présentons ces conséquences a travers les résultats phares et bien connus lorsque les
environnements sont indépendants. Soit (X,,),>o une suite de variables aléatoires sur
(Q,.7,P) a valeurs dans X représentant la suite d’environnements dans lesquels évolue
un processus de branchement construit de la facon suivante. On fixe une famille de va-
riables aléatoires (§f "™)iex jn>1 indépendante de la chaine (X,,),>0 et définie sans perte de
généralité sur le méme espace probabilisé (2, .#,P). On suppose que pour chaque i € X
les variables f'f", 7,m =1 sont i.7.d. et on note f; leur fonction génératrice commune :

Vs€[0,1],  fi(s)=E (sfi’l) .

Soit alors (Z,)n>0 le processus de branchement associé que I'on construit récursivement
par

Zn, '
Zo=1 et  Zya=> &7, Vn>0.
j=1
Concretement, on considere que sous l'environnement X, 1 = ¢, chaque individu j de la
population {1,...,7,} donne naissance, de fagon indépendante aux autres individus, a
&' +LI descendants et que donc la population totale Zni1 Iannée suivante est la somme
de tous ces descendants. On pose p la fonction de X dans R définie par

Vi € X, p(i) =In(fi(1)) =1In (E (5211))
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et sans plus de détails, on indique que la marche aléatoire associée dont on a fait mention
au début du paragraphe est donnée par

So=0 et S, => p(Xy)=In (f&l(l)---f%n(l)), Vn > 1.
k=1
Dans le cas d’environnements indépendants, Geiger et Kersting [32] ont montré le résultat

suivant.

Proposition 1.3.7 (Geiger et Kersting, cas critique). Supposons la suite (X,,),>0 i.7.d.
et supposons

£, (14 In* (f4, (1))
(£4.(1)

Alors il existe une constante 0 < ¢; < 400 telle que la probabilité pour que la population
Zn survive jusqu’au temps n est donnée asymptotiquement par

E(p(X1) =0, 0<E(p(X}))<+c0, E < fo0.

n—-+00 n ’

Notons que 'hypothese E (p(X;)) = 0 correspond au cas dit critique, lorsque que le
nombre d’enfant par personne est « globalement » de 1. Du point de vue de la marche
aléatoire associée 5,, cela correspond a une marche centrée, sans dérive.

Lorsque cet indicateur E (p(X;)) est strictement négatif on dit étre dans un cas sous-
critique. La population s’éteint alors plus rapidement et la marche aléatoire dérive vers
les négatifs. Il est encore possible cependant d’obtenir 'asymptotique de la survie de la
population Z,. L’idée est de recentrer la marche aléatoire .S,, a I'aide d'un changement
de loi adéquat. Ce centrage fait cependant apparaitre « un poids » sur les trajectoires
(Sk)nsk>1 d’ordre e5» ce qui signifie que seules les trajectoires dont le point d’arrivée S,
est « petit » auront de I'importance. Suivant cette idée, il apparait que la réponse a la
question (Q4/1.2.6) est utile pour démontrer les résultats du cas sous-critique.

Lorsque E (p(X;)) < 0, il n’y a en réalité pas qu'une seule situation mais trois dis-
tinctes chacune donnant un équivalent de la probabilité de survie P (Z, > 0) différent :

— siE {f&l(l) In (f&l(l))} < 0 on parle de cas fortement sous-critique,
— si E [fj(l(l) In (fj(l(l))} = 0 on parle de cas sous-critique intermédiaire,

— siE [fj(l(l) In (fg(l(l))} > (0 on parle de cas faiblement sous-critique.
On pose
k=B (1)
On notera que dans les cas sous-critiques non-dégénérés, on a k € (0, 1).
Dans le cas fortement sous-critique, Guivarc’h et Liu [44] ont établi le résultat suivant.

Il avait été précédemment démontré par D’Souza et Hambly [23] sous une condition de
moment supplémentaire.

Proposition 1.3.8 (Guivarc’h et Liu, cas fortement sous-critique). Supposons la suite
(Xn)nso i.i.d. et supposons

E|fi, () (fi,())] <0, E(Zin*(Z)) < +oo.
Alors il existe une constante 0 < co < 400 telle que

P(Z,>0) ~ cor™.

n—+oo
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Les deux propositions suivantes ont été montrées par Geiger, Kersting et Vatutin [33].

Proposition 1.3.9 (Geiger, Kersting et Vatutin, cas sous-critique intermédiaire). Sup-
posons la suite (Xy,)n>o @.1.d. et supposons

E[p(X1)] <0, E [fx, (DI (f5,(1)] =0,
E |fx, (1) 1n* (4, ()] < +oo, E [0 (1+In (fi,(1))] < +oc.

Alors il existe une constante 0 < c3 < 400 telle que

c3K"
]P(Zn>0) n_;\;oo \/ﬁ

Pour le cas faiblement sous-critique, on pose

v := inf E(fé(l(l)g)

0<0<1

et soit a € [0, 1] tel que

Proposition 1.3.10 (Geiger, Kersting et Vatutin, cas faiblement sous-critique). Suppo-
sons la suite (X,)p>0 i.7.d., que

E[p(X1)] <0, 0<E [f& (D)o (f4,(1))] < +oo,
(1) fla (1)
E lel( 1)i-a < +00, E le( = < +00,.

et que la loi de p(X,) est non-lattice :
P(p(X1) €a+bZ) <1, V0 < a <b.
Alors il existe une constante 0 < ¢4 < 400 telle que

C4’}/n
[ad .
n——+o0o n3/2

P(Z, > 0)

D’autres situations ont été étudiées, comme par exemple le cas critique par Athreya
et Karlin [4, 3] pour des milieux échangeables ou par Le Page et Ye [56] pour des mi-
lieux markoviens sous une hypothese adaptée de densité. Pourtant, a ma connaissance,
I’asymptotique exact de la probabilité de survie de processus de branchement en environ-
nement markovien fini n’a jamais été traitée en absence d’hypothese supplémentaire que
le cadre non-lattice que nous décrirons.

1.4 Présentation des travaux de theése

Les principaux travaux de cette thése ont pour but d’étendre les résultats présentés
dans la section précédente a une large classe de marches dont les accroissements sont
markoviens. Je I’ai mentionné dans la section précédente pour la marche intégrée, lorsque
les accroissements sont markoviens il est possible que la vitesse de convergence répondant
a la question (Q2/1.2.4) puisse changer. Si 'on souhaite retrouver les résultats du cas
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indépendant, des hypothéses sur la chaine de Markov constituant les accroissements de la
marche sont nécessaires. Le principal objectif de cette these est de donner des conditions
assez générales sur la chalne de Markov et d’établir sous ces conditions des résultats
analogues au cas indépendant pour répondre aux questions (Q1/1.2.3)-(Q3/1.2.5). Nous
verrons également que ces conditions sont satisfaites au moins pour certains exemples
concrets. Par la suite, nous constaterons que lorsque la chaine de Markov est a valeurs
dans un espace d’états fini, il nous est possible d’affiner les résultats et de répondre
a la question (Q4/1.2.6). Ces développements nous permettrons d’établir de nouveaux
résultats sur la théorie des processus de branchement critiques et sous-critiques.

1.4.1 Les modeles markoviens considérés

Notre approche s’est faite en deux temps. Méme si le cas des chalnes de Markov a
espace d’états fini n’avait pas été explicitement traité, le produit de matrices aléatoires [41]
suggérait que si 'on pouvait controler la dépendance de la chaine (X,),>1 uniformément
par rapport a son passé r = X, alors la méthode restait identique. Intuitivement, les
questions (Q1/1.2.3)-(Q3/1.2.5) se posaient donc plutét pour des chaines de Markov
dont la dépendance au passé était « faible » (pour retrouver les mémes vitesses que dans
le cas indépendant) mais pas uniforme. Ainsi, avant de poser un cadre général, nous nous
sommes d’abord intéressés a un modele explicite répondant a ce critére sur la dépendance
de la chaine : la récursion stochastique.

A partir de maintenant et dans la suite, pour tout x € X, on pose P, respectivement
E., la probabilité, respectivement 'espérance, engendrée par les lois fini-dimensionnelles
du processus (Xp),, sachant que X, = =.

Les chaines de Markov affines (CMA). La récursion stochastique que I'on pré-
sente ici est le sujet d’étude du Chapitre 2. Soit (2,.%,P) un espace probabilisé et
(aj, b;);>1 une suite de variables aléatoires i.i.d. On note (a,b) une représentation gé-
nérique dont la loi est celle commune aux (a;, b;);>1. On construit récursivement la chaine
de Markov par la transformation affine suivante :

XQ =X et Xn+1 = @nJran + bn+1, Vn 2 0.

On dira alors que (X,,),>0 est une chaine de Markov affine (CMA). On ne suppose pas
a priori que les a; sont indépendants des b;, cependant lorsque a; = 0 p.s., on retrouve
le cas indépendant. Lorsque a; = 1 p.s., on retrouve le cas de la marche intégrée. Les
hypotheses qui suivent contiennent le cas indépendant mais rejettent le cas de la marche
intégrée (voir (C1.1/1.4.1) ci-dessous). Présentons brievement ces hypotheses.

La dépendance « faible » a laquelle j’ai fait allusion au début de cette section se traduit
dans ce modele par I’hypothese suivante : on suppose qu’il existe a > 2 tel que

E(|a]®) < 1. (C1.1/1.4.1)

Ceci correspond a une contraction de la dépendance : intuitivement, 1’état suivant de
la chalne X,,;; ne dépend en moyenne que d’une fraction de I'état précédent X,,. Une
hypothéese de moment est également nécessaire sur les variables (b;);>1,

E(]6]*) < +oo. (C1.2/1.4.2)
On suppose la marche non-dégénérée et centrée :

Pb=0)<1 et E(b) =0. (C1.3/1.4.3)
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Une autre condition sera nécessaire pour s’assurer de la stricte positivité de ’équivalent
que nous déterminerons dans la réponse a la question (Q2/1.2.4), condition que je ne
détaille pas pour I'instant.

Sous les hypotheses (C1.1/1.4.1)-(C1.3/1.4.3), la dépendance de la chaine X,, en fonc-
tion de I'état initial Xo = = décroit exponentiellement vite au cours du temps n. En effet
un simple calcul montre que pour tout n > 1,

n—1

B, (1Xn]) < E(lal)" |2] + ;; E(lal)"E([8]).

Par la propriété de Jensen, E(|a|) < 1, la série 3450 E(|a|)*E(|b]) converge et I'inégalité
précédente formalise un peu cette idée de dépendance faible.

Ce modele est intéressant a deux points de vue. Le premier est celui annoncé en début
de section sur le défi que représente la gestion d'une marche aléatoire avec une « réelle »
dépendance par rapport a son passé. Le second est le fait que la marche affine est un
modele qui a généré beaucoup d’intérét en particulier dans sa relation aux modeles ARCH.
Pour des résultats de convergence des marches affines (en absence de conditionnement)
on pourra se référer notamment aux travaux de Guivarc’h et Le Page [43].

Les Théoremes 1.4.1, 1.4.3 et 1.4.7 qui suivent dans cette introduction répondent aux
questions (Q2/1.2.4) et (Q3/1.2.5) pour ce type de marches markoviennes.

Les chaines de Markov avec un trou spectral (CMTS). La seconde famille
de chaines de Markov avec laquelle nous allons travailler dans le Chapitre 3 est encore
beaucoup plus générale que celui de la récursion stochastique. Le modele affine précédent
nous a permis de dégager les éléments qui étaient essentiels pour assurer les convergences
voulues dans (Q2/1.2.4) et (Q3/1.2.5). Ceci étant fait, j’ai pu déterminer un cadre plus
abstrait, mais surtout plus général, pour lequel je réponds aux questions (Q2/1.2.4) et
(Q3/1.2.5). Pour I'essentiel, le point de vue a adopter était déja présent dans le formalisme
de l'article de Grama, Le Page et Peigné [40]. Sans détailler toutes les hypotheses, disons
simplement que l'important est de munir la chaine de Markov d’un espace de Banach
approprié. Cet espace est intrinseque a la marche et décrit dans un formalisme fonctionnel
ses propriétés (croissance et dépendance principalement). Pour (X, ),>0 une chaine de
Markov a valeurs dans X de noyau P, 'espace de Banach # que 1’'on considére est un
sous-ensemble de fonctions de X — C sur lequel principalement 'opérateur P possede
un trou spectral. Ceci correspond a une hypothese de mélange pour la chaine de Markov.
Donnons une esquisse du fil directeur de cette hypothese. Pour toute fonction ¢ pour
laquelle I'intégrale suivante a un sens, on fait agir I'opérateur P sur ¢ en définissant

Py(a) = | (@' )P(x,dr)

On dira que P possede une trou spectral sur Z si P est un opérateur borné de 4 dans
A tel que sur £ on ait

P=v()e+Q, v(Q) = Qe =0,

avec v une forme linéaire positive, e : x +— 1 la fonction constante égale a 1 sur X
et () un opérateur dont le rayon spectral est strictement plus petit que 1. Une chalne
de Markov vérifiant une telle hypothese, et d’autres que I'on ne précise pas dans cette
introduction (cf Chapitre 3 pour plus de détails) sera dite chaine de Markov avec un trou
spectral (CMTS). On verra que si (X,,),>0 a une mesure invariante avec une condition de
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moment alors cette mesure est v. La fonction e est le vecteur propre de P associé a la
valeur propre 1. Cette propriété de trou spectral nous permet de retrouver un résultat de
type Perron-Frobenius soulignant la décroissance rapide de la dépendance de la chalne
(Xn)nso @ pour tout z € X,

[P o(z) —v(@)] < ce™™ [|8a]| 4,

avec 0, : ¢ — ¢(z) la mesure de Dirac en z, %' le dual de £ et ||-|| 5 une norme sur
A'. Grace a cette hypothese de trou spectral, nous allons pouvoir retrouver les résultats
du cas indépendant en considérant que si X,, ;1 n’est plus indépendant de X,,, la variable
Xnp est, elle, « presque » indépendante de X,, pour p assez grand. Cette idée directrice
toute simple demande de nombreuses considérations techniques et le passage du modele
particulier de la récursion stochastique a celui des chaines de Markov avec un trou spec-
tral a nécessité des modifications d’importance dans notre approche, je vous renvoie au
Chapitre 3 pour plus de détails.

Avant de poursuivre et de décrire les principaux résultats de cette these, soulignons
que ce formalisme associé a l’espace de Banach bien que assez algébriste et abstrait
permet, de fait, de couvrir de nombreuses situations : le cas indépendant bien siir, mais
aussi les chalnes de Markov a espace d’états fini ou méme compact ainsi que la récursion
stochastique réelle X = R ou multidimensionnel X = R? (avec une fonction f sur R?
toujours a valeurs dans R). L’appendice du Chapitre 3 fournit plus de détails sur la
construction des espaces de Banach associés. La Section 3.13 montre également que nos
résultats couvrent le cas du produit des matrices aléatoires résolu par Grama, Le Page
Peigné [41].

Dans les Théoremes 1.4.2, 1.4.4 et 1.4.8 des sections suivantes, nous allons répondre
aux questions (Q2/1.2.4) et (Q3/1.2.5) dans le cadre de ce type de marches markoviennes.

Les chaines de Markov a espace d’états finis (CMF'). Modeéle beaucoup plus
réduit mais aussi beaucoup plus simple, le cas ou I'espace d’états de la chaine de Markov
est fini (on dira que la chaine de Markov est finie (CMF)) nous sera utile notamment pour
affiner nos résultats dans un premier exemple. Ce modele est élémentaire et ne recouvre
plus le modele indépendant lorsque les valeurs de la suite i.7.d. en question sont en nombre
infini. Il reste cependant important et I’'objectif principal sera de répondre au moins dans
cette situation a la question (Q4/1.2.6), ce que I'on développe dans le Chapitre 4. Soit
(Xn)n=0 une chaine de Markov sur un espace X de cardinal fini. On aura besoin de trois
hypotheses. On note toujours P la matrice de transition de (X,,),>0 et on suppose que P
est primitive, c’est-a-dire qu’il existe un entier ky > 1 tel que pour tout (z,z’) € X?, on
a

P (z,2") > 0. (C1/1.4.4)

On considere toujours la marche (y+95,,),>1 et le temps de sortie 7, définis respectivement
par (1.2.1) et (1.2.2) ainsi que la fonction f associée. Sous I’hypothese (C1/1.4.4), nous
avons toujours notre dépendance faible au sens ou le théoreme de Perron-Frobenius assure
la convergence exponentielle de P™(x, z’) vers une unique mesure invariante v(z'), et ce
uniformément en x € X. L’hypotheése suivante est la condition de centrage :

v(f) =Y flz)v(z)=0. (C2/1.4.5)

zeX

Puisque I'objectif est d’obtenir un théoreme local, a I'image de ’article originel de Stone
[67] et comme classiquement pour un tel résultat, nous aurons besoin d’une hypothese
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de non-lattice. Cette condition, formulée ci-dessous, est équivalente a une formulation en
terme de rayon spectral strictement plus petit que 1 pour 'opérateur perturbé (voir le
Chapitre 4). On suppose que pour tout (6,a) € R?, il existe une orbite, c’est-a-dire une

suite de points zg, ..., x, dans X communiquant de la facon suivante
P(zo,21) >0, P(z1,29) >0, ..., P(xy_1,2,) > 0, P(x,,20) >0,
telle que
flzo)+ f(z) + -+ f(zn) — (n+1)0 & aZ. (C3/1.4.6)

On peut vérifier que cette condition dite mon-lattice implique en particulier la non-
dégénérescence de la marche. Cette idée de non-dégénérescence correspond a X; # 0
p.s. dans le cas indépendant, b # 0 dans le cas d'une marche affine et ici & 02 > 0 ou
0% est un réel positif d’intérét correspondant d’une certaine facon a « la variance de la
marche ».

Lorsque qu'une chaine de Markov a espace d’états fini (CMF) satisfait les conditions
(C1/1.4.4)-(C3/1.4.6), alors elle répond aux hypotheses M3.1-M3.5 du Chapitre 3 ce qui
signifie qu’une chaine de Markov fini (CMF') est en particulier une chaine a trou spectral
(CMTS). Ainsi les réponses aux questions (Q1/1.2.3)-(Q3/1.2.5) sont toujours données
par les Théoremes 1.4.2, 1.4.4 et 1.4.8. Cependant dans ce cas on peut également répondre
a la question (Q4/1.2.6) par les Théoremes 1.4.9-1.4.11 et appliquer ces résultats pour
obtenir les Théoremes 1.4.13-1.4.16 sur les processus de branchement.

Apres cette bréve description des principales hypotheses que 1'on considérera sur nos
chaines de Markov, nous allons introduire dans les paragraphes suivants les principaux
résultats obtenus durant ces trois années de these.

1.4.2 Existence d’une fonction harmonique

Le fait que la réponse a la question (Q1/1.2.3) soit positive et que la probabilité
de survivre infiniment longtemps soit nulle pose une difficulté dans la définition d’un
processus conditionné a rester positif. Le premier point de vue dont nous avons déja fait
mention propose de conditionner pour un temps fixé n > 1 par rapport a I’événement « la
marche est restée positive au moins jusqu’au temps n » c¢’est-a-dire 'évenement {7, > n}
ou y est le point de départ de la marche et 7, est défini par (1.2.2). Puis dans un second
temps on fait tendre n vers I'infini.

Considérons dans I'immédiat, une approche un peu différente. Reprenons les notations
de la partie 1.2 et notons que lorsque les accroissements (Xn)@O ne sont plus indépendants
alors la marche (y + Sn)n>o issue de y € R n’est plus en général une chaine de Markov.
Si I'on suppose que (X,),, est une chaine de Markov, c’est le couple (X,,y + Sn),50
qu’il faut considérer et qui forme une chaine de Markov. Son noyau de transition est alors
donné par

Q((C(J,y), A) = ]P)a: ((Xla Y+ Sl) S A) )

pour tout (z,y) € X x R et tout A ensemble mesurable de l'espace produit X x R.
Puisque seules les trajectoires qui sont restées positives nous intéressent, nous définissons
la restriction Q. par

Q+((z,9), 4) = Q((z,y), 4)

pour tout (z,y) € X x R et tout A ensemble mesurable de X x R* . Alors que Q((z,y), )
est une probabilité, nous avons perdu de la masse en nous plagant dans le sous-ensemble
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Xx R : en général nous avons Q4 ((z,y), X xR ) < 1. Une renormalisation du noyau est
nécessaire par l'intermédiaire d’une transformée de Doob aussi appelée fonction invariante
ou fonction harmonique. On note encore Q. I'opérateur défini sur ’ensemble des fonctions
mesurables ¢ : X X R — C par, pour tout (z,y) € X x R,

Q. p(z,y) :/x o, y) Q4 ((w,y),da" x dy')

*
><]RJr

= (e, Yy )P, (X1 €da’, y+ Sy € dy)
XXR:

=E, (¢ (X1,y+51);y+ 51 >0)
:Ex((10<Xlay+Sl)ﬂTy>1)7

ou l'on adopte ici et pour tout le reste du document la notation suivante : pour toute
variable aléatoire X et tout éveénement A :

E(X;A):=E(X1,4).

Une fonction V' est Q,-harmonique (on se contentera parfois de dire simplement har-

monique sans préciser le noyau associé lorsqu’il n’y aura pas d’ambiguité) si pour tout
(r,y) € X xR,

Q. V(z,y) =E, (V(Xy1,y+51) ;7> 1) =V(z,y).

Notons qu’il n’y a pas unicité de la fonction harmonique, si on multiplie V' par une
constante ¢ alors la fonction ¢V est aussi une fonction harmonique. Bien sir la fonction
nulle est toujours une fonction harmonique mais dénuée d’intérét puisque c’est lorsque
que V(z,y) > 0 que 'on va pouvoir renormalisée Q. ((x,y), ). En effet, pour tout couple
de points (x,y) tel que V(z,y) > 0 et tout A ensemble mesurable de X x R* , on définit

Q+((J], y)? A) = Q-‘r (VILA) (Ia y)

1
V(z,y)
1

= E.(V(Xy,y+5); (Xy,y+S1)€eA, r,>1).
V(.Z',y) ( ( LY 1) ( LY 1) Y )
Il est clair que Q+~est un noyau markovien. De plus si ():(n, Y+ Sn)nZO est une chaine de
Markov de noyau Q4 alors sa seconde composante (y + S,,),>0 correspond a une marche
aléatoire qui reste positive.

En réalité, ces deux facons différentes d’aborder le probléeme ne sont que deux présen-
tations d’un méme phénomene et la marche aléatoire conditionnée est la méme dans les
deux constructions. En effet, nous allons voir que lorsque 'on est capable de répondre a
la question (Q2/1.2.4), 'asymptotique s’écrit

2V (z,y)
Py (14 > n) n o Jamng
ou V' n’est ni plus ni moins qu'une fonction Q,-harmonique. Rappelons que dans le cas
indépendant cette fonction harmonique est donnée par la fonction de renouvellement H
définie par (1.3.1). Le principe de renouvellement est fondé sur 'observation suivante.
Si les accroissements (X,,),>1 sont indépendants et si (7;);>; est la suite des indices des
records (ladder epoch) définie récursivement par

To=0 et Tjy=min{k>T;+1:5 >S5}, Vj=0,
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alors les suites (Tj41—1T}) >0 et (St;,, —S1;) >0 sont 4.4.d. Cette propriété avantageuse est a
la base des développements du principe de renouvellement et en prenant x; 11 = St;,, —S7;
on construit la fonction de renouvellement H. Cependant cette propriété tombe en défaut
en général lorsque 1'on suppose que les accroissements (X,,),>1 forment une chaine de
Markov. La question de construire une fonction harmonique strictement positive mérite
alors des considérations nettement différentes.

Dans un esprit de point fixe, pour tout (z,y) € X x R, on définit la suite de réels
Va(z,y) par

Va(z,y) = Ep (y + Sn; 7y > ).

Cette définition est motivée par I'observation suivante. Puisque (X,,y + S,),>, est une
chaine de Markov, par la propriété de Markov, on a

Vn+1($,y) =E, (E(y—i—SnH, Ty > n + 1|X1)) =E, (Vn<X1,y+Sl), Ty > 1)

Si 'on suppose que la suite (V,,(z,v))n>1 converge vers un réel V(z,y) et si on peut
intervertir la limite et 'espérance, cette limite V (z,y) vérifierait alors

V(Z’,y) = ]Ex (V(X17y+ 511)7 Ty > 1)7

id est la fonction V' est harmonique.

Si cette construction est claire dans son principe, 'existence de la limite et I'hypo-
these de domination pour intervertir la limite et ’espérance en invoquant le théoreme
de convergence dominée de Lebesgue est a contrario une difficulté majeure dans 1’élabo-
ration d’une réponse aux questions (Q2/1.2.4) et (Q3/1.2.5). Dans le cas indépendant
(pour lequel, le parametre x n’existe pas) Denisov et Wachtel [18] ont développé une
méthode récursive qui permet de montrer que la suite (V,,(y)),>1 (ou son équivalent dans
la dimension supérieure) est bornée par une constante dépendant uniquement du point
de départ y de la marche (y+.S,,)n>1 (cf Lemme 10 de [18]). Pour les produits de matrices
aléatoires, Grama, Le Page et Peigné [41] établissent le méme résultat pour leur marche
markovienne et montrent que la suite (V,,(z,y))n>1 est bornée. Méme si la dépendance
par rapport au point de départ x de la chaine de Markov (X,,),>1 est bien présente dans
la démonstration, du fait de contrdles initiaux uniformes en = (comme mentionné a la
fin de la Section 1.3.3), le majorant de la suite (V,(x,y))n>1 ne dépend en réalité que du
point de départ y de la marche (y + Sy )n>1 (cf Corollaire 5.7 de [41]).

La question de comment construire une fonction harmonique pour des marches mar-
koviennes (c’est-a-dire dont les accroissements sont markoviens) plus générales restait
donc a résoudre. La prise en compte de la dépendance de la chaine de Markov (X,,)n>1
par rapport a son passé x fut ’obstacle majeur qui a motivé mes travaux. Les innovations
techniques associées nécessaire pour obtenir les deux théorémes suivants seront détaillées
dans les Chapitres 2 et 3 respectivement.

Théoréme 1.4.1 (Chaine affine). On suppose que (X,)n>0 est une chaine de Markov
affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3).

1. Pour tout x € R et tout y > 0, la suite

(Vn<x7?/))n>1 = (Ex (y + Sn; 7y > n))n>1

converge vers un réel noté V(x,y).
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2. La fonction V' est Qi-harmonique sur R x R : pour tout x € R et tout y > 0,
Q. V(x,y) =E, (V( X1,y +51) ;7 >1)=V(z,y).

3. Pour tout x € R, la fonction y — V(z,y) est positive, croissante et asymptotiquement
équivalente a y en l'infini :

Y—r+00 Yy

= 1.
4. Pour tout 6 >0, p € (2,a), r eR ety >0,
Viwy) < (140 (14 |2P)) y + eps (1+ [2]) -

La principale nouveauté dans la formulation de ce résultat comparé aux résultats
antérieurs est dans la dépendance en z, exprimée en particulier dans le point 4. Pour notre
second modele de chaine de Markov (couvrant le modele précédent), on a le théoreme
équivalent suivant.

Théoréme 1.4.2 (Chaine a trou spectral). Soit (X,,)n>0 chaine de Markov avec un trou
spectral (CMTS). Plus précisément, sous les Hypothéses M3.1-M3.5 du Chapitre 3,

1. Pour tout x € X et y € R, la suite

(Vn<x7?/))n>1 = (E: (y+ Sn; 7y > n))n>1

converge vers un réel noté V(x,y).

2. La function V : X xR — R, est Q. -harmonique : pour tout v € X et y € R,
Q V(x,y) =E, (V(X1,y+51);7,>1) =V(x,y).

3. Pour tout x € X, la fonction y — V(x,y) est positive, croissante et asymptotiquement
équivalente a y en linfini :
V(z,y)

lim ————= =1.
y—r+0o0 Yy

4. 1l eziste une fonction N : X — R, telle que pour tout § >0, v € X et y € R,

V(z,y) < (14 0)max(y,0) +cs (1 + N(x)).

1.4.3 Positivité de la fonction harmonique

Comme on I’a vu dans le paragraphe précédent, I'important dans notre construction
d’une fonction harmonique est de construire une fonction harmonique qui soit strictement
positive. Dans cette partie, V', dite [a fonction harmonique, désigne la fonction construite
dans les Théorémes 1.4.1 et 1.4.2 comme étant la limite de la suite (V;,(x,y))n>1. La stricte
positivité de V' est un enjeu a ne pas négliger et requiert des hypothéses supplémentaires.
Dans le principe général il s’agit de reproduire la méthode récursive de Denisov et Wachtel
qui nous a permis d’obtenir les Théoremes 1.4.1 et 1.4.2 en bornant supérieurement la
suite (V,,(x,y))n>1. De reproduire donc cette méthode et de la modifier pour construire
cette fois-ci une borne inférieure adaptée qui puisse a terme nous permettre de séparer V
de 0. Cette borne est donnée par le point 1 du Théoreme 1.4.3 et le point 1 du Théoreme
1.4.4 ci-dessous.
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Dans le cas d'une chaine de Markov affine (CMA), on donne deux conditions suffisantes
pour que la fonction V' soit strictement positive pour tous les points x € R et tous les
points y > 0. Sans plus de détail (voir le Chapitre 2), ces conditions sont les suivantes.
Pour tout x € R et y > 0,

P,(ry >1)=P(ax+b> —y) > 0. (C2/1.4.7)

Pour tout z € R et y > 0, il existe py € (2, @) tel que pour tout ¢ > 0, il existe ng > 1 tel
que

Pa (Xng, y + Sno) € Kpoer 7y > n0) > 0, (C3/1.4.8)
ou
Koo = {(az,y) ERxRL,y>c(l+ |x|p0)}‘

Il est clair que (C3/1.4.8) implique (C2/1.4.7). Cependant la condition (C2/1.4.7) ne
permet d’assurer la stricte positivité de V' que lorsque E(a) > 0. La condition (C3/1.4.8)
est, dans une formulation adaptée, déja présente chez Denisov et Wachtel [20]. Pour plus
de détails, je vous renvoie au Chapitre 2.

Théoréme 1.4.3 (Chaine affine). On suppose que (X,,)n>0 est une chaine de Markov
affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3).

1. Pour tout 6§ >0, p € (2,a), r R ety >0,
V(r,y) 2 (L=0)y+cps (L+ |2f7).

2. Si on suppose de plus ou bien la condition (C2/1.4.7) et E(a) > 0 ou bien la condition
(C3/1.4.8), alors la fonction V' est strictement positive sur R x R .

Lorsque j’ai traité le cas plus général des chaines de Markov avec un trou spectral
(CMTS), j’ai également changé mon point de vue sur la stricte positivité de V. Plutot
que de chercher des hypothéses assurant la stricte positivité pour tous les points y > 0,
j’ai désiré décrire le domaine de positivité de V' dit aussi support de V/,

supp(V) = {(z,y) e X xR : V(z,y) > 0}.

En effet, autant dans le cas indépendant on sent bien que y = 0 joue une frontiere
importante, autant dans le cas markovien la frontiere est plus complexe. Bien sir si
y > 0 on parle bien pour 7, d'un temps de sortie de la marche (y +.S,),>1 et si y < 0
plutot d’un temps de retour de cette méme marche. Cependant dans le cas markovien,
I'impulsion initiale x de la chalne de Markov possede également son importance. Pour
y > 0, dans certains cas, il est possible de se munir d’'un x € X suffisamment défavorable
pour que partant de (z,y) on ait 7, = 1 p.s. Ainsi, dans une approche un peu plus étoffée,
je n’impose pas a la fonction V' d’étre positive pour tout point de départ (z,y) mais je
donne une description de son support. Il est alors suivant le modele toujours possible de
vérifier si V' est strictement positive ou non sur X x R% (elle ne I'est pas nécessairement).
Pour tout v > 0, on considere I’ensemble

Dy ={(r,y) € XxR:3Ing > 1, P (y + Spy > 7 (1 + N (X)) , 7y > ng) >0}

On rappelle que I'existence d'une fonction N est donnée par le Théoreme 1.4.2. On obtient
alors le résultat suivant.
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Théoréme 1.4.4 (Chaine a trou spectral). On suppose que (X,,)n>0 est une chaine de
Markov avec un trou spectral (CMTS). Plus précisément, sous les Hypothéses M3.1-
M3.5 du Chapitre 3,

1. Pour tout 0 >0,z € X ety € R,
V(z,y) 2 (1 —0)max(y,0) —cs (1 4+ N(z)).
2. 1l existe vy > 0 telle que pour tout v = o,

supp(V) = 2.

1.4.4 Théoremes limites pour des marches markoviennes

Bien que l'on ait répondu pour I'instant a aucune des questions (Q1/1.2.3)-(Q4/1.2.6)
dans le cadre de nos modeles markoviens, les résultats précédents sont d’importance et
vont nous permettre, par I'existence d'une fonction harmonique V', de trouver 1’équivalent
recherché en (Q2/1.2.4). La stricte positivité de V justifiera la non-nullité de cet équi-
valent. Je passe pour le moment la description de lemmes techniques du Chapitre 2 ou 3
mettant en oeuvre des « trous » dans le processus (y + S,)n>1 pour obtenir des résultats
similaires a la marche aléatoire indépendante. Je donne plutét ci-dessous le principe de
départ des démonstrations des théoremes qui suivent. J’en ai déja fait rapidement men-
tion, I'idée est de partir d’'un KMT pour montrer que les résultats liés au mouvement
brownien « se transporte » a notre marche markovienne. Ce couplage avec le mouvement
brownien a été récemment obtenu pour les chaines de Markov avec un trou spectral par
Grama, Le Page et Peigné [40].

Proposition 1.4.5 (Grama, Le Page, Peigné). On suppose que (X,)n=0 €st une chaine de
Markov affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3) ou que (X,)n>0
est une chaine de Markov avec un trou spectral (CMTS) vérifiant les Hypothéses M3.1-
M3.5 du Chapitre 3. Alors, il existe g > 0 tel que pour tout € € (0,e0], on peut recons-
truire sans perte de généralité la chaine de Markov (Xy)n>0 et un mouvement (By)ier,
sur un méme espace (2, F,P) de facon da ce que pour tout x € X et n > 1,

P, (sup ‘Stth — aBm’ > n1/2_5> < C—i_(l + N(z)),

0<t<1 n
ou o est un réel positif.

La réponse a la question (Q1/1.2.3) est une conséquence facile de cette Proposition
1.4.5.

Corollaire 1.4.6. Soit (X,,)n>0 une chaine de Markov affine (CMA) vérifiant les condi-
tions (C1.1/1.4.1)-(C1.3/1.4.3), respectivement une chaine de Markov avec un trou spec-
tral (CMTS) vérifiant les Hypothéses M3.1-M3.5 du Chapitre 3. Alors pour tout x € R
et tout y € R, respectivement tout x € X et tout y € R, on a

P, (1, < +00) < +00.

En ce qui concerne la réponse a la question (Q2/1.2.4) et a la question (Q3/1.2.5), le
couplage fonctionne encore mais nécessite de nombreux développements supplémentaires
utilisant en particulier les Théoremes 1.4.1 a 1.4.4. On voit réapparaitre 'importance de
la fonction harmonique V.
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Théoréme 1.4.7 (Chaine affine). On suppose que (X,,)n>0 est une chaine de Markov
affine (CMA) vérifiant les conditions (C1.1/1.4.1)-(C1.3/1.4.3).

1. Pour tout p € (2,0), z € R et y > 0,
VP, (1, >n) <o (L+y+ |2])".

2. Si on suppose de plus ou bien la condition (C2/1.4.7) et E(a) = 0 ou bien la condition
(C3/1.4.8), alors il existe o > 0 tel que

i. Pour toutx € R ety > 0,

2V (z,y)

P, (1, > n) oo T

11. Pour tout x e R, y >0 ett >0,

y+ Sy
P, <t
<U\/ﬁ

2
ot ®t(t) =1-— e~ est la fonction de répartition de la loi de Rayleigh.

Dans le Chapitre 2, on donne également I'asymptotique du temps de retour, c’est-a-
dire les mémes résultats mais pour des points pour lesquels y < 0.

Dans le Chapitre 3 (pour les chaines de Markov a trou spectral), notre réponse est
plus précise a plusieurs points de vue. On continue de donner des résultats analogues
sur le support de V mais on fait également remarquer que sur le complémentaire de V'
le seul comportement possible est la décroissance tres rapide de la probabilité de survie
(cf le point 3 du Théoreme 1.4.8 ci-dessous). Ce résultat est optimal, je construit dans
le Chapitre 3 un exemple d’une chaine de Markov qui atteint cette borne. Ce dernier
comportement tranche avec le cas indépendant pour lequel la marche survie avec une
probabilité en C'/4/n ou ne survie pas (la probabilité est nulle). Les résultats sont plus
précis également dans le sens ot 'on donne des bornes du terme suivant dans le dévelop-
pement asymptotique lié a chaque réponse. A nouveau, la fonction N est donnée par le
Théoreme 1.4.2.

Théoréme 1.4.8 (Chaine a trou spectral). On suppose que (X,,)n>0 est une chaine de
Markov avec un trou spectral (CMTS). Plus précisément, sous les Hypothéses M3.1-
M3.5 du Chapitre 3, il existe o > 0 tel que

1. Pour tout (z,y) e X xR etn > 1,

1 4+ max(y,0) + N(x)

vn

P, (r, >n) <c

2. Pour tout (z,y) € supp(V),

2V (z,y)

P, (1, > n) By e

3. Pour tout (z,y) ¢ supp(V) et n > 1,

P, (ry >n) <ce ™ (1+ N(z)).
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4. Il existe eg > 0 tel que pour tout € € (0,&9), n > 1 et (z,y) € X x R,

2
max(y, 0) + (1+ ylly,speey + N(2))
S Ce nl/2+e/16 )

2V (z,y)
\2mno

5. Pour tout (z,y) € supp(V) and t > 0,

y+ S,
P, <t
(a\/ﬁ

2
ou dH(t) =1— e~ est la fonction de répartition de la loi de Rayleigh.

6. De plus il existe eg > 0 tel que pour tout ¢ € (0,e0), n = 1, tg > 0, t € [0,10] et
(z,y) € X xR,

P, (1, >n) —

2V ¢
e S )

2
max(y,0) + (1 +yliysnie-—< + N(a:))
S Ceto nl/2+¢/16 :

1.4.5 Théoreme local pour des marches markoviennes finies

On reprend dans ce paragraphe les principaux résultats du Chapitre 4. On se place
dans le cas ou la chaine de Markov est a espace d’états fini (CMF) et l'on souhaite
répondre a la question (Q4/1.2.6) a l'aide d’un résultat similaire a la Proposition 1.3.5.
La méthode s’inspire tres largement de celle que développe Denisov et Wachtel [20] dans
le cas lattice et se fonde sur 'idée suivante. On reprend toujours les notations (1.2.1) et
(1.2.2) et on suppose que les conditions (C1/1.4.4)-(C3/1.4.6) sont satisfaites. On procede
en trois étapes, chacune renforgant la vitesse de convergence vers 0 d'un facteur 1/y/n. La
premiere étape est immédiate et consiste a utiliser directement un théoreme local pour
la marche non-conditionnée. L’inégalité suivante se démontre de la méme fagon que le
théoréme 3.4 de Grama et Le Page [39]. Il existe une constante ¢ > 0 telle que pour tout
reX,yeR, 2>20,a>0etn>1,

c(1+a?)
i
L’important est que cette majoration ne dépend ni de y ni de z. Dans un deuxieme

temps, on va en conséquence pouvoir intégrer cette majoration de la fagon suivante. Par
la propriété de Markov, on écrit que, pour k = |n/2] la partie entiere de n/2,

L(x,y,2) =P, (y+ Sn€lz,24+a], 7, >n) <P, (y+ S, €[z,2+4a]) <

c(1+a?)
vn —k

A T’aide du point 1 du Théoréme 1.4.8, on obtient une majoration en 1/n mais qui dépend
cette fois du point de départ y :

L(z,y,2) =Ey (Ln—k (Xg, ¥y + Sk, 2) 3 7y > k) < P, (1, > k).

¢(1 + a*)(1 + max(y,0)) |

I(z,y,2) < (1.4.9)

Précisons que la fonction N du Théoreme 1.4.8 peut étre bornée uniformément en x
puisque l'espace X est fini. La troisieme et derniere étape est plus astucieuse et consiste
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a « renverser » la marche. Revenons pour un moment au cas indépendant, si Xi,..., X,
sont 7.7.d. alors la chalne « renversée » X,, X, 1, ..., X; est également i.i.d. Posons
Xi =X, X5 =X,_1, ..., X,y = X;. Dans ce cas la marche « renversée » est définie par
* * *k
Sp=—f(X7) = = f(XZ) = =(Sn — Snk)

Plagons-nous également pour simplifier dans le cas ou .S,, est une variable discrete. Alors
on observe que pour tout y > 0 et z > 0,

Ply+S,=z,1,>n)=P(z+S, =y, 7, >n)

avec 77 := min{k > 1,z + S} < 0}. Ce changement de regard sur I’évolution de la
marche nous permet d’inter-changer les roles du point de départ y et du point d’arrivée
z. Revenons au cas markovien non-lattice et supposons pour le moment que 1’on puisse
également « renverser » la chaine de Markov et la marche associée. L’inégalité (1.4.9)
devient alors,

L(z.y.2) < c(1+ a?®)(1 + max(z + a,0))
n » I X n .

On peut alors a nouveau intégrer cette inégalité comme précédemment et on obtient que

c(1+ a®)(1 + max(z,0)(1 + max(y,0)) |

Le processus s’arréte a cette troisieme étape puisque cette fois le majorant dépend et de
y et de z. Ce procédé demande un travail supplémentaire pour obtenir ’asymptotique
exact de I,,(x,v, z) mais il nous donne déja la bonne vitesse en 1/n%2. Le fait de devoir
« renverser » la chaine est une difficulté majeure qui nous a poussés a travailler avec
des chaines de Markov a espace d’états fini (CMF). Dans ce cas, et sous les hypotheses
(C1/1.4.4)-(C3/1.4.6), il existe une unique mesure invariante v strictement positive sur
X. Il nous est alors possible de définir la chaine duale et de renverser le processus en loi.
On pose

P*(z,2") = P(2/, 1) Y(z,2') € X2 (1.4.10)

La matrice P* est une matrice markovienne. Dans une situation plus générale que le cas
fini, une difficulté majeure apres avoir défini 'opérateur dual P* est qu’il faut encore mon-
trer que cet opérateur dual P* vérifie les mémes propriétés que 'opérateur initial P. Cette
condition est nécessaire afin de pouvoir étendre tous les résultats précédents connus pour
la marche initiale & la marche duale (comme le théoréme local sans conditionnement par
exemple). Dans le cas fini, on verra que si P vérifie les conditions (C1/1.4.4)-(C3/1.4.6),
alors il n’est pas difficile de montrer que le noyau dual P* satisfait également les condi-
tions (C1/1.4.4)-(C3/1.4.6). On définit alors la chaine duale (X}),>o comme étant une
chaine de Markov de noyau P* et cette chaine vérifie les mémes théoremes que la chaine
initiale (X,,),>0. Pour plus de détails, on renvoie au Chapitre 4 dans lequel je démontre les
quatre résultats suivants. Le premier est un résultat de type Gnedenko-Stone. La vitesse
donnée est d’ordre n seulement cependant le résultat est uniforme par rapport au point
d’arrivée z. On rappelle que v est la mesure invariante de (X,,),>0, que V' est la fonction
harmonique définie par le Théoréme 1.4.2 et que o > 0 est un réel strictement positif
décrivant « la variance de la marche ».
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Théoréme 1.4.9 (Chaine finie). On suppose que (X,)n>0 est une chaine de Markov finie
(CMF) vérifiant les conditions (C1/1.4.4)-(C3/1.4.6) et que a > 0 est un réel strictement
positif. Alors, il existe o € (0, 1) tel que pour tout € € (0,&0), ¢ fonction de X dans R
positive et bornée, y € R et n > 273, on a

sup n(E, (¥ (Xn);y+Sn€lz2+4al, 7 >n)_2aV(w)V(x,y) ( = >

2€X, 230 Y V2rno? Vno
¢ (1 + max(y,0))
(1 + max(y,0)) ] ( V& + 20 ,

2
ol pi(t) =te T Lii=0) est la densité de la loi de Rayleigh.

Le deuxieme résultat est le théoreme local recherché pour une marche markovienne
finie conditionnée & rester positive, théoréme qui résout la question (Q4/1.2.6) pour les
chaines de Markov finies. Pour (X}),>o une chaine de Markov duale (i.e. de noyau P*
défini par(1.4.10)), on considere E} I'espérance engendrée par les lois fini-dimensionnelles
du processus (X7), -, sachant que la loi initiale de X est donnée par v.

Théoréme 1.4.10 (Chaine finie). On suppose que (X,,)n=0 est une chaine de Markov finie
(CMF) vérifiant les conditions (C1/1.4.4)-(C3/1.4.6). Alors pour toute fonction positive
et bornée p : X =R, a>0,xreX, yeR and z > 0,

lim n%’E, (w(Xn) Y+ Sp € l2,24al, 7y >n)

n—-+o0o

\/EJS / E; (0 ( X))V (XT,2' 4+ S7) ;70 > 1)de!

De plus pour tout n > 1,
SupEx(¢(Xn) ;Y +Sh € [Z=Z+a]77y >n)

reX
cllv]
S 77/3/20o

(14 a®) (1 + max(z,0)) (1 + max(y,0)).

Le troisieme résultat a été développé pour répondre aux besoins des processus de
branchement abordés dans le paragraphe suivant. Il est cependant intéressant en soi et
pour le dire un peu grossierement exprime le fait qu'un processus conditionné a rester
positif et a revenir & des valeurs petites (entre z et z+ a) se comporte asymptotiquement
comme le produit indépendant du processus direct et « renversé », tous les deux étant
conditionnés a rester positif.

Pour tout [ > 1 on note €+ (Xl X R) I'ensemble des fonctions positives g : X! x R —
R, vérifiant les deux propriétés suivantes :

— pour tout (z1,...,7;) € X!, la fonction z — g(x1, ..., 7, 2) est continue,
— il existe € > 0 tel que maxy(,, .)exiy SUPzerg(T1, . . ., 1, 2) (1 + 2)*F < +o0.

On suppose que la chaine duale (X),>0 est construite de fagon a étre indépendante de
la chaine directe (X, )n>0 et on note par E, .- espérance engendrée par les lois fini-
dimensionnelles du processus (X, X;),-, sachant que (Xo, X§) = (7,2*). On note éga-
lement V* la fonction harmonique de la chaine duale (X),>o.
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Théoréme 1.4.11 (Chaine finie). On suppose que (X,)n>0 est une chaine de Markov
finie (CMF) vérifiant les conditions (C1/1.4.4)-(C3/1.4.6). Alors pour tout x € X, y € R,
[ >1,m>1 et toute fonction g € €+ (Xl+m X R)

lim n%?E, (g (X1, s X X1y -, Xy + 50) 5 1 > n)

n—-+o00

2 +o00 . .
. \/%03/0 x*zerEm,x* (g(X1,.. ., X0, X0, X0 2)

XV (X,y+S)V* (X, 2+ S,) 17y >1, 77 >m)v(z")dz.
Le quatrieme et dernier résultat de cette section découle du Théoréeme 1.4.11. Il donne

le comportement asymptotique de la probabilité que la marche y + S,, passe pour la
premiere fois dans les négatifs au temps n exactement.

Theorem 1.4.12. On suppose que (X, )n>0 est une chaine de Markov finie (CMF) véri-
fiant les conditions (C1/1.4.4)-(C3/1.4.6). Alors pour tout x € X et y € R,

2V (
lim n%?P, (1, =n) = ()

* * * S
n—+o00 \/%03 / ]E V (X17 )asl /Z)dz

1.4.6 Processus de branchement en environnement markovien

On reprend le cadre des processus de branchement en environnement aléatoire décrit
dans la Section 1.3.4 et qui est ’objet d’étude du Chapitre 5. Le principe est de remplacer
I'hypothése d’indépendance des environnements par le fait que la suite (X,,),>0 est une
chaine de Markov & valeurs dans un espace d’états X fini (CMF). On suppose toujours
(C1/1.4.4), c’est-a-dire que la matrice de transition P associée est primitive,

ko > 1, V(i,j) € X2, P¥(i ) > 0. (C1/1.4.11)
Avec les notations de la Section 1.3.4, on suppose également que

VieX, O0<E {(g}l)Q] — (1) < +o0. (C02/1.4.12)

On se place dans un cadre non-lattice et on suppose que la condition (C3/1.4.6) est
vérifiée pour la fonction p : pour tout (6,a) € R?, il existe une orbite, c’est-a-dire une

suite de points ig, ..., 7, dans X communiquant de la facon suivante
P(io,il) > 0, P(il,ig) > 0, R P(in—lyin) > 0, P(Z»,“Z()) > 0,
telle que
plio) + plir) + -+ + p(in) — (n+ 1)0 ¢ aZZ. (C3/1.4.13)

Sous ces hypotheses, les développements précédents des Sections 1.4.2 a 1.4.4 vont nous
permettent dans le Chapitre 5 d’étendre les Propositions 1.3.7 a 1.3.10 au cas des envi-
ronnements markoviens finis. Pour tout A € R, et tout ¢« € X, nous verrons que la limite
de Ell /n (e’\s") quand n — +o00 existe et ne dépend pas de i. On définit alors

E(A) := lim El/n( ) :

n—-+o0o

Ce réel k(\) correspond a la valeur propre dominante de 'opérateur perturbé P, qui
nous sera utile pour effectuer le changement de loi nécessaire aux cas sous-critiques.
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Théoréme 1.4.13 (Cas critique). Supposons les conditions (C1/1.4.11)-(C3/1.4.13) et
SUpPpPosSons que
kK'(0) =v(p) =) pli)v(i) = 0.
iexX
Alors il existe u; une fonction sur X strictement positive telle que pour tout (i, ) € X2,

Pi(Zn>0, X0 =) o Iw

Théoréme 1.4.14 (Cas fortement sous-critique). Supposons les conditions (C1/1.4.11)-
(C3/1.4.13) et supposons que

k' (0) <0, k(1) <O0.
Alors il existe v et us deux fonctions sur X strictement positives telles que pour tout
(i,5) € X2,
Pi(Zy >0, X =7) ~ k(1)"vi(i)uz(j).

n—-+oo

On rappelle que sous la condition (C1/1.4.11), il existe une unique mesure invariante
pour la chaine (X,,),>0 que 'on note v.

Théoréme 1.4.15 (Cas critique intermédiaire). Supposons les conditions (C1/1.4.11)-
(C3/1.4.13) et supposons que

K(0)<0, K1) =0.

Alors il existe vy et ug deux fonctions sur X strictement positives telles que pour tout
(i,5) € X2,

B (Zy >0, Xp=j) ~ k(1)"“(®_1j;’<i).

Théoréme 1.4.16 (Cas faiblement sous-critique). Supposons les conditions (C1/1.4.11)-
(C3/1.4.13) et supposons que

K0)<0, k(1) >0.

Alors il existe un unique X € (0,1) tel que K'(\) = 0 et il existe uy une fonction sur X2
strictement positive telle que pour tout (i,7) € X2,

P (Zy >0, Xp=j) ~ k(A)”““(”]).

n—-+o0o n3/2

1.5 Rappels sur les marches indépendantes

Dans cette section je rappelle, et détaille parfois un peu, la démonstration du calcul
de I'asymptotique de la probabilité de survie d’'une marche aléatoire unidimensionnelle
lorsque ses accroissements sont 7.7.d. De cette facon, on pourra éventuellement constater
I'importante différence que possede cette approche historique avec celle que nous nous
proposons de suivre dans les chapitres suivants pour traiter nos modeles markoviens. La
preuve ci-dessous est trés majoritairement due a Spitzer et je paraphrase essentiellement
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son livre [66]. Pour une version légerement différente de cette démonstration on pourra
aussi se référer au livre de Feller [29].

Soient (€2, .#,P) un espace probabilisé et E I'espérance associée. On considere (Xy,),,-,
une suite de variables aléatoires indépendantes et identiquement distribuées définies sur
(Q, .7 ,P) et a valeurs dans R. On définit la marche associée par :

V’I”L}l, Sn:X1+—|—Xn et SOZO

On considere également 7 le premier instant strictement positif pour lequel la marche
rentre dans la demi-droite des réels négatifs :

r=inf{n >1, S, <0}.

L’objectif de cette section est de redonner les idées de la démonstration du résultat bien
connu de Spitzer [65].

Théoréme 1.5.1 (Spitzer). Supposons que la suite (Xn)n21 est i.1.d. et supposons que
E(X))=0 e o*=E(X})<o0.

1

1. Alors, la série Yy ¢ (IP’ (S, >0) — %) converge vers un réel noté

—+00

azZi(P(Sk>0)—;>ER.

k=1

2. De plus, la probabilité que la marche survive est donnée asymptotiquement par [’équi-

valent suivant :
ea

P(r>n) ~

n—oo ™ ’

Dans la section suivante, on démontre le Théoreme 1.5.1. Pour une meilleure lisibilité,
les lemmes d’analyse pure sont reportés dans la Section 1.5.2.

1.5.1 Démonstration du Théoréme 1.5.1

La premiere étape est d’obtenir des informations sur la fonction caractéristique du
couple (7,S;). Pour ce faire, introduisons quelques notations.

Définition 1.5.2.

1. On désigne par ¢ la fonction caractéristique de la loi commune aux X,, n > 1 : pour
tout 0 € R,

0(0) =R (ele) :
2. On découpe le plan complexe en deux demi-plans :

9% :={2e€C:S3(z) >0} et 27 :={2e€C:3(z) <0} (1.5.1)

ot 3(z) est la partie imaginaire du compleze z.

3. Pour tout n > 0, on pose
Ve 27 UR, 0, () =E (eizs” ST = n)
Vz € 2T UR, ot(z) :=E
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4. Pour tout t € [0,1[, on pose

400
Vze 27 UR, e (t,2) =D t"p,(2) =E (tT e < +oo)

n=1
Vz e 9T UR, ot (t,2) = Jio t"ot(z) =E <T§:1 t" eiZS”> :
n=0 n—=0
Par I'indépendance des accroissements on établit en premier lieu la factorisation sui-
vante :
Lemme 1.5.3 (Factorisation de Wiener-Hopf). Pour toutt € [0,1] et € R :
L= (t,0) = (1 —tp(0)) 9" (t,0).
Démonstration. Pour tout n > 0 et 0 € R,
on1(0) + ¢ (0) =E (ewS"+1 ;T >=n+ 1) =E (ews” efXns. 7 > n) :

Naturellement, 7 est un temps d’arrét pour la filtration canonique (ey@n)@o avec %, =
o(Xy,...,X,) et Fy la tribu grossiere. Ainsi {7 > n} € .%, est indépendant de X,,,; et

Pt (0) + 0141 (0) = E (75 7> n) E (¢7%0) = o(0) ¢}t (6)

En sommant on obtient pour tout ¢ € [0, 1],

(. 0) + o (t0) =1+ +ZO:O 7 (s (0) + 9i41(8)) = 1+ 10(0)0" (£, 6).

n=0

A Taide de cette factorisation, on en déduit le résultat suivant.

Lemme 1.5.4. Pour tout t € [0,1] on a

Ve 97 UR, e (t,z) =E (tT e 1 < —l—oo)
“+o00 tn )
=1—exp <—n§1 EE (e”s" 0 S, < 0))
et

T—1
Vz € 2T UR, et(t,z) =FE (Z t" eizs">
n=0

= exp (Jio t;IE (eizs" 0 Sy > O)) .

n=1

Démonstration. Pour tout z € C tel que |z] < 1, on a exp (— ] %") = 1— 2. Donc

pour tout ¢ € [0,1] et # € R, par indépendance des variables aléatoires X,,, n > 1,

+o0 tn

| — t(6) = exp (- > 7:@(9)”> ~ exp (— ST (ewsn)> |

n=1



28 CHAPITRE 1. INTRODUCTION

En découpant suivant le signe de S,,, on obtient que

1 — tp(8 —exp( ;ijl:E(”’S Sn>0>>exp< ftnﬁ(ws S, o)) (1.5.2)

On reprend les notations présentées en (1.5.1) et pour tout ¢t € [0, 1], on considere (-
et ;7 deux fonctions complexes définies sur 2~ U R, respectivement 27 U R de la facon
suivante :

Vze 7 UR, ¢ (2) = [1 - iot"E (eiZS" T )] exp (io nE( #5n . 5< 0)) ,
n=1
exp< +Zojotnlﬁ.:( 253, >0))

—+00

Vz€e 9T UR, GH(z) = [Z t"E (eiZS” ;T > n)

n=0

Il est clair que pour ¢ fixé entre [0, 1], la fonction ¢, est analytique sur 2, continue en
tout point de R et bornée sur ¥~ UR par

G (2)| < [1+7§t”1?(r ]exp (io Ups, )

S[M+E({; 7 < +00)]exp (Jio tn) < it (1.5.3)

—n 1

De méme la fonction (;* est analytique sur 2%, continue en tout point de R et bornée
sur 27 UR par

Zt”]P’ T >n)

exp (io 2:1@ S, > 0)) (1;)2 (1.5.4)

De plus en utilisant la définition de ¢~ et ¢ (voir Définition 1.5.2), le Lemme 1.5.3 et
I’égalité (1.5.2), on obtient la relation suivante sur R entre ¢; et ¢

(=) <

Vo € R, C{(Q)I{ (t&}exp(iojO ;E(zesn.5n<0)>

= [1 —tp(0)] ¢t (t,0) exp <§:O ;]E( 0Sn . g < O))
t@exp( JiOtE<’95 Sn>0)>
= (1 (0). (1.5.5)

On pose maintenant (; la fonction définie sur C par

) G(®) size 27 UR,
Glz) = { GH(z) size 2T UR.

D’apres (1.5.5), la fonction (; est bien définie sur R. De plus ¢, est analytique sur 2~ U2
et continue sur R. Donc par le Lemme 1.5.13, ¢; est analytique sur C. De plus par (1.5.3)
et (1.5.4), ¢; est bornée sur C donc par le théoréme de Liouville,

de; € C, telle que Vz € C, G(2) = .
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On détermine la constante en remarquant que, par convergence dominée,

exp( iotnE< 05 . g, >O)> =1.

+oo
. + /- o . n _gsn .
QEIJPOOQ (29)_(925?00 [1+Zt E(e 7T>n)

0eR 0eR n=1

Donc ¢; = 1 et par suite, Vz € C, {; (2) = ¢, (2) = 1. Donc par les définitions de ¢, , ¢;",
@~ et T, on en conclut que

+o0 tn
Ve 97 UR, 1—¢ (t 2 —exp< Z E(”S"'S 0)),
“+o0o n
Vz € 9T UR, cp(tz)-exp(Z E(ZZS"'S >0)>
n=1
O
Lemme 1.5.5. Le temps de sortie dans les négatifs T est fini presque surement :
P (7 < 400) = 1.
Démonstration. D’apres le Lemme 1.5.4, pour tout ¢ € [0, 1],
+oo tn
cp_(t,O):E(tT;T<+oo):1—exp( Z —P(S )
Par conséquent, par le théoreme de convergence monotone de Lebesgue,
P(r < 4+00) = %iH}E(tT; T < 400)
i<1
+00 "
=1—exp —hmz —P(S
21 =
+<>O 1
=1—exp ( O)) : (1.5.6)
n=1 n
De plus, par le théoreme central limite, P (5, < 0) o 1/2 et donc
400 1
> =P(S = 4o00. (1.5.7)
n=1 n
Ce qui, avec (1.5.6), conclut la preuve du lemme. O

Lemme 1.5.6. Le temps de sortie T n’est pas intégrable :

Démonstration. Pour tout k > 1 et t € [0,1[, on a 0 < (1 —t*)/(1 — t) < k. Donc pour
tout ¢ € [0, 1],
1—E(t7)  1—¢(t0)

E(r) > -
(7) 1—¢ 1—¢
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Par le Lemme 1.5.4,

E(7) > exp (— Jio ﬁIP’ (Sp < O)) exp (—1In(1 —1))

n=1 n
+oo tn +o00 tn
= exp (—Zn]P’ —i—Z )
n=1
—+00 n
(Z —P(S, >0)>

n=1

Or de fagon analogue a (1.5.7), 342 P (S, > 0) = 40c0. D’ot, par convergence mono-
tone,

400 yn
E(r) > lim exp (ZI;]P’ (S >O)> = +00.

t<1 n=1

]

Pour établir la convergence de 315 L ( (Sp, >0) — %) on va avoir besoin des deux
lemmes suivants.

Lemme 1.5.7.

Sn 1
nhm E(ﬁ 75'n/0> NoT:

Démonstration. On note F' la fonction de répartition de la loi normale centrée et réduite.

Pour tout n > 1, on écrit que
S, 1 +oo S,
B2 .8, >0] - —— /]P’ ") = (1= F(u)dul.
| <\/ﬁa > V2T 0 (ﬁa u) ( (u)) du

Fixons A > 0, on a alors

S 1
E 7”;57120 _ -
‘ (ﬁa ) v2r

A Sh +oo Sh
é/o F(u)—P(\/ﬁa<u> du+/ ‘1—F(u)—P<\/ﬁa>u> du
A Sh +o0 1 )
<[ |Fw)-P du / d
/0 () (ﬁa = u) * no u2 "
! F P Sn d
—/0 (u) — (\/ﬁa<u> U+Z
Ainsi par convergence dominée, pour tout A > 0,
S, 1 2
lim |E|—=;5,20] - —=| <
H”Eoo' <\/ﬁo’S O) Var| S 4
et lorsque A tend vers +o0o on obtient le résultat souhaité. O

Lemme 1.5.8.
“+o0o tn

hm\/l— Z —E(S,; S, >0)=
i)

S0
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Démonstration. On commence tout d’abord par observer que, pour tout ¢t € [0, 1],

1 =
= ant",
i X
ou a, = 22(3(%):)2, pour tout n > 0 et par la formule de Stirling,

1
Ay, ~ —_—.
n—-+o0o ™

Notamment a,, > 0 et 3,5 a,t" a un rayon de convergence égal a 1 et diverge en 1. De
plus par le Lemme 1.5.7,

Donc par le Lemme 1.5.14,

V2 £ 1
- Z ]E ns Sn 0) tNI )
n=0 " 2 vIi—t
d’ou le résultat. O

Lemme 1.5.9. La fonction t — Y25 & ( (S, >0) — 7> admet une limite dans R U
{400} lorsque t — 1 et

—+00 1n

o CORURE| ST

1k1

-E (ST>

exp

\/5

Démonstration. Posons b, = E (S, ; 7 > n) pour tout n > 0. Montrons que (by),,-, est
une suite croissante qui tend vers —E (S;) quand n tend vers +oo. Soit n > 0,

bn+1:E(Sn+1;T>7”L+1)
=E(S,s1;7>n)—E(S,p1; 7=n+1)
=E(S,;7>n)+E(X;7>n)—E(S,m1;7=n+1).

Or par indépendance des accroissements (X,,),,.; et leur centrage,
E(Xpp1;7>n)=E(X,1)P(r>n)=0.
De plus par définition de 7,
—E(Spy1;7=n+1)=-E(S;;7=n+1)>0.

Donc, on en déduit que
bpy1 Z E(S,; 7>n)=Db,.

Montrons maintenant que (by),, tend vers —E(S;) € R U {+oo}. Puisque par le
Lemme 1.5.5, 7 est fini presque siirement,

—+00

—iE(Sn;T—n)—Z[bn—E(Sn;T>n—1)].

n=1
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A nouveau par indépendance et centrage des (X.,),,,,

+oo

“E(S,) = [bp—bpa] = lim b,

n—-+o0o
n=1

Comme X; est centré et non-identiquement nul, on note au passage que

Maintenant, puisque (by),,-, est croissante, deux possibilités s’offrent & nous : ou bien
la suite converge dans R ou bien la suite diverge vers l'infini. Supposons que (bn)n>0
converge vers —E (5;) < +oo. Dans ce cas, en invoquant le Lemme 1.5.14 avec a, =
—E(S;) pour tout n > 1, on trouve que

—+o00 +oo —E (S )
bpt" =Y t"E(Sn; T >n) ~ .

i T
ou encore .

hm 1—t)> t"E(S,; 7>n)=—-E(S,). (1.5.9)

t<1 n=1
Dans le second cas ou b, = +o00, d’apres le Lemme 1.5.15, I'égalité (1.5.9) reste encore
vraie.

Rappelons maintenant que d’apres le Lemme 1.5.4, pour tout ¢ € [0, 1] et tout 6 > 0
+oo tn
*(t,i0) t"E >n) = —E(e%":8,>0)].
; z (e 7 > n) p(zn (e ))
Puisque ‘t”Sn e 05n 1{T>n}‘ < t")S,] et que t"E (]S,]) < t"nE (] X1]) est sommable en n

pour tout ¢ < 1, il est possible de dériver terme a terme par rapport a € le membre de
gauche. De méme pour le membre de droite, donc pour tout § > 0 et ¢t € [0, 1],

+o0 +00 4n 100 4n
Z t"E (Sn e 0% 7> n) = Z Z;LIE (Sn e 0. 5 > O) exp (Z Z;LIE (6_95" 0 S, > O)) .
n=0 n=1 n=1
En particulier,
+00 +00 n +00 tn
S HE(S,;T>n)=> gE(Sn; S, > 0)exp <Z gIP)(Sn > 0)) :
n=0 n=1 n=1

En utilisant (1.5.9),

~E(S )_11m\/1— io nE (Sy: S, >0)\/1—texp<§ZP(SR>O)>

1 n=1

En conséquence, par le Lemme 1.5.8,

400 $n
li —P
\/5 'irll V1 —texp (Z - (Sp > O)>

=2 LS S s, > 0
_ﬁtlﬂeXp T3 T P>

t<1 n=1 n=1

ey s 0-D)

t<1 =

~E(S,) =

ce qui avec (1.5.8) établit le lemme. O
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Lemme 1.5.10.
+oo 1
> —P(S ) < 400.

nln

Démonstration. Rappelons que, par le Lemme 1.5.5, le temps 7 est fini presque stirement.
Donc, d’apres le Lemme 1.5.4, pour tout ¢t € [0, 1] et tout 6 > 0,

+oo tn
Par convergence dominée, pour tout ¢ € [0, 1] lorsque # — 400, on obtient que
+oo tn
E<f7s57=0)=1—exp< Z —P(S )

Supposons que > iIP (S, = 0) = +00. Alors, par convergence monotone lorsque t — 1,

Mais ceci implique notamment que P (X; < 0) = 0 ce qui contredit le fait que la loi de
X est centrée et non dégénérée. Donc nécessairement Y-/ 1P (S, = 0) < +oo. O

Lemme 1.5.11. La série 3 ;- ¢ (IP’ (S, >0) — %) converge vers un réel noté

< 1 1 3 ¢k 1
a=Y - (IP’(Sk>O)—)_hmZ ( Sk>0)—>ER
klk 2 1k1 2
et -
—E(S;) = —=e“.

V2
Démonstration. Procédons par I'absurde et supposons que

+oon

1
<1 n=

Notons que pour tout ¢ > [0, 1],

f’:(msnm)_;) :+Z°°”<;_P(Sn<0)>

n=1 nln
+ootn +ootn
-3 (psc0 - 1) S e,
n=1

En utilisant le Lemme 1.5.10, la série entiere 3,51 & —IP (S, = 0) a un rayon de convergence
égal a 1 et converge en 1, donc est bornée sur [0, 1]. On en déduit que

+00n

1
%1_{1111 > < (S, <0)— 2> = —00. (1.5.10)
<1 n=
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Or la marche aléatoire T,, = —X; — --- — X, et Ty = 0 a des accroissements (—Xn)n>1
indépendants, identiquement distribués, centrés et dont le moment d’ordre 2 existe. Donc
tous les lemmes précédents sont vérifiés pour (7,,),-,. En particulier, par le Lemme 1.5.9,

+00n +oon 1
%%Il%nz ( S<O)—2)—%§%z:1n( T>O)—2>6RU{+oo},

ce qui contredit (1.5.10). Donc

+oon

%121)?; ( (Sp, >0) — )7&+oo.

Or d’apres le Lemme 1.5.9, nécessairement la limite existe dans R. Notons « cette limite.
La série enticre -, * Z(P(S, >0)— %) a un rayon de convergence égal a 1 et converge
pour t = 1, donc d’apres le théoreme taubérien d’Hardy-Littlewood,

hm§fn< 0)—;>=+f;((5 >0)—;):a€R

fleln n=1
Par le Lemme 1.5.9 on conclut également que —E (5;) = e O

Lemme 1.5.12. Le comportement asymptotique de la probabilité de survie est donné par

eOl

P (1 > n)

~/ .
n—-+oo nm

Démonstration. Considérons la série entiere associée, pour tout ¢ € [0, 1],
+oo

+o0
YD P(r>n)t"=14> P(r>n—1)t" ZIP’
n=0

n=1

:1+t§P(T>n)t"—E(tT).

n=0

Donc, d’apres le Lemme 1.5.4,

(1—1) ZIF’T>n) =1—¢ (0 —6Xp< JiOtnIP’ >

n=0

Par conséquent,

400 +00 4n
\/l—tZP(T>n)t":exp<—ln (1—1) ZtP >
n=0

Par le Lemme 1.5.11,
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Par le Lemme 1.5.16,

Finalement, puisque (P (7 > n)),>0 est décroissante, on conclut par le Lemme 1.5.17 que

. e
nl_l}l}_loo VnP (1 >n) = 7

1.5.2 Quelques lemmes d’analyse

Lemme 1.5.13. Soient 7 et 2~ les demi-plans définis en (1.5.1). Si  est une fonction
holomorphe sur 27 U P~ et continue sur C alors elle est holomorphe sur C.

Inspiré de la proposition P17.3 de [66] page 179, il faut remarquer que l'intégrale de
tout triangle entourant un point de I’axe des réels est nulle et que donc par le théoreme
de Morera, la fonction en question est analytique partout.

On pourra trouver le lemme abélien suivant au théoréme 57 page 108 de Hardy [45].

Lemme 1.5.14. Soient (ay),-, et (bn),>, deur suites de réels telles que
1. pour toutn =21, a, >0,
2. la série entiere Y_,-qant”™ a un rayon de convergence égale a 1 et diverge ent =1,

8. les suites (an),5q €t (bn),=o sont équivalentes : a, e b,,.

Alors les fonctions t — Y720 a,t™ et t — 120 byt"™ sont équivalentes en 1 :

+oo +oo
n n

doant" ~ > bat"

n=0 t<1 n=0
Démonstration. Puisque les suites (a,),,~q et (bn), -, sont équivalentes, il est clair que pour
n assez grand, b, > 0 et que la série entiere ), b,t" a aussi un rayon de convergence
égale a 1 et diverge en t = 1. Soit € > 0, il existe ng > 0 tel que pour tout n > ng, on a
|y — by| < San. Donc, pour tout ¢ € [0, 1],

no

+o0
<D an —ba|+ D an = byl t"

“+o00
Z ant” — b,t"
n=0

n=0 n=ng+1
no c “+00

< Z|an_bn|+7 Z antn
n=0 2 n=ng+1

Or Y729 a,, = +oo donc il existe ty < 1 tel que pour tout ¢ € [tg, 1[, on a 31% |a, — b,| <
£ 320 ant™. Ainsi, pour tout ¢ € [to, 1],

+oo
D apt™ — byt"
n=0

0 —+o0
n=0

n=nop+1

eI e
<) apt™ + 2D ant”™.
2 n=0 2 n=0
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Lemme 1.5.15. Soit (b,),-, une suite de réels positifs telle que la série entiére associce
Yons0t"by, a un rayon de convergence égal a 1 et telle que by, _>—+> +o00. Alors

—+oco
lim (1 —#) > 1", = +oo.
t<1 n=0

Démonstration. Puisque (b,),,, diverge, pour tout A > 0 il existe ng > 1 tel que pour
tout n > ng, on a b, > A. Donc pour tout ¢ € [0, 1],

+oo +oo
(L—=8)> t"by = (1—1) > t"b, = At™.
=0

n=ng
D’otu, pour tout A > 0,
hmlnf 1—1¢ Z t"b, > A

t<1 n=0

et le lemme est vérifié en faisant tendre A — +o0. O]

Lemme 1.5.16 (Karamata). Soit (a,),, une suite de réels positifs (ou nuls) telle que
la série entiere associée Y-, 5o ant™ a un rayon de convergence égal a 1 et telle que

+o00
grll\/l —tnzzjoant =1

t<1

Alors
. ao + P + an 2
lim ——— =

n——+00 \/ﬁ ﬁ

Démonstration. Pour tout fonction h : [0, +00[— [0, +00[ bornée, on considere, lorsqu’elle
existe, la limite suivante :

Z(h) =limv1—t Zant”h (t").

t—1
t<1

Il est clair que .Z est linéaire. De plus, lorsque hy, : t — t* avec k > 0, on obtient :

+o00
ZL(hy) = lim /1 — S a Y = 11311 tkH m Z a, 7D
t<1 n=0 t<i

Puisque par hypothese v/1 — s 320 a,s" — 1 quand s — 1, on trouve donc

L (hi) =
D’autre part, en notant I' la fonction gamma : I'(2) = ;" u*~!e ™ du,
too hy (e7)e +oo  gmulk+l) 1 ‘oo g7 1

o vt Tk mrap T itk wrap VT vt

D’ou pour tout k > 0,
oo hy (e7") e

L) = Jo AT

du,
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et par linéarité, pour tout polynéme P,
too P e ™) e
0 Vul'(1/2)

Fixons désormais h(t) = }1{5e-13, pour tout ¢ € (0, 1]. Soit € > 0 on considére également
ht et hZ deux fonctions continue sur [0, 1] définie respectivement par

Z(P) = du.

. h(t) sitef0, et —e]ule 1]
het) = { e; (t —e! +5) sitcfet—e el
“ h(t) site[0,eUle! +e,1]
(1= { c (ell +¢) (75 - e_l) sitefe!, el +e]

Puisque pour tout ¢ € [0, 1], on a h(t) < hX(t), on écrit que

€

Z*(h) = limsup V1 — Z a,t"h (t") < limsup v1 — Z ant™ht (t").

t—1 t—1
t<1 t<1

Par le théoreme d’approximation de Weierstrass, il existe un polynéme P approchant

3
ht 2 supepo ) |hE (t) — P (t)] < . En conséquence,

2L (h) :$<P+)
B +00 P+ ud
/ \/_F 1/2) ute

oo bl (e7")e™

S o \/_F(1/2)

rehlee oy [Pkl ey du + 2
\/ \/‘r 1/2 +/ \/’r 1/2) fervelet —eemy QU 22

dz + 2¢

du + 2¢

+o0 fy (e

/ \/_F 1/2 / - \/T (1/2)
o [ heT")e™ du + e!
<l VA )

En prenant la limite quand € — 0, on obtient le majorant suivant,

+ 2e.

oty < [T e

b

De la méme fagon, on montre que

L~ (h) = liIELin mio ant"h (t") > o }W du.
t<1 n=0
Par conséquent,
tooh(e )e ™ 2 2

Z(h) = du—

o Vul(1/2) / \/_F 72 T TR T A
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De plus,
/ 1 I
:Nl—lg-loo 1_eNZa"eNh( ) :Nl—lgrloo\/_zan{ne }
- N1—1>r£oo \/_ Z Gn;
ce qui conclut la preuve. O

Lemme 1.5.17. Soit (a,),, une suite décroissante de réels positifs (ou nuls) telle que
_ag+ta, 2
lim ———— = —.
n—+o00 \/ﬁ ﬁ
Alors
lim +/nma, = 1.

n—-+00

Démonstration. On consideére G la fonction définie sur [0, +-00[ par G(z) = a|,| ol |z est
la partie entiere de x € [0, +00[. Pour tout entier n > 1 et tout réel § > 1, on commence
par remarquer que, par décroissance des a; et donc de G,

1 on
na|on| < m/ﬂ G(z) dz < na,.

Par hypothese, [;' G(z)dx = ag+ -+ an—1 ~ 24/n/y/7 quand n — +o0. En particulier
pour n suffisamment grand, [;' G(x)dz > 0. Ainsi,

na|gn) 0 "G(x)dr — [y G(z)dx na,
Jo Gz)dz = (0-1) [fG(z)de  ~ [7 G(z)de

En passant a la limite lorsque n — +o0,

VT o Vn—vn V-1 _ 7
3 mee Ve < Mm Gy = g S g i vian
Donc, pour tout 6 > 1,
VT Vo —1 VT
53 msp Vi < S < i Vi

En passant a la limite quand 6 — 1, on conclut que

lim sup v/mna, < 1 < liminf /7na,.

n—+00 n—r+00



Chapter 2

Limit theorems for affine Markov
walks conditioned to stay positive

This chapter is the subject of the article [36] in collaboration with
Ion Grama and Emile Le Page
to appear in
Annales de Uinstitut Henri Poincaré (B) Probabilités et Statistiques.

RESUME. On considére une marche Markovienne réelle S, = X; + --- + X,, dont les
accroissements (X,,),,-, sont définis par une récursion stochastique partant de Xy = z.
Pour un point de départ y > 0, on note par 7, le temps de sortie du processus (y + Sn)n>1
de la partie positive de la droite des réels. On s’intéresse au comportement asymptotique
de la probabilité de I'évenement 7, > n ainsi qu’a la loi conditionnelle de y 4 S,, sachant
7, = n quand n — +00.

ABSTRACT. Consider the real Markov walk S, = X; +-- -+ X,, with increments (X,,),-,
defined by a stochastic recursion starting at Xy = x. For a starting point y > 0, denote
by 7, the exit time of the process (y + Sy),,-, from the positive part of the real line. We
investigate the asymptotic behaviour of the probability of the event 7, > n and of the
conditional law of y 4 S5, given 7, > n as n — 4o0.

2.1 Introduction

Assume that the Markov chain (X,),>¢ is defined by the stochastic recursion
XO = c R, XnJrl = CLn+1Xn + anrl, n 2 0, (211)

where (a;,b;)i>1 is a sequence of i.i.d. real random pairs satisfying E(]a;|") < 1 and
E(]b1|*) < +o0, for some « > 2. Consider the Markov walk S,, = >-}_; X, n > 1. Under
a set of conditions ensuring the existence of the spectral gap of the transition operator of
the Markov chain (X,,),,., it was established in Guivarc’h and Le Page [43] that there
exist constants p and o > 0 such that, for any ¢ € R,

S —np
P, ———<t] >®(t) as n— +oo, 2.1.2
(it <) s a0 2.12)
where ® is the standard normal distribution function and PP, is the probability measure
generated by (X,,),>0 starting at Xy = x. There are simple expressions of y and ¢ in

terms of law of the pair (a,b): in particular pu = II—EIbEa'

39
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For a starting point y > 0, define the first time when the affine Markov walk (y+5,,)n>1
becomes non-positive by setting

7, =min{k > 1, y+ S; < 0}.

In this paper we complete upon the results in [43] by determining the asymptotic of the
probability P, (7, > n) and proving a conditional version of the limit theorem (2.1.2)
for the sum y + S, given the event {7, > n} in the case when y = 0. The main
challenge in obtaining these asymptotics is to prove the existence of a positive harmonic
function pertaining to the associated Markov chain (X,,,y + Sy),,5,- A positive harmonic
function, say V, is defined as a positive solution of the equation Q_ V =V, where Q, is
the restriction on R x R* of the Markov transition kernel Q of the chain (X,,y + S5),-¢-
From the more general results of the paper it follows that, under the same hypotheses
that ensure the CLT (see Condition 2.1 in Section 2.2), if the pair (a,b) is such that
P((a,b) € (0,1) x (0,C]) > 0 and P((a,b) € (—1,0) x (0,C]) > 0, for some C' > 0, then

2V (z,y)
P, > ~ —— 2.1.3
(>n) At 2.1
and g
Y+ On n

where &1 (t) =1 — e /2 is the Rayleigh distribution function. In particular, the above
mentioned results hold true if @ and b are independent and a is such that P(a € (0,1)) > 0
and P(a € (—1,0)) > 0. Less restrictive assumptions on the pair (a,b) are formulated in
our Section 2.2. For example, (2.1.3) and (2.1.4) hold if a = 0 and b satisfies Condition
2.1 which covers the case of independent increments.

The above mentioned results are in line with those already known in the literature for
random walks with independent increments conditioned to stay in limited areas: the rate
1/4/n in (2.1.3) and the asymptotic distribution ®*(¢) in (2.1.4) are the same. We refer
the reader to Iglehart [47], Bolthausen [9], Doney [21], Bertoin and Doney [6], Borovkov
[11, 10], Caravenna [13], Eichelsbacher and Koning [27], Garbit [31], Denisov, Vatutin
and Wachtel [17], Denisov and Wachtel [18, 20]. More general walks with increments
forming a Markov chain have been considered by Presman [60, 61], Varapoulos [68, 69],
Dembo [15], Denisov and Wachtel [19] or Grama, Le Page and Peigné [41]. In [60, 61]
the case of sums of lattice random variables defined on finite regular Markov chains has
been considered. Varapoulos [68, 69] studied Markov chains with bounded increments
and obtained lower and upper bounds for the probabilities of the exit time from cones.
Some studies take advantage of additional properties: for instance in [19] the Markov
walk has a special integrated structure; in [41] the moments of X, are bounded by some
constants not depending on the initial condition. However, to the best of our knowledge,
the asymptotic behaviour of the probability P, (7, > n) in the case of the stochastic
recursion (2.1.1) has not yet been considered in the literature.

Note that the Wiener-Hopf factorization, which usually is employed in the case of in-
dependent random variables, cannot be applied in a straightforward manner for Markov
chains. Instead, to study the case of the stochastic recursion, we rely upon the develop-
ments in [19], [20] and [41]. The main idea of the paper is given below. The existence of
the positive harmonic function V is linked to the construction of a martingale approxi-
mation for the Markov walk (S,),.,. While the harmonicity is inherently related to the
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martingale properties, the difficulty is to show that the approximating martingale is inte-
grable at the exit time of the Markov walk (y + 5,),,. In contrast to [20] and [41], our
proof of the existence of V' employs different techniques according to positivity or not of
the values of E(ay). The constructed harmonic function allows to deduce the properties
of the exit time and the conditional distribution of the Markov walk from those of the
Brownian motion using a strong approximation result for Markov chains from Grama, Le
Page and Peigné [40].

The technical steps of the proofs are as follows. We first deal with the case when
the starting point of the Markov walk (y + S, )n>0 is large: y > n'/27¢, for some ¢ >
0. When y > 0 is arbitrary, the law of iterated logarithm ensures that the sequence
(|y + Sk|)1<k<nr—- will cross the level n'/2=¢ with high probability. Then, by the Markov
property, we are able to reduce the problem to a Markov walk with a large starting point
y =y + S, where v, is the first time when the sequence |y + Si| exceeds the level
n!/27¢. The major difficulty, compared to [20] and [41], is that, for the affine model under
consideration, the sequence (X,,), -, is not bounded in L!. To overcome this we need a
control of the moments of X, in function of the initial state Xy = x and the lag n.

We end this section by agreeing upon some basic notations. As from now and for the
rest of this paper the symbols ¢, ¢y, cq 3, ... denote positive constants depending only on
their indices. All these constants are likely to change their values every occurrence. The
indicator of an event A is denoted by 1 4. For any bounded measurable function f on
X = R4, d = 1,2, random variable X in X and event A, the integral [y f(z)P(X € dz, A)
means the expectation E (f(X); A) = E (f(X)14).

2.2 Notations and results

Assume that on the probability space (€2, F,P) we are given a sequence of independent
real random pairs (a;,b;), ¢ > 1, with the same law as the generic random pair (a,b).
Denote by E the expectation pertaining to P. Consider the Markov chain (X,,),>0 defined
by the affine transformations

Xn+1 - an+1Xn + bn+17 n = 07

where Xy = z € R is a starting point. The partial sum process (Sy,),>o defined by
Sp = >, X; forall n > 1 and Sy = 0 will be called affine Markov walk. Note that
(Sn)nso0 itself is not a Markov chain, but the pair (X,,, S,,)n>0 forms a Markov chain.
For any z € R, denote by P, and [E, the probability and the corresponding expectation
generated by the finite dimensional distributions of (X,,),>0 starting at X, = z.
We make use of the following condition which ensures that the affine Markov walk
satisfies the central limit theorem (2.1.2) (c.f. [43]):

Condition 2.1. The pair (a,b) is such that:
1. There exists a constant o > 2 such that E (|a|”) < 1 and E (]b|") < +o0.
2. The random wvariable b is non-zero with positive probability, P(b # 0) > 0, and
centred, E(b) = 0.

Note that Condition 2.1 is weaker than the conditions required in [43] in the special
case @ > 2. Nevertheless, using the same techniques as in [43] it can be shown that,
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under Condition 2.1, the Markov chain (X,,),>¢ has a unique invariant measure m and
its partial sum .S, satisfies the central limit theorem (2.1.2) with

= /Rxm(df) = % =0 (2.2.1)
and
52— /Rx2m(dx) +2]§:/R$Ex(Xk)m(diU) = - I_ESEZ?(;) iiéi; 0. (222)

Moreover, it is easy to see that under Condition 2.1 the Markov chain (X,,),>¢ has no
fixed point: P (ax +b=xz) < 1, for any = € R. Below we make use of a slightly refined
result which gives the rate of convergence in the central limit theorem for S,, with an
explicit dependence of the constants on the initial value Xy = x stated in Section 2.9.3.
For any y € R consider the affine Markov walk (y + Sn)@[) starting at y and define
its exit time
7, =min{k > 1, y+ S; < 0}.

Corollary 2.9.7 implies the finiteness of the stopping time 7,: under Condition 2.1, it
holds P, (1, < +00) =1, for any z € R and y € R.

The asymptotic behaviour of the probability P, (1, > n) is determined by the har-
monic function which we proceed to introduce. For any (x,y) € R x R, denote by
Q(z,y,-) the transition probability of the Markov chain (X,,,y + Sy )n=0. The restriction
of the measure Q(z,y,-) on R x R* is defined by

Q+($,y,B) = Q($?y>B)

for any measurable set B on R x R and for any (z,y) € R x R. Let & be a measurable
set in R x R containing R x R%. For any measurable ¢ : 2 — R set Q_ p(z,y) =
fRXRi o(2',y)Q,(z,y,da’ x dy'). A Q -harmonic function on 2 is any function V :
2 — R which satisfies

Q. V(z,y) =V(z,y), forany (z,y)€ 2.

The existence of a non-negative harmonic function is obvious: V' = 0 is an example. To
ensure the existence of a harmonic function which is positive on a set containing R x R*
we need additional assumptions.

Condition 2.2. For allx € R and y > 0,
P,(ry,>1)=P(ax+b> —y) > 0.

Condition 2.3. For any x € R and y > 0, there exists py € (2, ) such that for any
constant ¢ > 0, there exists ng > 1 such that,

P, (Xng, ¥ + Sny) € Kpyey Ty > n0) > 0,

where

Kppe = {(:L‘,y) ERxRL,y=c(l+ |x|p0)}.
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It is clear that Condition 2.3 implies Condition 2.2. Moreover under either Condition
2.2 or Condition 2.3, the event {7, > n} has positive probability, for any n > 1, z € R
and y > 0.

The existence of a harmonic function is guaranteed by the following theorem. For any
x € R consider the process (M,),>o defined by

E(a)

Mo=0, M,=8,+ Y _
0=0 T E@

(Xp—x), n=1, (2.2.3)

and the natural filtration (%, ),>0 with %, the trivial o-algebra and %, the o-algebra
generated by Xi, Xo,..., X,. It is easy to verify that (M,,.%,)n>0 is a P,-martingale,
for any = € R (see Gordin [35]).

Theorem 2.2.1. Assume Condition 2.1.

1. For any x € R and y > 0, the random variable M, is integrable,

E. (

M,

) < o0
and the function
V(z,y) = -E, (M), z€R, y>0
is well defined on R x RY..
2. The function V' has the following properties:
(a) For any x € R, the function V (x,.) is non-decreasing.

(b) For any d >0,p € (2,a), x € R and y > 0,

V(z,y) = max (0,(1 =)y — cps (14 |2[7)),
Vie,y) < (140 (1+ 2"y + cpa (1 + [2”).

(¢) For any x € R, it holds lim % =1

Yy—r+0o0

3. The function V is Q, -harmonic on R x R% : for any v € R and y > 0,
Q+V([B, y) = V([B, y)

4. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
the function V' is positive on R x R*..

Using the harmonic function from the previous theorem, we obtain the asymptotic of
the tail probability of the exit time 7.

Theorem 2.2.2. Assume Condition 2.1.
1. Foranyp€ (2,a), z € R andy >0,

VP, (1, >n) < ¢, (1+y+ |z])’.

2. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
for any x € R and y > 0,
2V (2, y)

]P):E (Ty > n) n%r:ioo W
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Corollary 2.2.3. Assume Condition 2.1. For any p € (2,a), v € R, y > 0 and v €
(0,1/2),
E, (7)) < (1 4y + [2)7.

If in addition we assume Condition 2.2 and E(a) > 0, or Condition 2.3, then

E, (7'1/2) = 400.

Y

Moreover, we prove that the Markov walk (y + Sy),-, conditioned to stay positive
satisfies the following limit theorem.

Theorem 2.2.4. Assume either Conditions 2.1, 2.2 and E(a) > 0, or Conditions 2.1
and 2.3. Foranyx € R, y >0 andt >0,

y+ S,
P, <t
<U\/ﬁ

Ty > n) njoo q)+(t),

t2
where ®T(t) =1 — e~ 2 s the Rayleigh distribution function.
Theorems 2.2.1, 2.2.2, 2.2.4 can be extended to some non-positive initial points y. Set
27 ={(z,y) e RxR_, P, (1, > 1) =P(ax +b> —y) > 0}.

Theorem 2.2.5. Assume Condition 2.1.

1. For any (x,y) € 27, the random variable M., is integrable and the function
V(z,y) = —E, (M7y>, is well defined on 9~ .

2. The function V is Q,-harmonic on 9 = 2~ UR x R

3. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
V' is positive 9 = 2~ UR x R7,.

4. For any (x,y) € 9,

VP, (1, >n) < ¢ (14 |2])P.

5. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then

(a) For any (x,y) € 9,

2V (z,y)
P, (1, > n) et T

(b) For any (z,y) € 2~ andt >0,

y+ 5y
P, <t
(J\/ﬁ

The study of the asymptotic behaviour of 7, and y+.5,, for y < 0 can be motivated by
the problem of determining the time when the population yy+.5,, starting at yo > 0, stays
over a fixed level H. When y = yo—H isin (—H, 0], the time 7, = inf{k > 1, yo+S, < H}
is the return time of the population yg + .5,, under the level H.

Below we discuss two more restrictive assumptions which, however, are easier to verify
than Conditions 2.2 and 2.3, respectively.

Ty > n) e D (t).
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Condition 2.2bis. The law of the pair (a,b) is such that for all C > 0,
P> Clal) > 0.
Condition 2.3bis. There exists C' > 0 such that,
P((a,b) € (—1,0) x (0,C]) >0 and P ((a,b) € (0,1) x (0,C]) > 0.

It is straightforward that Condition 2.2bis implies Condition 2.2. This follows from
the inequality
P(az+b>—y) >P(b>Cla)),

with C' = |z|. The fact that Condition 2.3bis implies Condition 2.3 is proved in the
Appendix 2.9.1.

Under Condition 2.1, it is easy to see that Condition 2.3bis is satisfied, for ex-
ample, when random variables a and b are independent and P (a € (—1,0)) > 0 and
P(a€(0,1)) > 0.

Note that, while Condition 2.3 implies Condition 2.2, there is no link between Con-
ditions 2.2bis and 2.3bis. Indeed, if a and b are independent, a is non-negative and the
support of b contains R, then Condition 2.2bis holds true whereas Condition 2.3bis does
not. At the opposite, if a and b are independent, b bounded and the support of a equals
to {—1/2} U {1/2} then Condition 2.3bis holds true whereas Condition 2.2bis does not.

The outline of the paper is as follows. The martingale approximation (Mn)n>0 of the
Markov walk (S,),-, and some of its properties are given in Section 2.3. In Section 2.4
we prove that the expectation of the killed Markov walk ((y + Sy,) 1{7,>n})n>0 is bounded
uniformly in n. This allows us to prove the existence of the harmonic function and
establish some of its properties in Section 2.5. With the help of the harmonic function
and of a strong approximation result for Markov chains we prove Theorems 2.2.2, 2.2.4
and 2.2.5, in Sections 2.6, 2.7 and 2.8 respectively. Section 2.9 is an appendix where we
collect some results used in the proofs.

2.3 DMartingale approximation

In this section we approximate the Markov walk (S,),,-, by the martingale defined in
(2.2.3) and state some related bounds.

We start by a lemma which shows that there is an exponential decay of the dependence
of X, on the initial state x = Xy as n grows to infinity. This simple fact will be used
repeatedly in the sequel.

Lemma 2.3.1. Assume Condition 2.1. For allp € [1,a], z € R, andn >0,
B (1Xa]") < ¢+ (B2 (Jof?))" Jo] < cp(1 + ).

Proof. Since X,, = > 1, (bk | ai> + [T, a;x, for n > 1, with the convention
" i1 @ = 1, we have by the Minkowski inequality and the independence of (a;, b;)i>1,

EY? (1Xa) < 32 (B2 (IBP)EYP (|af?)" ™) + BV (|af?)" |
k=1

The conclusion of the lemma is thus a direct consequence of Condition 2.1. O]
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All over the paper we use the abbreviation

E(a)

= 1T"E@ (2.3.1)

p
Using this notation and the martingale (M, ), -, defined in (2.2.3), for any » € R and
y € R, the Markov walk (y + Sn)pso has the following martingale representation:

y+ S, =y+pr+ M, —pX,, n=0. (2.3.2)

Define the sequence (X?),0, by

Xg=0 and X, => b, [[ @, n>1, (2.3.3)
k=1 i=k+1

with the convention [} ,,;a; = 1 for & = n. The sequence (X9),>o corresponds to

the stochastic recursion starting at 0. In the same line, we define M{ = 0 and M? =
0__ a 0 X
DOy %, for all n > 1. It is easy to see that the process (M,),.%,),-

mean IP,-martingale which is related to the martingale (M), ., by the identity

is a zero

M, = M? + Az, (2.3.4)
where
}nj [T o E 1
Ap — d A — Ali=1 % _ > 1.
0=20 an n 21 E(a) (ay (@)), n

The following two lemmas will be used to control E,(|M,|").

Lemma 2.3.2. Assume Condition 2.1.
1. The sequence (A, )n>o is a centred martingale.
2. Forallp € [l,a] andn >0,

EY? (|AF) < .

Proof. The first claim follows from the fact that A, is a difference of two zero mean
martingales. Using the Minkowski inequality for 1 < p < «, the independence of (a;);>1
and Condition 2.1 we obtain the second claim. O

Let us introduce the martingale differences:

X,g - E(a)Xlg—l
1—E(a)

Go=Mg =M, = k>

Lemma 2.3.3. Assume Condition 2.1. For allp € [1,a] andn >0,
() <, and BV (|02]") < v/

Proof. For the increments £° we simply use Lemma 2.3.1 with z = 0. For the martingale
(M?),,~0, the upper bound is obtained by Burkholder inequality: for all 2 < p < a and

alln > 1, /
n p/2
o () < oo ((§ @))

k=1
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By the Holder inequality with the exponents u = p/2 > 1 and v = p%, we obtain

2
P
2u> 2u D
n 2v

This proves the claim when 2 < p < a. When 1 < p < 2 the assertion follows from the
case above since the L” norm is less than the L? norm for ¢ € (2, a. O

e () < o

1/p
< n En (Z cp> = cp\/ﬁ.

(Zni €
k=1

Lemma 2.3.4. Assume Condition 2.1. For allp € [1,a] and n > 0,
B/ (IMaf") < ¢ (J2] + V).

Proof. By the Minkowski inequality and equation (2.3.4), for all 1 < p < o, z € R and
n=1,
Y7 (|M,[P) < EVP (|ALP) [o] + BV (|012]).

Then, by the claim 2 of Lemma 2.3.2 and Lemma 2.3.3, the result follows. n

2.4 Bound on the expectation of the killed martin-
gale

The goal of this section is to prepare the background to prove the integrability of
the random variable M, , which is crucial for showing the existence of the harmonic
function in Section 2.5. We use different approaches depending on the sign on E(a): when
E(a) > 0, in Section 2.4.2 we prove that the expectation of the martingale (y+ pz+ M, ),>0
killed at 7, is uniformly bounded in n, while, when E(a) < 0, in Section 2.4.3 we prove
that the expectation of the same martingale killed at 7}, is uniformly bounded in n, where
T, is the exit time of the martingale (y + pz + Mp), -

2.4.1 Preliminary results

We first state a result concerning the first time when the process (|y + Sy|),»; (re-

1/2—¢

spectively (ly + px + M,|),,-,) crosses the level n . Introduce the following stopping

times: for any n > 1, e € (0,1/2), z € R and y € R,
Up = Upe,y = min {k > 1, ly+ Skl > n1/275} (2.4.1)

and
Un = Unezy = min {]{f > ]_7 |y —+ pT + Mk| > nl/Q—e} '

Lemma 2.4.1. Assume Condition 2.1. Let p € (2,«). There exists g > 0 such that for
any e € (0,e0], 6 >0, z€R, y>0andn>1,

_ C ,5,6 _ 1—2¢
P, (l/n > on' 5) < pl/)z T opese S 1
Y

and

C 1-2
1—¢ D,E,0 —Cp e st T2E p
Py (vn > dn' %) < e T Cpege P El
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Proof. With ¢ < min(1/2,¢), where ¢ is defined in Corollary 2.9.6 and b > 0 a constant
to be chosen below, let [ = |b?dn'~%* |, K = |n°/b?| and for any m > 1, x € R and y € R,
with z =y 4 pz,

Am(w,y) = { max |z + My| < (1+2 |p|)n1/25}_

1<k<m

Note that by the martingale representation (2.3.2), we have for any k > 2, |z + M|
=y + Sk + p(y + Sk) — p(y + Se-1)| < (1 + |p]) [y + Skl + |pl [y + Sk-1]- Then, choosing
n large enough to have [ > 2,

P, (un > 5711_8) =P, ( max |y + Si| < nl/Q_‘E)

1<k dnl—¢]

2<k< [oni—¢]

<P, ( max |z 4+ M| < (1—1—2]/)])711/25)

Moreover, we have also,
P, (vn > 5n1_5) <P, (Ax(z,y)).
Since (X, ¥ 4+ Sn)n>0 is a Markov chain,
P, (Ax(w.) = [ Bo (Ai(e3))
x P, (X(K_l)l eda’, y+ Six_1y € dy, AK_l(x,y)> . (2.4.2)
We use the decomposition (2.3.4) to write that, with ¢ =1+ 2|p|,

Py (Ai(2',y") < P ( 2+ Mf’ < 2en'?7F |A| < cnl/z_a)
+ Py (lAzx’\ > cn1/2’€> .

Using (2.3.2) with 2 = 0, we have M? = S? + pX?. By the Markov inequality,

Py (Ay(2/,y)) < P (

+ Py (|p| ‘Xlo‘ > cnlﬂ*s) +cp

2+ SZO‘ < 3ent?F | |p| ‘XZO‘ < cn1/2_6>
E (1A%

/P
np/?—pe |LE | '
Since S does not depend on 2/, using Lemma 2.3.1 and the claim 2 of Lemma 2.3.2, we
obtain
cp (142"

np/2—pe

P, (A (2, y)) < supIP’(

y'€R

Y+ SZO‘ < 3cn1/27€) +
Inserting this bound in (2.4.2), it follows that
IEDJU (AK(J:7 y)) < PJB (AK,1($, y)) Sllp]P) (

y'€R
o (T (X))

np/ 2—pe

Y+ SZO‘ < BCnl/Q*E)
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1/2—e
Set r,, = 3C”ﬂ

rate of convergence in the central hmlt theorem from Corollary 2.9.6
implies that,

. Denote by B_ (rn) the closed ball centred in =% of radius r,. The

-~

applied with x = 0)

Sy w2 du c
supP (L € B_, (r,) gsup/ e 207 ——— + 225,
yer \VI yeR JB_ (rn) 2t I
Vi
Moreover,
_w? du 2r, oG
su e 2 < < —.
y/elnga B (rn) V2ro 20 b

S

Let ¢ < 1. With b large enough in the definition of [, we have 26“ < %, f < 9 and thus

Sy
supP|—e€eB_,(r,) | <g< 1.
yieh <\/7 W( )> 1

[\J S

[terating, we get

K—
P, (Ag(z,y)) < ¢"'P, (Ai(z,y)) + np/ip,pg 22 q" (1 +E, (‘X(kak)l’p)) :
k=0

Using the fact that ¢ ~'P, (A;(z,y)) < ¢¥ 1 =1le” [ne/0*Jm1/a) —p=0 Lemma 2.3.1

p/2—pe )

and the fact that (K — 1 — k)l > c.sn' % for all 0 < k < K — 2, we finally obtain

LS

Cped _ -
P, (Ag(z,y)) < npl/);_ps FCpege e T P

O

2.4.2 Bound on the expectation of the killed martingale: the
case E(a) >0

The difficulty in proving that the expectation E,(y + px + M, ; 7, > n) is bounded
uniformly in n lies in the fact that whereas the killed Markov walk (y + 5,) L7 >ny 18
non-negative, the random variable (y + px + M,) 1(,, ~,; may be not. In the case when
E(a) > 0 we take advantage of the properties presented in the next lemma.

Lemma 2.4.2. Assume Condition 2.1 and E(a) > 0.
1. Forallz € R andy > 0,

y+pr+ M, <0, P,-as

2. Forallz € R and y > 0,

— M., P.-a.s.
1_E()<y+px—|— Y a.s

3. Forallz € R andy > 0, the sequence ((y + px + Mn)]l{Ty>n}) 0 s a submartingale
with respect to P,. B
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Proof. Claim 1. Let, for brevity, z = y + px. Since, by the definition of 7,
X, =y+S;, —(y+S;,-1) <0,

it follows from (2.3.2) and the bound E(a) > 0 that z + M, <y + S;, <0.
Claim 2. Rewrite the martingale representation (2.3.2) in the form

z+A@:y+5¢4+1j%my (2.4.3)
So, at the exit time 7,
1f%m):z+M@—(y+Sw4)<z+m%.
Claim 3. Using the first claim and the fact that (M,),>o is a martingale,
E,(z+Myp1;7y>n+1|%,) =2+ M, —E, (2+M7y;7'y:n+1 3%)
—Ey (2 4+ Mpy1 | %) Liry<ny
> (24 M) Lz, >n)-
[

In the next lemma we obtain a first bound for the expectation of the killed martingale
((y + pz + M) 1z, 5n})nz0 which is of order n'/*7% for some € > 0. Using a recursive
procedure we improve it subsequently to a bound not depending on n.

Lemma 2.4.3. Assume Condition 2.1 and E(a) > 0. Letp € (2,«). Foranye € (0, %),
r€e€R,y>0andn € N, we have

E, (y+ pr+ M,; 7, > n) <y + pr +c|z| + cn'/* 7%,

Proof. By the Doob optional stopping theorem and the claim 2 of Lemma 2.4.2, with
z=y+ pa,

X,
E$(2+Mn,Ty>n)gZ—EI<1_M,Ty<n>

Note that X,, = [T, a;x + X?, with X? given by (2.3.3). Then, with € € (0,1/4),
E, (z+ M, ; 7, > n)

n k
<z+cZH]Eﬂ%DMH%£xOX%

k=11:=1

. 0 1/2—2¢
; Ty SN, max ‘Xk‘gn/
1<k<n

+ cE, (‘ng ; Ty <N, 1%331‘)(,8‘ > n1/2_26> )
By the Markov inequality, for 2 < p < «,
n max | X?|"
E,(z+M,; 7, >n)<z+ C;;Ek (Ja]) |z| + en'/>7% 4 R, %

By Lemma 2.3.1 (with x = 0),

n
]Eac (Z+Mn; Ty >TL) <z+c|x|+cn1/2—2e+cpm.
n 2

Since € € (0, %}2), we have 21(1 — 4¢) > 1/2 + 2= which concludes the proof. O
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Now we give an improvement of Lemma 2.4.3 which establishes a bound of the expec-
tation of the killed martingale ((y + px + M;)1{r,>n})n>0 depending only on the starting
values x, y.

Lemma 2.4.4. Assume Condition 2.1 and E(a) > 0. For any § >0, p € (2,a), x € R,
y>0andn >0,

By (y + pz + Mys 7> n) < (1460 (14 [2])") y+ ¢ (1+ [2])7
Moreover, with § =1, for any p € (2,a), x € R, y >0 andn > 0,
E, (y+ pr+ My; 1y >n) < (L+y+ z]) (1+[a])"

Proof. Let § > 0 and ¢ € (0,4, where &y = min (50, %) and gg is defined in Lemma
2.4.1. Set z =y + pxr. We split the proof following the values of n.

Assume first that n < §~%/¢. A bound of E, (z + M,, ; 7, > n) is obtained immediately
from Lemma 2.4.3: since z = y + pz, for any y > 0,

E,(z4+ M,; 7, >n) <y+cle]+ev/n<y+cs (14 ]z])

and the lemma is proved when n < §-1/°.
Assume now that n > =V and y > n!/?~¢. From Lemma 2.4.3, we deduce that,
E, (y+ px + M, ; 7, >n) <y + px + c|z| 4—010711/2_2E <A +en )y +clzf,

1/2—¢ 71/5‘

which proves the lemma when y > n and n is larger than ¢
Now, we turn to the last case, when n > 6=/¢ and 0 < y < n'/?27¢. Introduce the
following stopping time:
ve =, + |n°].
We have the following obvious decomposition:
E, (z+ M,; 7, >n)
=E, (z—|— M,; 1, >n, v, > {nHD +E, (z—{—Mn; Ty >N, Vs < {nl’ED . (24.4)

=:Jq =:Jo

Bound of Jy. Using the Holder inequality for 1 < p < a, Lemma 2.3.4 and Lemma
2.4.1, we have
(14 |2

< —_—
H S epev/n Lty o+ [2l) ~o o

Ase < %, denoting C, o (z,y) = cpe (1 +y + |z]) (1 4 |z[)P7", for all n > 1,

Cpelz,
gy < Gocl®y). (2.4.5)
n€
Bound of Js. Using the martingale representation (2.3.2) for the Markov walk (y +
Sp)n>1, by the Markov property,

)
Jy = Z / E. (y + pz' + My ; 7 >n — k)
k=1 JRXRY

XPI(XV%de',y%—Sui6dy',7y>ufl,yfl:k:).
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By Lemma 2.4.3,
Jo < E, (z + M, —l—C‘XUi

1/2—2¢ . e € 1—e
+cpn ,Ty>Vn,Vn<Ln J)

For the term z + M-, we use the fact that ((z+ M,)1{;,>n})n>0 is a submartingale (claim
3 of Lemma 2.4.2), while for the term ¢ ’XV%’ =c ’Xyn+LnEJ’ we use the Markov property
at v, and Lemma 2.3.1. This gives

Jy < E,; (z + My—<y5 7y > Lnl—eJ < {n1_5J>

n

+ ¢, E, (nl/Q’QE + E] (la]) | X, | 5 7y > i, v < {nl’ED )

Since 0 < y < n'/?7¢ and v, is the first time when (|y + S,|)n>1 exceeds n'/27¢ the
jump X, is necessarily positive on the event {7, > 1v,,}. Therefore, under the condition
E(a) > 0, by the representation (2.3.2) we have z + M,, > n'/>7¢. Using the last bound,
we obtain

Jo < E, (Z + MLn1*EJ ; Ty > {nl_aJ R I/Z < {nl_EJ)

2+ M,

el (T 7y > v v < [ ) e B (X0 < [1).

Again, using the fact that ((z + M,)1{7,>n})n>0 is a submartingale and Lemma 2.3.1, we
bound J; as follows,

¢ — —cpn® -
Jo < (1—1—7;)1[333 (z+MLn1_aJ;Ty> {nl EJ)—l—cpe P (1 4+ |x)

—E, ((Z + MLnlfeJ) (]l{,jrsl>mlsj} + Zil{’/n>mlgﬂ) y Ty > \‘nl_EJ> . (246)

=:J3

We bound J3 in a same manner as .Ji,

1 + |x p=1 C T,y
|J3| <Cp,6 Lnl—eJ (1—|—y—|—|x|)cp75( L—1’, Dﬁ < P»E( )
n 2 (p—1)e ne

Inserting this bound in (2.4.6) and using (2.4.5) and (2.4.4) we find that, for any n >
no = [y V29| 41,
E. (2 + My; 7, > n) < (1+C7’>Ex (24 My 7y > |1=e]) + S22,
» 'Y ne n y Ty e

Since ((z 4+ My)1{r,>n})n>0 is a submartingale, the sequence u, = E, (2 + M, ; 7, > n) is
non-decreasing. By Lemma 2.9.1 used with a = ¢,, § = C,.(z,y) and v = 0 it follows
that, for any n > ng and kg € {ng,...,n},

Cpe(r,y)
ki

ko
By Lemma 2.4.3 and the fact that z = y + px, we have

E, (z+ M,; 7, >n) < <1+Cp’a>]E$(z+Mk0;Ty>ko)+

0
(L 4y + |2]) (L4 J= )"

Cpe
+ kﬁ
e, (14 |z))Pt
< <1+ p,e( ke‘ D >y+cp7a,ko (1_‘_‘x|)p.
0
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Choosing ko > 6/¢, for any 0 < y < n'/?>¢ and n > 6 /¢,
By (24 My; 7y > n) < (1460 (1+ [2])"7) g+ e (14 [2])7

Finally we conclude that the lemma holds true for any n € N.
O

We can now transfer the bound provided by Lemma 2.4.4 to the Markov walk (y +
Sn)n20~

Corollary 2.4.5. Assume Condition 2.1 and E(a) > 0. For anyp € (2,a), x € R,y >0
and n € N,
E; (y+Su; 7y >n) < (L+y+faf) (L+]z)"

Proof. Using equation (2.3.2), the result follows from Lemma 2.4.4 and Lemma 2.3.1. [

2.4.3 Bound on the expectation of the killed martingale: the
case E(a) <0

We adapt the mainstream of the proof for the case E(a) > 0 given in the previous
section, highlighting the details that have to be modified.

In the discussion preceding Lemma 2.4.2, we noted that (y + px + M,) 1;,,~,} may
not be positive. In the case E(a) < 0, we overcome this by introducing the exit time of
the martingale (y + px + M,),.: for any y € R,

T, =min{k > 1, y + pz + M, < 0}.

The importance of this new exit time is stressed by the fact that one can check that
when E(a) < 0, the sequence ((y + pr + M,)L{r, >} )nz0 is not a submartingale (as in
Lemma 2.4.2 when E(a) > 0) but a supermartingale. Instead we prove that ((y + pz +
M) L1, >n} )n>0 is a submartingale (see Lemma 2.4.6 below). This will play an important
role in view of obtaining upper bounds. By Corollary 2.9.7 we have P, (T, < +00) =1
for any x € R. The main point is to show the integrability of y + px + Mr,. Under the
assumption E(a) < 0 we have 7, < T}, (see Lemma 2.4.6 below), which together with
the integrability of y + px + Mz, and the fact (Jy + px + M,]), -, is a submartingale, will
allow us to prove in Section 2.5.2 that y + px + M, is integrable.

Lemma 2.4.6. Assume Condition 2.1.
1. If E(a) <0, then for allz € R and y > 0,

Ty, < T, Pg-a.s.

2. For all x € R and y € R, the sequence ((y + pr + Mn)IL{Ty>n}) is a submartin-

n=>0

gale with respect to P,.
Proof. Claim 1. We note that when T}, > 1, by (2.3.2) and (2.4.3), with z = y + pz,

Yy + STy =z + MTy — PXTy < —PXTy>
X, o _ X, .
1—-E(a) = 1-—E(a)
Since p < 0, according to the positivity or non-positivity of Xr,, we have respectively
y+Sr, <0ory+Sr,_1 <0. When T, = 1and y > 0 we have X; <Oandsot, =1="1T,.
Claim 2. In a same manner as in the proof of the claim 3 of Lemma 2.4.2, the claim
2 is a consequence of the fact that z + Mz, <0 and that (M, ),>o is a martingale. O]

Y+ St,-1 =2+ Mg, —
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The following lemma is similar to Lemma 2.4.3 but with T}, replacing 7,,.

Lemma 2.4.7. Assume Condition 2.1. Let p € (2,a). For any e € (0,%), r € R,
y > —pxr and n = 0, we have

E, (y+P£E+Mn, Ty > n) < y+p$+c|x] +Cpn1/2_28,

Proof. Note that z =y + px > 0. Since at the exit time T, we have 0 > 2z + Mz, > {1, =

X, (@)X, -1 , by the Doob optional stopping theorem,

1-E(a)
E, (z+ M,; T, >n) < z+cE, (‘XTy +’XTy_1 ; Ty <n).
Since ’XTy + ’XTy,l‘ < 2maxi<p<n | Xi| +|2| on {1, < n}, following the proof of Lemma
943,

n k
Ex(z—an;Ty>n)<z+c<1+ZHE(|ai|)> ||

k=11i=1

© epl/2-2p (max ‘ng‘ < n1/2—25)

1<k<n

+ cE <maX ‘X,S

1<k<n

; max ‘X,g‘ > pl/32%
1<k<n

<z +clz| +epnt/?E
[l

Lemma 2.4.8. Assume Condition 2.1. Let p € (2,a). There exists e1 > 0 such that for
any e € (0,e1), € R,y € R, n >0 and 2 < kg < n,

E, (y+ px+ M, ; T, >n) < (1 + l&) max(y,0) + ¢, || + cpg\/%%— Cpe € P | [P
< ¢ (14 max(y,0) + JoP)
Proof. We proceed as in the proof of Lemma 2.4.4. Set £; = min (50, ™ ) where ¢q is
defined in Lemma 2.4.1. Let ¢ € (0,&1]. With z =y + pz and v} = v, + Ln |, we have
E,(z+ M,;T,>n)=E, <z+Mn; T, >n, v, > {nI*ED
=:Jq
+E, (z +M,; T, >n, v, < {nl_aJ) . (2.4.7)

=:Js

Bound of Jy. Let m. = [n'~¢] — |n®]. Since on {v, > m.} it holds 2’ = z + M,,. <
n'/27¢ by the Markov property we write that

Ji < 0P, (v, > me) + / Eo (| My |) Py (Xom. € A2, v, > m,).
R

By Lemma 2.3.4 and the Holder inequality,

J, < n'? P, (v, > m.) + E, (c (\/n— me + |Xmg|) DUy > m€>
< en'/?P, (v > m,) +E;/p (| Xom. ") P}:/q (v, > m¢) .
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By Lemma 2.3.1 and Lemma 2.4.1 (since m. > n'~¢/c.),

R R S (2.4.8)

n 2

Bound of J;. Repeating the arguments used for bounding the term J, in Lemma
2.4.4, by the Markov property and Lemma 2.4.7, we get

Jo < E, (z + My +C’Xv%

+ e T, > 0, o) < [0 ]).
Using the claim 2 of Lemma 2.4.6 and Lemma 2.3.1,
Jy KBy (24 Myep; T, > [n'7F] | 0f < 0279
+ By (02725 Ty > vy v < [0 )+ e By (X0, |5 0a < [017]).
On the event {T, > v,}, we have n'/27¢ < z + M, . Hence

<[~])

; Ty > vy, v, < {nlED +cpe e =" R, (]Xvn| D v, < {nl’ED )

STm

Jo <E, <z + Mpi—ey; Ty > {nl_aJ , U
+ K, (H]yv"

Coupling this with (2.4.8) and (2.4.7) and using again the claim 2 of Lemma 2.4.6, we
obtain that

E, (2 + M,; T, > n) < (1+ Zp) E, (2 + My T, > |n'~])

C e
b, —Cp,eh p
+ [ — +Cpee z|”.

n 2

Since ((z + Mp)1{7,>n})n=0 is a submartingale (claim 2 of Lemma 2.4.6), the sequence
u, = E(2+ M, ; T, > n) is non-decreasing. By Lemma 2.9.1 with a = ¢,, = ¢,.,
v = |z’ and § = ¢, ., we write that

C C e
E, (#+M,; T, >n) < <1 + gf) E, (z+ My, ; T, > ko) + /55 +epe e ek ||
0 0

Using Lemma 2.3.4 and the fact that z = y + pz, we obtain that

Cpe e ke
E, (z+ M,; T, >n) < <1 + l%) max(y,0) + ¢, || + cw\/k:»g + cpe e PR g |P

]

To transfer the assertion of Lemma 2.4.8 to the random walk (y 4+ S,,)n>0, we need to
assume that E(a) < 0.

Corollary 2.4.9. Assume Condition 2.1 and E(a) < 0. Let p € (2,«). For any x € R,
y>0andneN,
Eo(y+Sn;my>n) <o (1+y+[af).

Proof. By (2.3.2) and the claim 1 of Lemma 2.4.6, we have
E,(y+Sn;7y>n)=E, (y+pr+M,; T, >71,>n)—E, (pX,,; 7y >n).

The result follows from Lemma 2.4.8. OJ
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2.5 Existence of the harmonic function

In this section we prove Theorem 2.2.1. We split the proof into two parts according
to the values of E(a).

2.5.1 Existence of the harmonic function: the case E(a) > 0

We start with the following assertion.

Lemma 2.5.1. Assume Condition 2.1 and E(a) > 0. For any x € R and y > 0, the
random variable M, is integrable. Moreover, for any p € (2, ),

E.

M,

)< ty+lal) 1+

Proof. Let z = y+ pzx. Using the claim 1 of Lemma 2.4.2 and the Doob optional stopping
theorem, we have

E.

M,,

(7<) < —Eu (2 4+ My 7y <n)+y+plal
=E,(z4+M,;7y>n)—z+y+plz|.

By second bound in Lemma 2.4.4, for all n > 0,

E, (

M| 57 <n) < (Ly+ [al) (1+ [2)"™ =: Cyla.y).

Since ({7, < n}),., is a non-decreasing sequence of events and P, (1, < +00) = 1 for any
x € R (by Corollary 2.9.7), the result follows by the Lebesgue monotone convergence
theorem. ]

It follows from Lemma 2.5.1 that the function

V(JT, y) = _Ex (Mry>

is well defined for any x € R and y > 0, which also proves the claim 1 of Theorem 2.2.1
when E(a) > 0.

The following two propositions prove the claims 2 and 3 of Theorem 2.2.1 when
E(a) > 0.
Proposition 2.5.2. Assume Condition 2.1 and E(a) > 0.

1. For any x € R andy > 0,

V(z,y) = lim B, (y+pr+ My; 7y >n) = lim B, (y+ S0 7 >n).

2. For any x € R, the function V(x,.) is non-decreasing.

3. Foranyd>0,p€ (2,a), z€R andy >0,
max(0,y + pz) < V(w,y) < (1460 (1+ [2)"") g+ cpp (14 [2])P.
4. For any x € R,

lim V(z,y)

Yy—r+0o0 Yy

=1.
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Proof. We use the notation z = y + px.
Claim 1. Since, by Lemma 2.5.1, M, is integrable, we have by the Lebesgue domi-
nated convergence theorem,

]Ex(erMn;Ty>n):z—Ex<z+MTy;Ty<n) — —Ez(MTy) =V(z,y).

n—-+00

To prove the second equality of the claim 1 we use Lemma 2.3.1 and the fact that
Ty < 400!

B (X 7y > n)] B2 (1X0]?) y/Pe (7, > ) < 02 (14 [2]) /P (1 > 1) — 0.

n—-+0o0o

Using (2.3.2), we obtain the claim 1.
Claim 2. 1t y; < y2, then 7, < 7, and

E, (14 Sn; 7y >n) SE; (va+ 50 7, >n) SEp(ya+S,; 7 > 1)

Taking the limit as n — +00 we get the claim 2.

Claim 3. The upper bound follows from the claim 1 and Lemma 2.4.4. On the event
{7, > n}, we obviously have y + S,, > 0 and so by claim 1, V(z,y) > 0. Moreover, since
z+ M, <0 (by claim 1 of Lemma 2.4.2), we have, by claim 1,

V(:L‘,y):z— lim Ew<Z+MTy;Ty<n> >z,

n——+00
which proves the lower bound.

Claim 4. By the claim 3, for all 6 > 0, x € R,

14 % _
1 < liminf Y < imgnp L&Y < (146 (1+ |2y,
y—+00 Y y—+o0 Yy

Letting 6 — 0, we obtain the claim 4. m
We now prove that V' is harmonic on R x R7 .
Proposition 2.5.3. Assume Conditions 2.1 and E(a) > 0.
1. The function V is Qi -harmonic on R x R%.: for any v € R and y > 0,
Q. V(z,y) =V(z,y).
2. If in addition we assume Condition 2.2, then the function V' is positive on R x R*..

Proof. Claim 1. Denote for brevity V,(z,y) =E,; (y+ S,; 7, >n). Forallz € R, y >0
and n > 1, by the Markov property,

v”+1(x7y) = Em (Vn(X17y+ Sl), Ty > ].) .

By Corollary 2.4.5, we see that the quantity V,,(X;,y + S1) is dominated by the random
variable ¢, (1 +y + S + | X1]) (1 +|X1|)""" which is integrable with respect to E,. Con-
sequently, by the Lebesgue dominated convergence theorem and the claim 1 of Proposition
2.5.2,

Viz,y) =B, (V(X1,y+51); 7 > 1) = Q V(z,y),

where by convention, V(x,y)1ys0 = 0if y <0 and z € R.
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Claim 2. Fix z € R and y > 0. Using the claim 1 and the fact that V' is non-negative
on R x R% (claim 3 of Proposition 2.5.2) we write

-y
>E, (VX : 1, X .
V(z,y) (V( 1L,Y+51); 1> 1> 2(1—|-,0)>

By the lower bound of the claim 3 of Proposition 2.5.2 and (2.3.2),

-y Y -y
Vie,y) ZE, (y+1+p)X1;7,>1, X1 > —— | 2P, | X;1 > .
o) (y Hrotin A 2<1+,o>> 2 ( 2<1+p>>

By Condition 2.2, we conclude that, V(z,y) > 0 for any z € R and y > 0. m

2.5.2 Existence of the harmonic function: the case E(a) <0

In this section we prove the harmonicity and the positivity of the function V in the
case E(a) < 0. The following analogue of Lemma 2.5.1 shows that the random variables
My, and M, are integrable.

Lemma 2.5.4. Assume Condition 2.1.

1. For any x € R and y € R,

E. (

Mz, |) < (1+ [yl + [2]").
2. If in addition E(a) < 0, then for any x € R and y € R,

E, (

M,

) <p (L [yl +[al?).

Proof. Claim 1. The proof of the bound of E, (‘MTy D is similar to that of Lemma 2.5.1
using Lemma 2.4.8 instead of Lemma 2.4.4 and the fact that by Corollary 2.9.7 we have
P, (T, < +o0) =1,z € R.

Claim 2. By the claim 1 of Lemma 2.4.6, we have 7, An < T, An. Since (|M,])n>0 is
a submartingale, with z = y + px,

E. (

M,

;Tyén)éEI(

Moyn|) < B

Mrypn|) < 22| + 2B, (

Mr,

; Ty < n) .
The Lebesgue monotone convergence theorem implies the claim 2. O]

It follows from the claim 2 of Lemma 2.5.4 that, under Condition 2.1 and E(a) < 0,
the function

V($7 y) = _Ex (Mry)
is well defined for any x € R and y > 0. This also implies the claim 1 of Theorem 2.2.1

*

when E(a) < 0. To prove the positivity of the function V' on R x R, we also consider
the function

W<$’y) =—E, (MTy) )

which is well defined on R x R by the claim 1 of Lemma 2.5.4. Note that W exists under
solely Condition 2.1.

Proposition 2.5.5. Assume Condition 2.1.
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1. For any x € R and y € R,

W(z,y) = lim B (y + px+ Mn; T, > n).

2. For any x € R, the function W (z,.) is non-decreasing.

3. For any p € (2,a), there exists e1 > 0 such that for any e € (0,e1], ko = 2, x € R
and y € R,

maX(()? y—l—pl’) < W<$7 y) < (1 + C:::) max(y, 0)—'_017,6 |x|+cp,€\/k>0+cp,€ e_cp’skg |x|p :
0

4. For any z € R,
LGy
im —————

y—+00 Y

=1

5. For any x € R and y € R,
W(x,y) =E, (W (X1,y+S1); T, >1),

and (W(Xn,y + Sn)ﬂ{;py>n}) is a martingale.

n=0

Proof. The proof is very close to that of Proposition 2.5.2. The upper bound of the claim
3 is obtained taking the limit as n — +o00 in Lemma 2.4.8. We prove the claim 4 taking
the limit as y — 400 and then as ky — 400 in the inequality of the claim 3. The proof
of the claim 5 is the same as that of the claim 1 of Proposition 2.5.3. O

Turning now to V', we have the following proposition.

Proposition 2.5.6. Assume Condition 2.1 and E(a) < 0.
1. For any x € R and y > 0,

Viz,y) = nl—lgloo]Ex (y+pr+M,; 7, >n)= nl_l)I_POOEx (y+Sn; 7y >n).

2. For any x € R, the function V (z,.) is non-decreasing.

3. Foranyp € (2,a),§ >0, z € R and y > 0,
0< Vi, y) S W(z,y) < (14 0)y+cps (1+ |2]7).
4. The function V is Qy-harmonic on R x R : for any x € R and y > 0,
Q. V(z,y) =V(z,y)
and (V(Xn, Y+ Sn)ﬂ{‘ry>n}>n>0 is a martingale.

Proof. The proofs of the claims 1, 2, 4 and of the lower bound of the claim 3, being
similar to that of the previous proposition and of the Proposition 2.5.2, is left to the
reader. The upper bound of the claim 3 is a consequence of the fact that 7, < T, (claim
1 of Lemma 2.4.6): with z = y + pz,

Viz,y) = nETOOEx (24 M, ; 17, >n)
< lim E, (2 4+ M, ; T, >n) =W(z,y).

n—-4o00
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Our next goal is to prove that V(z,y) = max (0, (1 — §)y — ¢,5 (1 + |2[)) from which
we will deduce the positivity of V. For this we make appropriate adjustments to the proof
of Lemmas 2.4.3 and Lemma 2.4.4 where the submartingale ((y+ px+M,) Lz, sn})nz0 Will
be replaced by the supermartingale (W (X, y + S,) L{7,5n} )Jnz0. Instead of upper bounds
in Lemmas 2.4.3 and Lemma 2.4.4 the following two lemmas establish lower bounds.

Lemma 2.5.7. Assume Condition 2.1 and E(a) < 0. For any p € (2,«), there ezists
g1 > 0 such that for any e € (0,&1], x € R, y >0 and n € N,

E, (W(Xn,y+ Sn); 7y >n) = W(z,y) — cp,gnl/z_z‘E — cpe 2]’

Proof. By the claim 1 of Lemma 2.4.6 and the claim 5 of Lemma 2.5.5, as in the proof
of Lemma 2.4.3,

o (W(Xn,y+ Sn)5 7y > n) = W(z,y) — By (W(Xe,,y+ 5,); Ty > 7, 7, <) .
Using the claim 3 of Proposition 2.5.5 and the fact that y + 5, <0,
E. (W(XTy,y—i— Sr,) Ty > 7y, 7y < n) <

— k&
E, (Cp,e + Cpeyf ko + Cp €7 P

Taking ko = |[n'~*], the end of the proof is the same as the proof of Lemma 2.4.3. [

X, X, |

;Ty<n>.

Lemma 2.5.8. Assume Condition 2.1 and E(a) < 0. For any p € (2,«a) there exists
g1 > 0 such that for any e € (0,&1], ko = 2, x € R and y > 0,

B OV (o 52057 ) 2y (1= 22 6,k 14 ).

Proof. The proof is similar to that of Lemma 2.4.4. With v§ = v, + [n°], we have
Jo =By (W (Xn,y+8n) 57y > n) 2 Ee (W (Xoy 4+ S,) 57 >, 05 < [0 7))
Using the Markov property, Lemma 2.5.7 and the fact that n — v, < n,

x,.["

15
n

Jo = E, (W (Xv%, Y+ Sv%> — cpﬁ?”Ll/Z_z6 — Cpe

$ Ty > Uy, Uy < {nl_ED.

By the claim 1 of Lemma 2.4.6, on {r, > v, } we have z+ M, > n'/>~¢ where z = y+pz.
Moreover, using the fact that (W (Xn,y+ Sn) E{Ty>"})n>1 is a non-negative martingale
(claim 3 and 5 of Proposition 2.5.5) and the fact that 7, < 7T, a.s. (claim 1 of Lemma
2.4.6) we can see that (W (Xn,y + Sn) H{Ty>”}>n>1 is a supermartingale. From this and
as in the bound of the term J, of Lemma 2.4.4, we obtain that

Jo 2 By (W (Xpm-epy + Spua=)) 5 7 > [n'77))
_E, (W (thksj,y + SLnPsJ) P Ty > {nl—eJ ,un > {nl—aD (2.5.1)
- Cstgc (24 Moy s Ty > 0, 00 < [017°]) = pee™e (Lt Ja]).
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Using the claim 3 of Proposition 2.5.5 with &y = n and the martingale representation
(2.3.2), the absolute value of the second term in the r.h.s. of (2.5.1) does not exceed

p
)

T, > Lnl‘aj , V5 > Lnl‘aJ) :

Since ((z + Mn)IL{Ty>n}> . is a submartingale, by claim 2 of Lemma 2.4.6, the absolute

nz
value of the third term is less than

Cp’E]EI (Z + MLnl—sJ + \/ﬁ + ’thl—gj

—+ eic"”‘snE ’thl—sj

Cp’aEx(z—an; T,>n).

ye
These bounds imply
Jo = B (W (Xp-e,y + Spsey) 5 7 > |01 7°))
—¢,.E, (z + Mp—c) +v/n + ‘XL,,IHJ P Ty > Lnl‘aj US> {nl‘aJ)
—cpee PR, (‘X\_nl—eJ i Ty > {nl’sJ , Uy > {nl’EJ) (2.5.2)
- C;L’fIEx (24 My: Ty > n) — cpe @™ (1+ |zf7).

Using the Markov property with the intermediate time m. = |n'~¢| —|n®], Lemmas 2.3.4
and 2.3.1 and the fact that v = v, + |n°], the absolute value of the second term in the
r.h.s. of (2.5.2) is bounded by

By (|z + My |+ en®? 4 c| X | + V0 +c(1+ X )5 7 > me, vy > me) ,
which, in turn, using the fact that z + M,,. < n'/?>~ on {v, > m.}, is less than
cpeEy (ﬁ—l— | X | 5 7y > M, vy > mg) )

The absolute value of the third term in the r.h.s. of (2.5.2) is bounded using Lemma 2.3.1
by ¢, e”="" (1 + |z[’). The fourth term is bounded by Lemma 2.4.8. Collecting these
bounds, we obtain

Jo 2 Eo (W (Xjmi-e),y + Spu—s) 5 1 > |n'~°])
- Cp,sEx <\/ﬁ + ‘Xms

C
LTy > e, vy > M) — 25 (Lt y +af). (2.5.3)

£

Coupling the Holder inequality with Lemma 2.3.1 and Lemma 2.4.1, we find that the
second term in the r.h.s. of (2.5.3) does not exceed

n'—¢ Cpe (14 |z])P7!
e (/7 + EYP (X, 7)) BY ( > ) < e (v faf) 2
Implementing this into (2.5.3),
N Cpe
Jo = E, (W (thksj,y—l— Sl.nlfaj) )Ty > {nl D - ;E (1+y+|z").

Since (W (X0, y+ Sn) ﬂ{ry>n})  isa supermartingale, Lemma 2.9.2 implies that

nz

Cpe
J0>EI(W(XkO,y+SkO);Ty>k0)—%(1+y+|x|p).
0
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Using the lower bound of the claim 3 of Proposition 2.5.5 and Lemma 2.3.4, we deduce
that

C g
E, W (Xpn,y+ Sn) ; 7y >n) = yP, (1, > ko) — y% — cper/ ko — cpe |z|”.
0

Now, when y — +00, one can see that P, (7, > ko) — 1: more precisely,
y 1+ |z)

ki (
P, (r, > ko) > P, (11<na>1§0 1| < ko) 21—t

\k\

Finally,

E, W (Xn,y+Sn) ;7 >n) 2y (1 — ng) — cpﬁkg (14 |x|").

Under Condition 2.3 we use Lemma 2.5.8 to prove that V' is positive on R x R?.

Proposition 2.5.9. Assume Conditions 2.1 and E(a) < 0.
1. Foranyé>0,p€ (2,a), R, y>0,

Viz,y) =2 (1—=0)y —cps (1+|2]7).

2. For any x € R,

Vv
lim Viz.y) =1.
y—>+0o0 Yy

3. If in addition we assume Condition 2.3, then the function V' is positive on R x RY..

Proof. Claim 1. Using the claim 1 of Lemma 2.4.6 and the claims 3 and 5 of Proposition
2.5.5, with z = y + pz, we write
E, (z+ M,; 7, >n)
>Ex(Z+Mn; Ty >n)_Em(W(me+Sn)§ Ty >N, Ty gn)
=E, (2 + Mn; T, >n) = W(z,y) + E; (W(Xp,y +50); 7y >n).

Using Lemma 2.5.8, the claim 1 of Proposition 2.5.5 and the claim 1 of Proposition 2.5.6,
we obtain

kg
Taking kg large enough, the claim 1 is proved.
Claim 2. Taking the limit as y — 400 and as 6 — 0 in the claim 1, we obtain
first that liglJiran(x,y)/y > 1. By the claim 3 of Proposition 2.5.6, we obtain also that
Y )

V(ey) >y (1 - ) k2 (14 [2]?).

limsupV(z,y)/y < 1.

Yy—r—+00

Claim 3. Fix x € R, y > 0 and §y > 0. By Condition 2.3, there exists py € (2, a) such
that for any ¢ > 0 there exists ng > 1 such that P, ((X,,,y + Sny) € Kpores Ty > o) > 0.
Thus, using the claim 4 of Proposition 2.5.6,

Viz,y) 2 Es (V(Xng, ¥ + Sno) s (Xngs ¥ + Sno) € Kpyer Ty > no) -

Using the claim 1 with p = py and 6 = 1/2 and choosing the constant ¢ = 2¢,, s + 200,
there exists ng such that

V(x,y) P 50P$ ((Xnoay + Sno) S Kp0,67 Ty > no) > 0.
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2.6 Asymptotic for the exit time

The aim of this section is to prove Theorem 2.2.2. The asymptotic for the exit time of
the Markov walk (y+ S, )n>0 Will be deduced from the asymptotic of the exit time for the
Brownian motion in Corollary 2.9.4 using the functional approximation in Proposition
2.9.5.

2.6.1 Auxiliary statements

We start by proving an analogue of Corollaries 2.4.5 and 2.4.9, where n is replaced
by the stopping time v,, defined by (2.4.1).

Lemma 2.6.1. Assume Condition 2.1. For any p € (2,«), there exists g > 0 such that
for any e € (0,g0], r € R, y >0 andn > 1,

By =By (y+ S5 7> v, v < [07]) oLty + o)1+ 2]
Proof. When 7, > 1, > 1, we note that
0<X, <y+S5,. (2.6.1)
Using the martingale representation (2.3.2) and (2.6.1), we have
y+S, <z+ M, +max(0,—p)X,, < z+ M, + max(0,—p)(y+S,,),

with z = y + px, and so

1
1 —max (0, —p)

0<y+S5, < (z+M,,)<2(z+M,,).

Consequently, using Lemma 2.3.1 when v, = 1,

Ei <c(l+y+|z|) + E, (z—i—MVn; Ty > Vp, 1 <y < {nl_sJ)
Sc(l4+y+|z]) + cE, (z+ M,, ; Ty > vy, Uy < {nl_EJ) . (2.6.2)

By

Now, denoting v, A [n'~¢] = min(v,, [n'~¢]), we write

E| = cE, (z + Ml,n/\l.nlfsj> —cE, (z + My A=< 5 Ty < VU A {nl_aD
—cE, (z + Mpr-e); 7y > {nl’gJ , Up > {nl’ED .

Since (M,), -, is a centred martingale, using Lemma 2.5.1 when E(a) > 0 and the claim
2 of Lemma 2.5.4 when E(a) < 0, Lemmas 2.3.4, 2.4.1 and Hoélder inequality, we obtain

Bl < cpe(l+y+ )+ ]a)
Implementing this into (2.6.2), it concludes the proof. O

Now, we can prove an upper bound of order 1/n'/2=¢

P, (1, > n).

of the probability of survival
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Lemma 2.6.2. Assume Condition 2.1. For any p € (2,«), there exists g > 0 such that
for any e € (0,60], r € R, y >0 andn > 1,

(I+y+ e+ [P

P, (1y > n) < cpe Yo

Moreover, summing these bounds, we have

<)
Z P, (Ty > k) < cpﬁ(l +y+|z))(1+ |x|)p—1n1/2+5‘
k=1

Proof. We write

P, (r, >n) <E, (y + 5, Ty > Up, Vp < Lnl_gD + P, (I/n > nl_a) i

nl/2—e ’
Using Lemma 2.6.1 and Lemma 2.4.1, the claim follows. ]

Before to proceed with the proof of Theorem 2.2.2, we need two additional technical

lemmas. Recall the notation v/® = v, + {na/ 6J.

Lemma 2.6.3. Assume Condition 2.1. There exists g > 0 such that for any € € (0, &),
reR andy >0,

E,=E, (y+ SV::L/G ; Ty > ]/5/6’ 1/2/6 < {nl—eJ> BN V(:v,y)

n n—-+o0o

Proof. Using the martingale approximation (2.3.2),

E2 _ —pEz (X ol Ty > V6/67 V;SL/G < {nl—aJ)

Vp n

=:F21
+ E, (z + M5 7y > vElO el {nl_eJ) . (2.6.3)

=:Fa2

Bound of Ey. By the Markov property, Lemma 2.3.1 and the fact that (y+S,, )/n'/?~¢
> 1,
Bl < By (1 X, 7> v, w0 < [0

C —cné/® Lnl_EJ
ngl—’—Ce Z ]ECB<|XIC|>
k=1

By Lemma 2.6.1, we obtain

(I +y+ e+ [P

|Ea1| < cpe 1/3<

(2.6.4)

Bound of Es. We proceed in the same way as for bounding E} defined in (2.6.2):

B =By (4 My <0 1)
s (- Mgy 7> A ] 00> (1))

/\Lnl—EJ )
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By the Holder inequality, Lemma 2.3.4 and Lemma 2.4.1,

(I +y+le)(+ |z

2
—cpe

Eyp < 2z—-E, (z + M., ; 7, < vE/O A {nlfsJ) +cpe —3
n 2

(2.6.5)

Since /¢ > {na/("J — 400 as n — +o0 and M., is integrable (using Lemma 2.5.1 when
E(a) > 0 and the claim 2 of Lemma 2.5.4 when E(a) < 0), by the Lebesgue dominated
convergence we deduce that

lim Ep = —E, (M,,) = V(z,y).

n—-+o0o

Coupling this with equations (2.6.3) and (2.6.4), we conclude that Es - V(z,y). O
Lemma 2.6.4. Assume Condition 2.1. There exists g > 0 such that for any € € (0, &),
reR andy >0,

E;=E, (y +S e Y+ co > nl/2=el6 Ty > vel6 1/,2/6 < {nl_ED — 0.

n n—-+00

Proof. The first step of the proof consists in proving that we can replace the time /6

in the definition of E3 by the time v,,. More precisely, we shall prove that the following
bound holds true:

FEy < en/SE, (y—i—S,,n; y+.S, > nt/?=¢/%, Ty > Up, Vp < {nl’ED

=:E31
(L+y+ a1+ o)
+ Cpe /6 : (2.6.6)
To this end, we bound Ej3 as follows:
E3 <E31 —FEw ( SVZ/6 — S,,n Yy + Sun > n1/2—£/2; Ty > Up, Up < \‘nl—aJ)

=:E32
+E, (y + Sl,n sy + SVn < n1/2—e/27 y+ SVE/G > n1/2_€/6,

Ty > U, Vp < {nksD (2.6.7)

=:E33
+E$ (’Syfl/é‘ - Syn Y + SVn < n1/2—6/2 » Y + SVZ/G > ’I’L1/2_5/6 )

Ty > Vp, Un < {nHJ) .

=:F34

Bound of E33. By the Markov property and Lemma 2.3.1,

FE3s < / Egpr (’SLnE/GJ
RXR®

>P$(Xyn6dx’,y+51,n€dy’,

y+.S, > n1/2_5/2, Ty > Up, Up < {nl_ED

<E, (cna/G(l +|X,|);y+ S, > nl/Q_E/Q, Ty > Uy, Up < {nl_aD )
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If , > v, > 1, by (2.6.1), we have |X,,| = X,,, <y+5,,. Using this bound when v,, > 1
and the Markov inequality when v,, = 1,

gy < By (en/S (14 |X4]) s y+ Xy > nl/2502 v, = 1) + en/ By

1 1
B 7l G VT30 (2.6.8)

nl/2—ce

N\

Bound of E33. By the Markov property,
Ess < /R o VP <y’ + 8| ese] >0 6> P, (X,, €da’, y+ 5, €dy,
xRY
y+S, < n1/2_5/2, Ty > Vp, Vp < {nl_ED )

When ' < n'/?7¢/2, by the Markov inequality, we have,

Yy

n1/2—5/6> _ CsnE/G (1 + ’x/|>
~X

>

1/2—¢€/6
2% (y’ + SLnE/GJ >t/ > < Po <’SLnE/6J nl/2—</6

Ce

On the event {y + S,, < n'/?~%/2 7, > v,}, we obviously have 2/ = X, < nl/27%/2
From these bounds, using the positivity of X, for v, > 1, see (2.6.1), we obtain

c.(I+1X1)) Ce
E33 < Ex ((y + Sl) W y Un = 1)+ WEl
By Lemma 2.6.1, we obtain

(L+y+ [zt + [z
ne/é ’

Es3 < cpe (2.6.9)

Bound of E34. Again, by the Markov property,

F34 < / E, (‘SW“J
RxRY

y+ S, €edy,y+5S,, < nl/?=¢/2. Ty > Vp, Vp < {nl’EJ).

cy + SLHE/GJ > n1/25/6> P, (X,, €da’,

When ' < n'/?7¢/2_ using the Markov inequality and Lemma 2.3.1, we have

p

Cla’—l ’SLng/GJ 1+ |$/Dp
ntr—e=e/6 | TP et ee

DY S| > nm_em) <E»

e ([Spen

Then, using Lemma 2.3.1 again and the Markov property for the terms in the last sum
below,

‘. o ) SR iy
En< i+ 50 - > B (I + =~ > B (Xl 57> k)
k=1

p—1
—C —=— —Cp€
v Nz P p—|ne|+1

g2 E, (1+e™" |Xil” ; 7, > k)

nl—eJ

e mE 075
<= F e ™ 1+ 2f)+ —=— > Pu(r, > k).

—1
n o —%e n o —%e ]
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Using the second bound in Lemma 2.6.2, and taking € > 0 small enough, we obtain

1 1+ Ja)p
By < o Aty DA )7 (2.6.10)

=)
in —cpe n—+o00

Inserting (2.6.8), (2.6.9) and (2.6.10) in (2.6.7), we conclude the proof of (2.6.6).
Bound of cn®/SEs,. Note that, when v, > 1 and y + S, > n'/?>7*/2_ we have X, =
y+ S, — (y+S,_1)>nt/?e2 _pl/2—e > %;5/2 Consequently,

en/SFs; < en®/SE, (y+ S, ; vn < |0°])
=:F35
nl/2—</2
+ en®/'E, (y + 8, X, > ————, Ty > Uy, 0] <y < Wﬂ) :
Ce
=:F36

(2.6.11)
Bound of E35. Using the definition of v, the Markov inequality and Lemma 2.3.1,

Eg; < cn®/°E, (max ly + S| ; max |y + Si| > n1/2_5>
k< k<|n®|

¢ (L+y+]a))’

o (2.6.12)

Bound of E3s. The idea is based on the observation that, according to the first bound
in Lemma 2.3.1, the random variables y + S,, <] and X,,, are "almost" independent.
In this line, summing over the values of v, and bounding the indicators 1y, by 1, we
write

[nt=) nl/2—¢/2
Fs6 <cn®/® Z E, (?J‘I‘Sk—msj; Xp>—, 7y >k>
k=(n7]+1 Ce
[n'== ] nl/2—¢/2
+cn€/6 Z E, (’Sk_Sk [n®] Xk>7 Ty>k>.
=[n]+1 c

By the Markov property,

nl/2—¢/2
By < en/® Z /RX]R* y'Pu (XLnEJ )

nEJ+1 E

x P, (Xk_meJ eda’, y+ Sk €AY, 7y >k — [nﬂ)

|nt=e] 1/2—¢/2
- SR (0 max (X Xe>— 7, >k (2.6.13)
k=in® ) +1 holnt)sisk C

Recall that, under P/, by (2.3.3), X|,) = H}ZJ a;x’ + anEJ. Then, since a;’s are inde-
pendent and identically distributed, by claim 1 of Condition 2.1 and Lemma 2.3.1,

nl/2—¢/2 [n°] nl/2—e/2 nl/2—e/2

Ce i=1 Ce Ce

cee ™ 2| + (2.6.14)

P
ns e
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Inserting (2.6.14) into (2.6.13) and using Cauchy-Schwartz inequality, by Corollaries 2.4.5
and 2.4.9,

[ ]
—cenf 075 -
Fuo < X (co ™ BY2 (Jy+ i) BY (107) + 25 (1 y + al) (1L + [ol) )

= n%—cpa
[ L max X[
—|ne]<i<
e SR, |y > k= ]
k=|n°]+1 nozmer

Using the decomposition (2.3.2) and Lemmas 2.3.1 and 2.3.4

+ = Z Ex <n€ (1 + ’Xk—ULEJ

p) ;Ty>k—[n€J).

(1+y+!ac|)(1+|as|>”*1+ Cp [ni-]

—2 D
—cpE 2—=

Ess < cp e =}
n 2

L EJ nlfsj
c c . .
+ 7npglp_c =D B (IXP) + 771;)71’3_6 - D> E(IXf 5 >0 nf)).
P¢ 0

> j=ln )

Again using the Markov property, Lemma 2.3.1 and Lemma 2.6.2, we have

(ty+la)(+la o U

E36 < Cpe B2 _cpe p=l_ce Z ]Px (Ty > '])
n 2 P n 2 P j=1
) I_nl_EJ
+epe " Z Eq (1X17 5 7 > J)
j=1
(L+y + 2+ )"
=X “p,e p—2 .
ntz —oe
Inserting this bound and (2.6.12) into (2.6.11), we obtain
P
en/SFyy < Cpe (1::21/ + |z|) '
nT—cpe
Together with (2.6.6), this bound implies that
1 p
AP G L VY (2.6.15)

ne/6 n—+o0
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2.6.2 Proof of the claim 2 of Theorem 2.2.2

Assume either Conditions 2.1, 2.2 and E(a) > 0, or Conditions 2.1 and 2.3. Introduc-
ing the stopping time v=/6 = v, + Lns/ﬂ, we have

P, (1, >n) =P, (Ty >n, vE/% < { 1_aD +P, (Ty >n, /%> {nl_ep . (2.6.16)

We bound the second term by Lemma 2.4.1: for 2 < p < «,

. . n'~* (1 + |z))” 1
IP) (Ty >n, v, /6 \‘nl J) < ]Px (Vn > . > g Cp’EW =0 ﬁ . (2617)

To bound the first term, we introduce more notations. Let (B;);>o be the Brownian

motion from Proposition 2.9.5, A, be the event A, = {5r<1a<x ‘SLtk — O'Btk’ < k1/2*25}

where ¢ is defined by (2.2.2), and Ay be its complement. Using the Markov property, we
have

[
P, (Ty>n vEl® < { Z /RXR* Ty >n— k,Zn,k>]P’x(Xk€dx’,

y+Sk€dy’,Ty>k,y,i/6:k)

=:J1

[n'~
+ Z / (g >n—k, Ay_g) Py (X € da’,

RXR*

(2.6.18)
y+Sedy,n, >k, VZ/G:@.

=:Jo

Bound of J,. Taking into account that n —k > o for any k < |n'~¢|, by Proposition
2.9.5 with € small enough, we find

]le (Ty/ >n — ]{7, Zn—kz) < ]P)x/ (Zn—k) < Cpﬁ(l + |x'|)pn_26.

By the Markov property and the first bound in Lemma 2.3.1,

—cp ens/6 p Cpﬁ . 1—e
J, <E, (cp,ge pe X, P+ 2 Ty > Up, Up < N )

Since yf/Q”"s > 1, using Lemma 2.6.1,

Cpe(L+y +af)(L + |z~

_ c/6 C ,
Ji < cpee” P (14 |2|)" + e nl/2+e

nl/2—e+2e

N

(2.6.19)

Bound of J,. The idea is as follows. When v’ < 6,,\/n, with 6,, = n~%/% we are going
to control the probability P,/ (7, > n —k, A,_j) in J; by the claim 2 of Corollary 2.9.4.
When ¢’ > 6,,4/n we shall apply Lemma 2.6.4. Accordingly, we split J; into two terms as
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follows:
[~
Z / (ry >n—k, Ay )P (X € da’, y+ S, € dy,
RXR*
Y+ Sy, > nt/2e/0 T, >k, Vf/ﬁ = k)
=:J3
[~
+ Z / Sy >n—k, A ) By (X eda', y+Seedy’,  (26.20)
RxR*

y+ S, < n/*e/0 T, >k, Vf/ﬁzk:).

=:J4

Bound of Js. Let 7)™ be the exit time of the Brownian motion defined by (2.9.10)
and ¢, =y + (n — k)Y/27%. Since

Py (ry >n—k, Auy) <P (7" >n—k), (2.6.21)

using the claim 1 of Corollary 2.9.4 with ¢/, > 0, we get

LnlfsJ 1/9—

—k /2—2¢
Z Em<cy+8k+(n k) ;y+5k>n1/2_€/6,7'y>k7VZ/G—]{;>‘
— vn—

Since —£— < % and y+Sp+ (n—k)/*7% < 2 (y + Si) on the event {y+ Sy, > n'/?7/%},
using Lemma 2.6.4, we have

Iy < ;%Eg =0 <¢15> . (2.6.22)

Upper bound of Jy. Since * < n —k < n, we have y, < c.(n — k)1/2=¢/6 when

y < n'/?7¢/6, Using (2.6.21), from the claim 2 of Corollary 2.9.4 with 6, = c.m /%, we
deduce that

)
>, E

(M (St (= 07272) (14 e,

y+ Sy <n'/PE0 s kv = k;) . (2.6.23)

Taking into account that —2— < ﬁ (1 + %), On1 < =% and 1 < Zf/fi';, we obtain

2
B e (1 + /3) B+ By (2.6.24)

Using Lemma 2.6.1 and Lemma 2.6.3, we get the following upper bound,

2V (z,y)

2mno

Ji < (1+o0(1)). (2.6.25)
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Lower bound of Jy. In the same way as for the upper bound of Jy, with 3y =
1/2—2¢ 1/2—2¢
Y+ S, — (n — V5/6) > (0 on the event {(n — Vf/G) <y+S s}, we have

2 . 1/2-2
Jaz (1_ 03>Ez(y’_;(”—yi/6)/ Tyt S e <0t/
2mno ne/ vn

> vl /< n' ) (2.6.26)

'
Z/]P’ P, (Xp € da' 7, >k, v/° = k).
<6\ /22 o
Using the fact that —y” > 0 on {(n — V5 ) >y + SVZ/G}’ we obtain in a same way
as for the upper bound of J1,
gy > 2 <1_ Ce >E2—2E ( 1/2— 26y+SVn ST > U, U <{n1_ED
~ V2rno ne/3 omno nt/2—e 7Y meons
2 o Ge(lry e ey
2mno nl/2te
2 c c Cpe(L+y + [2z))(1 + [z[)"
Z TN (1 n£/3> By — nl/2+e eyore Sl ﬁE?’ nl/2te

Consequently, using the results of Lemma 2.6.3, Lemma 2.6.1 and Lemma 2.6.4 we con-
clude that
2V (z,y)

Jy =
2mno

(1—o0(1)). (2.6.27)
Coupling the obtained lower bound with the upper bound in (2.6.25) we obtain Jy ~

i}/(iy With the decomposition of Jy in (2.6.20) and the bound of J3 in (2.6.22) we get

Jy ~ 2\}“79) Finally, the claim 2 of Theorem 2.2.2 follows from (2.6.16), (2.6.17), (2.6.18)
and (2.6.19).

2.6.3 Proof of the claim 1 of Theorem 2.2.2

Assume Condition 2.1. All the necessary bounds are obtained in the previous section
2.6.2. It is easy to see that they hold under solely Condition 2.1. We highlight how to
gather them. By (2.6.16), (2.6.17), (2.6.18) and (2.6.20), we have,

(1 + |=[")

NG

]P)x (Ty >n) gcp,g +J1+J3+J4

Then, by (2.6.19), (2.6.22), and (2.6.24),

(L+y+ o) (1 + )"

08 C€
P, (1y >n) < ¢pe NG + NG \/H(E2+E1)'

Now, by Lemma 2.6.1, (2.6.3) and (2.6.15),

14+y+1z)P e
(yJ_’_ (E'21_|_E22)_

Vi Vi

P, (1, >n) < ¢pe
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Finally, using (2.6.4), (2.6.5) and Lemmas 2.5.1 and 2.5.4 we have,

P, (7, >n) < \;% (z —E, (z + M, ; 7, < e/ A LnHD) + cp,g—(l —Hi/%r ="
2 14y + |z|)”
< ;E]Ez ( MTy ) + Cp,z—:(y\/rr—L|x|)
(I +y+la)”

<c

VD

2.6.4 Proof of Corollary 2.2.3

For any p > 0,
+oo
E. (17) = Y P (my > k) ((k+ 1) — k7).
k=0

Now the first and the second assertions of the corollary follow respectively from the claim
1 and 2 of Theorem 2.2.2.

2.7 Asymptotic for conditioned Markov walk

In this section we prove Theorem 2.2.4. We will deduce the asymptotic of the Markov
walk (y + Sy),,-, conditioned to stay positive from the corresponding result for the Brow-
nian motion given by Proposition 2.9.3. As in Section 2.6, we will use the functional
approximation of Proposition 2.9.5. We will refer frequently to Section 2.6 in order to
shorten the exposition.

Proof of Theorem 2.2.4. Introducing v5/% = v, + {ne/ GJ and taking into account
Condition 2.2 or 2.3, we have

P, (y—l—Sn <tvn, 1, >n, vE/0 > Lnl_aj)

Pz(y+5n<t\/ﬁ’7y>n):

P, (1, > n)
=11
Py (y+ S, <tyn, 7, >n, v/ < [nl72))
P, (1, > n) '
=:Lo

(2.7.1)
Bound of Ly. Using Lemma 2.4.1 and Theorem 2.2.2,
Py (v > " 1+ )

Ly < ( =) < CcUAl) g (2.7.2)

P, (r,>n) — ni P, (7y > n) noteo

Bound of Ly. As in Section 2.6, setting A, = {&1?2(1 ‘Stth — aBtk‘ < k1/2_25}, by the
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Markov property,
P, (1, > n) Ly
[ _
Z / Y+ Suk <UL Ty > =k, Ay ) By (X € o
RxR?%

y+Sk€dy’,Ty>k,yf/6:k>

=Py (my>n)L3

y + Snek <tVn, 7y >n—k, An,k) P, (X € da’, (2.7.3)

y+5k€dy’,y+8k>n1/2_€/6,7-y>k,yf/(":]g)

=Py (my>n)Ly

+Z/

RXR*

y+Snk tvn, Ty >n— k,An,k)]P’m(Xkde’,

y+Sk€dy/,y+Sk<n1/2_5/6,Ty>k;,uf/ﬁzk;).

=P, (ty>n)Ls

Bound of Ls. Using the bound of J; in (2.6.19) and Theorem 2.2.2,

Ls <

Ji Cpe(L+y+ |2 (1 +]z)P~"
<= — 0. 274
P, (1, > n) nl/2+eP, (1, > n) =400 ( )

Bound of L4. Using the bound of J; in (2.6.22) and Theorem 2.2.2, we have

J3
Ly < m = o(1). (2.7.5)

Upper bound of Ls. Define t, =t+ ;= and ¢, = '+ (n— k)'/2=2¢ By Proposition
2.9.3,

P, (y’ + S <tvn, Ty >n—k, Anfk)
<IP>(y’++aBn_k <o/, 7 >0 — k)
TRV G y+>2 C Hy)?

/ e 2n k)o _e 2(n—k)o2 dS
/D n —

Note that for any y' < n'/?7¢/% we have v/, /v/n < 25 and for any k < |n'~¢] we have
(1 - i) n —k < n. Using these remarks with the fact that sh(z) < z ( ‘%2 ch(x))
for any z > 0, we obtain after some calculations that

P, (y—l—Snk t\/ﬁ Ty >N — k,An,k)

2 ot so ey 2 () :
Yy ( Ca)/+ "se 2n=ke + SY4
< 14+ & 1 h d
V2mno * ne/ Jo (n — k)o? * 6(n — k)20 ¢ (n — k)o? 8

2y{|— Ct7e 7i
S \V2mno (1+ n5/3> (1 —° 202>'
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Consequently, using the same arguments as in the proof of Theorem 2.2.2 in Section 2.6

(see the developments from (2.6.23) to (2.6.25)), we obtain, with ®}(¢) =1 —e” 207,

2V (z,y)
V2mnolP, (1, > n)

which by the claim 2 of Theorem 2.2.2 implies that

(1+0(1)),

Ls < (1 4 e ) ®F (1)

ne/3

Ls = &7 (1) (14 o(1)). (2.7.6)
Lower bound of Ls. In the same way as for the upper bound, with ¢/ = ' —(n—k)'/2=2

and t_ =1t — ﬁ, we have

P, (1, > n)Ls

[~
> Y / P(y +0Buy <tV mi" >n— k)P, (y+ S € dy,
=1 “Ri -

(71—14/‘)1/2_2‘E <y+ S, < nl/?Elb T, >k, l/fl/G = k;)

Lnl—s

]
_ kgl /R]P)m’ (Zn—k) P, (Xk S dZL‘,, Ty > k, VVEL/G - k) )

Using Proposition 2.9.3 with 3, which is positive when (n — k)72 < ¢/ < n/?75/6 we
obtain after calculation that

2y Ct
! bm _ _ € +
P(y + 0By <tvn, 7" >n—k)> — (1 n€/3> ().

Copying the proof of the bound of J; in (2.6.19) and using the same arguments as in the
proof of Theorem 2.2.2 in Section 2.6 (see the developments from (2.6.26) to (2.6.27)),
we get

2V (2, y)
V2mnolP, (1, > n)

Coupling this with (2.7.6) we obtain that

Ls > ®;(t) (1=0(1)) = @, (t) (1 —o(1)).

Ls=®}(t) (1 +0(1)).

Inserting this and (2.7.4) and (2.7.5) into (2.7.3), we deduce that Lo o~ ®f(t). By
(2.7.1) and (2.7.2), we finally have

P, (y+Sn < t\/ﬁ‘Ty > n) — BI(1).

n—-4o0o

Changing t into to, this concludes the proof.

2.8 The case of non-positive initial point

In this section, we prove Theorem 2.2.5.

Lemma 2.8.1. Assume Condition 2.1. For any (x,y) € 27, the random variable M,
is integrable and the function V(x,y) = —E, (MTy), is well defined on 2.
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Proof. If E(a) > 0, by the Markov inequality, with z = y + pz,

E$(z+Mn;Ty>n):/ Ey (y + px' + My_1; 70 >n—1)
RXR®

xP,(X;edd,y+S1edy, 7, >1).
Since y + 51 > 0 on {7, > 1}, by Lemma 2.4.4,

B, (24 My 7y > 1) < 6B, (L+y+ S+ [ Xa)) (14X )P 57 > 1)
< GEs ((1+]X4])7)
<o (1

¢y (1+ |z])7. (2.8.1)
Moreover
Eo (M) 57 <) Sl + 0 [ Bar (/4 p0/ + Mica| 57, = k= 1)
k=2 Y RXRY

xP,(Xyedd,y+ S edy, 7, >1)
SR (M = 1).

Since y + 51 > 0 on {7, > 1}, by Lemma 2.4.2,

M,|;

<c(l+lyl+ o) — B (2 + My, ; 7, <)
Sc(l+yl+ ) + Eo (z+ My 7y > ).
Using (2.8.1), we deduce that E, < Ty < n) < ¢, (1+ |yl + |z|”). Consequently, by

the Lebesgue monotone convergence theorem, the assertion is proved when E(a) > 0.
When E(a) < 0, the assertion follows from Lemma 2.5.4. O

M,

Yy

Lemma 2.8.2. Assume Condition 2.1. The function V is Q. -harmonic on 9 = 9~ U
R x R*. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3,
then the function V is positive on ¥ = 2~ UR x RY.

Proof. Note that by Corollary 2.9.7, we have P, (7, < +00) = 1, for any + € Rand y € R.
Therefore, by the Lebesgue dominated convergence theorem,

Vo) = B (M) =2~ BB (s 0y 7y 1) = B e M 7 > ).

for any (z,y) € 2. The fact that V' is Q,-harmonic on 2 can be proved in the same
way as in the proof of Proposition 2.5.3. Therefore, for any (x,y) € 2,

V(z,y) =E, (V(Xq,y+S1); 7, > 1). (2.8.2)

By the claim 2 of Proposition 2.5.3 and the claim 3 of Proposition 2.5.9, on {7, > 1}, the
random variable V (X7, y + 1) is positive almost surely. Since by the definition of
we have P, (7, > 1) > 0, we conclude that V(z,y) > 0 for any (z,y) € Z~. O

Lemma 2.8.3. Assume Condition 2.1.

1. For any (x,y) € 9,
VP, (1, >n) <, (1+ |z])P.
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2. If in addition we assume either Condition 2.2 and E(a) > 0, or Condition 2.3, then
for any (x,y) €
2V
P, (ry >n) ~ Vi) y)‘
n—too \/2mno

Proof. By the Markov property,

VP, (1, >n) = . VP (ty >n—1)P, (X eda’,y+ S edy’, 7, > 1).
xRy

By Theorem 2.2.2, for any 3 > 0, we have v/nPy (7, >n—1) < ¢, (1 +y + |2/|)” and
moreover, for any y < 0,

E,(c, 1+y+Si+|Xa])P ;7 >1) < (14 |2])".

Then, we obtain the claim 1 and by the Lebesgue dominated convergence theorem and
the claim 2 of Theorem 2.2.2,

2V (X
lim\/ﬁ]P’m(Ty>n):]Ex< Vi 1,y+51);7y>1>.

n—r00 2mo
Using (2.8.2) we conclude the proof. O

Lemma 2.8.4. Assume either Conditions 2.1, 2.2 and E(a) > 0, or Conditions 2.1 and
2.8. For any (z,y) € P~ and t > 0,

y+ 5y
P, <t
(a\/ﬁ

Proof. Similarly as in the proof of Lemma 2.8.3, we write,

Y+ Sn
IP’QC( o <t Ty>n>

1 y,—i_Snfl
- - I A R A |
P, (1, > n) /RxR; (m/n —1 v T )

xP,(Xyedd,y+S1edy, 7, >1)

1 y/ + Sn—l
— P, | — <t|ry>n—1 Py (1 >n—1
VP, (1, > n) /]RxRi < ovn—1 v ) VP (> n = 1)

xP,(X;edd,y+S1edy,7,>1).

Since, by Lemma 2.8.3, \/nPy (17, >n —1) < ¢, (1 + |2’|)?, applying the Lebesgue dom-
inated convergence theorem, Theorem 2.2.2, Theorem 2.2.4 and Lemma 2.8.3, we have

Sy,
limIP’x<y+ <t Ty>n>
n—00 O'\/ﬁ

2o _2\ 2V (2, y)
= 1—e 7 ) ———4P, (X, e dd’, Spedy,r,>1).
2V (x,y) /Rxm< ¢ ) V2o (X Ty edy Ty )

Using (2.8.2) concludes the proof. O
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2.9 Appendix

2.9.1 Proof of the fact Condition 2.3bis implies Condition 2.3
We suppose that Condition 2.3bis holds. Then, there exists § > 0 such that
P((a,b) € [-146,0] x [5,C]) > 0 (2.9.1)
and
P ((a,b) € [0,1— 8] x [5,C]) > 0. (2.9.2)

For any = € R, set C, = max (|x| , %) and

Ay ={0<X1<Cs, <X <Cxy, ., 0< Xy < Cx, L}

Using (2.9.1) for x < 0 and (2.9.2) for > 0, we obtain that P, (%) > 0. By the Markov
property, we deduce that P, («7,) > 0. Moreover, it is easy to see that, on .«,, we have
y+ Sy = y+kd>0, for all £ < n, and |X,| < C,. Taking n = ng large enough, we
conclude that Condition 2.3 holds under Condition 2.3bis.

2.9.2 Convergence of recursively bounded monotonic sequences

The following two lemmas give sufficient conditions for a monotonic sequence to be
bounded.

Lemma 2.9.1. Let (uy,)n>1 be a non-decreasing sequence of reals such that there exist
ng=>2,e€(0,1), a,8,7 =0 and 6 > 0 such that for any n = ny,

Uy < (1 + 7?5) Uppi—e| + 55 +ye o, (2.9.3)

Then, for any n = ng and any integer ko € {ng,...,n},

ke
a 209 9:9¢? exp (—052
unéeXp< >(uk0+ﬁ + ( 2)

k52 — 1 kg 22 — 1 ] _ o0(2" )
Cae Cae —c €
< (1 T ) Uk, + 5?3 + YCapee CatehD

In particular, choosing ko constant, it follows that (uy,)n>1 s bounded.

Proof. Fix n > ng and kg € {ng,...,n} and consider for all j > 0,

p; =[]

The sequence (pj)j>0 starts at ng = n, is non-increasing and converge to 1. So there
exists m = m(ko) € N such that p, > ko = pmy1. Since n=9" /2 > ky/2 > 1, for all
j€{0,...,m}, we have

1—e)d

n1=eV > > p-97 _ nt

; 5 (2.9.4)

WV
S
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Using (2.9.3) and the fact that (u,),>2 is non-decreasing, we write for all j =0,...,m,

Q B —opS Q B —8pc
Up; < <1+pg> upj+1+1¥+'ye Pi < <1+p€-> (upj+1+])¢+'76 pj)-

J J J J

Iterating, we obtain that

Up < Am (upm+1 + BBm + fYCm) )

where A, = IT7, (1 + ;) By = Sy and Cp = S0 e . Since ppiy < ko and
since (uy)n>2 is non-decreasing,
Up < A (Ugy + BB +7Cn) - (2.9.5)

Now, we bound A,, as follows,

o

S|

An <] e =ePm. (2.9.6)
j=0

Denoting n; = n~(1-ey

we note that -4 =

°, using (2.9.4), we have B,,, < 2° 3" n;. Moreover, for all j < m,
1 L < 2% < 1 and so

M1 pe(=e) S pe? N
Nm 1 1
R L S T (2.9.7)
Therefore, B,, is bounded as follows:
2° 0 1\ 1 207
Bu< =3 (5m) Soprt (29.8)
ke kz:% 9 ke 27 — 1
Using (2.9.4) and (2.9.7), we have
UL, m Skg2e”(m=1)
C, < Ze 2 Zexp (—O .
— — ¢
7=0 7=0
Since for any u > 0 and k € N, we have (1 +u)* > 1 + ku, it follows that
kG
Cr<e ™Y exp (=ok (27 —1)) < — (2.9.9)
" k=0 h 1 — e 0(2"-1) -
Putting together (2.9.6), (2.9.8) and (2.9.9) into (2.9.5) proves the lemma. O

Lemma 2.9.2. Let (u,)n>1 be a non-increasing sequence of reals such that there exist
ng =2, e €(0,1) and 5 = 0 such that for any n = ny,

Uy = Uipt—=| — i
Then, for any n = ng and any integer ko € {ng,...,n},
B 2e2¢
Up 2 Uy — %ﬁ = Uk, — Cskfg.

In particular, choosing ko constant, it follows that (u,),>1 is bounded.

Proof. For the proof it is enough to use Lemma 2.9.1 with u,, replaced by —u,,. O]
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2.9.3 Results on the Brownian case and strong approximation

Consider the standard Brownian motion (B;),, living on a probability space (€2, F,P).
Define the exit time
" =inf{t >0,y + 0B, <0}, (2.9.10)

where o > 0. The following assertions are due to Lévy [57].

Proposition 2.9.3. Foranyy >0,0<a<bandn > 1,

2 Y 2
P(r >n) = / e 2no? ds.
( Y ) 2mno Jo
and . , , ,
(s—v) (s+)
]P (Tgm > n7 y + UBn E [a7 b]) - 2 / (e 2”‘?7!2 _ei 2"52 > dS.
™o Ja

From this one can deduce easily:

Corollary 2.9.4.

1. For anyy >0,
P (7‘5’” > n) < ci.

NG

2. For any sequence of real numbers (0,)n=0 such that 0, - 0,

sup (]PW - 1) = 0(62).

2y

To transfer the results from the Brownian motion to the Markov walk, we use a
functional approximation given in Theorem 3.3 from Grama, Le Page and Peigné [40].
We have to construct an adapted Banach space B and verify the hypotheses M1 — M5
in [40] which are necessary to apply Theorem 3.3. Fix p € (2,«) and let €, 0, ¢o and o
be positive numbers such that ¢+ <0 <2¢p <a—cand 2 <2+2§ < (24 20)0 < p.
Define the Banach space B = L. ., ¢ as the set of continuous function f from R to C such
that || f]| = |f], + [f]..,, < +o00, where

O er1+ || =0 perz|r =yl (L4 ]2|°) (1+ [y[*)
TH#Y
For example, one can take ¢ < min(p4;2, 3, c0=1,0=1+2¢and 2+ 2§ = 5. Using

the techniques from [43] one can verify that, under Condition 2.1, the Banach space B
and the perturbed operator P;f(z) = E,(f(X;)e"*1) satisfy Hypotheses M1 — M5 in
[40]. The hypothesis M1 is verified straightforwardly. In particular the norm of the Dirac
measure 0, is bounded: ||0;5.,5 < 1+ |z|?, for each 2 € R. We refer to Proposition 4
and Corollary 3 of [43] for M2 — M3. For M4, we have

pa(x) = supEY2 (130, 727) < e (1 + Ja])
k>1

Hypothesis M5 follows from Proposition 1 of [43] and Lemma 2.3.1.

With these considerations, the C(z) = Ci(1 + us(x) + ||6.]|)*™ in Theorem 3.3
established in [40] is less than ¢,(1 + |z|)?, where C is a constant. Therefore Theorem
3.3 can be reformulated in the case of the stochastic recursion as follows.
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Proposition 2.9.5. Assume Condition 2.1. For any p € (2,«), there exists g > 0 such
that for any € € (0,g0], * € R and n > 1, without loss of generality (on an extension of
the initial probability space) one can reconstruct the sequence (Sy)n>0 with a continuous
time Brownian motion (By)icr, , such that

P, (sup ’SLth O'Bm‘ > n1/2—a> < %(1 + |x|)1?’

0<t<1
where o is given by (2.2.2).

This proposition plays the crucial role in the proof of Theorem 2.2.2 and Theorem

2.2.4 (cf. Sections 2.6 and 2.7). The following straightforward consequence of Proposition
2.9.5 is used in the proof of Lemma 2.4.1 in Section 2.4. Set ®(t) = f [t e 7 du.

Corollary 2.9.6. Assume Condition 2.1. For any p € (2,«), there exists €9 > 0 such
that for any € € (0,&0], z € R and n > 1,

(S <) -0 () < 2oy

Proof. Let ¢ € (0,1/2) and A, = {sup ’S itn] — 0B, ‘ > nl/2= 8}. For any z € R and

sup
u€R

0<t<1

Sh oB, 1
— < < L
Pw(ﬁ\“) \PJ"(A”HP””(\/E \u+n5>’

where the last probability does not exceed ®(%) 4 c.n~°. Using Proposition 2.9.5, we
conclude that there exists g9 > 0 such that for any € € (0,¢9] and x € R,

S u c
LLu| <P - e
IF’:r(\/ﬁ\u)\fI)(a)—l— e (1+ |x[)".

In the same way we obtain a lower bound and the assertion follows. O

any u € R,

2.9.4 Finiteness of the exit times

Corollary 2.9.7. Assume Condition 2.1. For any x € R and y € R,
P, (1, < 400) =1 and P, (T, < +o0) = 1.

Proof. Let y > 0 and € € (0,1/2). Set A,, = {SUPo<t<1 ‘S[tn] — O'Bm‘ < nl/z_a}. Using
Proposition 2.9.5, there exists 9 > 0 such that for any € € (0,¢0], x € R and y > 0,

P, (1, >n) <P, (1, >n,A,) +P, (Z)
éP(§+n1/zg>n)+—(1+!x\)
1/2—¢

Since, by the claim 1 of Corollary 2.9.4, P ( e > n) < c“"T (1+y)-%, taking
the limit as n — 400 we conclude that PP, (Ty < 4o00) = 1.
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Let D,, = {maX1<k<n |Sk — M| < nl/%g}. Obviously
P, (T, > n) < Py (T, > n, Ay, Dy) + Py (4,) + P, (D)
<P (T;’TM/Q_E > n) + % 1+ |z|)? + P, (glkaél |p X | > n1/25> :

Using the claim 1 of Corollary 2.9.4, the Markov inequality and Lemma 2.3.1, for any
e € (0,g0], z € R and y > 0,

1+ |xf?

p—2
B —pe

C  Cpe »

o (T, > m) < (14 9) + 22 (14 fal)” + -

Choosing ¢ small enough and taking the limit as n — +o0o0 we conclude the second
assertion when y > 0.

When y < 0, the results follow since the applications y — 7, and y — T}, are non-

decreasing. O
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Chapter 3

Limit theorems for Markov walks
conditioned to stay positive under a
spectral gap assumption

This chapter is the subject of the article [38] written in collaboration with
Ion Grama and Emile Le Page
to appear in
The Annals of Probability.

RESUME. On considére une chaine de Markov (X,,),>0 & valeurs dans un espace d’états
X. Pour f une fonction réelle définie sur X, on pose S, = >, f(X;), n = 1. Soit P, la
probabilité engendrée par la chaine de Markov lorsque 1’état initial est donné par Xy = z.
Pour tout point de départ y € R, on définit 7, comme étant le premier instant pour lequel
la marche markovienne (y + S,)n>1 devient négative ou nulle. Sous la condition que la
marche S,, soit sans dérive, on détermine I'asymptotique de P, (7, > n) ainsi que celui de
la loi de la marche conditionnée P, (y + S, < -v/n| 7, >n) as n — +o0.

ABSTRACT. Consider a Markov chain (X,,),>0 with values in the state space X. Let f be
a real function on X and set S, = >, f(X;), n > 1. Let P, be the probability measure
generated by the Markov chain starting at Xy = x. For a starting point y € R denote by
7, the first moment when the Markov walk (y + S,,),>1 becomes non-positive. Under the
condition that S, has zero drift, we find the asymptotics of the probability P, (7, > n)
and of the conditional law P, (y + S, < -/n|7, > n) as n — +oc.

3.1 Introduction

Assume that on the probability space (Q2,.%,[P) we are given a sequence of random
variables (Xp),-, with values in a measurable space X. Let f be a real function on X.
Suppose that the random walk S,, = >-% | f(X;), n > 1 has zero drift. For a starting point
y € R denote by 7, the time at which (y + S,),,., first passes into the interval (—oo, 0].
We are interested in the asymptotic behaviour of the probability P(r, > n) and of the
conditional law of % given the event {7, > n} = {5 >0,...,5, >0} as n — +o0.

The case when f is the identity function and (X,),., are i.i.d. in X = R has been
extensively studied in the literature. We refer to Spitzer [66], Iglehart [47, 48], Bolthausen
9], Doney [22], Bertoin and Doney [6], Borovkov [10, 11], Caravenna [13], Vatutin and

83
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Wachtel [71] to cite only a few. Recent progress has been made for random walks with
independent increments in X = R?, see Eichelbacher and Konig [27], Denisov and Wachtel
20, 18] and Duraj [25]. However, to the best of our knowledge, the case of the Markov
chains has been treated only in some special cases. Upper and lower bounds for P(7, > n)
have been obtained in Varapoulos [68], [69] for Markov chains with bounded jumps and in
Dembo, Ding and Gao [15] for integrated random walks based on independent increments.
An approximation of P (7, > n) by the survival probability of the Brownian motion for
Markov walk under moment conditions is given in Varopoulos [70]. Exact asymptotic
behaviour was determined in Presman [60, 61] in the case of sums of random variables
defined on a finite Markov chain under the additional assumption that the distributions
have an absolute continuous component and in Denisov and Wachtel [19] for integrated
random walks. The case of products of i.i.d. random matrices which reduces to the study
of a particular Markov chain defined on a merely compact state space was considered in
[41] and the case of affine walks in R has been treated in [36] (Chapter 2). We also point
out the work of Denisov, Korshunov and Wachtel [16] where a constructive analysis of
harmonic functions for Markov chains with values in N is performed.

In this paper we determine the limit of the probability of the exit time 7, and of the
law of y+.5,, conditioned to stay positive for a Markov chain under the assumption that its
transition operator has a spectral gap. In particular our results cover the case of Markov
chains with compact state spaces and the affine random walks in R (see [36]/Chapter 2)
and R? (see Gao, Guivarc’h and Le Page [30]). Our results apply also to the case of sums
of i.i.d. random variables.

To present briefly the main results of the paper denote by P, and E, the probabil-
ity and the corresponding expectation generated by the trajectories of a Markov chain
(Xn)n}1 with the initial state Xg = x € X. Let Q be the transition operator of the Markov
chain (X, y + Sn),>, and let Q be the restriction of Q on X x R* . We show that under
appropriate assumptions, there exists a Q. -harmonic function V' with non-empty support
supp(V) in X x R such that, for any (z,y) € supp(V),

2V (z,y)

and

Y+ Sn
P, <t
<0\/ﬁ

2
where &1 (t) = 1 — e~z is the Rayleigh distribution function and o is a positive real.
Moreover, we complete this result by giving the behaviour of P, (7, > n) on the comple-
ment of supp(V) : for any (z,y) ¢ supp(V),

Ty > n) — BT(1),

n—-+400

P, (1, >n) <cye ", (3.1.2)

where ¢, depends on = and c is a constant. This is different from the case of sums of i.i.d.
real random variables, where instead of (3.1.2), on supp(V)¢ it holds P, (7, > n) = 0.
We give an example of a Markov chain for which the bound (3.1.2) is attained and state
uniform versions of (3.1.1) and (3.1.2). A characterization of the supp(V) is given in
point 4 of Theorem 3.2.2. For details we refer to Section 3.2.

The study of the asymptotic behaviour of the probability P(7, > n) for walks on the
real line R is usually based on the Wiener-Hopf factorization (see Feller [29]). Unfor-
tunately the Wiener-Hopf factorisation is not well suited for more general walks, as for
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example those with values in R? or for walks with dependent increments. For random
walks with dependent increments and for random walks with independent increments in
R?, Varopoulos [70], Eichelbacher and Kénig [27] and Denisov and Wachtel [20] have de-
veloped an alternative approach based on the existence of the harmonic function. Using
the particular structure of the underlaying models such extensions where performed in
Denisov and Wachtel [19] for integrated random walks, in [41] for products of random
matrices and in [36] (Chapter 2) for affine random walks in R. Despite these advances,
there are still some major difficulties in transferring the harmonic function approach to
the case of more general Markov chains. In this paper we extend it to Markov chains
under spectral gap assumptions. Let us highlight below the key points of the proofs.

We begin with the construction of a martingale approximation (M, ),>1 for (S,)n>1
following the approach of Gordin [35]. One of the delicate points of the proof is to control
the difference S,,—M,,. We make use of the spectral gap property of the transition operator
P of the Markov chain (X,),, relatively to some Banach space % (for details we refer
to Section 3.2). Our martingale approximation is such that

(2 + M,) = (y+ Sn) =7 (Xn),

where r(z) = O(z) — f(z) is the coboundary, z = y + r(x) and © is the solution of
the Poisson equation ©® — PO = f. Under Hypothesis M3.4 we can control |r(z)| by
c(1 4+ N(x)) where N € 2 has bounded moments E/® (N(X,)*) < ¢(1 + N(x)), for
some « > 2. Note that in the case of products of random matrices [41] the coboundary
is bounded, so that sup,,|S, — M,| is bounded by a constant P,-a.s. for any = € X
which simplifies greatly the proofs. The extension to the case of unbounded coboundary
turns out to be quite laborious even for particular examples. We refer to the case of affine
Markov walks considered in [36] (Chapter 2), where the authors have benefited from the
special structure of the model.

The next step is the proof of the existence of a positive harmonic function. The
starting idea is very simple. Let V,,(x,y) := E,((y + Sn)1{z,>n}) be the expectation of
the Markov walk (y + S,)n>1 killed at 7,. Since by the Markov property, V,,41(z,y) =
Q. V,.(x,y), taking the limit as n — +oo under appropriate assumptions, yields that the
function V(z,y) = lim, 10 Vi (z,y) is Qy-harmonic. Using the approximating martin-
gale, the function V' can be identified as V' (z,y) = —E, <M7y> . To justify this approach,
it is important to control uniformly in n the expectation w, = E,((z + M;)1{7,5n}).
Our key idea (in contrast to [41] and [36]/Chapter 2) is the introduction of two extra
stopping times T, and T.: the first time when (z + M,,),>1 leaves R* and the first time
larger than 7, when (2 + M, ),>1 leaves R, respectively, where as before z = y + r(z).
Clearly, T, depends on 7, and dominates both, 7, and 7.. The relation of the time T,
to the exit times 7, and T}, is explicitly given in Lemma 3.5.3 which is an application of
the Markov property to T.. This property is useful to control uniformly in n the expec-
tation u, := E,((z + Mn)ﬂ{ﬁ>n}), which is one of the crucial points of the proof. To

establish this we note that the sequence (u,),>¢ is increasing, since ((z + M,)1 {ﬁ>n})n>1
is a submartingale. In addition we show that it satisfies a recurrence equation, which
implies its boundedness. Using the previous arguments we obtain a uniform control on
the expectation w,. All the details can be found in Sections 3.6 and 3.7. The proof of
the (strict) positivity of V' is also rather involved but uses similar arguments based on
the subhamonicity of the function W(z,z) = —E,(Mz ). (see Section 3.8).

Now we can turn to the tail behaviour of the exit time 7,. It is inferred from that

of the exit time Té’m of the Brownian motion, using the Donsker invariance principle for
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sums defined on Markov chains with a the rate of convergence, recently proved in [40].
The result in [40] gives the explicit dependence of the constants on the norm [, of
the Dirac measure &, and on the absolute moments fi,(z) = sup,s; EY* (| f (X,,)|") for
some initial state z € X and some o > 2. To have a control on the constants we make
use of Hypothesis M3.4. Note that for products of random matrices [41], |04, and
o () are bounded uniformly in the initial state = € X, so that the rate of convergence
invariance principle does not depend on the initial state. The case of when ||, , and
o (x) are not bounded was was studied in details in [36] (Chapter 2) for affine Markov
walks.

The paper is organized as follows. In Section 3.2 we introduce the necessary notations
and state our main results. In Section 3.3 we give applications of the results of the paper
to stochastic recursions in R and Markov chains with compact state space. In Section
3.4 we collect some preliminary results. In Section 3.5 we construct the approximating
martingale and state some of its properties and of the associated exit times. In Section 3.6
we prove that the expectations E,((y+55,)1r,>n}) are bounded uniformly in n. Using the
results of Sections 3.5 and 3.6, we establish in Section 3.7 the existence of a Q. -harmonic
function and prove in Section 3.8 that this function is not identically zero. We determine
the limit of the probability P,(7, > n) in Section 3.9 and that of the conditioned law of
(y + Sn)/(oy/n) given the event {7, > n} in Section 3.10.

We end this section by setting some basic notations. For the rest of the paper the
symbol ¢ denotes a positive constant depending on the all previously introduced constants.
Sometimes, to stress the dependence of the constants on some parameters «, f3,... we
shall use the notations c,, cq g, .... All these constants are likely to change their values
every occurrence. For any real numbers u and v, denote by u A v = min(u,v) the
minimum between u and v. The indicator of an event A is denoted by 1,4. For any
bounded measurable function f on X, random variable X in X and event A, the integral
Jx f(2)P(X € dx, A) means the expectation E (f(X); A) =E (f(X)1a).

3.2 Main results

Let (X,)n=0 be a Markov chain taking values in the measurable state space (X, .2"),
defined on the probability space (€2,.%,P). For any given x € X, denote by P(x,-) its
transition probability, to which we associate the transition operator

Py(z) = [ g(a")P(z,de)

for any complex bounded measurable function g on X. Denote by P, and E, the probabil-
ity and the corresponding expectation generated by the finite dimensional distributions
of the Markov chain (X,,),>¢ starting at Xo = x. We remark that Pg () = E, (g (X))
and P"g (z) = E, (¢ (X)) for any g complex bounded measurable, x € X and n > 1.

Let f be a real valued function defined on the state space X and let % be a Banach
space of complex valued functions on X endowed with the norm ||-||,. Let [|-||,_ 4 be
the operator norm on 4 and let ' = £ (%, C) be the topological dual of & endowed
|||<2(Ilhaij’ for any ¢ € #’. Denote by e the unit function of
X: e(x) = 1, for any € X and by 4, the Dirac measure at = € X: 8,(g) = g(x), for any
gEAB.

Following [40], we assume the following hypotheses.

with the norm ||¢]l, = sup,cy
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Hypothesis M3.1 (Banach space).

1. The unit function e belongs to A.

2. For any x € X, the Dirac measure 8, belongs to A'.

3. The Banach space A is included in L' (P(z,-)), for any z € X.

4. There exists a constant k € (0,1) such that for any g € B, the function e/ g is in B
for any t satisfying |t| < k.

Under the point 3 of M3.1, Pg(x) exists for any g € & and = € X.

Hypothesis M3.2 (Spectral gap).
1. The map g — Pg is a bounded operator on A.

2. There exist constants ¢; > 0 and ca > 0 such that
P=1+Q,

where 11 is a one-dimensional projector and @) is an operator on A satisfying 11Q) =
QI =0 and for any n > 1,

can

||Qn||,%’—>% <c e

Since II is a one-dimensional projector and e is an eigenvector of P, there exists a
linear form v € %', such that for any g € %,

IIg = v(g)e. (3.2.1)

When Hypotheses M3.1 and M3.2 hold, we set P,g :== P (e“f g) for any ¢ € # and
t € [—k, k|. In particular Py = P.

Hypothesis M3.3 (Perturbed transition operator).
1. For any |t| < k the map g — P.g is a bounded operator on A.
2. There exists a constant Cp > 0 such that, for any n > 1 and |t| < k&,

1Pl 50 < Cp.
The following hypothesis will be important for establishing the main results.

Hypothesis M3.4 (Local integrability). The Banach space 9B contains a sequence of
real non-negative functions N, N1, No, ... such that:

1. There exist a« > 2 and v > 0 such that, for any r € X
max { (@), 18]l EY* (N (X))} < e(1+ N(2))

and
N(z)Lin@sy < Ni(z), forany [>1.

2. There exists ¢ > 0 such that, for any [ > 1,

1Ni] 5 < e
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3. There exist 5 > 0 and ¢ > 0 such that, for any | > 1,

C
v (V)] < ek

A comment on Hypothesis M3.4 seems to be appropriate. Although the function
N belongs to the Banach space 4, the truncated function x — N(x)1{y(z)>;; may not
belong to 4. Fortunately, in many interesting cases, there exists an element N, in %
dominating it. We refer to Section 3.3, where we verify Hypothesis M3.4 for stochastic
recursions in R? and for Markov chains with compact state space. Note also that the
function f need not belong to the Banach space %.

Under Hypotheses M3.1, M3.2 and M3.4, we have, for any x € X and n > 1,

E. (N(X,)) =v(N)+ Q"N(x)

S W)+ 1Q™ 252 N2 102 5
<c(l+e " N(x)) (3.2.2)

and, in the same way, forany zr € X, [ > 1 and n > 1,

Ex (Nl (Xn)> <

< g e T (L4 N(2). (3.2.3)

Moreover, from the point 1 of M3.4, one can easily verify that, for any = € X,
o) == sup EY* (|f (X,)|*) < ¢ (1+ N(2)757). (3.2.4)
n=1
The following proposition is proved in [40], where the bounds on the right follow from

(3.2.4) and again M3.4.

Proposition 3.2.1. Assume that the Markov chain (Xy,),-, and the function f satisfy
Hypotheses M3.1-M3.4.

1. There exists a constant p such that, for any x € X and n > 1,
o (f(Xa) = pl < ce™ (L4 pa(@)™*7 + 8]l ) < ce™ (1+ N(z).

2. There exists a constant o > 0 such that, for any x € X and n > 1,

sup
m=0

< (14 malP ™ +18ul) < o1+ N@P),

Var,, ( mi:n f(Xk)) — no?

k=m-+1

where Var, is the variance under P,.

We do not assume the existence of the stationary probability measure. If a stationary
probability measure v’ satisfying v/ (N?) < +o0 exists then, under Hypotheses M3.1-
M3.4, we have that v’ = v is necessarily unique and it holds (see [40])

v(f)=p and o®=v(f*) —v(f)’+2 +Zoj v (1P f) — (). (3.2.5)

Hypothesis M3.5 (Centring and non-degeneracy). We suppose that the constants p and
o defined in Proposition 3.2.1 satisfy p =0 and o > 0.
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Under M3.5 it follows from Proposition 3.2.1 that, for any x € X and n > 1,
IE. (f(X.))] < ce™™ (1+ N(2)). (3.2.6)

Let y € R be a starting point and (y + S, ),>0 be the Markov walk defined by S, :=
iy f(Xk), n > 1 with Sy = 0. Denote by 7, the first moment when y + S,, becomes
non-positive:

1, =inf{k >1:y+ 5, <0}.
It is shown in Lemma 3.5.5 that for any y € R and = € X, the stopping time 7, is
P,-a.s. finite. The asymptotic behaviour of the probability P, (7, > n) is determined by
the harmonic function which we proceed to introduce. For any (z,y) € X x R, denote by
Q(z,y,-) the transition probability of the Markov chain (X,,,y 4+ Sy )n>0. The restriction
of the measure Q(z,y,-) on X x R¥ is defined by

Q-i-(xvya B) = Q(Qf,y,B)

for any measurable set B on X x R% and for any (z,y) € X x R. For any bounded
measurable function ¢ : X X R — R set Qrpo(z,y) = fXxRi o', y)Qi(x,y,dz’ x dy'),

where (z,7) € X x R. A function V : X x R — R is said to be Q -harmonic if
Q. V(x,y) =V(x,y),  forany (v,y) € XxR,

We shall deal only with non-negative harmonic functions V. Denote by supp(V') the
support of such a function V,

supp(V) :=={(z,y) e X xR : V(z,y) > 0}.
On the complement of supp(V'), the function V' is 0. For any v > 0, consider the set
D, ={(r,y) eXxR:3ng =21, P, (y+Sp, >7(1+ N (X)), 7y >n9) >0}.

The following assertion proves the existence of a non-identically zero harmonic func-
tion.

Theorem 3.2.2. Assume Hypotheses M3.1-M3.5.

1. For any x € X, y € R, the sequence (E; (y + Sn; 7y > n)),-, converges to a real
number V (z,y):
E,(y+Sn,; 7, >n) — V(z,y).

n—+00

2. The function V: X x R — R, defined in the previous point is Q. -harmonic, i.e. for
any x € X, y € R,

Q. V(z,y) =E, (V( X,y +51) ;7 >1) =V(z,y).
3. For any x € X, the function V (z,-) is non-negative and non-decreasing on R and

Yy—r+00 Yy

=1

Moreover, for any 6 >0, x € X and y € R,

(1 =) max(y,0) —cs (1 + N(x)) < V(z,y) < (1 +0)max(y,0) +cs (1 + N(x)).
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4. There exists vy > 0 such that, for any v = v,
supp(V) = Z,.
The following result gives the asymptotic of the exit probability for fixed (z,y) € XxR.

Theorem 3.2.3. Assume Hypotheses M3.1-M3.5.
1. For any (x,y) € supp(V),

2V (z,y)
P, (1, > n) et o

2. For any (z,y) ¢ supp(V) and n > 1,
P, (1, >n) <ce ™ (14 N(z)).
Now we complete the point 1 of the previous theorem by some estimations.

Theorem 3.2.4. Assume Hypotheses M3.1-M3.5.
1. There exists eg > 0 such that, for any e € (0,&9), n > 1 and (z,y) € X X R,

2
2V (2,y)| _ max(y,0) + (1 + Yl sy + N(@))

X Ce
orno nl/2+e/16

2. Moreover, for any (z,y) € X xR andn > 1,

P, (1, > n) —

1+ max(y,0) + N(x)
NG :

Finally, we give the asymptotic of the conditional law of y + S,,.

P, (1, >n) <c

Theorem 3.2.5. Assume Hypotheses M3.1-M3.5.
1. For any (x,y) € supp(V) and t > 0,

Y+ Sh
P, <t
<O’\/ﬁ

2
where ®(t) =1 — e~ = is the Rayleigh distribution function.

2. Moreover there exists £g > 0 such that, for any € € (0,e9), n = 1, to > 0, t € [0, ]
and (z,y) € X x R,

Ty > n) e S (1),

P (y+ Su < 1/, 7y > ) — ALY gyt (t)

V2mtno o
2
max(y,0) + (1 + Ylysnt/z-ey + N(a:))
S Ceto nl/2+¢/16 :

We now comment on Theorems 3.2.2 and 3.2.3.

Remark 3.2.6. If we assume that there exist 6 > 0 and M > 0 such that for any x € X,
P, (f(Xy) >, N(Xy) < M) > 0, then one can see that the set X x [0, +00) is included
in supp(V).
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Remark 3.2.7. The sets (Z,),0 are nested and become equal to supp(V') for large ~:
we have 2,, O 2,, O 2, = supp(V), for 74 < 72 < 7, where 7 is large enough (see
Proposition 3.8.8).

Remark 3.2.8. The set supp(V) is not empty. More precisely there exists v; > 0 such
that
{(z,y) e XxR:y > (1+N(z))} Csupp(V),

see Proposition 3.8.8. Example 3.2.11 and Figure 3.1 illustrate this property.

Remark 3.2.9. When (X,,),>1 are i.i.d., it is well known that P, (17, > n) = 0 for any
(x,y) ¢ supp(V). When the sequence (X, ),>1 is a Markov chain, instead of this, we
have an exponential bound, see the point 2 of Theorem 3.2.3. We show that this bound
is attained for some Markov walk. We refer for details to Example 3.2.12.

Example 3.2.10 (Random walks in R). Suppose that (X, ),>1 are i.i.d. real random
variables of mean 0 and positive variance with finite absolute moments of order p > 2.
In this case, one can take N = N; =0, [ > 0. Therefore,

Dy, ={yeR:3Ing =1, P(y+ Spy >, 7y >ng) >0}.

Since the walk (y + S,),-, can increase at each step with positive probability, it follows
that P (y + Sy, > v, 7y > ng) > 0 if and only if P (7, > 1) = P(y + X; > 0) > 0. Thus,
0, +00) € (—maxsupp(p), +00) = 2, = supp(V), for every v > 0, where p is the
common law of X,, and supp(p) is its support.

The following example is intended to illustrate Remark 3.2.8.

Example 3.2.11. Consider the following special case of the one dimensional stochastic
recursion: X, 11 = @y 11X, +bpy1 where (a;);>1 and (b;);>1 are two independent sequences
of i.i.d. random variables. In this example we consider that the law of a; is %5{_1 /2y +
%5{1/2} and that of b; is uniform on [—1,1]. The state space X is R. The functions N
and N, are given by N(z) = |z|"™ for some ¢ > 0, and Ny(z) = N(z)¢(|z|) with ¢
defined by (3.11.4). The Banach space satisfying M3.1-M3.5 is constructed in Section
3.11 (see also [36]/Chapter 2). One can verify that the domain of positivity of the
function V is supp(V) = {(z,y) € R? : y > —% —1} = 2,, for all v > 0. Obviously,
{(z,y) eXxR:y>3 (1 + |x|1+8>} C supp(V), see Figure 3.1.

The next example is intended to show that the inequality of the point 2 of Theorem
3.2.3 is attained.

Example 3.2.12. Consider the Markov walk (X, ),>o living on the finite state space
X :={-1;1; =3;7/6} with the transition probabilities given in Figure 3.2. Suppose
that f is the identity function on X. It is easy to see that the assumptions stated in
Remark 3.3.10 of Section 3.3.3 are satisfied and thereby so are Hypotheses M3.1-M3.5.
In particular, M3.4 holds with N = N; = 0 for any [ > 1. Now, when x = 1 and y € (1, 3]
or when x = —1 and y € (—1, 2], one can check that the Markov walk y+ .5, stays positive
if and only if the values of the variables X, alternate between 1 and —1 and therefore,
for such starting points (z,y), we have P, (1, > n) = (%)n This shows that, when the
random variables (X,),-, form a Markov chain, the survival probability P, (7, > n) has
an asymptotic behaviour different from that in the independent case where it can be

either equivalent to ‘i%y or 0.
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supp(V)°

Figure 3.1 -

1/2

Figure 3.2 —

In this example we can make explicit the support of V. Since N = 0, the function V is
positive if and only if there exists an integer n > 1 such that P, (y + 5, >y, 7, >n) >0
for a v large enough. This is possible only if the chain can reach the state X,, = 7/6
within a trajectory of (y + S),.>,>, Which stays positive, i.e. P, (X,, =7/6, 7, > n) > 0.
Consequently

supp(V) = {=1} x (2, +00) U {1} x (3,4+00) U{-3,7/6} x (—=7/6,+00)
=P ={(r,y) eXxR:In>1, P, (y+ S, >3, 7, >n)>0}.

To sum up, this model presents the three possible asymptotic behaviours of the prob-
ability P, (1, > n): for any (z,y) € supp(V) = {—1} x (2,400) U {1} x (3,400) U

{=3,7/6} x (=7/6,400),
2V (z,y)

n—stoo 2mno
for any (z,y) € {—1} x (=1,2]U{1} x (1,3] and n > 1,
B (> 1) = (3)
for any (z,y) € {—1} x (=00, —=1]U {1} x (—00,1J]U{-3,7/6} X (—o0, —7/6] and n > 1,
P, (1, > n) =0.

P, (1, > n)



3.3. APPLICATIONS 93

3.3 Applications

We illustrate the results of Section 3.2 by considering three particular models.

3.3.1 Affine random walk in R? conditioned to stay in a half-
space

Let d > 1 be an integer and (gn)n>1 = (An, Bn)n>1 be a sequence of i.i.d. random
elements in GL (d, R) x R? following the same distribution p. Let (X,,),>0 be the Markov
chain on R? defined by

Xo=1€ ]Rda Xn—i—l = An+1Xn + Bn-‘,—la n =1

Set S, = Y0y f(Xk), n > 1, where the function f(z) = (u,x) is the projection of the
vector & € R? on the direction defined by the vector u € R? \ {0}. For any y € R,
consider the first time when the random walk (y + S,,),~, becomes non-positive:

1, =inf{k > 1:y+ Sp <0}

This stopping time coincides with the entry time of the affine walk (3;_; X4),,-, in the
closed half-subspace {s € R?: (u,s) < —y}.

Introduce the following hypothesis.
Hypothesis 3.3.1.

1. There exists a constant 6 > 0, such that
E ([ Ad***) < 400, E(|Bi***) < 400

and
k(8) = lim EV" (A, Any . A7) < 1L

n——+oo

2. There is no proper affine subspace of RY which is invariant with respect to all the
elements of the support of .

8. For any vector vy € R4\ {0},
P (tAflvo = tAglvO) <1,
where 'A is the transpose of A, for any A € GL (d,R).
4. The vector By is centred: E (By) = 0.
Proposition 3.3.2. Under Hypothesis 3.3.1, Theorems 3.2.2-3.2.5 hold true.

Proposition 3.3.2 is proved in Appendix 3.11 where we construct an appropriate Ba-
nach space & and show that Hypotheses M3.1-M3.5 are satisfied with N(x) = ]:E\HE,
for some € > 0 and with N;(z) = N(x)¢(|x|), where ¢, is defined by (3.11.4).

Remark 3.3.3. The set supp(V') depends on the law of (A;, B;). In the case when A; are
independent of B; and the support of the law of (u, B;) contains a sequence converging
to +00, one can verify that supp(V) = R? x R.
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3.3.2 Two components Markov chains in compact sets under
the Doeblin-Fortet condition

Let (X, dx) be a compact metric space, ¢ (X ) and .Z (X) be the spaces of continuous
and Lipschitz complex functions on X, respectively. Define

b, = sup|h(z)|, Vh €€ (X)

zeX

and h h
[h]X: sup ’ ($)— (y>’

(z,y)eX dx (-737 y)
Y

We endow ¢ (X) with the uniform norm |-| _ and £ (X)) with the norm |-|, = |-|  +[] y,
respectively. Consider the space X := X x X with the metric dgx on X defined by

dx((z1,72), (Y1, 92)) = dx(x1,91) + dx (22, ¥2), for any (z1,72) and (y1,32) in X. Denote
by .Z (X) the space of the Lipschitz complex function on X endowed with the norm

Il = l[-lle + []x, where

, YVhe Z(X).

Il = sup |h(a)], ¥h € € ()

nd |h(z) — h(y)|
T)—ny
B, = sup A TR oy,
[ ]X (a:,g;ZEX dX(xsz ( )
ay

Following Guivarc’h and Hardy [42], consider a Markov chain (x,),-, on X with transi-
tion probability P. Let (X,),., be the Markov chain on X defined by X,, = (Xn-1, Xn),
n > 1 and Xy = (0, x0): its transition probability is given by

P((z1,22),dyr x dyz) = 84, (dy1) P (22, dys) .

For a fixed real function f on X, let S, := >_}_, f (X,,) be the associated Markov walk
and, for any y € R, let 7, :=inf{n > 1:y+ S5, < 0} be the associated exit time.
In order to apply the results stated in the previous section, we need some hypotheses

on the function f and the operator P on %' (X) defined by Ph(x) = [y h(y)P(z,dy) for
any z € X and any h € €(X).

Hypothesis 3.3.4.
1. For any h in € (X), respectively in £ (X), the function Ph is an element of €(X),
respectively of £ (X).
2. There exist constants ng = 1, 0 < p < 1 and C' > 0 such that, for any function
h e Z(X), we have
[P™"hly < plhly + Clhl
3. The unique eigenvalue of P of modulus 1 is 1 and the associated eigenspace is generated

by the function e: x — 1, i.e. if there exist 0 € R and h € £(X) such that Ph = " h,
then h is constant and e = 1.

Under Hypothesis 3.3.4, one can check that conditions (a), (b), (c) and (d) of Chapter
3 in Norman [59] hold true and we can apply the theorem of Tonescu Tulcea and Marinescu
[49] (see also [42]). Coupling this theorem with the point 3 of Hypothesis 3.3.4 we obtain
the following proposition.
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Proposition 3.3.5.
1. There exists a unique P-invariant probability v on X.

2. Foranyn >1 and h € Z(X),
P"h = v(h) + R"h,
where R is an operator on £ (X) with a spectral radius r(R) < 1.

Suppose that f and v satisfy the following hypothesis.

Hypothesis 3.3.6.
1. The function f belongs to £ (X).

2. The function f is centred, in the sense that
| f(@.y)Pa,dy)v(dz) = 0.

3. The function f is non-degenerated, that means that there is no function h € £(X)
such that

f(a,y) = h(z) = h(y),
for P,-almost all (x,y), where P,(dz x dy) = P(z,dy)v(dz).

Assuming Hypotheses 3.3.4 and 3.3.6, Guivarc’h and Hardy [42] have established that
the sequence (S,/y/n),-, converges weakly to a centred Gaussian random variable of
variance o2 > 0, under the probability P, generated by the finite dimensional distributions
of the Markov chain (X,,),>0 starting at Xy = z, for any x € X. Moreover, under the same
hypotheses, we show in Appendix 3.12 that M3.1-M3.5 are satisfied with N = N; = 0,
thereby proving the following assertion.

Proposition 3.3.7. Under Hypotheses 3.3.4 and 3.53.6, Theorems 3.2.2-3.2.5 hold true.

3.3.3 Markov chains in compact sets under spectral gap as-
sumptions
In this section we give sufficient conditions in order that a Markov chain with values
in a compact set satisfy conditions M3.1-M3.5.
Let (X,d) be a compact metric space and (X,),., be a Markov chain living in X.

Denote by P the transition probability of (Xy),., and by %(X) the Banach algebra of
the continuous complex functions on X endowed with the uniform norm

|h|, = sup |h(x)], h € €(X).

zeX

Consider a real function f defined on X, the transition operator P on %' (X) associated to
the transition probability of (X,),., and the unit function e defined on X by e(x) = 1,
for any x € X.

Hypothesis 3.3.8.
1. For any h € €(X), the function Ph is an element of € (X).

2. The operator P has a unique invariant probability v.
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3. Foranyn > 1,
P =11+ Q",
where 11 is the one-dimensional projector on € (X) defined by I1I(h) = wv(h)e, for
any h € €(X), Q is an operator on € (X) of spectral radius r(Q) < 1 satisfying
IIQ = QI = 0.
4. The function f belongs to € (X) and is v-centred, i.e. v(f) = 0.
5. The function f is non-degenerated, that is there is no function h € € (X) such that

F(X1) = h(Xo) — h(X1),  Py-a.s.,

where P, is the probability generated by the finite dimensional distributions of the
Markov chain (X,)n=0 when the initial law of X is v.

Consider the Markov walk S,, = >_7_; f(Xk). It is well known, that under Hypothesis
3.3.8 the normalized sum S, //n converges in law to a centred normal distribution of
variance o2 > 0 with respect to the probability P, generated by the finite dimensional
distributions of the Markov chain (X,,),> starting at X, = z, for any = € X.

Proposition 3.3.9. Under Hypothesis 3.3.8, Theorems 3.2.2-3.2.5 hold true.

All the elements of the proof are contained in the proof of Proposition 3.3.7 (see
Appendix 3.12), which therefore is left to the reader. In particular Hypothesis M3.4
holds with N = N; = 0.

Remark 3.3.10. As a special example of the compact case, consider the Markov chain
(X1 )n>1 taking values in a finite space X. Assume that (X,,),>1 is aperiodic and irreducible
with transition matrix P. Let f be a finite function on X. We shall verify Hypotesis 3.3.8.
The Banach space % consists of all finite real functions on X, therefore condition 1 is
obvious. Moreover, there is a unique invariant measure v, which proves condition 2.
According to Perron-Frobenius theorem, the transition matrix P admits 1 as the only
simple eigenvalue of modulus 1, which implies condition 3. Assume in addition that
v(f) = 0 (which is condition 4) and that there exists a path xz,...,z, in X such that
P(zo, 1) > 0,...,P(zp_1,2,) > 0,P(x,,20) > 0 and f(zo) + -+ + f(z,) # 0 (which
implies condition 5). Thus all the conclusions of Theorems 3.2.2-3.2.5 hold true.

3.4 Preliminary statements

3.4.1 Results for the Brownian motion

Let (Bt)t>0 be the standard Brownian motion with values in R living on the probability
space (€,.%#,P). Define the exit time

T;/)m =inf{t >0:y+ oB; <0}, (3.4.1)

where ¢ > 0. The following affirmations are due to Lévy [57].

Lemma 3.4.1. Foranyy >0,0<a<bandn >1,

1 b (s—9)? (s+9)?
]P) (Tgm > n, y+ UBn € [a7 b]) - 7/ (e 2”‘?7!2 —e 2:;[7/2 > dS.

2mno Ja
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Lemma 3.4.2.

1. For anyy > 0,
P (T;m > n) < ci.

vn

2. For any sequence of real numbers (6,)n>0 Such that 6, j 0,

sup (W — 1) = 0(62).

2y
y€[0:6nv/n] 2wno

3.4.2 Strong approximation

Under hypotheses M3.1-M3.5 it is proved in [40] that there is a version of the Markov
walk (Sy,)n=0 and of the standard Brownian motion (B;)¢~o living on the same probability
space which are close enough in the following sense:

Proposition 3.4.3. There exists g > 0 such that, for any ¢ € (0,e0], without loss
of generality one can reconstruct the sequence (Sy)n>0 together with a continuous time
Brownian motion (By)ier, , such that for any v € X and n > 1,

]P)x (SUP ‘Sttnj - O'Btn) > n1/2€> < %(1 + N<:C>>7 (342)

0<t<1 n
where o is defined in the point 2 of Proposition 3.2.1.

In the original result the right-hand side in (3.4.2) is c.n™° (1 + po () + [|04] 5)" <
cen (1 4+ N(x))* with a > 2, by the point 1 of the Hypothesis M3.5. To obtain the
result of Proposition 3.4.3 it suffices to take the power 1/a on the both sides and to use
the obvious inequality p < p'/®, for p € [0, 1].

Using Proposition 3.4.3 we easily deduce the following result.

Corollary 3.4.4. There exists eg > 0 such that, for any e € (0,&9), € R andn > 1,
t 2

P, & <t _/ e 202 ﬂ

Vn —o0 2o

3.5 Martingale approximation and related assertions

< E (14 N@).

sup e

teR

In this section we construct an approximating martingale for the Markov walk (Sy,),,~,
which will be used subsequently to define the harmonic function. We also state some
useful properties.

Consider © the real valued function defined on X by:

@(x):f(x)—i-ioPkf(a:), Vo e X.

It is well known that © is the solution of the Poisson equation

©—-PO = f.
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For any x € X| let
r(r) = PO() = O(x) — f() = 3 PH/(2)

Following Gordin [35], define the process (M, ), -, by setting My = 0 and, for any n > 1,

[6 (Xk) PO Xk 1 Zn: Xk —’f’ Xk 1)]

1 k=1

NE

M, =
k

For any = € X, we have that (M,),>¢ is a zero mean P,-martingale with respect to the
natural filtration (#,),,.,. Denote by &, the increments of the martingale (M, )n>o: for
any n = 1,

& =0 (X)) —r(Xno1).

In the sequel it will be convenient to consider the martingale (z + M,,),>; starting at
z=y+r(x).

The reason for this is the following approximation which is an easy consequence of the
definition of the martingale (z + M, ),>1: for any z € X and y € R, we have

2+ M, =y+ S, +r(X,). (3.5.1)
From (3.2.6) we deduce the following assertion.
Lemma 3.5.1. The functions © and r exist on X and for any x € X,
O(2)] <c(1+ N(x)) and Ir(z)| < c(14 N(z)).
We show that the moments of order p € [1, a] of the martingale (M,,),., are bounded.

Lemma 3.5.2.
1. Foranyp€ [l,al,z€X andn >1

EY? (IM, ") < e/ (1 + N(a))
2. Foranyx € X andn > 1
E. (|My]) < ¢ (Vi + N(x)).
Proof. First we control the increments &,. By Lemma 3.5.1, for any n > 1,
1€l < c(1+ N (X,)+N(X,1)). (3.5.2)
So, using the point 1 of Hypothesis M3.4 and (3.2.2), for any n > 1,

E,/” (I&") < ¢ (L+N(z))  Vpel[lal,
E. ([€n]) S ¢+ ce”™ N(z).

Proof of the claim 1. By Burkholder’s inequality, for 2 < p < «

n p/2
E./” (|Ma") < oE” ((Z 52) ) :
k=1
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Using Holder’s inequality with the exponents u = p/2 > 1 and v = [%, we obtain

(Zg ) n2] —cn'm (ZE 1334 >1/p.

ELYP (|M,|P) < ¢, EYP

From (3.5.3), for any p € (2, a],

1/p
EL? (|M,|P) < cpn'® (Z o (1 p) < vn(l+ N(z)). (3.5.5)

Using the Jensen inequality for p € [1,2], we obtain the claim 1.
Proof of the claim 2. Consider € € (0,1/2). By (3.5.4),

2 (|Ma]) < ZE (1&k]) + Eq

)
).
Since (X,,, M,,)n>0 is a Markov chain, by the Markov property, the claim 1 and (3.2.2),
E, (|Ma]) < en® + eN(x) + Eq (B (| My — Mipe || Z1e) )
< en +eN(z) + E, [c (n— [n°])"? (1 + N (thfj))}
<cevn+ce.N(z)

< enf —|—CN(J})+E33(

]

A key point in the proof of the existence and of the positivity of the harmonic function
is the introduction of the following stopping times. Let T, be the first time when the
martingale (z + M,,),>1 becomes non-positive, and let T. be the first time, after the time
7y, when the martingale (z + M, ),>1 becomes non-positive. Precisely, for any = € X,
z€Rand y=2z—r(z), set

T,:=inf{k>1:24+M, <0} and T.:=inf{k>r7,: 2+ M;<0}. (3.5.6)

The finiteness of the stopping times 7,, 7, and T, is proved in Lemmas 3.5.5, 3.5.6 and
3.5.7 below. Now we point out some elementary facts which will be helpful in the sequel.
First, the stopping time T, is such that Ty < T. and T, < T.. Since 7, is the exit time of
(y 4+ Sn)nz0, by the Markov property,

P, (1, >n) = . Py (1y >n—k)P, (X, ede', y+ Sy edy, 7, > k). (3.5.7)

A similar expression holds true for T,. Unfortunately, (3.5.7) does not hold for T..
Instead we have a more sophisticated expression given by the following lemma. We

shall use repeatedly the same trick for more complicated functionals, as for example
E, (2 + My; T. > n).

Lemma 3.5.3. Foranyz € X, zeR,n>1, k<nandy=z—r(x),
P, (T. > n) = Py (T >n— k) Py (Xx € da’, 2+ My € d2, 7, > k)
XxR

+ | Pu(Tu>n—k)PB (Xpedd', 24+ Myedd, m <k, T.> k).

XxR
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Proof. Since T, > > 1y, for any k& < n, we have
Py (T.>n) =P (r,>n)+ Y Pu(ry=i+hk, T.>n) +P, (1, <k, T.>n).
i=1

By the Markov property and (3.5.1), with ¢/ = 2/ — r(2/),

P, (T.>n) = Py (1, >n — k)P, (X € da’, 2+ My, € d2', 7, > k)

XxR

—1-2 (ry =i, 2 +M;>0,...,2 + M, >0)

XXR
X P, (Xy €da', z+ M, €ds, 7, > k)
+ XXRIP’,C/ (Ty >n—k)P, (X eda', 24+ My eds, 7, <k,
2+ M, >0, ... ,z+Mk>O>.
Putting together the first two terms we get the result. O

The following lemma will be useful in the next sections.

Lemma 3.5.4. For any v € X and z € R, the sequence ((2+M )1 {7 >n}) s a
z n>0
P, -submartingale.

Proof. Let x € X, z € R. For any n > 0,
b (Mg 7)
—E, ((z M) Lz %) _E, <(z M) gz ‘ %)
=G4 M Ly~ B (o4 M) Uiy | 20).

By the definition of fz we have z + Mﬁ < 0 P,-a.s. and the result follows. O

We end this section by proving the finiteness of 7, 7., and T..
Lemma 3.5.5. For any x € X and y € R,

Ty < +oo  Py-a.s.

Proof. Let x € X. Assume first that y > 0. Since {7, > n} is a non-increasing sequence
of events,

P, (1, =+400) = lim P, (7, >n)= lim P, (y+ Sy >0, Vk <n).

n—-+o0o n—-+00

Using Proposition 3.4.3,

Py (y + Sk > 0, ¥k <n) < == (14 N(2)) + P (727 1o > n).

77
Thus, by the point 1 of Lemma 3.4.2,

(1+ N(z)) + ytnE Ci(1+y+N( ). (3.5.8)

NG

P, (1, > n) < ni
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When y < 0, we have, for any v’ > 0, P, (1, > n) < P, (1, > n). Taking the limit when
y' — 0, we obtain that

P, (1, > n) < % (1+ N(z)). (3.5.9)

From (3.5.8) and (3.5.9) it follows that, for any y € R,
P, (r, > n) < % (1 + max(y, 0) + N(z)). (3.5.10)
Taking the limit as n — 400, we conclude that 7, < 4+o00 P;-a.s. O]

The same result can be obtained for the exit time 7, of the martingale (z + M,,),>o0.

Lemma 3.5.6. For any x € X and z € R,
T, < +oco Pg-a.s.

Proof. Let x € X, z € Rand y = z —r(z). Assume first that y = z — r(z) > 0. Following
the proof of Lemma 3.5.5,

P, (T, = +o0) = nl_igloopm (z+ M >0,Vk <n).

By (3.5.1) the martingale (z + M,),>¢ is relied to the Markov walk (y + S,,)n>0, which
gives

Py (2 + My > 0, ¥k < n) <P, (y+ Si > —n'/™, ¥k < n)

+P, (lrggé 1 (Xg)| > n1/2_5> . (3.5.11)
On the one hand, in the same way as in the proof of Lemma 3.5.5,

P, (54 S > —n'% k< n) < % (1+ N (@) + Py (100 oee > 1) (35.12)
On the other hand, using Lemma 3.5.1, for n large enough,

)
e cN (Xy) cN; (X3)
P, <1ggglr(Xk)| >n'/ ) < k; Eq <nl/2— + > B Tatre )

k=[nf]+1

where [ = cn'/?27¢. So, using (3.2.3) and taking ¢ < min (%, ﬁ), we obtain
P, (EBX I (Xe)| > nl/H) < “ 1+ N@)). (3.5.13)
<n ne

Putting together (3.5.11), (3.5.12) and (3.5.13) and using the point 1 of Lemma 3.4.2, we
have, for z > r(z),

At 2nt/2 e
vn S one

Since z +— T, is non-decreasing, we obtain the same bound for any 2z € R,

P, (T, >n) < —(1+ N(x)) + (14 max(z,0) + N(x)).

i
ne

P, (T, > n) < % (1 + max(z,0) + N (). (3.5.14)

Taking the limit as n — 400 we conclude that T, < +o00 P, -a.s. O
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Lemma 3.5.7. For any x € X and z € R,
YA’Z < 4o Pg-a.s.

Proof. In order to apply Lemmas 3.5.5 and 3.5.6, we write, with y = z — r(z),

P, (fz > n) <P, (1, > |n/2])) +/ Py (T >n—|n/2])P, (XLn/QJ € da’,
XxR
24+ Mo € d2', 7, < [n/2] T. > Ln/QJ) .
Using (3.5.10), (3.5.14) and the definition of y, we have
~ C6
P, (T. > n) < —= (1 + max(y,0) + N())
nf
Ce ~
+ B, (1 + 24 Mnp + N (th/zj) Ty < [n/2] T > Ln/2J) :
By the point 1 of Hypothesis M 3.4,

~ Ce Ce ~
P, (T. > n) < = (1 max(y,0) + N(z)) + “E, (2+ Mz 5 To > [n/2])

Ce
_ EIEQ; (Z + MLn/QJ ; Ty > |_n/2j) .

Using (3.5.1), we see that on the event {7, > [n/2|} we have z 4+ Mo > r (XLn/QJ).
Then, by Lemma 3.5.1 and the point 1 of Hypothesis M3.4,

-~ Ce Ce -~
P, (T. > n) < - (1+ max(y,0) + N(x)) + ~E, (2+ Mpnjay; To > [n/2]).

Using Lemma 3.6.4, we have

Ce

P, (TZ > n) < — (1 + max(y,0) + N(z)).

ne
Finally, we conclude that

~

P, (TZ - +oo) — lim P, (f’ > n) —0.

n——+oo

3.6 Integrability of the killed martingale

The goal of this section is to show that the expectations of the martingale (z+ M,,),>0
killed at T, and of the Markov walk (y + Sn)n>o killed at 7, are bounded uniformly in n.

We start by establishing two auxiliary bounds of order n'/2=2¢ for the expectations of
the martingale (z + M,,),>o killed at T, or at T..

Lemma 3.6.1. There exists g > 0 such that, for any ¢ € (0,e0), z € X, z € R and
n =1, it holds

E,(z+ M, ; T. > n) < max(z,0) + c. (711/2_2E + N(x)) .
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Proof. Using the fact that (M,,),>0 is a zero mean martingale and the optional stopping
theorem,

E.(z4M,;T.>n)=z—-E, (z+M,; T, <n)=z—-E, (z24+Mr,; T, <n).
By the definition of T}, on the event {7, > 1}, we have
Er, =2+ Mp, — (2 4+ Mrp,_1) < 2+ Mg, <0.
Using this inequality and (3.5.2), we obtain

E.(z4+M,; T.>n) <z2P, (T, > 1)+ E, (|&1| ; T. = 1)+ E, (|| ; 1 < T, < n)
<max(z,0)+cE, (1+ N (Xr,)+ N (Xr,1) ; T. <n). (3.6.1)

We bound E, (N (X7,) ; T, < n) as follows. Let ¢ be a real number in (0,1/6) and set
= {nl/Q*QEJ. Using the point 1 of Hypothesis M 3.4 we write

E, (N (Xz.) ; T. <n) <n'*7% +E, (N (Xr.) ; N (Xz.) > n'/>™ T. < n)

[n°] n
<A ELNE(NXG) + Y E (N (X))
k=1 k=|n®]+1

By (3.2.2) and (3.2.3),

E, (N (Xr.); T < n) < en/>2 4 eN(2) + —2 4 ce™ (1+ N(x)).

11+8
Choosing ¢ < min(%, %), we find that
E, (N (X7) ; T. <n) <cn'/* % 4 ¢.N(z). (3.6.2)

In the same manner, we obtain that E, (N (X1._1) ; T. < n) < c.n'/?7% 4 ¢.N(z). Con-
sequently, from (3.6.2) and (3.6.1), we conclude the assertion of the lemma. O

Lemma 3.6.2. There exists g > 0 such that, for any ¢ € (0,e0), z € X, z € R and
n =1, we have

E, (z + M, ; T, > n) < max(z,0) + ¢ (nl/%% + nQEN(x)> .

Proof. Let ¢ be a real number in (0,1/4) and n > 1. Denoting z; := z +n'/?7% we have,
E, (z—}-Mn; T’z >n) =E, <2+Mn; T, <n, fz >n)
=:J1
+ By (24 My; ey >0, To>n). (3.6.3)

=:Js

Bound of Ji. Recall that y = 2z — r(z). Using the definition of T,, we can see
that on the event {7, < k, T, > k} it holds zy + My > z + My > 0. So, we have
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P, (Ty <k, T.>k, T, = k) = (0. Using this fact and the Markov property, in the same
way as in the proof of Lemma 3.5.3,

Jy = ;;1 [ Eu (2 + My; T > — k)
x P, (Xk ede', z+M,ed, 7, >k, T, :k).
Since z + MTZ+ < 0, using the point 2 of Lemma 3.5.2, we have
S < By (Vi N (Xr, )57y > T, Ty <)
By the approximation (3.5.1), on the event {7, > T, }, it holds
r (XTZJ =z+ MT2+ — (y + STZ+) < —pl/?2,

Therefore, by Lemma 3.5.1,

<o, (5] Y () ()| = 02 7, <)
< en® + en*E, (N (XT2+) ; T, < n) )

Choosing € small enough, by (3.6.2),
Ji < en® + c.n* (n1/2_45 + N(m)) < en*% 4 e.n*N(z). (3.6.4)
Bound of Jo. By Lemma 3.6.1, there exists g9 > 0 such that, for any € € (0, g),
Jo <E, (z+ +M,; T., > n) < max(z,0) + c.n'/?*7% + c.N(z).

Inserting this bound and (3.6.4) into (3.6.3), for any € € (0, &¢), we deduce the asser-
tion of the lemma. O

Let v, be the first time when the martingale z + M,, exceeds n'/?>~¢: for any n > 1,
e€(0,1/2) and z € R,

Un = Upe, i= min{k >1:2+ M, > nl/Q’E}. (3.6.5)

The control on the joint law of v, and T, is given by the following lemma.

Lemma 3.6.3. There exists g > 0 such that, for any € € (0,&), 0 >0, x € X, z € R
andn > 1,
P, (I/n >ontc, T, > 5n1_€> < ey e %™ (14 N (2)).

Proof. Let ¢ € (0,1/4) and 6 > 0. Without loss of generally, we assume that n >
Ces, where c.s is large enough. Set K := |[n®/2]. We split the interval [1,n'™¢] by
subintervals of length [ := |dn'~%]. For any k € {1,... K}, introduce the event Ay, :=
{max;<p<k (2 + M) < n'/?27¢}. Then

Py (v > 0n' %, T. > on' %) <Py (Ao, To > 2K1) | (3.6.6)
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By the Markov property, as in the proof of Lemma 3.5.3, with y = z — r(z), we have

AQ(Kfl),za Ty > 2(K — 1)[)
+/ P, (A2,z’> T, > 2[) P, (XQ(K,D[ € dZI?/, Z+ MQ(K,D[ € dZ/,
XxR

Asconye, 7y S 2K = DI, To > 2(K = 1)1) . (36.7)

Moreover, with y' = 2’ — r(2’), we write also that
Py (A2,z/, ’fzf > 2l)
- /XX]R For (AI’Z" T > l) Py (X, eda”, 2"+ My e dz", Ay, 1y > 1)
+ /XXRPI” (Aror, Tor > 1) (3.6.8)

~

X Py (Xl S dZL'”, Z/—f—Ml S dZ”, Al,z’a Ty < [, T, > l)

Bound of P (ALZ” T > l). Note that on the event {7, > [} we have 2’ + M, —

r(X;) =y + S, > 0. Consequently, in the first integral of the right-hand side of (3.6.8),
the integration over X x R can be replaced by the integration over {(z”,2") € X x R :

2" — r(z") > 0}. Therefore it is enough to bound P, (Al,z” , T > l) for ' and 2"
satisfying " = 2 — r(2”) > 0. Using (3.5.1) we have,
]P)m// (ALZ”7 le/ > l) g ]P):L.// (y// + S[ g 2711/276, |7, (Xl)| g n1/27€)
+ Py (lr (X))| > n1/2_€> .

Therefore, there exists a constant c. ;5 such that

~ Sl ’7“ (Xl)|
Px” (Al,z”a Tz” > l) < ]P)ac” (\/Z < 0875> + Ex” < nl/2—e ’

Using Corollary 3.4.4 and Lemma 3.5.1, there exists g € (0,1/4), such that, for any
e € (0,¢),

~ Ce, u? d
P (A, T > 1) < [ "8 2 2 (U4 NG + oy B (14N (X0).

—00 2mo nl/2—e

Using the point 1 of Hypothesis M3.4 and the fact that ¢ > n®/%/c.; for ¢ < 1/4, we
have,

Por (Aror, T > 1) < ges + 255 (14 N(a"), (3.6.9)

s —2 g
with g.5 1= [50 e 202 ﬁ < 1.

Bound of Pyr (Ay v, T >1). On the event {T,» > [} we have 2" + M; > 0. Using
(3.5.1) and Corollary 3.4.4, in the same way as in the proof of the bound (3.6.9), we
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obtain

2! (Al Z”7 2 > l) }P}x” <O < Z// + Ml < n1/2_6>

ll/-}—ce’ u2 d e
T e S (1 NG))
%—cg s o2t ne/
/2 (1 + N(x )) (3.6.10)

Bound of P, (Agvz/, T, > 2[). Inserting (3.6.9) and (3.6.10) into (3.6.8) and using
(3.2.2), we have

Ce s Ce)s
(A227T >2l> q56+n7 el
2e

Fege T N(2), (3.6.11)

B, (N (X))
8/2

Bound of P,y (As., Ty > 21). By the Markov property,

P, (AQ,Z’ ) T, > 21) = Py (Al,z”> T > l)
XxR
X P (Xl € d$”, 2+ M, € dZ”, Al,z’ , T > l) .

Using (3.6.10) to bound the probability inside the integral, we get

2e

Py (Agr, T > 21) < qes + +eose T N(2). (3.6.12)

2/2
Inserting the bounds (3.6.11) and (3.6.12) into (3.6.7), we find that
P, (Ask., T. > 2K1)
< (s + 25 ) Pa (s s To > 20K = DI) + e (14 N(w)).

Iterating this inequality, we get

~ Ce)s K e nl K Ce,6 F
Pz(AQK,Z,TZ>2Kl)<<q€5+ 6/2) Feoge = (14 Nz Z<q€5+ 8/2> .

K
As K = [n°/2]| and ¢.; < 1 it follows that, for n large enough, (q&(s—l— ;2/‘52) <
Cese %9 which, in turn, implies

Py (Asico, To > 2K1) < cope™ ™ (14 N(x)).
O

Lemma 3.6.4. There exists ¢g > 0 such that, for any ¢ € (0,&9), r € X, 2z € R, n > 2
and any integer kg € {2,...,n},

E. (z +M,; T, > n) < (1 + ) (max(z,0) +¢cN(z)) + cgk1/2.

kg
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Proof. Set for brevity u,, := E, (z + M, ; ’fz > n) . By Lemma 3.5.4, the sequence (uy,)n>1
is non-decreasing. Let € € (0,1/2). We shall prove below that, for n > 2,

Uy < <1 + cg> Upi-e) 4+ c. €™ (14 N(z)). (3.6.13)
/,/LE
Using Lemma 9.1 of [36] (Lemma 2.9.1 in Chapter 2), we obtain that for any n > 2 and

koE{Q,...,n},

Up < (1 * ;i) Ukg + Ce e ek (1+ N(z)).
0

Next, by the point 2 of Lemma 3.5.2, uy, < E, (|My,]) < ¢ (\/k_o—l— N(x)), so that
1/2

Uy, < (1 + Z‘Z) (max(z,0) + cN(z)) + cky' 7,
0

which proves Lemma 3.6.4.
Establishing (3.6.13) is rather tedious. In the proof we make use of Lemmas 3.6.2 and
3.6.1. Consider the stopping time v5 := v, + [n°|. Then,

Up < ]Ex(z+Mn;fz>N,VfL> {nligJ)

< |n'). (3.6.14)

Bound of Jy. Set m. = |n'~¢| — [n°] and recall that y = z —r(z). Using the fact that
{ve¢ > |n'=¢|} = {v, > m.} and the Markov property, as in the proof of Lemma 3.5.3,

J = / E, (z’ + My, ; fz/ >n — mg)
XxR
X P, (X, €da’, 2+ M, €d', 7, >m., v, >m,)

+ Ey (2 4+ My . ; Tor >n —m.)
XxR

~

xIP’x<Xm5Ed:L",z—{—MmsEdz’,Tyémg,Tz>mg,Vn>ma).

On the event {v, > m.}, we have ' = z + M,,. < n'/?27¢ < n'/2. Moreover by the point
2 of Lemma 3.5.2, By (|My_m.|) < en'/? 4 eN(2'). Therefore,

=]1 < CEx (n1/2 + N(Xms) ) fz > Mg, Vp > ms) .
Set m. =m. — [n°] = [n'~¢] — 2|n®|. Using the Markov property and (3.2.2),
Ji < C/X [nl/z +E,. (N (XWJ))] P, <Xm/5 eda, T, > m., v, > m’e)

< en'?’P, (fz >ml, v, > m'a) +ce ™ E, (N (Xmé>) )

By Lemma 3.6.3 and the point 1 of Hypothesis M3.4,

Ji <en'em = (14 N(2)) +ce™™ (1+ N(z)) <cce ™ (1+ N(z)).  (3.6.15)
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Bound of J5. By the Markov property, as in the proof of Lemma 3.5.3, we have

)
Z E, (Z, + M, _y; Tzl >n— ]{?)

XxR

X P, (X, eds, z+ Myed, 7, >k, v, =k)

-+ E,. (Z/ + M, _; ; T, >n— k‘)
XxR

xIP’;,;(Xkde’,z+Mk€dz’,Ty<k,fZ>k,;/E:]{).
By Lemmas 3.6.2 and 3.6.1,

Jo < c.E, <n1/2_2€ +n%*®N (XV%> ; fz > v, U < {nl_aJ)
=:J21
+E, (maX (z + M,:, 0) T.>vS, 15 < {nl_‘gD : (3.6.16)
=:J22

Bound of Jy1. Using the Markov property and (3.2.2),
Jo1 < cg/ E, (n'/?7% + p*N (XWJ)) P, (Xyn € da’, T, > Up s Up < {nl_ED
< c.E, ( 1/2 = +e*CE”5N(XZ,n) : fz > Up, Up < {nkED .
Again by (3.2.2),
[t ]

Ex (efc@:nf N(X,/n) : fz > Vp \ Un < \‘nlfsJ> 76571 Z E ’ v, = k)
<ce @ 1 (14 N(z)). (3.6.17)
Therefore,
Jo < c.E, (n1/2_25; T. > vy, vy < {nl ED +c.e " (1+ N(x)). (3.6.18)
=:J5

By the definition of v,,, we have n'/272¢ < Z+M”" . So
Joy < %Ez (z + M, ; TZ > Uy, Uy < {nleD .
Using Lemma 3.5.4,
Jél < %Em (Z + MLnI—EJ ; fz > LnkED
_ %Ew (z + Mpr-<; fz > {nlf‘EJ > {nlng) . (3.6.19)

—
*"]21

Note that on the event {7, > [n'~|}, by (3.5.1), we have z+ M1 > r (XW_EJ) while
on the event {7, < [n'~*| , T, > [n'~*|} we have z + M|,1--| > 0. Therefore, by the
definition of fz,

< —E, (r (thlfsJ) Ty > Lnl_eJ , Up > {nl_eJ)
< cE, (1 + N (waaj) T, > {nl_aj , Up > {nl_aj) .
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Using the Markov property and (3.2.2),

< cE, (1 +e ™ N (Xpn.) : T, >me., vy, > mg)
< P, (Vn >m., T, > mg) +ce”™ (14 N(z)).

By Lemma 3.6.3,
—Jf < e =™ (14 N(z)). (3.6.20)

Putting together (3.6.20) and (3.6.19),
Joy < %Ew (z + Mp—<; T. > {nl_aJ) +c.e =" (1+ N(x)). (3.6.21)
/rLS
From (3.6.21) and (3.6.18) it follows that
Ce 1—¢ —cen®
Jo < K, (2 + My To > [n' %)) + cce ™™™ (14 N(z)). (3.6.22)
Bound of Jss. On the event {YA} > vr, 7, < vy} we have z 4+ M. > 0. Consequently
Joy =E, (z + M, ; T, > v, v < {nl_aJ)
+E, (max (z + M,,Z,O) — (z + Myi) $ Ty > U, Uy K {nleD .
By Lemma 3.5.4,

o By (5 4 My o > 1)
B (o Mai B> [ o> ) -
14,

—Ew(z%—Myi;z—kMyi <0,1, >0, v < {nl_eJ).

—. 7/
_'J22

In the same way as in the proof of the bound of JJ,, replacing v, by v, one can prove
that
—J < cce =™ (14 N(z)). (3.6.24)

Moreover, using (3.5.1), on the event {Ty > o}, we have —(z + M,:) < —7"( ) So,
by Lemma 3.5.1 and the Markov property

(T(Xl,%> T, > v, Vs < {nl_aJ)
(e N (00) T > )
:c/XEx/ (1+N<XWJ)) (Xyn € da’ fz > Uy, Up < {nl_ED.

Using (3.2.2),

!
J22

< E,
<E

Joy < CE, (1 +e ™ N(X,,); To >y, Uy < {nI’ED :
Therefore, from (3.6.17) with the notation Jj; from (3.6.18),

Jho < Jhy +cce”™ (1 + N(x)). (3.6.25)
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With (3.6.21), (3.6.23) and (3.6.24) we obtain,
Jop < (1 + ;) Up—s| + o0~ (14 N(z)). (3.6.26)

Inserting (3.6.26) and (3.6.22) into (3.6.16),

b < (1 + C) Upi—e] + €2 €57 (14 N(x)). (3.6.27)
/rLE
Now, inserting (3.6.15) and (3.6.27) into (3.6.14), we find (3.6.13). O

Corollary 3.6.5. There exists g > 0 such that, for any e € (0,e9), r € X, y € R, n > 2
and any integer kg € {2,...,n},

E,(y+Sn; 7, >n) < (1 + Z‘Z) (max(y,0) + cN(z)) + kg
0

Proof. First, using the definition of 7, and Lemma 3.6.4, with z = y + r(x),

~

]Ex(z—l—Mn;Ty>n):Ex(z—|—Mn;fz>n>—Ex(z+Mn;Ty<n,Tz>n)

<E, (24 M,; T. > n) (3.6.28)
< (1 + ;) (max(z,0) + N (z)) + ek (3.6.2)
0

Now, using (3.5.1), Lemma 3.5.1 and (3.2.2),

E,(y+ Sn;7y>n)=E, (2 +M,; 7,>n) —E, (r(X,) ; 7, >n)
gEI(z—l—Mn;Ty>n)—|—c(1+e*mN(az))

< <1 + Z;) (max(z,0) + cN(z)) + k>,
0

Using the definition of z concludes the proof. m

3.7 Existence and properties of the harmonic func-
tion

The idea is very simple. Set for brevity V,(z,y) = E, (y+ S,; 7, > n). By the
Markov property V,i1(x,y) = Q4Vi(z,y). We show that lim, o V,(z,y) exists and
is equal to V(z,y) := —E,(M;,). Then the harmonicity of V' follows by the Lebesgue
dominated convergence theorem. The key point of the proof is the integrability of the
random variable M . To justify the applicability of the Lebesgue dominated convergence
theorem we use Lemma 3.6.4. We also shall establish some properties of V. They will be
deduced from those of the following two functions: W (x, z) := —E,(Mz,) and W (x, z) :=
—Ex(Mf) The strict positivity of V' is technically more delicate and therefore is deferred
to the next section.
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Lemma 3.7.1. Let v € X, y € R and z = y + r(z). The random variables Mz , Mr,
and M-, are integrable and

21) Ba (IMr]) Eq (|M,[) } < e (14 |2 + N(@)) < +oo.
In particular, the following functions are well defined, for any x € X, y € R and z € R,

V(z,y) = —E, (MT ) . W(z,z2):=—E,(Mz) and W(z,z):=—E, (Mﬁ) .

max {E, (

Ty

Proof. Let n > 1. The stopping times 7, An, T, An and T. A n are bounded and satisfy
m, An < T, Anand T, An < T, An. Since (|M )0 is a submartingale, we have

TyAnD By (|MT2An|)} < E, ( @An’) : (3.7.1)
Using the optional stopping theorem,

Eo (Mg |) € —Ea (24 Mz i To <n) + By (|2 + My 5 7 > )

max {]Ez (

—i—Ex(z—i-Mn;Tygn T>n)+|z|
:—Ex(z—l—Mn;Tg )—QEx(z+Mn;z+Mn<O,Ty>n)

—|—Ez(z+]\/[n;Ty>n)+Ex<z+Mn;Ty<n,fz>n>+\z\
= — 2+ 2, (2+ M,; T > n)

—2E, (z+ My; 2+ M, <0, 7, >n)+|z.

On the event {z + M, <0, 7, > n}, by (3.5.1), it holds |z + M, | < |r (X,,)|. Therefore,
by Lemma 3.5.1 and the point 1 of Hypothesis M3.4, we have

—2E, (2 4+ M,; 2+ M, <0, 7,>n)<c(l+ N(x)),
Using Lemma 3.6.4,

E. (

By the Lebesgue monotone convergence theorem and the fact that T, < 400, we deduce
that Mz is P,-integrable and

E, (
In the same manner, using (3.7.1), (3.7.2) and Lemmas 3.5.5 and 3.5.6, we conclude that
M, and My, are IP,-integrable and

) Ee ((Mr])} < c(14]2] + N(x)).

The assertion of the lemma follows obviously from the last two inequalities. O]

T.An

7] To<n) <Eq

Mz ,|) e+ 2]+ N(x)). (3.7.2)

2) Sc+ 2+ N@)).

max {E, (

Ty

Proposition 3.7.2.
1. Letz e X, ye R and z=y+r(zx). Then

V(z,y) = lim B, (z+M,; 7 >n) = lim B, (y+S,; 7 >n)

n—-+4o00o

and

Wiz, z) = EmE (z4+ M, ; T, >n),

—

W(zx,z)= lim E, (2+Mn;fz>n).

n—-+0o0o



112 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

2. For any x € X, the functions y — V(z,y), z — W(z,2) and z — W(z,z) are
non-decreasing on R.

3. There exists eg > 0 such that, for any ¢ € (0,g9), x € X, z € R and any integer
kO 2 27

Wz, 2) < (1 + ;) (max(z,0) + cN(2)) + c.k/? (3.7.3)
0
and, for any x € X, y € R and z = y + r(x),
0 < min{V(z,y), W(x,2)} < max{V(z,y), W(z,2)} < W(z,y). (3.7.4)

In particular, for any x € X and y € R,
0< V(z,y) < c(l+max(y,0) + N(x)). (3.7.5)
4. Foranyx € X and y € R,
Viz,y) = QiV(z,y) =E, (V(X1,y+51); 7, > 1)

and (V (X, y + ) 1{7y>n}> is a P-martingale.

n>0

Proof. Claim 1. Let v be any of the stopping times 7,,7%., or T.. By the martingale
property, for n > 1,

E,(z+M,;v>n)=2z2P,(v>n)—E,(M,; v<n).
Using Lemmas 3.5.5, 3.5.6, 3.5.7, 3.7.1 and the Lebesgue dominated convergence theorem,
E,(z+ M,;v>n)=—-E, (M,).
Moreover, by (3.5.1),
E,(y+Sn;7y>n)=E, (2 +M,;7,>n)—E, (r(X,,) ; 7y >n).
Since, by Lemma 3.5.1, the point 1 of Hypothesis M 3.4 and Lemma 2.9.7, we have
[Be (r (Xn) 5 7 > n)| < cEY? (14 N (X)) P2 (7, > m)

<c(1+ N(@)PY?(r,>n) — 0, (3.7.6)

n—-+oo

the claim 1 follows.
Proof of the claim 2. Let x € X. For any y' < y, we obviously have 7, < 7,.
Therefore, for n > 1,

Ee (Y + Sn; 7y >n) <Ep (y+Sns 7y >n) <Eu(y+Su; 7y >n).

Taking the limit as n — +o00 and using the claim 1, it follows that V(z,y’) < V(z,y).
In the same way W (z,2") < W(x,z) for 2’ < z. To prove the monotonicity of W, we
note that, for any 2’ < z, ¢’ = 2’ —r(z) and y = 2 — r(z), we have T,y = min{k > 7 :
2 4+ M, <0} <min{k > 7, : 2/ + M, <0} <T,. So
E, (z’—i—Mn; fz/ >n) < E, (z—i—Mn; fz/ >n, TZ >n)
<E,(y+ Sn; 7y >n) +E, (|r (Xn)|; 7y >n)
+ E, (z—i—Mn; Ty <N, fz >n)

<]Ex(z+Mn;fz>n)—|—2Ez(|r(Xn)| DTy >n).
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As in (3.7.6), taking the limit as n — oo, by the claim 1, we have W (z, /) < W (z, 2).
Proof of the claim 3. The inequality (3.7.3) is a direct consequence of the claim 1 and
Lemma 3.6.4. Moreover, taking the limit as n — oo in (3.6.28), we get V' (z,y) < W (z, 2).
To bound W, we write, for n > 1,
E.(z+M,; T, >n)=E, (z—i—Mn; T, <n, T.>n,T, >n)
+E, (2+My; 2+M,>0,7,>n,T, >n).

Since z + M,, > 0 on the event {7, <n, T, > n},

Em(z+Mn;TZ>n)<Em(2+Mn;Ty<n,fZ>n>
+E, (2+M,; 2+ M, >0,7,>n)
:]Em(z+Mn;fz>n)
—E, (2 +M,; 2+ M,<0,7,>n).

Using the approximation (3.5.1),
B, (2+ My; To > n) < Ep (24 My To > n) + By (Ir (X0)| 5 7 > n). (3.7.7)

As in (3.7.6), using the claim 1,

—

W(zx,z) < W(z,z).

Now, since y+.5,, is positive on the event {7, > n}, by the claim 1, we see that V(z,y) > 0
and in the same way, W (x, z) > 0. This proves (3.7.4).

Inequality (3.7.5) follows from (3.7.3) and (3.7.4).

Proof of the claim 4. By the Markov property, for n > 1,

Vigi(z,y) =By (y + Spgrs 7y >n+ 1)

= V(2 )P (X €da’, y+S1€edy, 7, > 1), (3.7.8)
XxR

where, by Corollary 3.6.5, V,,(2',y") < ¢ (1 + || + N (2’)) and by the point 1 of Hypoth-
esis M3.4,
E: (1+ |y + 51|+ N (X1)) <c(l+ [yl + N(z)) < +oo.

Taking the limit in (3.7.8), by the Lebesgue dominated convergence theorem, we have

Viz,y) =QiV(z,y) =E, (V(X1,y+51) ;7> 1).

3.8 Positivity of the harmonic function

The aim of this section is to prove that the harmonic function V is non-identically
zero and to precise its support.
For any = € X, z € R and n > 0, denote for brevity,

o~ o~

Wn(l’, Z) =W (Xn, z+ Mn) l{ﬁ>n} (381)
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Although it is easy to verify that W(z, z) > z (see Lemma 3.8.1) which, in turn, ensures
that W(x,z) > 0 for any z > 0, it is not straightforward to give a lower bound for
the function V. We show that V(z,y) = lim, Ex(l//l\/n(x, z); 7y > n) (Lemma 3.8.2)
and use the fact that (W, (z, 2)1{z,>n})n>0 is a Pp-supermartingale (Lemma 3.8.1). By a
recurrent procedure similar to that used in Lemma 3.6.4, we obtain a lower bound for V'

(Lemma 3.8.6) which subsequently is used to prove the positivity of V' (Lemma 3.8.8).

Lemma 3.8.1.
1. Foranyr € X and z € R, .
Wiz, z) > 2.
2. For any x € X, .
|44
tim V@02
Z—+00 z

3. The function W is subharmonic, i.e. for any x € X, z € R andn > 0,

E, (W(z,2)) > W(z, 2).
4. For any x € X and z € R, (Wn(a:, z)]l{TyM}) o is a P,-supermartingale.

Proof. Claim 1. By the Doob optional theorem and the definition of 7}, for any n > 1,
E, (Z—i—Mn; TZ >n) :z—Ew(quMf ; fzén> > z.

Taking the limit as n — 400 and using the point 1 of Proposition 3.7.2 proves the claim
1.

Proof of the claim 2. By the claim 1, liminf, W(x,z)/z > 1. Moreover, by
(3.7.3), for any ko > 2,

—

lim supW<x’Z> < (1 + Ci) .

2Z—00 z

Taking the limit as ky — +o00, the claim follows.
Proof of the claim 3. Recall the notation y = z — r(z). Using the Markov property,
as in the proof of Lemma 3.5.3, for any k > 1,

Em(z+Mn+k;fZ>n+k>: Em/(z’+Mn;TZ/>n)

XxR
x P, (Xy€da', z+ M, €ds, 7, > k)

+ E, (Z/ + M, ; T, > n) (382)
XxR

XPx(XkGdI/,Z+Mk€dZI,Ty<k,fz>k).

We shall find the limits as n — 400 of the two terms in the right hand side of (3.8.2).
By Lemmas 3.6.4 and 3.5.1, E,/ (z’ +M,; Ty > n) < c(1+ Y|+ N (2)), with ¢/ =
2" —r(a"). Moreover by the point 1 of Hypothesis M3.4, E, (1 + |y + S| + N (X})) <
ck (1+ |yl + N(z)) < +00. So, by the Lebesgue dominated convergence theorem and the
point 1 of Proposition 3.7.2,
E, (z’+Mn; T. >n)]P>m(Xk edd, z+ My ed, 7, > k)
XxR
— By (W (Xp24+ My) 7, > k). (383)

n—-+o0o
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Moreover, using (3.7.7), Lemmas 3.6.4 and 3.5.1 and the point 1 of Hypothesis M3.4,
E, (2" 4+ M,; T, >n) <c(1+ ||+ N (2)).

Again, by the Lebesgue dominated convergence theorem and the point 1 of Proposition
3.7.2, we have

XxR

Em,(z’—i—Mn;Tzl>n)IP>x(Xkedx’,z—i—MkEdz’,Ty\k,fZ>k:)
T, >

<
— By (W (X2 4+ M) 57, <k,

n—-+o0o

k). (3.84)
Putting together (3.8.2), (3.8.3), (3.8.4) and using the point 1 of Proposition 3.7.2,

W(I,z) =E, (W ( Xk, 2+ My) 5 7y > k;)
+ By (W (Xp 2+ My) s 7, <k, T. > k). (3.8.5)

Now, taking into account (3.7.4) and the identity {r, > k} = {r, > k, T, > k}, we
obtain the claim 3.

Proof of the claim 4. By the point 3 of Proposition 3.7.2, W is a non-negative function.
Therefore, using (3.8.5),

—

W(z,z) > E, (W(Xl,z—l—Ml) P Ty > 1),

which implies that (Wn(x, z)]l{7y>n}) is a supermartingale. ]

n=0

Lemma 3.8.2. Foranyz € X, y € R and z =y + r(z),

V(z,y) = lim E, (Wn(x, 2); Ty > n) .

n—-+0o00

Proof. Foranyn> 1,z € X, y € Rand z =y + r(z),
]Ex(z—i—Mn;Ty>n):IEx(z+Mn;fz>n>—Ex(z+Mn;Ty<n,fz>n).

By the point 1 of Lemma 3.8.1, on the event {fz > n} we have z + M,, < Wn(m, z) and
therefore

]Em(z—l—Mn;Ty>n)>Ex(z—|—Mn;fz>n)—Ew(l//[\/n(x,z))

+E, (Wn(x, 2); Ty > n) : (3.8.6)

Moreover, by (3.7.3), for any 6 > 0,

~

E, (Wa(r,2)) < (1+0) By (2+ My T > n) + csE, (14 N (X,) s T2 > n)
—(14+0)E, (z+M,; 2+ M, <0, 7, >n).

On the event {z+ M, <0, 7, > n}, by (3.5.1), it holds r (X,,) < z+ M,, < 0. Therefore,
using Lemma 3.5.1,

E (Wa(z,2)) < (14 0) By (2 4+ My; To > n) + 6Ey (14 N (X,) 5 T2 > n)
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By the Markov property and (3.2.2),
E, (14N (X,): To > n) < By (14+ 2N (X)) + T2 > [0/2))
< P, (T. > [n/2)) +ce™ (14 N(x)).
By Lemma 3.5.7 and the point 1 of Proposition 3.7.2,
lim E, (W, (z,2)) < (140) W(z,2). (3.8.7)

n—-+o0o

Taking the limit as n — 400 in (3.8.6) and using the previous bound, we obtain that
V(z,y) = —0W(z, z) + nEIJIrlOO E. (Wn(x, 2); Ty > n) .
Since this inequality holds true for any ¢ > 0 small enough, we obtain the bound

lim E, (Wn(x,z) P Ty > n) < Vix,y). (3.8.8)

n=r+oo
Now, by the point 1 of Lemma 3.8.1,
E, (2 + M,; 17, >n) <E, (W(Xn,z—l—Mn); Ty >n>.
Taking the limit as n — 400 and using the point 1 of Proposition 3.7.2, we obtain that
V(z,y) < lim E, (Wn(x,z), T, > n) .

n—-4o0o

Together with (3.8.8), this concludes the proof. O
Remark 3.8.3. Taking the limit in the point 3 of Lemma 3.8.1, we can deduce that

lim E, (Wn(x,z)> > Wiz, z2).

n—-+o0o

Coupling this result with (3.8.7), it follows that

o~

lim E, (Wn(x, z)) = W(z,z2).

n—-+o0o

Lemma 3.8.4. There exists ¢g > 0 such that, for any e € (0,&9), n > 1, z € X, z € R
and y = z — r(x), we have

—

E, (Wn(x, 2); Ty > n) > W(z,z)+ cmin(z,0) — c. (nl/z_za + nQEN($)> :

Proof. Using the point 3 of Lemma 3.8.1, the bound (3.7.3) and the point 1 of Hypothesis
M3.4, we have, for any n > 1,

E, (Wn(x,z); Ty > n) =E, (T//I\/n(x, z)) - E, (Wn(x,z) P Ty < n)
> Wz, 2) — cE, (z—i—Mn; m,<n, T, >n) —c(14+ N (x)).
Again by the point 1 of M 3.4, Lemma 3.6.2 and the Doob optional stopping theorem,
E, (Wn(ac,z); Ty > n) > W(x,z) —C[Ew (2+Mn; T, >n) —E, (z+M,; 7, >n)}
—c(1+ N(x))
>W(z,z2)—c [max(z, 0)—z2+E, (z + M, ;7 < n)}
—c. (n'*% £ n®N(2)) — c(1+ N (2)).
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By (3.5.1), z + M., <r (XTy). Therefore, in the same way as in the proof of (3.6.2),

E, (z + M, ;7 < n) < cE, (1 + N (XTy> Ty < n) <cn'l?7% 4 c.N(x)
Together with the previous bound, this implies that

—~

E. (Wn(ac, 2); Ty > n) > W(z,2) + cmin(z,0) — c. (n1/2_26 +n*N( )) :

O

Lemma 3.8.5. There exists g > 0 such that, for any e € (0,e0), n > 2, kg € {2,...,n},
x € X and z € R, with y = z — r(zx), we have

E, (Wn(x, 2); Ty > n) > E, (Wko(x,z) DTy > k:()) - % (max(z,0) +1+ N(z)).
0

—

Proof. Let € € (0,1). Set for brevity u,, :== E,(W,(z, z); 7, > n) for n > 1. By the point
4 of Lemma 3.8.1, the sequence (uy,),>1 is non-increasing. We shall prove that

c
Uy = Uppr—s| — n—z (max(z,0) + 1+ N(z)). (3.8.9)
By Lemma 9.2 of [36] (Lemma 2.9.2 in Chapter 2) on the convergence of recursively
bounded non-increasing sequences, we conclude that, for any n > 2 and ko € {2,...,n},
Up = Uy — % (max(z,0) + 1+ N(z)),
0
which proves the assertion of the lemma.
It remains to establish (3.8.9). Consider the stopping time v = v, + [n°|. By the
Markov property, with ' = 2" — r(2/),
u, = E, (Wn(w, 2); Ty >n, v < {nl’ED
] _
E, (Wn_k(:p', 2y Ty >n— k)
k=|n®)+1 XxR
P, (Xpeda, 24+ Myeds, 7, >k, v, =k).
Using Lemma 3.8.4, we obtain,
u, = E, (W,,i (,2); 7y > v, vy < {nHJ
+ cE, (min (z + MV%,O) STy > Uy, Uy < nl_eJ)
—c.E, (711/2_2‘E +n*®N (Xyg) $ Ty > U, Uy K {nl_ED
On the event {z + M, < 0,7, > v}, by (3.5.1), we have 0 > 2z + M,- > r(X,,;l).
Therefore, by Lemma 3.5.1,

E, (min (z + Myfﬂo) LT, >V U < Ln1_5J

n

> —cE, (1+N<X,,e> STy > UL, U,

; s [
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Consequently, using the point 4 of Lemma 3.8.1 and (3.2.2),

u, = E, (Wlnlfﬂ (:L’, Z); Ty > \\nl—aJ , Ve < {nl—sJ>

— ¢, (n'/?7% e N (X,,) ?Ty > vy, v < ')
By the definition of v,,, we have n'/272¢ < (2 + M, )/n°. Then as in (3.6.17),
tn = By (Wiey(2,2); 7, > [n'75] v < |02 79))
- ;—E (24 My, 57 > v, v < 1))

—c.e " (1+ N(x)).
Rearranging the terms, we have

Up = Uppr-e) — cce” " (14 N ()

- % E, (z +M,, ; Ty > Uy, Uy < {nleD (3.8.10)
=1
—E, (WW*EJ (x,2); 1y > {nl_eJ , UL > {nl_ep :
=1

Bound of I,. To L)ound I; we use the facts that, by the definition of v,,, z + M, >
n'/27¢ > 0 and that 7, > 7,. Taking into account Lemma 3.5.4, we have

I <E, (Z + MLnlfeJ ; fz > {nl_EJ  Up < {nl—eJ)
=K, (Z + M\_nlfsJ ; TZ > {nl_eJ) — Jé’l,

where JJ) is defined in (3.6.19). Now, it follows from Lemma 3.5.4 and the point 1 of
Proposition 3.7.2, that (E,(z + M1 ; T. > |n'¢]))uso is a non-decreasing sequence
which converges to W (z,z) and so E,(z + M2 T. > [n'¢]) < W(x,z). Using
(3.6.20), we find that

I <W(z,2) +cce ™™ (1+ N(z)). (3.8.11)

Bound of I. By (3.8.1) and (3.7.3),

I, < cE, (Z + MLnl—sJ (1 — ]1{ Ny <0}) ; fz > {nl—aJ ’ VZ > {n1—5J>
M1
+ cE, (1 + N (thlfsj) : T, > {nl_sJ , UL > {nl_aJ) .

On the event {z + M1-<; <0, T, > [n'~%]} = {z + Mpn-<| <0, 7, > [n'~%]}, it holds
2+ Mpie) >r (XansJ). Therefore, using Lemma 3.5.1,

I, < cE, (z + M +1+N (thl—sJ) : TZ > {nI’EJ , Us > {nl’sJ) )
By Lemma 3.5.4,

E, (z + Mpi—e; T, > Lnl_EJ L Up > {nl_ED < Ji,
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where J is defined in (3.6.14). Using inequalities (3.6.15), (3.2.2) and Lemma 3.6.3, with
= [n'"¢| — |n°|, we obtain
I, < Cc € 7c5n (1 + N( )) + cE, (1 +eicn€N<Xma> ) T’z > Mg, Vp > ms)
<c.e ™™ (14 N(x)). (3.8.12)

Putting together (3.8.12), (3.8.11) and (3.8.10) and using (3.7.3), we obtain (3.8.9), which
completes the proof of the lemma. n

Proposition 3.8.6.
1. Foranyd € (0,1), z € X and y > 0,

V(z,y) 2 (1—=0)y —cs (1 4+ N(x)).
2. For any x € X
lim Viz.y)

Y—r—+00 Yy

= 1.
Proof. Claim 1. By Lemmas 3.8.5 and 3.8.2, we immediately have, with z = y + r(z),

V(w,y) > B, (Wi, 2)5 7 > ko) — = (max(z,0) + 1+ N(2)).
0

Using the point 1 of Lemma 3.8.1 and the point 2 of Lemma 3.5.2,

V(z,y) 2 By (2 + My, 5 7y > ko)—k—(max(z 0) 41+ N(z))
0

B, (> ko) = (Vo + N )—(max(z0)+1+N( ).

Since, by the union bound and the Markov inequality,

v B ck? (14 N(z))
. (7, > ko) > P, (max |F (X0)] < 1) =1 T

we obtain that, by the definition of z,
Viz,y) > (1 - 2) y —ckg (1+ N(z)). (3.8.13)
0

Let § € (0,1). Taking ko large enough, we obtain the desired inequality.

Proof of the claim 2. By the claim 1, for any § € (0,1) and = € X, we have that
liminf, .. V(z,y)/y > 1 — 6. Taking the limit as 6 — 0, we obtain the lower bound.
Now by (3.7.4) and (3.7.3), for any integer ky > 2, y € R and z = y + r(z),

o~

Vi(z,y) < W(z,2) < (1 - k0> (max(z,0) + cN(z)) + k>,

Using the definition of 2z, we conclude that

limsupM < lim <1 + CE) =1
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Now, for any v > 0, consider the stopping time:
G=inf{k>1:]y+ Sk >v(1+N(Xp))}. (3.8.14)
The control on the tail of (, is given by the following Lemma.
Lemma 3.8.7. Foranyy >0,z € X, yeRandn > 1,
P, (¢, > n) < ce™" (14 N (x)).

Proof. The reasoning is very close to that of the proof of the Lemma 3.6.3. Let v > 0.

n

Consider the integer [ > 1 which will be chosen later. Define K := {—J and introduce

20
the event A}, := ) {Q o {ly + Skn| < v (1+ N (Xgy))}. We have
{1y

Py (¢ >n) <P, (A;K,y) :

By the Markov property,

~ . ~ "o " v
]:Pg: (AQK,:L/) — /’XX]R XXR IED:L.// (ALy//) ]P)CE/ (Xl E dSL’ 3 y + Sl e dy 9 Al,y’)
x P, (XQ(K,D[ S dﬂ?/, Y+ SQ(K,U[ S dy’, Ag(K—l),y> . (3815)
We write

Por (A7) < Por [y + Si < 29V1) + Por (N (X0) > V1)

—y” S —y > <N (Xl)>
<P ([ —= =2y < 2L <~ +29) + B .
( /N Bt Vi

By Corollary 3.4.4 and the point 1 of Hypothesis M3.4, there exists 5 € (0,1/4) such
that, for any ¢ € (0, &),

l”_l,.}y u2 d 2
Por (A7) < [ 07 em37 2 4 SE (14 N(")) +
Y *%'—m 2ro (¢

C

Vi

(1+ N (2")).

u2
Set ¢, := fz% e 202 % < 1. From (3.8.15), we obtain

c.  Ce
)< Lo B 0000)
x Py (X iy € A2, y + Sae-ap € Ay’ A e yy,)

< (% + ﬁ) P, (A;/(K—l),y) +ee R, (N (XQ(K—W) ) Ag(K—U’?) ‘

For brevity, set px = P, (A'QyKy) and Fx = E, (N (Xok1) ; AgKy). Then, the previous
inequality can be rewritten as

PK < (qy + ?f) Pr—1+cce ! By _y. (3.8.16)

Moreover, from (3.2.2), we have

EK < CPK -1 + ce_CQZ EK—l- (3817)
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Using (3.8.16) and (3.8.17), we write that

Pk PK-1
<A 3.8.18
() <2 () 6818

[ —cel
we (P ) an (v ).
c ce =400 c 0
Since the spectral radius ¢, of A is less than 1, we can choose | = [(e,7) large enough
such that the spectral radius p., of A; is less than 1. Iterating (3.8.18), we get

where

Pr < cpfy max (p1, 1) < cpf7 (14 N(x)).
Taking into account that K > c. ,n, we obtain
P, (Alx,) < ce™™" (1+ N(z)).
O

Now we shall establish some properties of the set &, introduced in Section 3.2. It is
easy to see that, for any v > 0,

P2, ={(z,y) e XxR:3nyg > 1,P, ({, < ng, 7, > ng) >0},
where (, is defined by (3.8.14).

Proposition 3.8.8.
1. For any v1 < 72, it holds 2, O 9,,.
2. For any v > 0, there ewists ¢, > 0 such that

7 C {(z,y) € XX R: Py (1, > n) <e " (14 N(2)), n>1}.
3. For any v > 0, the domain of positivity of the function V is included in Z.,:
supp(V) ={(z,y) e X xR : V(z,y) > 0} C 2,.
4. There exists v9 > 0 such that for any v = 7o,
supp(V) = 2,.
Moreover,

{(x,y) eXxRy:y> % (1 +N(x))} C supp(V).

Proof. Claim 1. For any v < 72, we have ¢, < (,, and the claim 1 follows.
Claim 2. Fix v > 0. By the definition of Z,, for any (r,y) € 5 and n > 1,

0=P, (¢, <n,7y>n)=P, (1, >n) =P, ((;, >n, 7, >n).
From this, using Lemma 3.8.7, we obtain

P,(ry>n)=P,((;,>n, 7, >n) <P, (¢, >n)<e " (1+ N (2)).
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Claim 3. Fix v > 0. Using the claim 2 and Lemma 3.5.2, we have, for any (x,y) € s,
z=y+r(zr)and n > 1,
E. (2 + My; 7y > 1) < |2| Py (1, > n) + BY? (M [*) P/ (r > )
2 (14 N (2)) o e/ (1+ N()"2eom

Taking the limit when n — 400, by the point 1 of Proposition 3.7.2, we get
Vi(z,y) =0,

<
<

and we conclude that 25 C supp(V)°.
Claim 4. By the point 1 of Proposition 3.8.6, taking 0 = 1/2, there exists vy > 0 such
that, for any = € X and y > 0,

V(z,y) >g Zf (14 N(z)). (3.8.19)

Now, fix (z,y) € Z,, and let ng > 1 be an integer such that P, (¢,, < ng, 7, > ng) > 0.
By the point 4 of Proposition 3.7.2,

V(x,y) = Ea: (V (Xnovy + Sno) ; Ty > TLO)
2 E:E (V (Xn07 Yy + Sno) Ty > Ny ) <’Yo TLO)

By the Doob optional stopping theorem, (3.8.19) and the definition of (,, (see (3.8.14)),

V(xvy) P EI (V (XCwOvy =+ SCWO) Ty > C’VO ’ C’Yo 0)

1 Yo
>§E (y+5470 5 (1+N(XC7 ))%Ty>g’yov§’yo<n0)
1
2]E’x< 1+N XC’Y));TZJ>C’YO’<'YO<TLO>
2%]?36(7- >nO>C’yo\ 0)'

Now, since ng has been chosen such that the last probability is strictly positive, we get
that V(z,y) > 0. This proves that 2., C supp(V). Using the claims 1 and 3, for any
Y = 7, we obtain that 2, C 2,, C supp(V) C Z, and so Z, = Z,, = supp(V). Using
(3.8.19) proves the second assertion of the claim 4. O

Proof of Theorem 3.2.2. The claim 1 is proved by the point 1 of Proposition 3.7.2 ;
the claim 2 is proved by the point 4 of Proposition 3.7.2 ; the claim 3 is proved by the
points 2 and 3 of Proposition 3.7.2 and by Proposition 3.8.6 ; the claim 4 is proved by
the point 4 of Proposition 3.8.8.

3.9 Asymptotic behaviour of the exit time

3.9.1 Preliminary results

Lemma 3.9.1. There exists g > 0 such that, for any ¢ € (0,e0), v € X, y € R and
z=y+r(x),

E, =E, (z—l— M,, ; 7y > vy, Uy < {TLI%J) < e (1 4+ max(y,0) + N(x)), n>1,
E, =E, (z + M, 7y > v e < {nl_aJ) — V(z,y).

n n—oo
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Moreover, for anyn > 1, € € (0,&0), x € X and y € R,

Ce
ne/s

By = V(@,9)| < ~== (14 max(y, 0) + N(x)).

Proof. Using the fact {r, > v,,} C {T, > v,} and Lemma 3.5.4, for n > 1,
Ey <E, (Z + M[nl—fj ) 7Ajz > [n17€J> - ngu

where JJ is defined in (3.6.19) and by (3.6.20) the quantity —J}, does not exceed
c.e " (1 + N(x)). Again, by Lemma 3.5.4 and the point 1 of Proposition 3.7.2, we
have that (Eu(z + M,; T, > n))uso is a non-decreasing sequence which converges to
W (z,z). So, using the point 3 of Proposition 3.7.2 and the fact that z = y + r(x),

By < W(z,2) 4 c.e " (14+ N(x)) < c. (1 +max(y,0) + N(z)). (3.9.1)
By the point 4 of Proposition 3.7.2, we have
V(z,y) =E, (V (Xn,y+Sn) ;1 >n, fo < {nl_‘fJ)
+E, (V (Xn,y+Sn) ;3 1y >n, fo > {nl’ED .
Using the point 3 of Proposition 3.7.2, for any kg > 2,
V(z,y) < E, (V (X 2,y + Sygz) P Ty > Ve e < {nl_eD

VTL

+cE, (max(z +M,,0)+1+N(X,) ;7 >n, VTEL? > {nl—gD

< (1 n ;) By + c.F, (\//?0+ N (X,2)im >0 v < WD

—c.E, (z + Mygz ;Z2+ MV%2 <0, 7> yff , Ve < {nlﬂ)

n

=J},(€2)

+ cE, <2+Mn+ Ir (X)) + 1+ N(X,) ;7 >n, 5 > {nI’ED.

From the previous bound, using the Markov property, the bound (3.2.2) and the approx-
imation (3.5.1), we get

V(z,y) < <1 + Z;) By + Jjy(e?) + cE, (z +M,: T, >n, yff > {nl’EJ)
0

=J1(e?)
B (Vho+ o™ N (X,,) 7 > v va < [0 )
+ cE, (1 +e “"N (XLn1*5J> DTy > Lnl_EJ , l/ff > {nl_aJ) .
Proceeding in the same way as for the bound (3.6.25),
T3(€?) < By <1 +e™ ™ N(X,,) Ty > Vn, Un S {nl_aJ)
Ce —eon®
<WE1+CEG (1+ N(z)).

Moreover, similarly as for the bound (3.6.15), we have

Ti(2) < cce" (14 N(z)).



124 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

Taking into account these bounds and using Lemma 3.6.3,

V(z,y) < <1 k0>E2+ l\ék_gEl—i—cE —een® (1 4 N(z)). (3.9.2)

Analagously, by (3.8.13) and (3.5.1), we have the lower bound
V(z,y) 2 E, (V (Xygz,y + Syez) y > VRS {nI’ED
> (1 - ) Ey — c¢.kJE, (1 +N (XV%Q) Ty > IJfL2 : l/fL2 < {nl_‘gD

kg
> <1 — Z()) E, — Cf/fiEl — c.ki g’ (1+ N(x)). (3.9.3)
Taking ko = n'/4=¢ in (3.9.3) and (3.9.2), we conclude that, for any e € (0,1/8),
|V (z,y) — Es| < /8E2+ (E1+ 1+ N(x)).
Again, using (3.9.3),
V(z,y) = Bo| € —5V(a,y) + = (Bi+ 1+ N(2)).
Finally, employing (3.9.1) and (3.7.5),
|V (z,y) — Ey] < /8 (1 +max(y,0) + N(x)).
[

Lemma 3.9.2. There exists g > 0 such that, for any ¢ € (0,¢0), z € X, y € R and

n>l,
Ce
Moreover, summing this bound, for any e € (0,20), 7 € X, y € R and n > 1, we have
LnlfsJ
> B (7, > k) < e (L max(y,0) + N(x)) n/*2
k=1
=1,

Proof. Using Lemma 3.6.3 and Lemma 3.9.1, with z = y + r(z) and n
P, (1, >n) <P, (Ty >n, v, < {nl’sJ) + P, (fz >n, v, > {nI’ED
M, :
E. <Z+ LTy >N, Uy < Lnl_ED +c.e” " (14 N(x))

N

1/2—e 7

< 5 (14 max(y,0) + N(a))
]

Lemma 3.9.3. There exists g > 0 such that, for any ¢ € (0,e0), v € X, y € R and

z=y+r(x),
By =E, (24 M, ; 2+ M, >n'>2 7,50, v, <[n'¢]) — 0.
n—4o0o

More precisely, for anyn > 1, € € (0,e0), z € X, y € R and z =y + r(z),
2
maX(Z/? 0) + (1 + y1{y>n1/2*25} + N(ZC))
E3 < Ce . .
n
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Proof. Notice that when v,, # 1 the following inclusion holds:
{2+ M, >n"><2) C{g, >nt/>e/2_pl/2—e > o pl/2e/2),

Therefore,

Es < E,(z4+ M, ; v, <2|n°)

—=:Es0
[t ]
+ Z E, <z+Mk;§k>c€n1/2_£/2,7y>k:, I/n:k>. (3.9.4)
k=2|ne |+1
= Fs
Bound of Esy. For y < n'/?72 by (3.6.5), the Markov inequality and Lemma 3.5.2,

P, (v, < Z ( +Mk>n1/25—y)<w.

For y > n'/?72¢ in the same way, we have P, (v, < 2|n°]) < w Putting

together these bounds, we get, for any y € R,
Ce (1 + yﬂ{y>n1/2725} + N(ZL‘))

P, (v, <2[n°]) < T (3.9.5)
Using Lemma 3.5.2,
2[n°
Esp < 2Py (vn < 2|07)) + 3 B2 (IMif?) BY? (v < 2[7))
N 2
ce (1 4+ylg,opijz—2a + N(z
< (14 yLgonreosn + N(0) . (3.9.6)

nE
Bound of E5;. Changing the index of summation (j = k— |n°|) and using the Markov
property,
]

Exy < ) max(2’, 0)P,/ (gtnsj > cgnl/Q_E/Q)
j=lne )41 TR

xP, (X; edd’, 2+ M; € d2', 7, > j)

::E32

+ LEEJ £/ (\M

j=lne )1 AR

2
<] )Iij (&1ney > ecn'?e72) (3.9.7)

xP, (X; eda’, 2+ M; €dz’, 7, > j).
=:FE33

Bound of Es5. Using (3.5.2), the Markov inequality and (3.2.3) with [ = chnl/%s/ﬂ,

P, (S’WJ > cgn1/2_a/2) <P, (N (thfj) > Cenl/Q—a/Q)
+IP’ (N (XLnEJ 1) > cgnl/%f/?)

B (N (X)) + (B (N (Xp11))

e (14 N(z)).

/AN
N\Q

N
Q
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Choosing £ > 0 small enough we find that

Pys (€ne) > cen!/?7/2) < - +ﬂ e N(). (3.9.8)
By the definition of E3s in (3.9.7),
.. Lnl—EJ .
Es3y < B/ Z [Ee (2 + Mj; 7 > j) + Eq (Ir (X5)])]
j=In°]+1
) Lnl—EJ ) )
+ece™ 3 [max(z, 0)E, (N (X)) + EY2 (|M,*) BV (N (X;)%)]
j=In®]+1

Using (3.6.29), Lemma 3.5.2 and the point 1 of Hypothesis M3.4, we find that

max(y,0) + (1 + Yl /e2y + N(@)) (14 N(x))

Es < c. A (3.9.9)
Bound of Fs3. Using (3.9.8) and Lemma 3.5.2, we have
Ce —cen® .
E33< Z Ez <n5/2 (1+N(XJ)) <1/2+,B/8+C€ € N(X )1/2> X Ty>j>.
j=[ne]+1
By the Markov property,
[ )

By < e (1+ N(x ))3/2+m Z E, (1+e ™ N(X;) ;7> ).

Using Lemma 3.9.2,
max(y,0) + (1 + N(z))*?

E33 g CE nﬁ/873€/2 (3910)
With (3.9.10), (3.9.9) and (3.9.7), for £ > 0 small enough, we find that
max(y,0) + (1 4+ yls,opi2—2ey + N(x)) (1 + N(x
By <o (y,0) + (1 + yLgyopoaey + N(2)) ( (=)
nE
This bound, together with (3.9.6) and (3.9.4), proves the lemma. O

Lemma 3.9.4. There exists g > 0 such that, for any ¢ € (0,0), z € X, y € R and
z=y+r(x),

N

E, =E, (z +M.2; 2+ M2 > n1/2’5/4, Ty > yff , Z/fL2 {nl’EJ) — 0.
n n n—-4o0o
More precisely, for anyn > 1, € € (0,e0), z € X, y € R and z =y + r(z),

2
maX(Z/? 0) + (1 + y1{y>n1/2*25} + N(ZC))
ne/2 ’

E4<Cs
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Proof. We shall apply Lemma 3.9.3. For this we write, for any n > 1,
E,=E, (z + MV52 P2+ ]\4}/52 > n1/2—5/47 z4+ M, > n1/2—5/2’

Ty > 1/22 , fo < {nHD

—Epn

+E, (z + M2 2+ M2 > nt? e M, < ntPE? (3.9.11)

Ty > fo , l/fl2 < {nHD

=:Ey42

Bound of E4;. By the Markov property,
) |
B My )

x P, (Xk edd, z+ M, e ds, 2+ M, > n'/?>~5/2 T, >k, l/n:k:),
where ' = 2/ — r(2'). Moreover, for any 2’ € X, 2’ € R, using (3.6.29), we have
E,. (Z/ + ML"EZJ ; 2+ ML"EQJ > n1/275/4 y Ty > {nEQD

<E. (Z/—FMLnng ; Z/+MLn€2J >0, 7y > LngQJ)

By (4 Mo iy > 1))+ B ([ (X,)
).

< e max(?/, 0)+cg(1+N( "

)

Consequently,
Ey <c.FBs+c.E, (1 +N(X,,);z+M,, > nl/?=¢/2. Ty > Up, Up < {nl’EJ)
< 2¢.EBs+c.E, (N (X,,); N(X,,) > n/? Ty > U, Vp < {nl_ED
+c.E, (n1/2_5; N (X,,) < n'/?=c 2 4 M, > nl/2=e/2
Ty > Vp, Vp < {nl’EJ)

< 3c.Es+c. E, (N (X,,); N(X,,)>n"** 7, >, v, < {nl_eJ) . (3.9.12)

—
_'E41

Denoting [ = {nl/%sj and using the point 1 of M3.4 and (3.2.3), we have

1—¢e
N (X, 2 L J
E:HQEI <7II(1/2:L2,Vn<Ln6J>+ Z EI(NI(Xk>;Ty>k,Vn:k>
k=|n®|+1

enf (1+ N(x) 2 L J

1—¢
nl/2—e z_:

Using Lemma 3.9.2 and taking € > 0 small enough,

o () > k) +ce™™ B, (14+ N (X)) .

lHB

g max(y,0) + (1 + N(m))2
1 X Ce min(1,5)/4

(3.9.13)
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In conjunction with Lemma 3.9.3, from (3.9.12) we obtain that, for some € > 0,

2
max(y,0) + (1 + ylyyspiz2ey + N(ZL’))

E41 g Ce ne

(3.9.14)
Bound of Eyy. For any 2’ € (0,n'/?7/?], we have

(Z/ + ML"€2J> Pm/(zl + Mtnng > n1/2_5/4) < Z/PII(MLTWQJ > c€n1/2_€/4) + ‘MLMQJ .

Therefore, by the Markov property,

Eu < / P, (Mtngz | > cen1/2€/4) P, (X, e€dd, 2+ M, €d,
XxR

z+ M, < nt/?=¢/?, Ty > Vp, Vp < {nl_ED

=:F43

+ E. (’ML”SQJ > P, (X,,n € dl’/, 2+ M, € dZ,, (3915)

XxR

2+ M, < n1/2_5/2, Ty > Up, Up < {nl_aJ).

=:FE4q
Bound of E;3. Using Lemma 3.5.2,

cen® (14 N(z))
nl/2—e/4

P, (ML”EZJ > cen1/2_5/4) <
Therefore, we have

Ce Ce .
Ey < E, (7135/452 (z+ M,,) ﬂ{N(XUnKnl/z_s} + WN (Xo,) ]]'{N(Xun)>nl/2—a} ;

2+ M, < n1/2_5/2, Ty > Vp, Up < {nl_gJ)

Ce Ce

/
S n3e/4—e? Ly + ne/i—e? E41'

By Lemma 3.9.1 and (3.9.13), we obtain for some small ¢ > 0,

max(y,0) + (1 + N(x))2
ne/2 ’

Ey < c: (3.9.16)

Bound of Fyu. Again by Lemma 3.5.2, E,/ (‘ML"QJ
quently,

) < n® (14 N(2/)). Conse-

Ce

Eu < ?Ex (z +M,, ; N(X,,) < nl/?=2 Ty > Up, Up < {nl_aJ)

+ cgn52EI (N (X,,) ; N(X,,) > n1/2’25, Ty > Vp, Up < {nl’gD )

Proceeding exactly as in the proof of the bound of E}; but with [ = {nl/ Q_QEJ, we obtain,
by Lemma 3.9.1,
max(y,0) + (1 + N(z))?

ne/2 ’

Ey < ce
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Putting together this bound with (3.9.16) and (3.9.15), we find that

max(y,0) + (1 + N(:v))Z'

Ep <c e/

So, using (3.9.11) and (3.9.14), we obtain the second assertion. The first one is an easy
consequence of the second one. O

The following results are similar to that provided by Lemmas 3.9.1 and 3.9.4 (see Es
and FE, respectively).
Lemma 3.9.5. There exists ¢g > 0 such that, for any e € (0,&9), v € X and y € R,

Foem B (y+ 8,017 > 10 < [0]) 2 Vi),

n

F,:=E, (y + Slfff ;Y + SViQ > pt/2el8 Ty > fo LS < {nl_EJ) — 0.

n n—-+o0o

More precisely, for anyn > 1, € € (0,&), v € X and y € R,

Ce
‘FQ - V($7y>| < ne/8 (1 + max<y7 0) + N(‘T»

and )
max(y, 0) + (1 + ylLiysna-2) + N())

F4<C€ n€/2

Proof. By (3.5.1), for any n > 1,
|Fy — Bs| < B, (|r (X,2)

n

2 2 —
STy >V, L Uy gLnI ED

=:F}

Using the Markov property, the definition of v, and Lemma 3.9.1,
s2
F; < cE, <1 +e™ ™ N(X,,); Ty >Vn, Un < {nl_eD

C &2
WEI +Ce_cn (1 "‘N(./L'))

Ce
nl/2—e

Therefore, by Lemma 3.9.1,
|y = V(z,y)| < |Ey = V(z,y)|+ F3 <

/N

/N

(14 max(y,0) + N(x)). (3.9.17)

Ce
Now we shall control Fy. Recall the notation z = y + r(x). By equation (3.5.1), we

note that on the event
{z +M . < n1/2_6/4} N {y +S5 2 > n1/2_€/8}

we have ‘r (X%af) 1/2-¢/8

> c.n . Therefore,

s S <t () < (S 1) ()

which implies that
Fy <E, (y +S,25 2+ M2 > n1/2_€/4, Ty > 1/22 , 1/22 < {nl_eJ) + c. Fy.
By (3.5.1), Lemma 3.9.4 and (3.9.17), we conclude that

2
max(y,0) + (1 + yliysnirz—ey + N(x))

F4<E4+F2/+CEF2/<C€ nE/Q
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3.9.2 Proof of Theorem 3.2.3

Assume that (7,y) € X x R. Let (B;),., be the Brownian motion defined by Propo-
sition 3.4.3. For any k£ > 1, consider the event

Ay = {sup ’SLth - aBtk‘ < k1/2_28} (3.9.18)
o<t<1

and denote by Ay, its complement. Let n > 1 and remind that 1/;2 =v, + {nEQJ > {nezJ.
With the previous notation, we write

P, (r, >n) =P, (Ty >n, fo > {nl_ab

]

+ 3 Px/(Ty/>n—k,zn_k)Px(Xk€dx/,y—i-SkGdy/,
k:Ln52J+1

XxR
T, >k, 1/22 = k)
=:J1
[t
+ Z P$/<Ty/>7’L—/{Z,An_k)Pm(XkedZE,,y‘i‘SkEdy/,
> XxR
k:Lnf J—i—l
(3.9.19)
Ty>kf,l/,22:k’>.
=:J2

Bound of Jy. Since n — k > c.n, for any k < [n'~¢], by Proposition 3.4.3, we have

e (1 —i—N(m’))'

P, (Ty/ >n—k, ank) < Py (ank) < n2e

So, using the fact that n'/?~¢ < z 4+ M,, and Lemma 3.9.1,

2

ne fm (1hee
nE

N(X,,) ; Ty > Un, Uy < {nlED

2

<—= B +c.e ™ (1+N(2))

= pl/2+e
¢ (1 + max(y,0) + N(z))
< 1/are : (3.9.20)
Bound of J5. We split J5 into two terms:
)
Joy = Z P, (Ty/ >n— /{Z, An—k)
Py XxR
k:Lnf J—i—l
xP, (Xk ede’, y+Spedy, y+ S >n'>B 1, >k v = k:)
=:J3
)
+ Z Px/ (Ty/ >n — ]{7, An—k) (3921)
k:Ln€2J+1 XxR

XIP’I(Xkde’,y+Sk€dy',y+Sk<n1/2_5/8,7'y>k,fo:k).

=:Jy
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Bound of J3. With ¢/, =y + (n — k)/27%, we have
Py (ty >n—Fk, Ap_i) <Py (7’5{1 >n— k> : (3.9.22)

where T is defined in (3.4.1). By the point 1 of Lemma 3.4.2 and Lemma 3.9.5,

C —ZE —€ 151 £ —€
Jgg\/%Ex(y—l—Sygz + nl/22 ;y+SV52 > nl/? /8,7'y>yn2,1/2 < {nl J)
2¢,
Vn

2
max(y, O) + (1 + yﬂ{y>n1/2f2s} + N(l‘))
S Ce e .

<

Fy

(3.9.23)

Upper bound of Jy. For y' < n'/?7¢/% and any k < [n'~¢], it holds y/, < 2n!/275/8 <
c.(n—k)Y/27¢/8_ Therefore, by (3.9.22) and the point 2 of Lemma 3.4.2 with 6,,, = c.m™/8
and m = n — k, we have

(1+62
/ k) <y + S, + (n . k‘)l/2_2€;
2 XxR

\/27rn—

y+ S <P sk vl = k)

2
Since 2010403 1) < —2— (1+ =;) and n'/?¢ < 2+ M,, , we get
\/27‘(‘(7’L—k)0’ 2mno ne/ n

2 €
IS 5 <1 + C/4> Eo (y+ S, + 0272y + 8,0 <!/,
™o ne n o

2 2
Ty >V, Uy < [nlfsJ)

n

2

< oy (1 ) P e B

By Lemmas 3.9.1, 3.9.5 and (3.7.5),

2V (z,y) N c- (1 + max(y,0) + N(x))

Ji S nl/2+e/8

(3.9.24)

2mno

Lower bound of Jy. With v/ = y' — (n — k)}/?7%  we have Py (1, >n —k, A, ) >

P, (Té’?_" >n— k) — P, (Zn,k). Considering the event {y + S, > (n — k)"/?72¢} and
repeating the arguments used to bound J; (see (3.9.20)), we obtain

]
DY Po (10" >n — k) Py (X € da’, y+ Sk € dy
k=Ln52J+1 XxR
Y+ S <Py S (n— k) ny >k vE = k)

¢ (1 +max(y,0) + N(z))
n1/2+£ :
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Using the point 2 of Lemma 3.4.2 and Proposition 3.4.3,

2
Jy 2 (1 _ & ) E, (y +8,.2—(n— VfL?)l/z—zs :

2mno ne/4
Y+ SVEZ > (n _ VZ2)1/2725’ y+S,/52 < n1/275/8’ Ty > f ’ Ve < \‘nlfsJ>
(14 max(y,0) + N(x)

nl/2+e
S 2 ( _c ) o Ce O Ce B e (1 + max(y,0) + N(x))
2TNo ne/4 \/ﬁ n1/2+a n1/2+5

By Lemmas 3.9.1, 3.9.5 and (3.7.5),

2
S ZV(I, ’y) max(Q? 0) + (1 + y]l{y>n1/2*25} + N(ZL’))

J4 = Ce
2Tno n1/2+€/8

(3.9.25)
Putting together (3.9.25), (3.9.24), (3.9.23) and (3.9.21),

2
2V([I), y) max(y, 0) + (1 + y1{y>n1/2‘25} + N(x))
| S nl/2+e/8 )

-

2mno

Taking into account (3.9.20), (3.9.19) and Lemma 3.6.3, we conclude that, for any (z,y) €
X x R,

2
2V (x,v) _ max(y,0) + (1 + ylyysnirz-ey + N(x))
= e n1/2+€/8

P, (r, > n) — (3.9.26)

2mno

Taking the limit as n — 400 in (3.9.26), we obtain the point 1 of Theorem 3.2.3. The
point 2 of Theorem 3.2.3 is an immediate consequence of the points 2 and 4 of Proposition
3.8.8.

3.9.3 Proof of Theorem 3.2.4

The point 1 of Theorem 3.2.4 is exactly (3.9.26). In order to prove the point 2 of
Theorem 3.2.4, we shall first establish a bound for P, (7, > n) when z = y+r(z) > nt/?7¢,
n > 1. Set m. =n — |n°|. By the Markov property,

P, (1, >n) = / Py (1 > m,.)
XxR

X Py (Xjpe) € da’, y+ Sppey €dy’, 7 > [0F]) . (3.9.27)
For any 2/ € X and ¢/ > 0, using A,,_ defined by (3.9.18), we have
]P)x/ (Ty/ > me) < Px/ (T;Zn > ms) + ]P)x/ (st) ,

where 70 is defined by (3.4.1) and ¢/, = ¢/ +m}?7*. By the point 1 of Lemma 3.4.2
and Prop081t10n 3.4.3,

Cyig- Ce cy Ce Ce /
1+ N — + —N .
D SN < St e N

PI/ (Ty/ > m€> <
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Introducing this bound in (3.9.27), we get

P, (1, > n) < ;%EI (y+ Spey s 7 > |n°]) + ;—2 + %Ex (N (X))

Using Corollary 3.6.5, the inequality (3.2.2) and the fact that n'/2=¢ < z, we find

¢ (z+ N(x))

Now, for any z € X, z € R and y = z — r(z), using the Markov property, (3.9.28) and
the fact that \/n — v, > c.y/n on the event {v, < [n'~¢]}, we have

P, (1, > n) < (3.9.28)

Ce

vn

+ P, (Ty >n, v, > {nl_EJ).

P, (1, >n) < E, (z + M, +N(X,,); Ty > Un, Uy < {nl_sD

Using Lemma 3.6.3 and the fact that N (X,, ) < z+M,,, on the event {N (X,, ) < n'/?7¢},
with [ = {nl/Q—fJ, it holds

Ce e
]P)x (Ty > n) < \/ﬁEx ((Z + Myn) (1 + IL{N(XVH)STLUQE}) y Ty > Vp, Un < \‘nl J)

+ ﬁEm (Nl (X0,) 5 Ty > Un, Uy < {nl_aJ) +c.e ™ (14 N(x))

Z E, (N (Xg) ; 7y > k) + ¢ S (1+ N(x)).
k=|n®]|+1

By (3.2.3) and the Markov property,

P, (r, > n) < ;%El + \jﬁ (;’fﬁ (L4 N(@)) + o™ (14 N()

I\nlfsj _ Lnsj

Ce

i

P, (1, > j) +ce™™ E, ((1+ N (X;)))

[1+8

)
< &El_’_ca(l‘FN(fL")) 4 Ce

A e B R,

Using Lemmas 3.9.1 and 3.9.2, we deduce the point 2 of Theorem 3.2.4.

3.10 Asymptotic behaviour of the conditioned walk

In this section, we prove Theorem 3.2.5. The arguments are similar to those given in
Section 3.9. We also keep the same notations. Assume that (z,y) € X x R and let t, > 0
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be a positive real. For any ¢ € [0, %] and n > 1, we write

B, (y+ Su < tv/n, 7, > n)
=P, (y+Sn gtﬁ? Ty > 1, fo > \‘nl_EJ>

[ ]
+ Z / P, (y' + Sn,k < t\/ﬁ, Ty > 1 — k, ank)
> XxR
k:Lnf J+1
xPy (Xp€da', y+ S edy', my >k, v =k)
=:I1
[ ]
+ ¥ Po (y + Suk StV/n, 7y >n—k, Any). (3.10.1)
R

k:LnEZJ—s—l £x
P, (Xpeda' y+Sedy 7>k, vi =k).

=:Lo

Bound of Ly. With J; defined in (3.9.19) and with the bound (3.9.20), we have,

c. (1+max(y,0) + N(x))

Lishis nl/2+e

(3.10.2)

Bound of Ly. According to whether y + S;, < n'/27%/% or not, we write

[t~
L= % Po (y + Suk StV/n, 7y >n—k, Ay )
e LnE2J+1 XxR

xpx(xkedx’,y+5kedy',y+5k>n1/2*6/8,7y>k,uff:k)

=:L3
[~ EJ
+ / P (y + St <0/, 7 >0~k Auy) (3.10.3)
k= Ln5 J—i—

<P, (Xp€d', y+Spedy, y+ Sk <n'> > kvl = k).

=:L4

Bound of Ls. With J; defined in (3.9.21) and with the bound (3.9.23), we have

2
max(y,0) + (1 + ylyysniz2ey + N(x))

Ly Js<ce nl/2+e/2

(3.10.4)

Bound of Ly. We start with the upper bound. Set v, = ¢/ + (n — k)¥/?7% and
t+ =t + . Note that on the event {y' + S, < t/n, 7y >n—k, A,_} we have
Y, + aBn r < tiy/n and 7‘ — k. Therefore, by Lemma 3.4.1,

sz(erSnk t\/ﬁ Ty >N — k‘ An k;)

z+f . J
— v e’ /2 sh 874_ ds.
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We shall use the following bounds:

2
sh(u) < u (1 + % ch(u)) : for u > 0,

! !
Y+ < Y+ (1 + ) < = for y < n'/?7/% and k < {nl’sJ ,
n

ovn — oyv/n
t t
< ok < [

Consequently,

P, (y+Snk tvn, Ty >n— k,An_k)
tyvn

2yi{» Ca ovn—k /
< 1 2) [ se 14 %5 b (ens) ) ds
2mno ne/ Jo ne/4
2 / t M
< 2t (1 + c£> (1 + Ca’to) /U se 2 ds + /0 " sem 2 ds
2mno ne ne/4 0 i

2yi|— Cs,to €t0
S 2mno <1+n5/4> (1—e A )

This implies the upper bound (with Fy and E; from Lemmas 3.9.5 and 3.9.1, respectively)

9 y . .
Ly < (1+C7t°)<1—e2a2+ t0>F2+ Ledo_ g

2o nel4 1/24¢
o 2V (x,y) (1 B e;i) L Ceto (1 + max(y,0) + N(z))
= Yo nl/2+¢/8 )

The proof of the lower bound of Ly, being similar, is left to the reader:

2
M (1 B et2> e, max(y,0) + (1 + y]l{y>n1/2*25} + N(SU))
€,t0 .

L4 > 202 n1/2+5/8

2mno
Combining the upper and the lower bounds of L, and (3.10.4) with (3.10.3) we obtain an
asymptotic development of L,. Implementing this development and the bound (3.10.2)
into (3.10.1) and using Lemma 3.6.3, we conclude that

&@+&<W%@>@_mmw“ J)’

1 —e 202
2mno

nl/2+e/8

Using the asymptotic of P, (7, > n) provided by Theorem 3.2.3 finishes the proof of
Theorem 3.2.5.

3.11 Appendix: proofs for affine random walks in R?

In this section we prove Proposition 3.3.2. For this we verify that Hypotheses M3.1-
M3.5 hold true on an appropriate Banach space which we proceed to introduce. Let



136 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

§ > 0 be the constant from Hypothesis 3.3.1. Denote by €' (R?) the space of continuous
complex valued functions on R?. Let ¢ and 6 be two positive numbers satisfying

l+e<<2<2+2e <2+ 2.

For any function h € € (R?) introduce the norm [|h]|, . = |h|, + [h],, where

L 1 B 10

|hlg = sup =
’ a7 = yI" (14 [z]) (1 + [y])

rert (14 |z)"

and consider the Banach space
B =Ly ={he? (R):|hl,. <+oo}.

Proof of M3.1. Conditions 1, 2 and 3 of M 3.1 can be easily verified under the point 1
of Hypothesis 3.3.1 and the fact that 6 < 2428 and [|d,], < (1 + |2|)°, for any = € R%

We verify the point 4 of Hypothesis M3.1. For any (z,y) € R¢xR?and ¢t € R, we have
it/ (@) —e“f(y)’ <t f(x) — )] < |t]|u] |z — y| and |/ =) —e“f(y)‘ < 2. Therefore, we
write

eitf(z) . eitf(y)‘ < 2176 ’t|6 ’u|6 ’1; . y,a .

Supposing that |z| < |y|, we obtain, for any h € %,

@) p(z) — et W) h(y)‘ <

o) — 10| 1], (1 + [2])” + |h(x) — h(y)]

Since § < 2, we have [eitf h — et h} < 2172 [¢)° |ul® ||, + [R].. Consequently,
&€
(142" [t[" [u]*) [| 2]l and the point 4 is verified.
Proof of M3.2 and M3.3. We shall verify that the conditions of the theorem of

Tonescu-Tulcea and Marinescu are satisfied (see [59] and [49]). We start by establishing
two lemmas.

eitf hH <
0,e

Lemma 3.11.1. Assume Hypothesis 3.3.1.
1. There exists a constant ¢ > 0 such that, for anyt € R, n > 1, and h € %) .,

[PYhly < clhly.
2. There exist constants c1, co and p < 1 such that, for anyn > 1, h € %, and t € R,
[PYAl. < cap” [h] + ca [t |Rly -
8. For any t € R, the operator Py is compact from (4, ||-|l,.) to (¢ (Rd) elg)-

Proof. Claim 1. For any z € R?,

Pyh(e)] =

E, (eitSn h(Xn)>‘ < 3%|nl, <1 +E (HHnHG) 2" + E (‘X2‘9)> ’

with IT,, = A, A, 1 ... Ajand X2 =g,...q1-0=3}_, A, ... Apy1By. By the point 1 of
Hypothesis 3.3.1, there exist ¢(d) > 0 and 0 < p(d) < 1 such that, for any n > 1,
2426

Eo (L)) < E (M) < c(d)p(6)" — 0,

n—-+o0o
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from which it follows that

0

E (]XQ]") < (g:jlml/e (I, *) BV (|Bl|")) < .

This proves the claim 1.
Proof of the claim 2. For any x # y € R?, with |z| < |y|, we have

[PPh(x) — PPA(y)] 5
<E (27l (Z I ) o = o ol (14 ol + |2
+E ([ Tl 2 = g1 (14 [Tl 2] + [ X3]) (1 + (1Tl [yl + | X2))) -
Since 6 < 2, we obtain that
[P7h], < 2172 [t]* [ul® Ca(n) |Bl, + Ci(n) A, ,

where

o) = E (I (1 + )+ |x2])°)

and Co(n) = E ((,; ||Hkll>a (1 I+ ‘X’W) |

Since 2 4+ 2¢ < 2 4+ 26 = p, by the Holder inequality,

Ci(n) < ET= (HHnHHe) ETH ((1 + I + ‘X2‘>2+2E)

<c(8)rp(6)r 3% |1+ 0(5)% i (0(5)”E” (‘Bllfp)) 7
1—p(d)r

which shows that Cj(n) converges exponentially fast to 0. In the same way, taking into
account that 6 < 2 we show that Cy(n) is bounded:

Ca(n) < (i ET (HHkHHs))EEIiE ((1 + I + )Xg‘)2+25>
k=1

<< c<6>i1) . 1+C(5);+<0(5)’1’E;(|311|p)) |
1— p(6)r 1 —p(d)?

Proof of the claim 3. Let B be a bounded subset of &, (h,)n>0 be a sequence in B
and K be a compact of R%. Using the claim 1, it follows that, for any z € K and n > 0,

[Peha(2)] < ¢lhaly (14 ]2])” < cx,

which implies that the set &/ = {P;h,, : n > 0} is uniformly bounded in (¢ (K), ||, ),
where |-|__ is the supremum norm. By the claims 1 and 2, we have that, for any z,y € K
and n > 0,

[Piha(x) = Peha(y)| < [Pihal. |2 =yl (1+ [2)” (14 [y])” < e a5 |2 =y
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and, thereby, the set &/ is uniformly equicontinuous. By the theorem of Arzela-Ascoli,
we conclude that o7 is relatively compact in (¢ (K),|-|, ). Using a diagonal extraction,
we deduce that there exist a subsequence (ny)r>1 and a function ¢ € € (R?) such that,
for any compact K C R,

sup [Pih, (2) — o(z)] —> 0.

reK n—+4o00
Moreover, by the claims 1 and 2, for any n > 1 and = € R,
| Pt ()] < [P (0)] + [P, [2]” (1 + [2]) < elhalg + [ hnll g 1217 (14 |2]) -

Since B is bounded, we have |Ph,(z)| < c(1 + |z])*%, for any z € R? as well as
o(z) < e(1+ |z])t*e, for any z € RY. Consequently, for any k > 1 and A > 0,

Py, (z) — p(x 1+ |z)tte
sup | t k( ) 960( )’ < sup |Pthnk($) _ 90(37)| + 2¢ sup %
ekt (14 |x) jal <A al>A (14 |z|)

Taking the limit as & — +o0o and then the limit as A — +o00, we can conclude that
limy 4 oo [ Pihn, — @, = 0.
O

Lemma 3.11.2. Assume Hypothesis 3.3.1.

1. The operator P has a unique invariant probability v which coincides with the distri-
bution of the P-a.s. convergent series Z := 3325 Ay ... Ax_1By. Moreover, the unique
eigenvalue of modulus 1 of the operator P on % is 1 and the associated eigenspace is
generated by the function e: x — 1.

2. Lett e R*. If h € B and z € C of modulus 1 are such that
Pih(z) = zh(z), @€ supp(v),
then h =0 on supp(v).

Proof. We proceed as in Guivarc’h and Le Page [43] and Buraczewski, Damek and Guiv-
arc’h [12]. For any g = (A, B) € GL (d,R) x R? and z € R?, we set -z = Ax + B.

Proof of claim 1. Since k(0) < 1, the series Y, EﬁﬂAl A1 B[P converges
and so the sequence ¢1...9, -x = A;... Apx + > ) A1... A1 By converges almost
surely to Z = Z;ﬁ Ay ... Ax_1Br as n — +oo. Therefore, for any ¢ € Z#, the sequence
©(g1 ... gn - ) converges to ¢(Z) almost surely as n — +oo. Moreover, since |p(z)| <
[y (1 + lz)? and 0 < 2 4 26, the sequence (¢(g1 ... gn - *))n>1 is uniformly integrable.
So P"p(z) converges to E(p(Z)) as n — +oo. This proves that the distribution v of Z
is the only invariant probability of P.

Fix z € C such that |z| = 1 and let h # 0 belonging to % be an eigenfunction of P,
so that Ph = zh. From the previous argument, it follows that, for any = € R,

2"h(x) = P"h(z) e v(h).

Since there exists x € R? such that h(z) # 0, the sequence (2"),>; should be convergent
which is possible only if z = 1. From this, we deduce that for any z € R?, h(z) = E(h(Z))
which implies that h is constant.
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Proof of the claim 2. Our argument is by contradiction. Let t € R*, h € Z and z € C
of modulus 1 be such that P;h(z) = zh(x), for any = € supp(v) and suppose that there
exists x¢ € supp(v) such that h(zg) # 0.

First we establish that |h| is constant on the support of the distribution v. Since v
is p-invariant, for any (g,z) € supp(u) X supp(v) we have g - x € supp(v). From this
fact it follows that Ph(x) = 2"h(x), for any n > 1 and = € supp(v). This implies that
|h| () < P™|h|(x), for any = € supp(v). Note also that |h| belongs to Z. Therefore,
as we have seen in the proof of the first claim, we have, lim, .. P" |h| (z) = v(|h]) =
E(|h] (Z)) < +o0, for any = € supp(v). So |h|(x) < [ycpa |h| (2)v(d2’), for any = €
supp(v). Since |h| is continuous, this implies that |h| is constant on the support of v. In
particular, this means that h(z) # 0 for any = € supp(v).

Since the support of v is stable by all the elements of the support of p, we deduce
that the random variable &, (z) = exp(it (u,> p_1 gk --- g1 - ))h(gn ... g1 - T) takes values
on the sphere S, (n) = {a € C: |a] = v(|h])}, for all z in the support of v. Moreover, the
mean 2"h(z) of &,(x) is also on S, (), which is possible only if &,(z) is a constant, for
any = € supp(v). Consequently, for any pair x,y € supp(v), there exists an event 2,
of P-probability one such that on €2, , it holds, for any n > 1,

exp (it <u,igk...g1-v>> h(gn...g1-v)=2"h(v),

with v € {x,y}, from which we get

et e (S s f) G

In addition, for any n > 1,

th@m.yry)_4>:E<Vwm~~%-w_ﬂb_

h(gn .- g1-) h(gr-. gn- )

Since, for v € {z,y}, the sequence h(g; ...g, - v) converges a.s. to h(Z) and since h is
bounded with a constant modulus, we have by (3.11.1),

n—+00 h(gn...g1-7)
= lim E hy) exp | it zn:tAl...tAku x—y)| —1/]|.
n——+oo h(x) P !

Taking into account that the series Y-7_; ‘A; ..."A, converges a.s. to a random variable
7', we have for any x,y € supp(v),

Meit(Z/u,xfy) . ‘ —
th@) 1) 0. (3.11.2)

Since the support of v is invariant by all the elements of the support of u, by the
point 2 of Hypothesis 3.3.1, we deduce that the support of v is not contained in an
affine subspace of R?, i.e. for any 1 < j < d, there exist x;,y; € supp(v), such that the
family (vj)i<j<a = (%; — yj)1<j<a generates R% From (3.11.2), we conclude that for any
1<j<d,

h(yj) it(Z u,v;)

=1, P-a.s.
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Let 6; be such that ZE?? = %, Denoting by n, the distribution of Z'u, we obtain
J

that (Z'u,v;) € w P-a.s. and so the support of i, is discrete. Moreover, the measure
7, is invariant for the Markov chain X/ ; = ‘A,41(X}, 4+ u) and so, for any Borel set B
of R?,

n, (B)=E ( / oL (A 0+ ) nu(dm) . (3.11.3)

Since 1, is discrete, the set Eynq, = {z € R?: 1, ({z}) = max,cgan, ({y})} is non-empty
and finite. Moreover, using (3.11.3) with B = {z} and = € E, .., we can see that the
image A7 'z — u belongs to E,,., P-a.s. Denoting by vy the barycentre of E,,.., we find
that

P (tAl_lvo —u= vo) = 1.

The fact that u # 0 implies that vy # 0. The latter implies that *A; vy = vo+u = A5 v,
almost surely, which contradicts the point 3 of Hypothesis 3.3.1. O

The conditions (b), (c) and (d) of the theorem of Ionescu-Tulcea and Marinescu as
stated in Chapter 3 of Norman [59] follow from points 1-3 of Lemma 3.11.1 repectively. It
remains to show the condition (a). Let (h,),., be a sequence in % satisfying [|h,||,, <
K, for any n > 0 and some constant K and suppose that there exists h € € (R?) such
that lim,, o0 | — h|, = 0. For any x,y,z € R and n > 0,

h(z) — h(y) h(z)]
=yl (T e+ y) L+ J2I)?
B < (14 o) + (1 + [y’

o=y L D+ y) 1) et Vel

Taking the limit as n — +oo, shows that h € £, and [|hl, < K.

The theorem of Tonescu-Tulcea and Marinescu and the unicity of the one-dimensional
projector proved in the point 1 of Lemma 3.11.2 imply Hypothesis M3.2. Hypothesis
M3.3 is obtained easily from Lemma 3.11.1.

The point 2 of Lemma 3.11.2 will be used latter to prove that o > 0.

Proof of M3.4. By the hypothesis a = % > 2. Consider the function N: R? — R,

defined by N(x) = |z|"™. For any z,y € R satisfying |z| < |y|,
IN(z) = N(y)| < (L+2) [y |z =yl
Using the fact that [N (z) — N(y)| < 2]y|"™, we have
IN(2) = N(u)] < (14272 o0 e =y = eyl |z — "

Together with ||, < +o0, this proves that the function N is in & = %..
Obviously | f(z)|"" = [(u, z)['** < |u|"™"* (1 + N(z)). Moreover, for any h € %,

()] < [h], |27 (1 + []) + [A(0)] < 2[[Rlly. (1 + N(z))
and so ||, <2 (14 N(x)). Note that for any p € [1, o,
EY? (N (gn - g1 - 2)") < 27 BV (L") N(2) + BV (lgn .. g1 - 0""9)).

Since p(1+¢) < 2424, the previous inequality proves that E}/? (N (X,,)?) < ¢ (1 + N(z)).
Thus, we proved the first inequality of the point 1 of M3.4.
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For any [ > 1, we consider the function ¢; on R, defined by:

0 ift<ime — 1,
du(t) =4 t— (17 —1) ifte[ins —1,07] (3.11.4)
1 if £ > [T+

Define N; on R? by Ni(z) = ¢ (|z|)N(z). For any x € R? we have N(z)1{n()>1y <
N(z) < N(z) which implies that |N;|, < |N|, < 4+o00. Moreover, for any z,y € R?
satisfying |z| < |y|, we have

[u(lyl) = o) < min (Jy| = =], 1)

So
[Ni(y) = Nu()| < [N] | —yl7 (L4 [a]) (L + Jyl) + 27 |y — 2]
Since |z| < |y|, we obtain that [NV;]_ < [N].+1 < +o00. Therefore, the function N; belongs
to B = £y ., which finishes the proof of the point 1 of M3.4.
Moreover, ||Ni||,. < ||N|l,. + 1 and, so the point 2 of M3.4 is also established.
Since [y |#[” v(dx) < 400, for any p < 2 + 26, we find that

2426
Ite Jx 2|7 v(d)
y(Nl) < /X ’33| 1{|I‘2111?71}V(dx) < (llis B 1)2+26—(1+e)'

Choosing f = a — 2 > 0, we obtain the point 3 of M3.4.
Proof of M3.5. Using (3.2.5) and the point 4 of Hypothesis 3.3.1,

o= / w, z) v(dz) = <uE<ZA1 Alek>>:0. (3.11.5)

Now we prove that o2 > 0. For this, suppose the contrary: o2 = 0. One can easily

check that the function f belongs to %. Using M3.2 and the fact that v(f) = u =0, we
deduce that 3,-0 [P"flly. = Xnzo IQ"flly. < +o00 and therefore the series 32,0 P" f

converges in (,%’ IRl 95) We denote by © € # its limit and notice that the function ©
satisfies the Poisson equation: © — PO = f.
Using the bound (3.2.6), we have that ‘Z f(x )P”f(:r)’ < ¢(14 N(z))*. By the

Lebesgue dominated convergence theorem, from (3 2.5), we obtain
ot = [ (@) (28() ~ J(@)) v(dr)
R
= [ (6(z) - (PO)* () v(dx)

Rd

= (O(g1 - ) = PO(x))* p(dgr)v(dz).
GL(d,R) xR xR

As 02 = 0, we have O(g; - ) = PO(x), i.e. f(g1-x) =PO(x) —PO(g; - z), pu X v-ass.
Consequently, there exists a Borel subset By of R? such that v(By) = 1 and for any ¢ € R
and z € By,

/ oit(u917) LitPO(g1-w) p(dgr) = oitPO()

GL(d,R)xR?

Since the functions in the both sides are continuous, this equality holds for every = €
supp(v). Since © € %, the function x + @) belongs to % .~ {0}. This contradicts
the point 2 of Lemma 3.11.2 and we conclude that ¢ > 0 and so M3.5 holds true.
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3.12 Appendix: proofs for compact Markov chains

In this section we prove Proposition 3.3.7. For this we show that M3.1-M3.5 hold
true with N = N; = 0, for the Markov chain (X, ),>1, the function f and the Banach
space .Z(X) given in Section 3.3.2.

Proof of M3.1. Obviously the Dirac measure belongs to .Z(X)" and ||d, ”z y <1
for any x € X. For any h € Z(X) and t € R the function e’/ h belongs to £ (X) and

R, <18 IRl + 1Bl < (1 [fl + 1) (1Al 5 - (3.12.1)

Proof of M3.2. Let (z1,x2) and (y1,y2) be two elements of X and h € Z(X). Since
Ph(xy,15) = / h(xq, ') P(xq,d2’),
X

we have ||Ph||_ < ||h]|,,. Denote by h,, the function z — h(z2, z), which is an element
of Z(X). Since [hy,]y < [h]y and |hy,|, < ||R]|,,, we obtain also that

[Ph(z1, 22) — Ph(y1, y2)| = [Pha,(22) — Phy, (32)]

[Pha,]x dx (22, y2) + [h]x dx (22, y2)

(1Pl 2o 2 hllx + [Plx) dx (22, 92),

where |P|,_, ., is the norm of the operator P: .Z(X) — Z(X). Therefore P is a bounded

operator on .Z(X) and |P||,_, o, < (1+|P|,_ ). Now, for any h € Z(X), we define
the function F}, by

NN

Fa(za) = /X h(zs, 2 P(ws, dz') = Ph(z1, o).

Notice that Fj, belongs to .Z(X) and |F,|, < |[|[Ph|| 4. So by Proposition 3.3.5, for any
n =2, (r,22) € Xand h € Z(X),

P"h(xy,15) = P" ' Fy(15) = v(F,) + R" ' Fi,(z2) = v(h)e(z1, 22) + Q"h(z1, 72),

where the probability v is defined on X by
v(h) =v(F,) = / h(x', 2" )P(z', da" )v(dx'),
XxX

the function e is the unit function on X, e(z1,x9) = 1, V(21,22) € X and @ is the linear
operator on .Z(X) defined by Qh = R(F},) = Ph — v(h). By Proposition 3.3.5, the
operator @ is bounded and for any n > 1, |Q"[| 4., < |[R" gy o IPlly o < cem
Since v is invariant by P, one can easily verify that I1Q) = QII = 0, where II is the
one-dimensional projector defined on .Z(X) by IIh = v(h)e.

Proof of M3.3. For any t € R, h € Z(X) and (x1,z2) € X,

+o0 jngn

Poh(ay, 12) = /X 125) Dz, a') Py, da') = 3 - La(h) (w1, )

n=0

where L,(h) = P(f"h). Since (Z(X),|-||,) is a Banach algebra, it follows that L,
is a bounded operator on .Z(X) and ||L,|| 4. o < ||[Plly. o[l fl%. Consequently, the
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application t — Py is analytic on R and so, by the analytic perturbation theory of linear
operators (see [50]), there exists €y > 0 such that, for any |t| < &,

Py = N1, + Q7

where \; is an eigenvalue of Py, II; is the projector on the one-dimensional eigenspace
of Ay and Q) is an operator of spectral radius r(Q;) < || such that I1,Q; = Q;II; = 0.
The functions t — A;, t — II; and ¢ — @y are analytic on [—k, k]. Furthermore, for any
h e Z(X) and (x1,x9) € X,

Pl (r1,22) = | [ 662 (s, a') Py, 00" < Il
X
and necessarily |\ < 1, for any |¢| < k. Consequently

sup [|[P}[lg o <c
[t|<k,n>1

Proof of M8.4 and M3.5. Since for any x € X, |f(2)| < [f],, and ||z g, < 1, we
can choose N =0 and N; =0 for any [ > 1 and Hypothesis M3.4 is obviously satisfied.
Finally, Hypothesis 3.3.6 ensures that M3.5 holds true.

Acknowledgements

The authors are very grateful to the anonymous referee for valuable comments and
corrections which helped them to improve the first version of this work.

The two next sections are not a part of the article Limit theorems for Markov walks
conditioned to stay positive under a spectral gap assumption [38]. However, they are
interesting developments: in Section 3.13, I show how to construct a Banach space which
satisfies Hypotheses M 3.1-M3.5 and in Section 3.14, I prove that it is possible to improve
Theorem 3.2.5 giving the asymptotic behaviour of the couple (X,,y + S,)n>1 knowing
that the Markov walk stay positive, 7, > n.

3.13 A Banach space for the product of matrices

The purpose of this section is to prove that Theorems 3.2.2-3.2.5 can be applied for
the product of random matrices considered by Grama, Le Page and Peigné [41]. This
additional example and the fact that Hypotheses M3.1-M3.5 are satisfied in previous
models stress the global nature of Theorem 3.2.2-3.2.5.

Note that the Banach space constructed in [41] does not satisfy entirely Hypotheses
M3.1-M3.5. Indeed the tricky point is that in Hypothesis M3.4 we suppose that the
function f is bounded by a function belonging to the Banach space. However in the article
[41] the Banach space is included in the set of bounded function whereas the considered
function f = p is not bounded. Consequently in this section, we construct a new Banach
space and show that, with this Banach space, Hypotheses M 3.1-M3.5 are satisfied. We
start by introducing again some notations of [41].
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3.13.1 Notations

Let G = GL4(R) be the set of invertible matrices of size d x d, with d > 1. We endow
R with the euclidean norm, [[v|| = /3%, v?, for any v = (vy,...,v4) € R? and G with
the associated operator norm, ||g|| = sup,cga\ (o3 [lgv]l / [|v]l, for any g € G. Denote by
P(R?) the associated projective space and for any v € R%, let 7 € P(R?) de the direction
of v. We endow P(R?) with the angular distance d(w,v) = |[u Av| /(|lull [|v]]), where
u A v is the vector product of u and v. The group G act on the projective space P(R?)
by multiplication: for any v € R%, denote by ¢ -7 = gv the action of ¢ on the direction
v. Finally, for any g € G, we define

-1
o)

N(g) = max (||g|l,

Let (92, #,P) be a probability space, E be the associated expectation and (g )n>1
a sequence of random variable 7.7.d. defined on ) and taking its values in G where the
common low is denoted by . We now recall the assumptions of [41].

P3.1. There exists 09 > 0 such that
E (N(g1)*) = [ exp (80 log (N(9)) alg) < +oc.

P3.2 (Strongly irreducibility). The action of the support of p on R? is strongly irre-
ducible i.e. there is no proper finite union of subspaces of RY which is invariant by T,
the smallest closed semigroup containing the support of .

P3.3 (Propriété de contraction). The semigroup I, contains a contacting sequence.

Let p be the cocycle defined by

p(g,7) = log <”9”“> . Y(g,7) € G x P(RY).

o]

Under conditions P3.1-P3.3, it is well-kownn that there exists a unique measure v which
is p-invariant on P(R?).

P3.4. The upper Lyapunov exponent is equal to 0 : g, pgay p(g,?)u(dg)v(dv) = 0.

The condition P5 of Grama, Le Page and Peigné [41] ensure that the harmonic func-
tion is positive for any y > 0. This assumption is not necessary in our case and Proposition
3.13.11 will make explicit the exact domain of positivity of this harmonic function.

For more details on the conditions P3.1-P3.4, we refer to the article [41]. We intro-
duce now the random walk associated to the product of random matrices. For any n > 1,
we define

Gn=0n...01 and Gy =1d.

Let B be the closed unit ball of R?. To study the first time when the product G,v, for
v ¢ B goes into the unit ball B, on consider the logarithm of its norm

n

log (||Gv||) = Z (ks Gr—1 - 0) + log([[v]]).

Let X = G x P(RY). For x = (g,v) € X, we consider (X,,),>o the Markov chain on
taking its values in X defined by Xy = x and

Xn = (9n,Gn_19 - 7), Vn > 1.
The associated Markov walk is given by S, = p(X1) + ... p(X,).
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3.13.2 The Banach space

We denote by % (X, C) the set of the continuous functions from X to C. We fix the
following parameters

|h(g, )|
h|, = sup ,
| |9 (g,m)exX N(g)G
|h(gaﬂ)_h(ga@)| / |h(g7ﬂ)_h(g/vﬂ)|
k. o(h) = sup — , k. 5(h) = sup 2 ,
(h) = S0 i, v N () alh) = 89D T Mgy N ()P
uFv ueP(R4)

and we define the norm
HhHﬂ = |h|9 + ke o(h) + k;,ﬁ(h)a
and the associated Banach space

B ={he?(X,C):|hl, < +oo}.

3.13.3 Poof of M3.1

For the ease of the reader, we gradually recall Hypotheses M 3.1-IM 3.5 by respectively
Propositions 3.13.1, 3.13.6, 3.13.7, 3.13.8 and 3.13.9.
Proposition 3.13.1 (Banach space). Assume P3.1. Then,
1. The constant function equal to 1, denoted by e belongs to A.
2. For any x € X, the Dirac measure 8, belongs to the dual of B, denoted by A’ .
3. The Banach space B is included in L' (P(z,-)), for any xz € X.
4. For anyt € R and h € B, the function e h is in A.

Proof. Point 1. Since N(g) > 1 for any g € G, it is clear that e € A.
Point 2. For any x = (¢g,u) € X and h € 4,

18.(h)] = [h(x)] < N(9)” [hly < N(9)” (I, -

So d, € #' and
1825 < N(g)". (3.13.1)

Point 3. For any x = (¢g,u) € X and h € 4,

Pl () = [ Ihlor g u(dge) < By [ Nig2)’nldgn)

where P is the Markovian operator associated to (X,,),>0. Since 8 = 309/8 < &y, by
P3.1, we have
P |h| (z) < c|h|, < +o0.



146 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

Point 4. Fix h € £ and t € R. First we note that

e h| = |hl,. (3.13.2)

Next, for any (g,u) and (g,?) in X, we write that

eitr(9,1) _ oitp(g,0)

+ |h(g7ﬂ) - h(ga@” .

(3.13.3)
Let u and v be two vectors of direction @ and ¥ respectively, of norm equal to 1 and such
that (u,v) > 0. We have

PO b (g ) — eitrl9?) h(g,U)’ < |kl N(g)’

pitr(9:1) _ oitp(g,v)

<wum%uw—m%vﬂ=wﬂmgowmgy

llgvll

Using the fact that |log(s)| < |1 — s| for any s > 0,

_ _ glu—v —
1000, — p(g9)| < L= ot fu — .
lgvll

We recall that

|u— v < v2d(u,v) and that d(w,v) < |ju—v]. (3.13.4)
So

|p(9,) — p(g, )| < V2N(9)*d(u, v). (3.13.5)
Consequently o o
eitPlo) _ o090 < \/2|t| N(g)*d(w, D).

Moreover |eP(9:%) — eitP(97)| < 2 50

eitp(g,ﬁ) o e’itp(g,i) < 21—€+5/2 |t|<€ N(g)%d(ﬂ, U)a

From (3.13.3), we deduce that

5 (g, 7) — 60T h(g,7)| < 2t |hl, N(g)" (T, 7)F + ke (h)d(7, 7) N(g)".
Since a = 6 + 2¢, we have

Koo (€7 ) < 20t [hly + kea(h) < +o0. (3.13.6)
We proceed in the same way for k. ;5 (e"” h). Fix (g,u) and (¢',@) in X. We have

eitp(90) _ eitp(g’,ﬂ)‘ + |h(g7ﬂ) — h(g’,ﬂ)| .

ez‘tp(g,ﬂ) h(g,ﬂ) . eitp(g’ﬁ) h(g’,ﬂ)’ < |h|6 N(g)e

As previously,

itp(g,a itp(g'u g —g)u
ot — g0 < g =B < o) (g g - 1.

eitr(9:1) _ pitp(g'u)

Since < 2, we deduce that

o o
eitr(g:) _ qitp(g'w)

20N Nlg—d°-
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Consequently,

0T g, ) — 65 (' )| < 2P B, N (9N ) g — o1
+ K. 5(h) lg — d'lI” N(g)°N(g")".

Since ¢ < f and 0 < 3,
Lo (€ 1) <27 [hly + K 4(h) < +o0. (3.13.7)

Using (3.13.2), (3.13.6) and (3.13.7), we conclude that ¢* h € 2 for any t € R. Moreover,

e h|| < 1Rl + 417 Ry

3.13.4 Proof of M3.2 and M3.3

We recall that the perturbed operator is given by P;h(z) = P(e'? h)(z) for any ¢t € R,
h € # and x € X. We will prove that the perturbed operator P;, ¢ € R satisfies the
hypotheses of the theorem of Ionescu-Tulcea and Marinescu [49]. This will imply in
particular that P have a spectral gap and from this, we will establish Proposition 3.13.6.
Previously, we recall a result of Le Page [54] (Theorem 1). One can also see an expression
of this result in Grama, Le Page and Peigné [41] (Proposition 8.6).

Proposition 3.13.2. Assume conditions P3.1-P3.3. Then there exist g > 0 and r, €
(0,1) such that

lim supE

n—-+0o U£T

d(G, -, G, -0) " )
d (u,7)° oo

In the following lemma we give a control of the norm of P;.

Lemme 3.13.3. Assume conditions P3.1-P3.3. For anyt € R, n>1 and h € A, the
function Py h belongs to . Moreover,

IP2AlL, < cx (1 -+ HF) [Aly + b a ()02
Proof. Fix t € R and n > 1. Observe that for any h € B, v = (g,u) € X and n > 1
PPh(z) = B, ("5 h(X,)) .
Since S,, € R, by the definition of X,
[Pyh(@)] < Es (1h(ga Gumrg - T)) < Bl E (N(g,)") (3.13.8)
Consequently, using the fact that 6 = 36y/8 < &y and P3.1,

Pyhl, < Bl E (N(g1)") < +oc. (3.13.9)
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For any = € X, denote by X? the Markov chain starting to Xy = = and by S? the
associated Markov chain. For any (¢,%) and (¢,7) in X

A, = [PPh(g, ) — PPh(g,0)| = ‘E (eitsﬁg’“’ B (XM — s (X,Sg’”))> ’
S E([h(gn, Gn19 @) = b (gn, Gn-19 - V)|)

i (|h (g Gag - )| S5 — S0

< kea(WE (d(Gno19 - U, Gro19 - 0)° N(g2)")

+ 11l B (N(.)" )

57(19@) _ ST(LM)

)

- o(9,w) -+ o(9,7)
eztSn _eztSn

Using the fact that

ICAD) - al(g,0) . = = e
it S _ itSy < min (W ‘ Sr(Lg’u) o 57(1971))

2) <2t

and the independence of g;, i > 1, we deduce that
Ay < hea(E(d(Gro19 -0, Grorg - 0)°) E (N (g)?)
+ 21_6 |t|‘E |h|9 E (N(gn)e |,0 (gm Gn—lg : ﬂ) - p (gm Gn—lg : U)F)

n—1
+217 [t (Rl Y E (N(gn)g) E(lp (9, Gr—19 - 1) — p (g, Gr-19 - D)[")..
k=1

By (3.13.5) and the fact that 6 + 2e = 5e = q,
A, < (kw(h) + 2172 | Wa) E (d(Gn-19 @, Gno19-0)°) E(N(g1)%)
n—1
+ 2172t b, B (N (91)) B (N(91)*) E (d (Gro1g - T, Grorg - T)°).
k=1
(3.13.10)

Now we will use the fact that the sequence (Gy)gso is contracting on the directions.
Without loss of generality, we can assume that §,/8 < o. So, by Proposition 3.13.2,
there exist ng and r. € (0,1) such that for any n > ny and (%, v) € P(R?)?,

E(d(Gng-u,Gng-v)°) <rld(g-u,g-0).

By (3.13.4), with u and v two vectors of directions @ and v respectively, with norm equal
to 1 and satisfying (u,v) > 0, we have

gy 7)< g - 20| < ey -
foull ~Taell| < lgul foull ~ Tavl
llgv] = Ll
< N(g? fu—o] +
Joul
< 2N (g fu =l
< 23N (g)d (a,0)

So, for any n > ng

E (d (Gng - W, Gng - 0)°) < 2%/*r2N(g)*d (u,v)°
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In the same way, for any n < ny,
E(d(Gug 1, Gug - 7)) < 2B (N(Gag)®) d (w,7)° < 2°/*E (N(91)*)" N(g)*d (w,0)°
c.N(g)*d (u,v)°,

where hereafter c. is a constant depending only on £ which its value is likely to change
every occurrence. We obtain that for any n > 1,

E(d(Gng -1, Gng - 0)°) < cor™N(g)*d (@, v)° .

Putting together this last inequality with (3.13.10),

A, < ke o(W)rE I N(9)*d (W, 0)° + c. [t |hl, N(9)*°d (w,0)° Y rEh.

k=1
Since 2¢ < a = b5e, we deduce that
keo(PPh) < c: |t |hly + coken(h)rl < 4o0. (3.13.11)
In the same way, for any (¢,u) and (¢’,u) in X,
A, = [PYh(g,u) — PEh(g', a)
< bea(WE (d(Gyo1g 0, Gorg - 0)°) E (N(ga)°)
+ 27 [t [Bly B (N ()" |0 (gn: Gnorg - W) = p (g, Gnrg' - 1))

n—1
+ 2 [t Ry Do E (N (9n)*) E (10 (95, Gror9 - T) — p (g, Giag' - T)[°)
k=1
Using again (3.13.5),

A, < eekieo(E (d(Goorg T, Guorg' 1)) + ez [t |hly Y E (d(Grorg -7, Goag' - 1))
k=1

As previously, by (3.13.4),

gu  gu

lg"ull

d(g-u,g¢ 1) <

—q)u 1 1
|< (g = g)ull g,u”| -

|gull lgull  [lg"ull
<2N(g)llg—4d'l-

So using Proposition 3.13.2, for any n > 1,
E(d(Gng - u,Gng - 0)°) < crPN(g)* llg — g'lI° -

Thereby,
A, < eckea(MrEN(9)" lg = 9'I7 + ce |t Rl N(9)* llg — o'l -
Since f > ¢ and N(¢') > 1, we get

K.s(Prh) < cokea(R)rl + co |t Bl < +o0. (3.13.12)

Putting together with (3.13.9), (3.13.11) and (3.13.12), it completes the proof. O
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We now show that the conditions of theorem of Ionescu-Tulcea and Marinescu [49] are
satisfied under P3.1-P3.3. For more details on the theorem of Ionescu-Tulcea and Mari-
nescu we refer to the book of Norman [59]. We define 6y := {h € €(X,C) : |h|, < +00.}.

Lemme 3.13.4. Assume P3.1-P3.3. The Banach space (4, ||-|| ) is included in the set
(€9, |:|y) which is also a Banach space.

1. Let (hy)nso € B and h € 6y be such that |h, — h|, — 0 when n — 400 and such
that for any n > 0, ||\hy||, < C. Therefore h € % and ||h||, < C.

2. Foranyt € R and h € &, we have

L

sup |9 < +00

n=0 |h|9

3. For anyt € R, there exist k > 1, r € (0,1) and ¢ > 0 such that for any h € A,

H

4. For anyt € R, the operator P, from (%, |-||) to (6y, |-|,) is compact : for any bounded
subspace B of A, the set PyB is relatively compact.

<7 llhllg +clhly -

Proof. Point 1. Let (hp)nso € B~ and h € 6. We suppose that |h, — h|, — 0 as n —
+o0 and that ||h,||, < C, for any n > 0. For any (g1, 92, 93, g4) € G*, (U1, Uz, ua', u3) €
P(R%)* and n > 0, we write that

\h(g1, 7)) N |h(g2,13) — h(ga,u2")] |h(gs, us) — h(gs, us)|
N(q)? d(uz, u3’)* N (g2)* lgs — 511" N(g3)P N (g5)?
B (91, T0)| |hn(92, W) — Bn(g2, @) |hn(g3, @3) — hn(gh, @3)]
N(g1)? d(Tz, w3 )* N (g2)® lgs — 951" N(g3)PN(g5)?
2N (g2)? N(gs)? + N(g)° )
| =hyl, (14— +
| '9< 0,5 N2 9 — 6] N(gs)P N (gh)
Therefore
\h(gr, @) |h(g2,T2) — h(ge, W) |h(gs, u3) — h(gs, us)|
N(q)? d(wz, 5" )* N (g2)* llgs — g5l N(g3)°N(g5)?

2N (g2)’ N(gs)’ + N(g5)° )
Uz, 0 )N (g2)*  lgs — g5]° N(g3)?N(g5)°

Taking the limit as n — 400, we conclude that

< —_
<CH|h h"|9<1+d(

[hlly < C
Point 2. Tt is a straightforward consequence of (3.13.9),

[P7hl
su
n213 |h|9

? <E(N(g1)") < +oo.

Point 3. By Lemma 3.13.3, forany t e R, n > 1and h € #

PRl < ce (14 [8) [Ply + cchea(h)rl.
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Since r. € (0, 1), there exists ng > 1 such that c.r? < r < 1, for any n > ng, which proves
the point 3.

Point 4. Let B be a bounded subset of 4. We will show that P;B est relatively
compact: for a fixed sequence (h,),>o in B, we will construct a subsequence of P;h,
which converges in (%p, |-|,). Fix K a compact of X. For any = = (¢,%) € K and n > 0,
by (3.13.8),

P k()] <E (N(g1)?) |huly (3.13.13)

Since (hy)n>o0 is bounded,we deduce that (Pih,(z)),>0 is bounded in C and so relatively
compact. Let us show that (P;h,),>0 is equicontinuous in z € K. For any y = (¢',7) € K
and n > 0,

|Pthn(x) - Pthn(y)‘ ‘Pthn(gaﬂ) - Pthn(gaﬂ)l + ‘Pthn(gav) - Pthn(glaﬁ)’

<
< ke (Piha) d(@,0)°N(9)* + ke (Piha) llg — o7 N(9)"N(g')”.

Since K is compact, there exists cx such that N(g) < cx for any ¢ € G. So using
(3.13.11) and (3.13.12),

[Piha(2) = Piha(y)] < coc (1 + 1) lhall s (@5 + g — 1)

Since (|hnlg)n=0 is bounded, we deduce that the sequence (P;h,),>o is equicontinuous.
Therefore, by the theorem of Ascoli-Arzela, the set {P;h,,n > 0} is relatively compact
in (¢(K,C),|-|..)- By a diagonalisation argument, there exist a subsequence (P;hy, )i=o
and a function ¢ € ¥(X, C) such that for any compact K in X, we have

sup [Pefin, () = ¢(2)] = 0.
Moreover, by (3.13.13), |Ph,(x)| < ¢, for any z € X and n > 0. So, for any z € X,
o(x) < 1+ cg. We deduce that, for any A > 0 and n > 0,

[Pthn, (z) — ¢(2)] _ _ 14 2cp
sup < sup [Pihy,(9,7) — (g,0)| + sup ———.
reX N(g)? Ngza " Ng>a N(g)?
ueP(RY) aeP(RY)
Since {(g,u) € X : N(g) < A} is compact, we have for any A > 0,
| Py (2) — 0(a)] _ 1+ 2es
lim sup su b < .
boio ek N(g)° A0
Taking the limit as A — +oo, we conclude that the sequence (Ph,, )r>o converges in
(€, |-|,) to ¢ and so, finally, the subset P, B is relatively compact in (%p, |-|,). O

To establish M 3.2, we need one more result from Le Page [54] (Corollary 1) also stated
in Grama, Le Page and Peigné [41]. We recall that under P3.1-P3.3, there exists a unique
measure v on P(R?) which is p-invariant,i.e. such that for any continuous function ¢ :
P(RY) — C,

(nxv)(p) = /X p(g - wv(du)p(dg) = /P - p(wv(du) = v(p). (3.13.14)
Proposition 3.13.5. Assume conditions P3.1-P3.3. For any continuous function ¢ :
P(R?) — C, we have

lim  sup [E(¢(Gr- 1) — v(p)| = 0.

n—+oo TEP(RY)
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Proposition 3.13.6 (Spectral gap). Assume P3.1-P3.3. Then,
1. The map h — Ph is a bounded operator on A.

2. There exist two constants ¢; > 0 and cg > 0 such that
P=1+0Q,

where 11 is a one-dimensional projector and Q) is an operator on 9B such that 11Q) =
QIL = 0. Moreover for any n > 1,

con

1@ 5 < cre”

Proof. Point 1. 1t is a straightforward consequence of Lemma 3.13.3 for n = 1 and ¢t = 0.
Point 2. From Lemma 3.13.4 and the theorem of Ionescu-Tulcea and Marinescu [49],
we know that there exists a finite number of eigenvalues of modulus 1, say Ai,..., A,
and operators IIy, ..., II,, @ such that P = Y-, \,IT; + Q with II; orthogonal projectors
satisfying I1;Q) = QII; = 0 and the spectral radius of ) is strictly less that 1 and so

can

1Q" |5 S cre”

It remains to prove that 1 is the unique eigenvalue of modulus 1 and that the associated
eigenspace is one-dimensional. Let A € C be an eigenvalue of P of modulus 1 and let
h € % be an associated eigenvector. For any z = (¢,u) € X and n > 1,

A*h(x) = P"h(z) = E (h(gn, Gnrg - W) -
Consider h(T) = E (h(g1,7)), for any & € P(R?). By the independence of g;,
N'h(x) =B (h(Gnorg - 1))

Since h € B, h is e-Hélder: for any 7 and w € P(R?),

|h(0) = h(®)| < ke o(h)E (N(g1)) d(T, @),

we deduce that the function A is continuous and so by Proposition 3.13.5,

N'h(a) = v(B) = [ h(g0)w(@)n(dg,).

n—-+oo

Since h is an eigenvector, by definition, there exists zy € X such that h(z¢) # 0. So A =1
and h(z) = v(h)e is collinear to the constant function equal to 1, for any x € X. This
proves that 1 is the unique eigenvalue of modulus 1 and that its associated eigenspace is
one-dimensional, which concludes the proof of the point 2. O
Proposition 3.13.7 (Perturbed transition operator). Assume P3.1-P3.3 and set k > 0.
1. For any |t| < k, the map g — P.g is a bounded operator on A.

2. There exists a constant Cp > 0 such that, for any n > 1 and |t| < k&,

Proof. 1t is a straightforward consequence of Lemma 3.13.3. O]
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3.13.5 Proof of M3.4
For any h € A, we define

o(h) = [ hlgr D)w(dn)pldgy) (3.13.15)

Proposition 3.13.8 (Local integrability). Assume P3.1. The Banach space % contains
a sequence of non-negative function N, N1, Na, ... such that:

1. There exists ppmaz > 2 and v > 0 such that, for any v € X,

max {[p()["*7, |80, BYmer (N (X))} < e (1+ N())

and 3
N(x ) gy < Ni(z),  forany 1>1.

2. There exists ¢ > 0 such that, for any | > 1,

%], <

3. There exist 0 > 0 and ¢ > 0 such that, for any 1 > 1
- c
7 (W)] <

Proof. For any z = (¢,1u) € X we define N(z) = (||g|| + [lg~*[)°. For any ¢ > 0 and
[ > 1, we consider

0 it t<l—1
o(t) =3 t—(1—1) if te[l-1,]
1 if t>1

and we define N;(z) = ¢ (]\7(:1:)) N(zx), for any z € X and [ > 1
The function N belongs to Z: it is easy to see that |N
Moreover, for any (g,¢’) € G and u € P(R?),

29 and that k. o(N) = 0.

N(g,@) — N(¢',m)| < 98;;11)59‘1 gl + g~ || = g/l = ||(s") "]
Without loss of generality, we can assume that dp < 8/3 i.e # < 1 and so

(N(g,7) = N(g' @)| < (lg = 9l +||jg " (9 — 9)&)*|) <2llg = g N(9)N(9)-
Moreover
[N(g,m) = N(¢',m)| < 2N(g)" +2'N(g)” < 2°*'N(9)"N(g')".
Consequently,

N(g.m) = N(g', )| < 20009 |lg — [ N(g)™ N (g)™ 97 (3.13.16)
Since € + (1 — €)0 < 4e < 3, we obtain that

Ky (N) <2
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Thereby N € % and HNH@ < 2042,

We now show that N, € 4, for any [ > 1. Fix [ > 1. We note that ]\N/l(x) < ]\7(3:),
for any x € X, and so ‘Nl‘e < ’N’9 < 2%, Since for any g € G, the function @ +— N (g, )

is constant, the function @ ~ N;(g,) is also constant and so k..(N;) = 0. For any
(9,9) € G and u € P(R?),

Ni(g, W) = Nilg',m)| < N(g, ) |&r (N(g, ) — &1 (N(g',))|
+ [ 1lloo |N (9. 7) = N(g', )
< (2N(9)’ +1) |N(g,1) — N(g',m)|.

Using (3.13.16),

29 + 1) 26+1 ||g g || N( )5+9N(g/)5+0
26042 ||9 q H N( )a+20N(g >a+29.

=
s
S
S~—
3
Q
S
N/~

Finally, since € + 20 = 7e = 3, we conclude that k:éﬂ(Nl) < 2%+2 that N, € % and that
1%,

Point 1. Recall that p(x) = log (||gu||), for any z = (¢,u) € X and fix v > 0 (y =1
for example). 1f [lgul] > 1, then |o(x)|"* < log (lg)™* < yo lgll”. 1F flgul] < 1, then

TR
p(x)]7 < ( log (Hg_lH 1)) o <y Hg_lHe. In every case,

< 22043, (3.13.17)

(@) < ey 0N (2).

By (3.13.1), we have seen that ||0,], < N(g9)? < N(z), for any x = (g,%) € X. Choosing
Prmaz = 8/3 > 2, we get Opmax = dp and so

]Ei/pmax (N(Xn)pmax) < VR L/Pmaz (N(gn)ﬂpmax) = ¢5, < +00.

By the definition of ¢y, it is clear that N(z )L §@ys < < Ny(z), for any I > 1 and 2 € X,
which proves the point 1.
Point 2. This point is proved by (3.13.17).

Point 3. Fix § = 2/3. By the definition of N, we have, for any [ > 2

7 (M) = [ Nilor, v (@) (dgn) < [ N(g1,0)1 55, o012 (d0)(dgy)
X X

V(g T2
< [ (e

29(2+6 (215)
<(l_11+5/N91 ) p(dgi).

Since 0(2 4 §) = dy, we conclude that & (Nl) < cs, /173, for any | > 1. O
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3.13.6 Proof of M3.5

Let o and o2 de defined by the point 1 and 2, respectively, of the Proposition 3.2.1. The
measure  defined by (3.13.15) is P-invariant. Indeed for any continuous and bounded
function h : X — C,

7 (Ph) = [ Phig.a(dnu(dg) = [ hlg,g- m)uldg)u(dg)v(da)

= [ h(g - W)p(dg)v(d)

where A is defined by h(v) = [i; h(g1, 7)p(dgy), for any 7 € P(R?). Since v is bsp-invariant
(see (3.13.14)),

o (Ph) = /}P - L@ (da) = o (h).

Note that &(N?) < 2% u(N?’) and since 26 < &y, we deduce that &2(N?) < 4oco. Thereby,
the equation (3.2.5) is satisfied.

Proposition 3.13.9 (Centring and non-degeneracy). Assume P3.1-P3.4. Then, the
walk (Sp)n>1 est centred :

v(p)=p=0,
and non-degenerated:
+oo
o = Vary (p(X1)) +2 ) Covi (p(X1), p(Xy)) > 0.
k=2

Proof. The hypothesis P3.4 implies that &(p) = 0. Moreover, by the theorem 2 of Le Page
[54] and under Hypotheses P3.1-P3.4, we know that 1, (S?) converges to a positive
number, say 2 > 0. So using Proposition 3.2.1, one can see that 0% = 52 > 0. O]

3.13.7 Results

By Propositions 3.13.1, 3.13.6, 3.13.7, 3.13.8 and 3.13.9, we see that Hypotheses M 3.1-
M3.5 are satisfied and so Theorem 3.2.2-3.2.5 precise the behaviour of the associated
random walk (S,)n>1.

Proposition 3.13.10. Assume P3.1-P3.J. Theorem 3.2.2-3.2.5 hold true for the ran-
dom walk constructed by the product of random matrices S, = log (||Gng - x||).

We detail here some points implied by the previous proposition. For any v > 0, we
define
7, = {(z,y) € XxR:3ng > 1, Py (y + Spy >, 7y >n0) >0}

Proposition 3.13.11. Assume P3.1-P3.}.
1. The function V' defined by Theorem 3.2.2 satisfies, for anyy € R, x € X and § > 0,

(1 =) max(y,0) — cs < V(z,y) < (14 6)max(y,0) + cs.
2. There exists v, > 0 such that, for any v > 7|,

supp(V) = Z,.
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Proof. Point 1. By the point 2 of Theorem 3.2.2, for any (z,y) € X x R, we have
V(z,y) =E, (V(X1,y+ S1); 7, > 1). Therefore, using the point 3 of Theorem 3.2.2,

V(r,y) <E, (1+06)(y+S1) + es(1+ N(X1) s 7 > 1)
< (1+8) max(y, 0) + ¢, (14 [p(X0)| + N(X))).
By the point 1 of Proposition 3.13.8,
V(w,y) < (1+6) max(y,0) + c5E (N(g1)") < (1 +6) max(y,0) + cs.

We proceed in a similar way to obtain the lower bound:

V(w,y) = (1= 6)Es (y+ S1; y+ 51 > 0) = s (14 N(X1); 7, > 1)
2 (1=0y+1=0E,(S1) - (1 -0)E; (y+ 5159+ 5 <0)—csp
> (1—6)y —csp-

Since V' > 0, we conclude that
V(J:a y) 2 (1 - 6) max(y, 0) - 06,9

Point 2. Taking § = 1/2 in the point 1, there exists 7, = 4¢s > 0 such that for any
(x,y) € X xR,

o~

_ o
1
We recall that the sets &, are defined before Theorem 3.2.2 by

Viz,y) >

N =<

@7::{(x,y)€X><]R:EInO>1, Px<y+5n0>7(1+N(Xno)> ,Ty>n0)>0}.

Since N > 0, pour tout v > 0, we see that 9, C Z!. Thereby, using the point 3 of
Proposition 3.8.8, we deduce that for any v > 0,

supp(V) € Z.. (3.13.18)

Moreover, for any v > 0, we consider ¢/ :=inf {k > 1: |y + Si| > 7} and fix (v,y) €
_@%. There exists ng > 1 such that P, (y + Sp, > 7, 7y > ng) > 0. Consequently, in a
similar way as in the proof of the point 4 of Proposition 3.8.8,

1 g0
>2Ex<y+5<;;6—2;7y>496, ;6<no

o~

> Jo
4

Therefore @% C supp(V). Moreover, it is easy to see that &, C 2.

Py (7, > ¢y, ¢y <o) > 0.

", for any 71 > 2. So
7!, C supp(V), for any v > 75, which, together with (3.13.18), concludes the proof. [

Proposition 3.13.12. Assume P3.1-P3.4. Then, for any (x,y) ¢ supp(V),

cn

P, (1, >n) <ce”
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Proof. Fix (z,y) ¢ supp(V). By the point 2 of Theorem 3.2.2, we note that 0 = V' (z,y) =
E, (V(X1,y+ S1); 7, > 1). Consequently, on the event {7, > 1}, we have (X;,y+ 51) ¢
supp(V). Using the Markov property, and the point 2 of Theorem 3.2.3, for any n > 2,
we deduce that

P, (Ty >n) < cocn=1) E, (1 + N(Xl) Ty > 1) <ce K (N(g1)0) .
O]

Using the same ideas as in the proofs of Propositions 3.13.11 and 3.13.12 and using
Theorem 3.2.4 and 3.2.5, we obtain the following proposition.

Proposition 3.13.13. Assume P3.1-P3.}.
1. There exists €, > 0 such that, for any £ € (0,e(), n > 1 and (z,y) ¢ supp(V),

2V(x,y)| _  (1+max(y,0))’
ne | /2+e :

2. For any (z,y) € XX R andn > 1,

P, (1, > n) —

1 + max(y, 0)
c—————.

vn

3. There exists e, > 0 such that for any & € (0,e), n = 1, to > 0, t € [0,ty] and
(z,y) € X xR,

P, (1, >n) <

(1 4+ max(y, O))2
nl/2+€

< CE’,to

2V(2,y) 5+ (t)

2mno o

Px(y+5’n<t\/ﬁ,fy>n)—

3.14 Asymptotic law of the couple (X, S, ),>0 condi-
tioned

The goal of this section is to improve Theorem 3.2.5, giving the law of (X, y + Sn),~¢
conditionally to the fact that the random walk stays positive {7, > n}. Roughly speaking,
by the law of the iterated logarithm, the Markov walk at the time n is of order \/n. So its
"inertia" increases with n whereas the Markov chain converges exponentially fast to the
stationary measure. The "effect" of X, on the walk y+.5,, decreases with n. This motivates
the fact that, intuitively, the chain and the walk are asymptotically independent. More
precisely, our goal is to prove the following theorem:

Theorem 3.14.1. Assume Hypotheses M3.1-M3.5.

1. For any non-negative bounded function h : X — Ry belonging to B, any (x,y) €
supp(V') and t > 0, we have

E. (h(Xn); y+ S <tovn|m >n) — v(h) @ (1),

n——+0oo

+2

where ®T is the distribution function of the Rayleigh law, ®*(t) =1—e 7.
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2. Moreover, there exists ¢ > 0 such that for any € € (0,e9), non-negative bounded
function h : X — R belonging to B, anyn > 1, tg > 0, t € [0,%] and (z,y) € X xR,
2V t2

E, (h(Xn);y+5n<ta¢ﬁ,ry>n)—u(h)(‘”’y)( )

1—e 2
2mno

2
max(y, 0) +(1+ yﬂ{y>(n_k)1/275} + N(x)
S o (HhHOO " Hh”‘g) ( nl/2+e/16 ) :

Proof. To prove that the asymptotic law of (X,),, is the invariant measure even if we
condition by the fact that the walk stays positive, we make a "gap" between the index
of h(X,) and of {r, > n — k} of size k = |n°], negligible in comparison with n and we
make use the fact that the speed of the convergence of (X,,), -, to the stationary measure
is exponentially fast.

For any n > 0 and € > 0 we define k = [n] and ¢, = =. Set ¢, > 0. For any
t € [0,to], we will give a lower and upper control of the following expectation:

Iy =By (h(X,) s y+ Sy < tov/n, 7, >n). (3.14.1)
We denote also
In(z,y,n,u) :=E; (h(X,) ;y+ S, <u, 1y >n). (3.14.2)
Upper bound of Iy. By the Markov property,
Iy = /XXR o2,y k,toy/n)P, (X, €da’ , y+ S, €dy’, 7y, >n—k).
Inserting the event {y/ =y + S,_x < o(t + t,)/n}, we write

Iy = / Io(2' o/ ke, to/n) Py (Xpy € A2, y + Spp € dy/
XxR
Y+ Suk <olt+t)vn, 7, >n—k)
=17
n /X Io(ay k to/n)B, (X €da', y+ Su €AY (3.14.3)
X
Y+ Snx >0t +t,)Vn, 7, >n—k).

=:1z

Bound of I. Since h is non-negative,
(2, y' k, toy/n) = B (h(Xi) 5 ¢ + Sk <tov/n, 7y > n) < Ba (h(Xy)).
Using the spectral gap property M3.2 and the fact that h € %, we know that
E. (h(Xy)) = P*h(2') = v(h) + Q"h(2"). (3.14.4)
with,

QFh () Q" IRl < cllplly e 1182l

Oy (Qkh)‘ < |02 5

B—RB |



3.14. ASYMPTOTIC LAW OF THE COUPLE (Xn, Sy)ns0 CONDITIONED 159

Consequently, by the point 1 of Hypothesis M 3.4

Q% ()| < |l 4o (14 N()). (3.14.5)

Thereby,

Lo,y k. tov/n) < Eu (h (Xy)) S w(h) + cllh]| 5™ (1 + N(a"))

and so
L <v(h)P, <y+5nk (t+t)\/ﬁ,7‘y>n—k)
+c|lhllye ¥ Ey (1 + N(Xnt)) - (3.14.6)
By the inequality (3.2.2), we have
E, (N(X,—k)) <c(1+ N(x)). (3.14.7)

Moreover, using the point 2 of Theorem 3.2.5 with t{ = sup, ., o(t+1,) \/‘7{% < e(to+1),

I{::Px<y+5nk (t+t)\/%\/n—k,7y>n—k>

2
2V aj’ y . t+tn)2n maX(y, O) + (1 + y]l{y>(n—k’)1/27€} + N(.I'))
1-— + Ce to .
U

S —m o (n— R)1/2+e/16

Note that n — &k = n (1 %) and that ¢ + ¢, = t + -=. Therefore
2V(I‘, y) ( c > < —£<1+ c ) c(1+tg)
4 | - (=) - ) + R,
V2mno nl—¢ (z,9),
where

2
max (y,0) + (1 + yly,sp1/2-2y + N(z)
Rn(xa y) = Ceto ( n1/2+6y/16 ) . (3148)

2V 2
< 2Vwy) (1 +— > (1 —e +Ct°) + Ru(z,y).
n-—¢ ne

2mno

So,

Using the upper bound of the point 3 of Theorem 3.2.2 and changing the constant c.4,
in R,(z,y), we obtain that

, 2V (x,y 2
I < \/2(_0) <1 —e ) + Ro(z,y). (3.14.9)

™m
Inserting (3.14.9) and (3.14.7) in (3.14.6),

I < win)2 @) (1 _ e—’f> + u(h)Ra(z, ) + clh]lp e (1 + N(x))

2mno
2V (z,y)

2mno

< v(h) (1=7%) + Al + 1blL5) Rule ). (3.14.10)
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Bound of I5. Since h is bounded, by (3.14.2) we have
Io(a, i e ton/m) < Al B (4 + S < to/m).
When y' > o(t + t,)\/n, it is clear that
(@' o/ b, ton/n) < ||hll o Por (St < —taov/n) < IRl Por (1Sk] > taoy/n) . (3.14.11)

This last inequality tends to 0 as n — +o00: by the Markov inequality,

P (156 > tuo) < B (t fﬂ)

=1

By the point 1 of Hypothesis M3.4 and (3.14.7),

C

k —_—
thoy/n nl/2-% (
Using (3.14.12), (3.14.11) and the definition of I5 in (3.14.3), we deduce that
el

nl/2—2¢

Por (1Sk] > taov/n) < (14 N(x')) 1+ N(z')). (3.14.12)

I, <

s (L +N(Xpg); 7y >n—Fk). (3.14.13)

=:I}

By the Markov property,
I < /XE:E/ (1+ N(X) Py (Xp_op € da’, 7, > 1 — 2K).
Using (3.2.2), we obtain that
I <Py (1y >n—2k) +ce *E, (N(X, o)) -
By the point 2 of Theorem 3.2.4 and the equation (3.14.7), we find that

1+ max(y, 0) + N(z) L+ max(y, 0) + N(z)

I < +ce ™ (1+N . 3.14.14
2 c m ( ( )) C \/ﬁ ( )
Therefore, by (3.14.13),
1 0)+ N
I < e |, 2w )+ Vi) (3.14.15)
n €

Finally, by (3.14.3), (3.14.10) and (3.14.15), we obtain the following upper bound:
2V (z,y)

2mno

Iy

N

v(h) (1 _ e) + (ol + [1B]l0) R, ). (3.14.16)

Lower bound of Iy. As in the upper bound, by the Markov property,
Iy = / In(2' ok, to/n)P, (X, €da’ , y+ S €dy’, 7, >n — k)
XxR
> [O(xl7 3/7 k7 to—\/ﬁ)Px (ank € dz’ Y+ Snfk € dy/ )

XxR
y+Sn_k<0(t—tn)\/ﬁ,Ty>n—k).
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We introduce the following notation:

Iy > ; REZ, (h(Xp)) Py (X €d2’, y+ S € dy/,
x

Y+ Suk <olt—t)vn, 7 >n—k)
=:I3

— [, B (B (X0) 1o/ + Sy > tov/n) P (Xoi € da’, y 4 Sy € Y
X

Y+ Suk <olt—t)vn, 7, >n—k) (3.14.17)
=:14

- - REI’ (h (Xk) 3 Ty < k) IED:D (ank € dxlv Y + Snfk € dy/7
X

Y+ Spk <ot —ty)Vn, 7, >n—l<:).
=:I5

Bound of I. The term I3 is the main term. Using (3.14.4) and (3.14.5), we have

Ey (h(Xi)) = v(h) —c|lhllze " (1+ N(2)).
Therefore

Iz v(h)P,y (y+ Sy <ot —ta)vn, 7y > n—k) —c|[hll ye " By (14 N(X, 1))

1

(3.14.18)
We bound [} in a similar way as in the bound of I. Using the point 2 of Theorem 3.2.5
with ¢ = sup,,5, o(t — tn)\/% < c.tp and the notation R,(z,y) defined by (3.14.8),

2 t—tn)%n
By Yoy (1 - e‘m—%> — Ry (z,y)
2n(n — k)o

(12 c(i+tg)
22V<x’y><1—e <2 nao )>_Rn<x7y)
2mno

2V 2
s VoY) (1 g _%)  Ry(.y)
2mno ne

By the upper bound of the point 3 of Theorem 3.2.2,

2 2
Wiz y) (1 - e_2> — Ro(2,y) (3.14.19)
2mno

So, as in bound (3.14.10) of I; and using (3.14.18) and (3.14.19), on obtain that

2V (z,y) 2
B> v()= 22 (1= o) = (bl + [1],) Bala, ).
™o

IL>

(3.14.20)
Bound of I,. The bound of I is very similar to the bound of 5. Since h is bounded,
we have

o (h(Xi) 5 ¢ + Sk > tov/n) < [|hllo, Por (¥ + Sk > tov/n).



162 CHAPTER 3. CONDITIONED MARKOV WALKS WITH A SPECTRAL GAP

When ' < o(t — t,)\/n, we write that
Ew (h(Xt) 5 ¢ + Sk > tov/n) < |[hllo, Po (Sk > taov/n) < ||l Per (ISk] > taov/n) .
By (3.14.12) and the definition of I, in (3.14.17),

c||n
Iy < n1/2—§z

E,(1+N(X,—g) ;7 >n—k),

which is the same upper bound as in (3.14.13). Using the bound of I} in (3.14.14), we

obtain that
1 + max(y,0) + N(z)

Iy <ec Hh”oo nl—2¢

. (3.14.21)

Bound of I. To control the term [5, we write:

15 </ Eac’ (h (Xk) y Ty < k) ]P):v (Xn—k € dl’/, Y+ Sn—k: € dylv
XxR

y+Sn,k>n35,Ty>n—k)

=:I51

+ Em’ (h (Xk) y Ty < k) ]P):v (Xn—k € dl’/, Y+ Sn—k € dylv
XxR

y+Sn,k<n3E,Ty>n—k).

=:I52
Bound of Is;. When 3y’ > n*, we have
k k
o (h(X) 3 7 < k) < [[Bllog Yo Po (v + S < 0) < [[Bl] o Do P (ISi] > n™)
i=1 =1

By the Markov inequality and (3.14.7),

S Eo (X)) _ cllhllo #2
Ep (h(Xk) 5 7y <) < Rlloo 20> —— 5~ < — =— (1+ N(@')).
i=1 j=1
So,
h h
ne ne
where [} is defined by (3.14.13). Therefore by (3.14.14),
1 0)+ N
I < e |lh]l max(y, 0) + N(z) (3.14.22)

nl/2+e

Bound of Isy. The idea is to prove that the event {y + S, < n*} has a probability
which tends to 0 when n tends to infinity. We have

Isy < ||| Ps (y + Sy e <N, T, >n— k:)

\/n—k,7y>n—k>.

3e

vn—k
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3e

Using the point 2 of Theorem 3.2.5, with ¢’ = 72— and t{ = c. = sup,,» \/% < 400,

n—k

2V (z, __ %
< ], 222 (1 e z<nk>oz>

2
max(y, 0) + (1 T YLy n-kyrrz-ey + N@))
(n — k)L/2+e/16

(1= 5%) + ||l Rulz,y),

+ 17l ce
2V (2, y)
2mno
where R, (z,y) is defined by (3.14.8). By the point 3 of Theorem 3.2.2, we obtain that

1 4+ max(y,0) + N(x)

Isy < c. HhHoo n3/2—6¢

bl Rulw,y) < Il Rulwy). (3.14.23)
By (3.14.22) and (3.14.23), we conclude the proof of the bound of I5:
15 < |1, Rula,y) (3.14.24)

Finally, by (3.14.17), (3.14.20), (3.14.21) and (3.14.24), we have the following lower
bound:

2V (z,y)

I
0 2mno

WV

v(h) (1=7%) = (bl + 1h]1) Fuls). (3.14.25)
Putting together (3.14.16) and (3.14.25), with the definition of Iy in (3.14.1) and of
R,(x,y) in (3.14.8), it proves the point 2 of Theorem 3.14.1. The point 1 of Theorem

3.14.1 is a consequence of the point 1 of Theorem 3.2.3 and of the point 2 of Theorem
3.14.1. O
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Chapter 4

Conditioned local limit theorems for
random walks defined on finite
Markov chains

RESUME. Soit (X,)n>0 une chaine de Markov a valeurs dans un espace d’états fini X
partant de Xg = x € X et soit f une fonction a valeurs réelles définie sur X. On pose
Sn = r-1 f(Xy), n > 1. Pour tout y € R on considere 7, le premier instant pour lequel
la marche y + S, devient négatif. Nous étudions le comportement asymptotique de la
probabilité P, (y + S, € [z, 2+ a], 7, > n) lorsque n — +o00. Nous établissons en premier
lieu une version conditionnelle du théoreme local de Stone pour cette probabilité. Ensuite
nous déterminons un équivalent d’ordre n%/2. Nous décrivons également le comportement
asymptotique de la probabilité P, (7, = n) quand n — 400 et donnons des généralisations
trés utiles dans les applications.

ABSTRACT. Let (X,,),>0 be a Markov chain with values in a finite state space X starting
at Xo = ¢ € X and let f be a real function defined on X. Set S, = >, f(Xk),
n > 1. For any y € R denote by 7, the first time when y + 5,, becomes non-positive.
We study the asymptotic behaviour of the probability P, (y + S, € [z,2 +a], 7, > n) as
n — +oo. We first establish for this probability a conditional version of the local limit
theorem of Stone. Then we find for it an asymptotic equivalent of order n®2. We also
describe the asymptotic behaviour of the probability P, (7, = n) as n — 400 and give
some generalizations which are useful in applications.

4.1 Introduction

Assume that on the probability space (2, .%,P) we are given a sequence of real valued
random variables (X,,),>1. Consider the random walk S, = >}_; Xx, n = 1. Suppose
first that (X,,),>1 are independent identically distributed of zero mean and finite variance.
For any y > 0 denote by 7, the first time when y + S,, becomes non-positive. The study
of the asymptotic behaviour of the probability P(r, > n) and of the law of y + S,
conditioned to stay positive (i.e. given the event {7, > n}) has been initiated by Spitzer
[66] and developed subsequently by Iglehart [47], Bolthausen [9], Doney [22], Bertoin and
Doney [6], Borovkov [10, 11], to cite only a few. Important progress has been achieved by
employing a new approach based on the existence of the harmonic function in Varopoulos
[68], [69], Eichelbacher and Konig [27] and recently by Denisov and Wachtel [18, 19, 20]. In
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this line Grama, Le Page and Peigné [41] and the authors in [36], [38] (Chapters 2 and 3)
have studied sums of functions defined on Markov chains under spectral gap assumptions.
The goal of the present paper is to complete these investigations by establishing local
limit theorems for random walks defined on finite Markov chains and conditioned to stay
positive.

Local limit theorems for the sum of independent random variables without condition-
ing have attracted much attention, since the pioneering work of Gnedenko [34] and Stone
[67]. The first local limit theorem for a random walk conditioned to stay positive has
been established in Iglehart [48] in the context of walks with negative drift EX; < 0.
Caravenna [13] studied conditioned local limit theorems for random variables in the do-
main of attraction of the normal law and Vatutin and Wachtel [71] for random variables
X in the domain of attraction of the stable law. Denisov and Wachtel [20] obtained a
local limit theorem for random walks in Z? conditioned to stay in a cone based on the
harmonic function approach.

The ordinary and conditioned local limit theorems in the case of Markov chains are
less studied in the literature. Le Page [54] stated a local limit theorem for products of
random matrices and Guivarc’h and Hardy [42] have considered a local limit theorem for
sums S, = > p_; f(Xg) where (X,,)n>0 is a Markov chain under spectral gap assumptions
and f a real function defined on the state space of the chain. In the conditional case
we are aware only of the results of Presman [60] and [61] who has considered the case
of finite Markov chains in a more general setting but which, because of rather stringent
assumptions, does not cover the results of this paper. We note also the work of Le Page
and Peigné [55] who have proved a conditioned local limit theorem for the stochastic
recursion.

Let us briefly review main results of the paper concerning conditioned local limit
behaviour of the walk S, = >}, f(Xx) defined on a finite Markov chain (X,,),>0.
From more general statement of Theorem 4.2.4, under the conditions that the underlying
Markov chain is irreducible and aperiodic and that (S,,),>0 is centred and non-lattice, for
fixed x € X and y € R, it follows that, uniformly in z > 0,

2aV
lim <nIP’x (y+Sn€lz,24+al, 7,>n) — (i/%i;g)%r (\/%0>> =0, (4.1.1)

where ., (t) = te~% L0y is the Rayleigh density. The relation (4.1.1) is an extension of
the classical local limit theorem by Stone [67] to the case of Markov chains. We refer to
Caravenna [13] and Vatutin and Wachtel [71], where the corresponding result has been
obtained for independent random variables in the domain of attraction of the normal law.

We note that while (4.1.1) is consistent for large z, it is not informative for z in a
compact set. A meaningful local limit behaviour for fixed values of z can be obtained
from our Theorem 4.2.5. Under the same assumptions, for any fixed x € X, y € R and
z 20,

2V (z,y)
3/2 * /
ngrfmn P, (y+ S, €lz,24+a], 7y >n)= Bores /Z /V 2 v(da')d2.
(4.1.2)

For sums of independent random variables similar limit behaviour was found in Vatutin
and Wachtel [71]. It should be noted that (4.1.1) and (4.1.2) complement each other: the
main term in (4.1.1) is meaningful for large » such that z ~ n'/? as n — oo, while (4.1.2)
holds for z in compact sets.
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We also state extensions of (4.1.1) and (4.1.2) to the joint law of X,, and y+.5,,. These
extensions are useful in applications, in particular, for determining the exact asymptotic
behaviour of the survival time for branching processes in a Markovian environment. They
also allow us to infer the local limit behaviour of the exit time 7, (see Theorem 4.2.8):
under the assumptions mentioned before, for any x € X and y € R,

2V (z,y)
lim n% P, =n
n——+00 ( ) \/ﬂa?’

The approach employed in this paper is different from that in [60], [61] and [55] which
all are based on Wiener-Hopf arguments. Our technique is close to that in Denisov and
Wachtel [20], however, in order to make it work for a random walk S, = >3, f(Xy)
defined on a Markov chain (X,,),>0, we have to overcome some essential difficulties. One
of them is related to the problem of the reversibility of the Markov walk (S,,)n>0. Let us
explain this point in more details. When (X,,),>1 are Z-valued independent identically
distributed random variables, let (S}),>1 be the reverse walk given by S} = >, X},
where (X¥),>1 is a sequence of independent identically distributed random variables of
the same law as —X;. Denote by 7/ the first time when (z+ S})x=0 becomes non-positive.
Then, due to exchangeability of the random variables (X},),>1, we have

/ E: (V*(XP,2); St > 2)de.

Ply+ S, =z21,>n)=P(z+ S5, =y,7; >n). (4.1.3)

This relation does not hold any more for the walk S, = >7_; f(Xx), where (X,,)n>0 is
a Markov chain. Even though (X, ),>¢ takes values on a finite state space X and there
exists a dual chain (X}),>0, the main difficulty is that the function f : X — R can be
arbitrary and therefore the Markov walk (S,,),>0 is not necessarily lattice valued. In this
case the Markov chain formed by the couple (X,,,y + Sy )n>0 cannot be reversed directly
as in (4.1.3). We cope with this by altering the arrival interval [z, z + h] in the following
two-sided bound

> B (€30 et spely—ng) meony ) V(@)

z*eX
P.(y+ S, € [2,2+ h|, 7, > n) (4.1.4)
ZXE < l{z+h+5*€[y y+h], z+h>n}> (l’*),
T*e

where v is the invariant probability of the Markov chain (X,),>1, ¥} : X+— R, is a func-
tion such that v (¢%) = 1 (see (4.6.2) for a precise definition) and S} = — >}, f (X}),
Vn > 1. Following this idea, for a fixed a > 0 we split the interval [z, z + a] into p subin-
tervals of length h = a/p and we determine the exact upper and lower bounds for the
corresponding expectations in (4.1.4). We then patch up the obtained bounds to obtain
a precise asymptotic as n — +oo for the probabilities P,(y + S, € [z, 2z + a], 7, > n) for
a fixed a > 0 and let then p go to +o0. This resumes very succinctly how we suggest
generalizing (4.1.3) to the non-lattice case. Together with some further developments in
Sections 4.7 and 4.8, this allows us to establish Theorems 4.2.4 and 4.2.5.
The outline of the paper is as follows:

— Section 4.2: We give the necessary notations and formulate the main results.
— Section 4.3: Introduce the dual Markov chain and state some of its properties.

— Section 4.4: Introduce and study the perturbed transition operator.
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— Section 4.5: We prove a non-asymptotic local limit theorem for sums defined on
Markov chains.

— Section 4.6: We collect some auxiliary bounds.

— Sections 4.7, 4.8 and 4.9 : Proofs of Theorems 4.2.4, 4.2.5 and 4.2.7, 4.2.8, respec-
tively.

— Section 4.10. We state auxiliary assertions which are necessary for the proofs.

Let us end this section by fixing some notations. The symbol ¢ will denote a positive
constant depending on the all previously introduced constants. Sometimes, to stress
the dependence of the constants on some parameters «, 3, ... we shall use the notations
Cas Caps - - - - All these constants are likely to change their values every occurrence. The
indicator of an event A is denoted by 1,4. For any bounded measurable function f on
X, random variable X in X and event A, the integral [y f(z)P(X € dz, A) means the
expectation E (f(X); A) = E(f(X)1,).

4.2 Notations and results

Let (X,,)n=0 be a homogeneous Markov chain on the probability space (2, .#,P) with
values in the finite state space X. Denote by % the set of complex functions defined
on X endowed with the norm ||-||: [lg9ll.. = supex |9(x)|, for any g € €. Let P be
the transition kernel of the Markov chain (X,,),>¢ to which we associate the following
transition operator: for any z € X and g € €,

Py(a) = ¥ 9(a)P(x, ).
z’'eX
For any = € X, denote by P, and E, the probability, respectively the expectation, gen-
erated by the finite dimensional distributions of the Markov chain (X,,),>o starting at
Xo = x. We assume that the Markov chain is irreducible and aperiodic, which is equiva-
lent to the following hypothesis.

Hypothesis M4.1. The matriz P is primitive: there exits kg > 1 such that for any
x € X and any non-negative and non identically zero function g € €,

P*g(x) > 0.

Let f be a real valued function defined on X and let (S,,),>0 be the process defined
by
For any starting point y € R we consider the Markov walk (y + S, ),>0 and we denote by
7, the first time when the Markov walk becomes non-positive:

1, =inf{k > 1, y+ 5, <0}.

Under M4.1, by the Perron-Frobenius theorem, there is a unique positive invariant
probability v on X satisfying the following property: there exist ¢; > 0 and ¢; > 0 such
that for any function g € ¢ and n > 1,

SupE. (9 (X,)) = () = [P"g = ()l <l ccre™  (@21)

where v(g) = ¥ ex g(z)v(2).
The following two hypotheses ensure that the Markov walk has no-drift and is non-

lattice, respectively.
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Hypothesis M4.2. The function f is centred:

v (f) = 0.
Hypothesis M4.3. For any (0,a) € R?, there exists a sequence xy, ..., T, in X such
that

P(zg, 1) - P(ap_1, 2,)P(xp, 29) >0
and

J(0) + -+ f(22) = (n+1)0 ¢ aZ.

Under Hypothesis M4.1, it is shown in Section 4.4 that Hypothesis M 4.3 is equivalent
to the condition that the perturbed operator P; has a spectral radius less than 1 for ¢ # 0;
for more details we refer to Section 4.4. Furthermore, in the Appendix (see Lemma 4.10.3,
Section 4.10), we show that Hypotheses M4.1-M4.3 imply that the following number
o2, which is the limit of E,(S?)/n as n — +oo for any z € X, is not zero:

400
o =v(f?) +2 2:31 v(fP"f)>0. (4.2.2)

Under spectral gap assumptions, the asymptotic behaviour of the survival probability
P, (1, > n) and of the conditional law of the Markov walk % given the event {7, > n}

have been studied in [38] (Chapter 3). It is easy to see that under M4.1, M4.2 and
(4.2.2) the conditions of [38] (Chapter 3) are satisfied (see Section 4.10). We summarize
the main results of [38] (Chapter 3) in the following propositions.

Proposition 4.2.1 (Preliminary results, part I). Assume Hypotheses M4.1-M4.3.
There exists a non-degenerate non-negative function V on X x R such that

1. For any (x,y) €e X xR andn > 1,
E, (V(Xn,y+ Sn) ; 7y >n) =V(x,y).
2. For any x € X, the function V (z,-) is non-decreasing and for any (z,y) € X x R,
V(z,y) < c¢(1+ max(y,0)).
3. Foranyr € X, y € R and § € (0,1),
(1 —¢d)max(y,0) —cs < V(z,y) < (14 6) max(y,0) + cs.
Since the function V' satisfies the point 1, it is said to be harmonic.

Proposition 4.2.2 (Preliminary results, part II). Assume Hypotheses M4.1-M4.3.

1. For any (z,y) € X x R,

. _ 2V (z,y)
Jm VP (1, > n) = =2,

where o is defined by (4.2.2).
2. For any (z,y) e X xR andn > 1,

Cl + max(y, 0)

vn

P, (1, >n) <
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Define the support of V' by
supp(V) == {(z,y) e X xR : V(z,y) > 0}. (4.2.3)

Note that from property 3 of Proposition 4.2.1, for any fixed = € X, the function y
V' (z,vy) is positive for large y. For further details on the properties of supp(V') we refer
to [38] (Chapter 3).

Proposition 4.2.3 (Preliminary results, part III). Assume Hypotheses M4.1-M4.3.

1. For any (z,y) € supp(V) and t > 0,

y+ Sy,
P, <t
(0\/5

+
’Ty > n) n—>—+>oo P (t),
2
where ®T(t) =1 — e~ T is the Rayleigh distribution function.

2. There exists g > 0 such that, for any ¢ € (0,e9), n > 1, to > 0, t € [0,t0] and
(z,y) € X xR,

2V (z,y 1 + max(y, 0)?
P, (y + S, < tvno, 7, > n) — \/2<?na)¢)+<t) < Ce,to( nl/zia 1)

In the point 1 of Proposition 4.2.2 and the point 2 of Proposition 4.2.3, the function
V' can be zero, so that for all pairs (z,y) satisfying V(x,y) = 0 it holds
lim v/nP, (1, >n) =0

n—-+00

and
nl_lgloo VP, (y + S, < tvno, T, > n) =0.

Now we proceed to formulate the main results of the paper. Our first result is an
extension of Gnedenko-Stone local limit theorem originally stated for sums of independent
random variables. The following theorem generalizes it to the case of sums of random
variables defined on Markov chains conditioned to stay positive.

Theorem 4.2.4. Assume Hypotheses M4.1-M}.3. Let a > 0 be a positive real. Then
there exists g € (0,1/4) such that for any ¢ € (0,9), non-negative function ¢ € €,
y € R andn > 3¢73, we have

sup n|E, X)) y+S,€lz,z+al, 7, >n) —
S (¥ (Xn) 5y [ [ 7y >n) 52,

< e (1 + max(y, 0)) 4] <ﬁ+ ce (1 *max(y’o”) 7

2av () V(x, y) +<\/%0>

n&

2
where @ (t) = te T L0y 1s the Rayleigh density and the constants c and c. may depend
on a.

Note that Theorem 4.2.4 is meaningful only for large values of z such that z ~ n'/? as
n — 00. Indeed, the remainder term is of order n='~¢, with some small ¢ > 0, while for
a fixed z the leading term is of order n=%/2. When z = cn'/? the leading term becomes of
order n~! while the remainder is still o(n™1). To deal with the case of z in compact sets a
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more refined result will be given below. We will deduce it from Theorem 4.2.4, however
for the proof we need the concept of duality.

Let us introduce the dual Markov chain and the corresponding associated Markov
walk. Since v is positive on X, the following dual Markov kernel P* is well defined:

P* (r,2%) = P (2", 1), VY(r,2%) € X% (4.2.4)

It is easy to see that v is also P*-invariant. The dual of (X,,),>0 is the Markov chain
(X)) pso With values in X and transition probability P*. Without loss of generality we can
consider that the dual Markov chain (X7), -, is defined on an extension of the probability
space (2, #,P) and that it is independent of the Markov chain (X,),>0. We define the
associated dual Markov walk by

n

S;=0 and Si=Y —f(X}), Yn>=1. (4.2.5)

n
k=1

For any z € R, define also the exit time

7, =inf{k>1:2+5; <0}. (4.2.6)
For any € X, denote by IP; and E} the probability, respectively the expectation, generated
by the finite dimensional distributions of the Markov chain (X}),>o starting at X = z. It
is shown in Section 4.3 that the dual Markov chain (X7) ., satisfies Hypotheses M4.1-
M4.3 as do the original chain (X,),.,- Thus, Propositions 4.2.1-4.2.3 hold also for
(X )pso With V) 7, (S,)nz0 and P, replaced by V*, 7%, (S)) >0 and P;. Note also that both
chains have the same invariant probability v. Denote by E,,, E} the expectations generated
by the finite dimensional distributions of the Markov chains (X,,)n>0 and (X),>0 in the
stationary regime.

Our second result is a conditional version of the local limit theorem for fixed x,y and
z.

Theorem 4.2.5. Assume Hypotheses M4.1-M4.3.
1. For any non-negative function ¢ € €, a >0, v € X, y € R and 2 >0

lim n%?E, (¢ (X,) ; y+ Sp € [2,2+a], 7, >n)

n—-+o0o

v
\/Q_xz / (4 (X7 V* (X, 2+ S) s > 1) dz.
iyea

2. Moreover, there exists ¢ > 0 such that for any a > 0, non-negative function ¢ € €,
yeR, z=20andn > 1,

supE, (¢ (X,) ; y+ Sn € [2,2+a], 7, > n)

zeX
¢ ||| o
= p3/2

(1+a®) (14 2) (1 + max(y,0)) .

In the particular case when ¢ = 1, the previous theorem rewrites as follows:

Corollary 4.2.6. Assume Hypotheses M4.1-M.3.
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1. Foranya>0,ze€X, yeR and z > 0,

lim n**P, (y + S, € [,z +a], 7, > n)

232(_7:;% /Z /V* 2 2 v(de') d7.

2. Moreover, there exists ¢ > 0 such that for anya >0,y € R, 2> 0 andn > 1,

supP, (y+ S, € [z,24+a], 7y >n) < 3 (1+a3> (14 2) (1 + max(y,0)).
rzeX

Note that the assertion 1 of Theorem 4.2.5 and assertion 1 of Corollary 4.2.6 hold for
fixed a >0, z € X, y € R and 2z > 0 and that these results are no longer true when z is
not in a compact set, for instance when z ~ n'/2.

The following result extends Theorem 4.2.5 to some functionals of the trajectories
of the chain (X,)n>0. For any (z,z*) € X?, the probability generated by the finite di-
mensional distributions of the two dimensional Markov chain (X, X}),>o starting at
(Xo, X§) = (z,2*) is given by P, .« = P, x P*.. Let E, .« be the corresponding ex-
pectation. For any [ > 1, denote by €+ (X! x R,) the set of non-negative functions g:
X! x Ry — R, satisfying the following properties:

— for any (x1,...,2;) € X!, the function z — g(z1, ..., 7, 2) is continuous,
— there exists ¢ > 0 such that max,, exsup,-qg(z1,..., 2, 2)(1 4 2)*7 < +oo.

Theorem 4.2.7. Assume Hypotheses M4.1-M4.3. Foranyx €e X,y e R, [ >1, m>1
and g € €+ (X’+m X R+),

lim n32E, (9 (X1, ., Xt Xoomits -y Xoy 4+ Sn) 5 7 > 1)

n—-+o00

2 +o00 . .
:\/%0-3/0 ZGXExx* Xl,...,Xl,an...,Xl,Z)

XV (X,y+S)V* (X, 2+ S) 17y >1, 77 >m)v(z")dz.

As a consequence of Theorem 4.2.7 we deduce the following asymptotic behaviour of
the probability of the event {7, = n} as n — +o0.

Theorem 4.2.8. Assume Hypotheses M4.1-M4.3. For any v € X and y € R,

2
lim n**P, (1, =n) = Viz,y)

Jim Ty / E;, (V*(XT,2); ST = 2)d=.

4.3 Properties of the dual Markov chain

In this section we establish some properties of the dual Markov chain and of the
corresponding Markov walk.

Lemma 4.3.1. Suppose that the operator P satisfies Hypotheses M4.1-M4.3. Then the
dual operator P* satisfies also M4.1-M4.3.
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Proof. By the definition of P*, for any x* € X,

Z v(z)P* (z,2") Zanj r*) =v(z"),

zeX zeX

which proves that v is also P*-invariant. Thus Hypothesis M4.2, v(f) = v(—f) =0, is
satisfied for both chains. Moreover, it is easy to see that for any n > 1, (x,2*) € X2,

(P)" (z,2") = P"(2", 2)
This shows that P* satisfies M4.1 and M4.3. O

Note that the operator P* is the adjoint operator of P in the space L* (v) : for any
functions g and h on X,

v(g(P)"h) = v (hP"g).

In particular for any n > 1, v (f (P*)" f) = v (fP"f) and we note that
o =v (=) + v (=) P (-f).
The following assertion plays a key role in the proofs.

Lemma 4.3.2 (Duality). For any probability measure m on X, any n > 1 and any

function F' from X" to R,
X*) m (X:H-l)
Yo (Xn41)

n—1s++*>

Euw (F (X1,..., Xpo1, X)) = EX (F (x5, X;

Proof. We write

En(F(Xq,..., X01,X0))
= Z F(zy,...,2n_1,T,) m(xg)

T0,%15-sTn—1,Tn,Tn+1EX

Py, (X1 =21, Xo=29,..., Xy 1 =Ty 1, Xp = Ty, Xpny1 = l’n+1) .
By the definition of P*, we have
P, (Xl =21, Xo=T0,..., Xy 1 =Ty 1, X = Tp, X1 = iUn+1)

= P(xo, xl)P(xl, x9) ... P(xy_1,2,)P(2n, Tpi1)

R

I/(ZL‘n+1) * (
= Xi=a,, Xo=xp_1,...,. X =x1, X :xo)
I/(ZE()) Tp41 1 ) “X2 ) )y “in )y “An+1

V(Tni1)

v(zn)

P (zp, x0-1)

P*(InJrla xn)

and the result of the lemma follows. O
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4.4 The perturbed operator
For any ¢t € R, denote by P, the perturbed transition operator defined by
P,g(z) =P (eitf g) () =E, (eitf(Xl) g(X1)> , forany g€ @, v X,

where i is the complex i2 = —1. Let also r; be the spectral radius of P,. Note that for
any g € €, |Pugll, < e g| = llg]l, and so

r < 1. (4.4.1)

We introduce the two following definitions:

— A sequence xg, 21, ...,T, € X, is a path (between xy and x,,) if
P(zo,z1) - P(zp_1,2,) > 0.

— A sequence xg, r1,...,7, € X, is an orbit if xg,z1,...,T,, o is a path.
Note that under Hypothesis M4.1, for any zy,x € X it is always possible to connect xg
and z by a path zg,z1,...,2,, 2z in X.
Lemma 4.4.1. Assume Hypothesis M4.1. The following statements are equivalent:

1. There exists (0,a) € R? such that for any orbit x, ..., x, in X, we have
flzo)+ -+ flz,) — (n+1)0 € aZ.
2. There exist t € R*, h € €\ {0} and 0 € R such that for any (z,2') € X?,
h(z") e Pz, 2') = hz) e P(x, 2').

3. There exists t € R* such that
Ty = ]_

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix xy € X and
set h(xg) = 1. For any x € X define h(x) in the following way: for any path zg, ..., z,,x

in X we set
h(x) = eitf(n+1) e—it(f(wl)+~-+f(arn)+f(w))’

where t = 27“ Note that if a = 0, then the point 1 holds also for a = 1 and so, without
lost of generality, we assume that a # 0. We first verify that h is well defined on X. Recall
that under Hypothesis M4.1, for any z € X it is always possible to connect zy and x by a
path. We have to check that the value of h(z) does not depend on the choice of the path.
Let p,qg 2 1 and xg,21,...,2p, v in X and x,y1,...,Y,, ¢ in X be two paths between z,
and x. We complete these paths to orbits as follows. Under Hypothesis M4.1, there
exist n > 1 and 21, ..., z, in X such that

P(z,21) - P(zn,70) > 0,

i.e. the sequence z,2,..., 2,, % is a path. So, the sequences zg, x1,...,2p, 2, 21,...,2,
and o, Y1,...,Yq, T, 21, - .., 2y are orbits. By the point 1, there exist [y, [y € Z such that

fl@) + -+ flap) + f(2) = aly — (f(z1) + -+ f(z0) + f(20) + (0 + 1 +2)0
=aly —aly + (f(y1) + -+ fyy) + f(2))
—(g+n+2)0+ (p+n+2).
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Therefore,

QOB1) (=1 ()4 f (o) 41 () git(ali—ala) itB(g+1) @ =3t(f(y1) -+ (90)+F(2))

and since ta = 2 it proves that h is well defined. Now let (z,2') € X2 be such that
P(z,2") > 0. There exists a path xg, x1, ..., z,, r between zy and z and so

h(z) = 00D g it @)l ) @)

Since xg, 1, ...,Tn, T, 2 is a path between xg and 2, we have also

h(z') = eit0(n+2) (—it(f(w1)++f (@) +f (@) +f () _ h(z) eltd o—itf(a')

Note that since the modulus of h is 1, this function belongs to €\ {0}.
The point 2 implies the point 1. Suppose that the point 2 holds and let zq, ..., x, be
an orbit. Using the point 2 repeatedly, we have

h(l‘o) _ h(l‘n) oltd o—itf(zo) — . . — h(l'o) eltf(n+1) o—it(f(zo)++f(an))

Since h is a non-identically zero function with a constant modulus, necessarily, h is never
equal to 0 and so f(xo) + -+ + f(zn) — (n+1)0 € 2 Z.
The point 2 implies the point 3. Suppose that the point 2 holds. Summing on x’ we
have, for any x € X,
P (he) (z) = Pih(z) = h(z) ™.

Therefore h is an eigenvector of P, associated to the eigenvalue e which implies that
re > eite‘ =1 and by (4.4.1), r; = 1.

The point 3 implies the point 2. Suppose that the point 3 holds. There exist h €
%\ {0} and 0 € R such that P;h = he'”. Without loss of generality, we suppose that
|h]l, = 1. Since Ph = he'™ for any n > 1, by (4.2.1), for any x € X, we have

()] = [Pih(x)] < P"[h] (z) —— v(|h]). (4.4.2)

n——+00

From (4.4.2), letting x9 € X be such that |h(zo)| = ||h]|, =1, it is easy to see that

[h(xo)| < D (@) v(z) < [h(z0)].

rzeX

From this it follows that the modulus of A is constant on X: |h(z)| = |h(zo)| = 1 for any
r € X. Consequently, there exists a: X — R such that for any x € X,

h(z) = '@ (4.4.3)
With (4.4.3) the equation P;h = hel® can be rewritten as

Vo € X, Z eia(x’) eitf(x’) P(I’, IL‘/> _ eia(z) eit@ .
z’'eX

Since el*@el? ¢ {7 € C: 2| =1} and &) el/@) ¢ {2 € C: |2| = 1}, for any 2’ € X,
the previous equation holds only if h(z') el/() = i@ it/ (@) — gia(@) olt0 — 1 (7)1t for
any =’ € X such that P(z,z’) > 0. O
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Define the operator norm ||-||,,_,,, on € as follows: for any operator R: ¢ — €, set

12(9)]] s

Gy = Sup o0,

|R
gern(oy 119l

Lemma 4.4.2. Assume Hypotheses M4.1 and M4.3. For any compact set K included
in R* there exist constants cx > 0 and ¢ > 0 such that for any n > 1,

sup [Pyl < e

teiK
Proof. By Lemma 4.4.1, under Hypotheses M4.1 and M4.3, we have r, # 1 for any t # 0

and hence, using (4.4.1),
e < 1, Vit € R*
It is well known that

1/n
C—C

_— 3 n
o=l P

Since t +— P, is continuous, the function ¢ + 7, is the infimum of the sequence of upper
semi-continuous functions t — HP?H%@% and therefore is itself upper semi-continuous.

In particular, for any compact set K included in R*, there exists ¢y € K such that

supry =1y, < L.
tekK

We deduce that for ¢ = (1 — sup,cxre)/2 > 0 there exists ng > 1 such that for any
n = ny,
IPr/", <supr+e < 1.
teK

Choosing cgr = —In (supeg 1 + €) and cx = max,<p, ||P} |l " +1, the lemma is
proved. O

In the proofs we make use of the following assertion which is a consequence of the
perturbation theory of linear operator (see for example [50]). The point 5 is proved in
Lemma 2 of Guivarc’h and Hardy [42].

Proposition 4.4.3. Assume Hypotheses M 4.1 and M}.2. There exist a real g > 0 and
operator valued functions Iy and Q; acting from |—eq, €o] to the set of operators onto €
such that

1. the maps t — 1I;, t — Q; and t — X\, are analytic at 0,

2. the operator Py has the following decomposition,
P, = ML+ Q, Vt € [—eo, €0),
3. for any t € [—eg,e0], Iy is a one-dimensional projector and 11,Q; = Q,11; = 0,

4. there exist ¢y > 0 and co > 0 such that, for any n € N*,

sup  ||QF lye < cre” ",
tE[—Eo,So]

5. the function A\ has the following expansion at 0: for any t € [—eq, &o],

t202

)\t—l‘l—T <C|t|3
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Note that \g = 1 and II(-) = I1(:) = v(-)e, where e is the unit function of X: e(z) = 1,
for any x € X.

Lemma 4.4.4. Assume Hypotheses M4.1 and M4.2. There exists g > 0 such that for
anyn =1 and t € [—egy/n, 0y/1),

t202

N

C 77520'2
< —=e

d
s—e /N

Proof. By the points 2 and 3 of Proposition 4.4.3, for any t/y/n € [—¢q, €0,

Jce .

P =N I + Q7.
R Ve m

By the points 1 and 4 of Proposition 4.4.3, for n > 1,
it o

M. —1I < sup |IT 444
H vn C—€ u€[—ep,e0] || ||‘€—>‘€ \/_ \/_ ( )

sup ||Q" <ce . (4.4.5)
te[—eo,e0] vnllg—%€

t2 2
+3

for any t € [—eq, 0] \ {0} and «(0) = 0. By the point 5 of Proposition 4.4.3, there ex1sts

¢ > 0 such that

Let a be the complex valued function defined on [—eg,&0] by a(t) = & ()\ 1+

Vit € [—¢o, €0], la(t)] < e (4.4.6)
With this notation, we have for any ¢/\/n € [—&o, £o],

(4 202 N 13 t " . t2o2\"
—_— — 705 PR —_— —_— —
h 2n n32 \/n 2n

t2o'2

AN o —e 2

N

(4.4.7)

Without loss of generality, the value of g0 > 0 can be chosen such that e20% < 1 and so
for any t/\/n € [—¢q, 0], £o° > 1/2. Therefore,

we(-50) (<><f>)
<( Lo 2) ki( ) n3/2(1tit§‘;f)&<\;ﬁ)‘

(-5 [tk () -

Using the inequality 1 + u < e* for u € R, the fact that 1 — t2 ’

(4.4.6), we have
1252 clt)?
I <e 2 (eﬁ—1>.

> 1/2 and the bound
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Next, using the inequality e* —1 < we for u > 0 and the fact that || /\/n < &,

L <e 3 gesot? (4.4.8)

[t e
\/_
Again, without loss of generality, the value of 5 > 0 can be chosen such that cg3 < 0?/8

(this have no impact on (4.4.6) which holds for any [—e,e,] € [—¢€0,€0]). Thus, from
(4.4.8) it follows that

C t202

_[1 < ﬁ e 4 . (449)
Using the inequalities 1 —u < e for u € R and In(1 —u) > —u — u? for u < 1, we have
t20'2 t2 2 " t20'2 t20'2 140'4 t4 4 t2o'2 t2cr2
L=e 2 —[1- to <e 2 —e 2 an K to e 2 < ie* . (4.4.10)
2n 4n Vn

Putting together (4.4.7), (4.4.9) and (4.4.10), we obtain that, for any t/\/n € [—¢q, 0],

t20'2 C t202 44 11
T2 —e 1, 4.
v S n ( )
In the same way, one can prove that
t2o'2
)\L < e 4 . (4412)
vn

The right hand side in the assertion of the lemma can be bounded as follows:

252

HPt —e z II
Vn

IT. —1II

N

+
C—C

< |\

|+ @

C—E Vn Gt

Using (4.4.4), (4.4.5), (4.4.11) and (4.4.12), we obtain that, for any t/\/n € [g, €0l

t2o'2

vn

t20'2

c
< —=e 7 HJce .

1, ., <
voe /N

4.5 A non asymptotic local limit theorem

In this section we establish a local limit theorem for the Markov walk jointly with
the Markov chain. Our result is similar to that in Grama and Le Page [39] where the
case of sums of independent random variables is considered under the Cramér condition.
We refer to Guivarc’h and Hardy [42] for local limit theorem for a Markov chain with
compact state space. In contrast to [42] our local limit theorem gives a control of the
remainder term.

We first establish a local limit theorem for integrable functions with Fourier transforms
with compact supports. For any integrable function A: R — R denote by h its Fourier
transform:

h(t) = / o~ h(u)du, Vi€ R.
R
When £ is integrable, by the inversion formula,

1 Lo~
hu) = - /R ¢t h(t)dt, Vu € R.
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For any integrable functions h and g, let

hx glu) = /Rh(v)g(u —v)do

be the convolution of h and g. Denote by ¢, the density of the centred normal law with
variance o2 . ,
e 22, YueR. (4.5.1)

Yo (u) B 2mo

Lemma 4.5.1. Assume Hypotheses M4.1-M4.3. For any A > 0, any integrable function
h on R whose Fourier transform h has a compact support included in [—A, A], any real
function 1 defined on X and any n > 1,

B (b (y + Sa) & (X)) = hx 0 (y)v (1)

supy/n
yeR

C ~
< Wl (S Dl + [

Lica e_CA"> )

Proof. By the inversion formula and the Fubini theorem,
Iy := Vi [y (B (y + Sp) ¥ (X)) = o @ma (W) (¥)]
= Ve, ([ et Ry g (X)) — [ (03 (0) e diw (1)
_ \2/3 /R ity (Pw(x) _e 5y (¢)) h(t) dt’ .
Since h(t) = 0 for any t ¢ [—A, A], we write
NG

Iy < —
0 21

t20'2n

/so<|t|<A ity (PW(JC) —e Ty (qp)> h(t) dt
[ e (Prow - v @)ioa, 452

=:1s

N

27

where ¢y is defined by Lemma 4.4.4.
Bound of I;. By Lemma 4.4.2, for any ¢y < [t| < A, we have

Pl < N llog cage ™0™

Consequently,
n e n 7520'271 —~
[1<5;<kuoom,goe ran o T wﬂ) 7],
< Wl |2, caee emene0m. (4.5.3)

Bound of I5. Substituting s = t\/n, we write

/SKEO\/E ei% (P"\;ﬁ@/}(x) e 522 2 v (¢))
S

P (z) — e F u(@z])’ |E ()

1

" or

I

<— /
21 Jis|<eovn |V
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By Lemma 4.4.4, for any |s| < g9/, we have

2,2
2

< [l [P, — e 1

C—C
C

< ol (e o).

Therefore,
< Wl (== [eF ] ds+cemn |
*\Vn Jr o0 Lt
¢ —cn ||7
< Wl (< Dl + e ). 454
Putting together (4.5.2), (4.5.3) and (4.5.4), concludes the proof. O

We extend the result of Lemma 4.5.1 for any integrable function (with not necessarily
integrable Fourier transform). As in Stone [67], we introduce the kernel x defined on R

by ,
r(u) = L (sm (2)) , YueR" and  k(0) = i

2 u

2

The function k is integrable and its Fourier transform is given by
R(t)y=1—[t|, Vte[-1,1], and R(t) =0 otherwise.

Note that

/Rﬁ(u) du=7r0)=1= /Rg(t) dt.

For any € > 0, we define the function x. on R by

Ke(u) = 1,‘41 (u) :

e \¢
Its Fourier transform is given by R.(t) = k(et). Note also that, for any € > 0, we have

1 [t 4 4
/|| k(u)du < —/1 —du = —e. (4.5.5)
u|z< =

T u? T

£

For any non-negative and locally bounded function h defined on R and any € > 0, let
h. and h. be the "thickened" functions: for any u € R,

he(u)= sup h(v) and h.(u) = inf  h(v).

vE[u—e,ute] vE[u—e,ute|

For any € > 0, denote by . the set of non-negative and locally bounded functions h
such that h, h. and h. are measurable from (R, % (R)) to (R;, % (R,)) and Lebesgue-
integrable (where £ (R), 2 (R,) are the Borel o-algebras).

Lemma 4.5.2. For any function h € 7€, ¢ € (0,1/4) and u € R,

h, * Ke2(u) — / he (u—v) ke (v)dv < h(u) < (1+4¢) he * k2 (u).

|v|>e
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Proof. Note that for any |v| < ¢ and u € R, we have u € [u —v —e,u — v + €]. So,

he (u—v) < h(u) < he (u—0). (4.5.6)

Using the fact that [g x.2(u)du =1 and (4.5.5), we write

h(u) = / " h(u)ke2(v) dv + h(u) /|U|>6 Ke2(v) dv

< / he (u—v) k2 (v) dv + h(u)ia.

Therefore,

For any € € (0,1/4),

1 _
h(u) < ———h. * k2 (u) < (14 4e) he x k2 (u).

Moreover, from (4.5.6),

h(u) > /Mgs h(u) e (v) do
> /|v|§€h€ (u—v) ke2(v) dv

Lemma 4.5.3. Let ¢ > 0 and h € ..
1. Foranyy e R andn > 1,

vn (Ea * Féa2> * Qe (y) < Vn (h * <,0\/ﬁg> (y) +c HEQE —h

where ¢ s5(-) is defined by (4.5.1).
2. Foranyy € R andn > 1,

\/ﬁ(ﬁe *Hsz) * 0 o (y) < c‘

e llhlys

h.

Lt
3. Foranyy € R andn > 1,
Vi (he % k22) %0 ya () = Vi (hox o g ) () = cllh = hacllp — ce ([ -

Proof. For any € > 0, |v| < e and u € R it holds [u —v —e,u —v +¢] C [u— 2¢,u + 2¢].
Therefore,

h.(u—v) = hy(u) and he(u —v) < hoe(u). (4.5.7)
Consequently, for any u € R,

he * Ke2(u) < hoe(u) /I ‘ Kke2(v)dv + he(u — v)ke2(v) dv
v|<Le

|v|>e

< EQS(“) + ha(u - U)K’EQ (U) do.

[v[>e
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From this, using the bound /ny, s, (-) < 1/(v270) and (4.5.5), we obtain that
Vi (Be x 22) 5 0o (y) < Vi (Roe % 0ma) (1)

he(u — =2(v)dvd
27TO'/IR/|UI><€ (u = v)fzz(v) dv du

= \/ﬁ (E2€ * 90\/50> (y) + 2\/5

w320

e llhe

L

Using again the bound /ny /. (-) < 1/(v270), we get
\/ﬁ(ﬁs*msz)*go\ﬁ, < n(h*gofa —i—/‘hgg —h(u)’\/i_ia—i-ca he .
\/ﬁ(h*ap\ﬁ,) ) +0Hh25— 1+05H525L
\/ﬁ(h*gofa) y)+ (c+ce) ths—h L teellhllp

which proves the claim 1.
In the same way,

_ 1 1
ﬁ(hs*ﬁgz)*gpﬁa(y)g\/%‘ha*mez 0= — [Pl

which establishes the claim 2.
By (4.5.7) and (4.5.5),

4
h, * Ke2(u) = hoo(u) /|v|<s Ke2(v)dv > (1 - Ws) hoo(w).

Integrating this inequality and using once again the bound /nep, s,(-) < ﬁ, we have

Vi (e ) % 9 (0) > Vit (1= 22) b s 90 0)
> V(B i) (0) = 2o ol

Inserting h, we conclude that

Vit (e ) 0y ) 2 V(% 9y) () = o = Bl = 2 il
>V (h* ¢ymo) (9) = llh = haellr = ce [Pl
O
We are now equipped to prove a non-asymptotic theorem for a large class of functions
h.
Lemma 4.5.4. Assume Hypotheses M4.1-M}.3. Let ¢ € (0,1/4). For any function
h € 7, any non-negative function ¢ € € and anyn > 1,

Eo (b (y + Sa) ¥ (X)) = hx oo (y)v (0)]

zeX,yeR

< el (I = hoellgs + |[Poc —

) el [P

1 —cen
Lt (\/ﬁ +e+ce ) s
where ¢ s, (+) is defined by (4.5.1). Moreover,
sup VB (h(y +5.) 6 (X0)) < e[[¢]. [ae]

zeX, yeR

(1 + ¢, e_CE”) .
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Proof. We prove upper and lower bounds for /nE, (h(y + S,) ¢ (X)) from which the
claim wills follow.

The upper bound. By Lemma 4.5.2, we have, for any x € X, n > 1, y € R and
e €(0,1/4),

E. (h(y +80) % (Xa)) < (1+42) By (R # vz (y + S0) ¢ (X2))

Since h, is integrable, the function u + h. * k.2 (u) is integrable and its Fourier transform
u > h.(u)Re2(u) has a support included in [—1/¢2,1/¢?]. Consequently, by Lemma 4.5.1,

Iy := V/nEq; (h (y + Sn) ¥ (X))
< \/ﬁ(1 + 45) (Ea * /{52> * SOWU(y)V (’QD)

+ 2|l

L1+

Sdi

Using the points 1 and 2 of Lemma 4.5.3 and the fact that |v ()| < ||¢||, we deduce
that

Io < v/ (hx @) W () + [0l (c]|hoe = B]| L + ez [[Bll) +4ec| |

+ 2|l ( e e—cm> _
1

~7 2
Ll/R“(E fdt = 5

1l

heliez

L1+

. and

LI/RREQ(t) dt = |
Consequently,

Io <V (b oyae) (v () + el|$ll, [Bae = R
+c [l |2

Note that ‘1 = ||h.

Ll

Ll < ’76 EE EE

Lt

1
L (ﬁ +e+ce e‘c€”> . (458)
From (4.5.8), taking into account that \/n (h * go\/ﬁg) (y) < cl|h||;1, we deduce, in addi-

tion, that
Iy < e[l [Pac], (14 ™). (4.5.9)

The lower bound. By Lemma 4.5.2, we write that
IO = \/ﬁEm (hs * Ke2 (y + Sn) w (Xn))

_ JnE, ( /m . (y + Sy — v) k2 (v) dvp (Xn)> . (4.5.10)

=:15

Bound of I;. The Fourier transform of h, * k.2 has a compact support included in
[—1/€2,1/¢%]. So by Lemma 4.5.1,
L1 Ce e_an> )

c —_—
I3 Vit (e # 522) 0 gm0 () — 6] (ﬁ e % el + e
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Using the point 3 of Lemma 4.5.3 and the fact that |v (¢)] < |||

1> v (hox o yme) 0w () = el (1 — ol + < 12l])

L1 Ce e_05"> .

o S el [Beelliy = & kel

—_—
ha * Ke2

C
- il (2 el +

—_—
Since ||h, * k2|1 = ||he|lir < ||R|l;: and since Hﬁg * Kg2
< & ||hl11, we deduce that

Lz Vi (b oyme) (v () = [0l 1B = hoc s

1
el il (s +etee ). s

Bound of I,. With the notation g.,(u) = h, (u — v), we have

I = VnE, (9ew (y + Sn) ¥ (X)) Ke2(v) do.

[v[>e

Consequently, using (4.5.9), we find that

_[2 < C ||,l7Z)||OO (1 + C&‘ e_Cen) /|v|>s H(g‘s,v)Zs Ll /{62 ('U) d/U
Note that, for any v and v € R,
(Geyw)g. (1) = sup h, (w—v) < sup h(w—v) = hae(u — v).
wE[u—2¢e,u+2¢] wE [u—2¢,u+2¢]
S0, {|(ge,0). . < HEQE . and
L < el [P, (1+c e—cgn)/||> ke (v) dv.
By (4.5.5),
L <l R, (e +ccemm). (4.5.12)

Putting together (4.5.10), (4.5.11) and (4.5.12), we obtain that
Io 2 Vi (h % 9ymn) ) () = e [l 1P — Bl
N 1 —Ccen
—c[¥ll [P, (\/ﬁ+s+cge ) (4.5.13)

Putting together the upper bound (4.5.8) and the lower bound (4.5.13), the first
inequality of the lemma follows. The second inequality is proved in (4.5.9). O]

We now apply Lemma 4.5.4 when the function h is an indicator of an interval.

Corollary 4.5.5. Assume Hypotheses M4.1-M4.3. For any a > 0, € € (0,1/4), any
non-negative function iy € € and anyn > 1,

sup v/ [By (0 (Xo) 3 y+ Si € [2,2 + al) — ap (2 — y)v (1)

zeX, yeR, z>0

1 a
<cla+e) ||¢] ( + - +e+e e_05”> ,

vn
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where ¢ /() is defined by (4.5.1). In particular, there exists ¢ > 0 such that for any
a>0,

sup  VnE, (¥ (X,) ; v+ Sn € [2,2 +4d]) < (1 +a) ||¥, - (4.5.14)

zeX,yeR, 220

Proof. Let 2> 0,a>0, e € (0,1/4). For any y € R set

h(y) = l[z,era} (y) :

It is clear that

he(y) = Locesrarg(y)  and  ho(y) = Liateza—q (),

where by convention 1,4 .14 (y) = 0 when a < 2¢. It is also easy to see that

L1:a+45.

[h = hocllpr = HEQs —h

= 4e and Hﬁga

Ll

Taking into account these last equalities and using Lemma 4.5.4; we find that

E, (& (Xa) ; y+ Sn € [2,2 + ) = L ra * Oyma )V (1)

<cla+e)||Y] o (\/15 +e+ee e_05”> . (4.5.15)

Moreover, the convolution 1, .14 * ¢ /me 18 equal to

w2

e 2no2

Lz ota) * QO\/ﬁa(Z/) = /]R 1{z<y—u<z+a}% du = q’\/ﬁa(y —z) — q’ﬁa(y —z—a),

W2
e 2no2

where ® t)y= [t du is the distribution function of the centred normal law of
Vno o0 \/2mno

variance no?. By the Taylor-Lagrange formula, there exists £ € (y — 2z — a,y — z) such

that

2
a
Cynoly =2 —a) = Pymoly —2) = @ ymo(y — 2) + 50 s (§)-

Using the fact that sup,cp |u| e Lo,

CCL2

s ) * Pyio(y) — a9 (2 — )| < — (4.5.16)

Putting together (4.5.15) and (4.5.16), we conclude that

E, (4 (X,) 1 4+ Su € [2,2 + ) — ap m, (2 — y)v (¥)|

1 a —cen
<cla+e) Y] ﬁ+g+5+cae .
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4.6 Auxiliary bounds

We state two bounds on the expectation E, (¢(X,,); y+ S, € [2,2+a], 7, > n). The
first one is of order 1/n and independent of z. Then we reverse the Markov chain to
improve it to a bound of order 1/n*?2. We refer to Denisov and Wachtel [20] for related
results in the case of lattice valued independent random variables.

Lemma 4.6.1. Assume Hypotheses M4.1-M}4.3. There exists ¢ > 0 such that for any
a > 0, non-negative function v € €, y € R andn > 1

sup By (6(X,) 1 y+ Su €[22+ a], 7, > n) < S [ (1+ ) (1 + max(y,0).

zeX, 220

3o

Proof. We split the time n into two parts k := [n/2] and n— k. By the Markov property,
Ey:=E, (¥ (X,) ;y+ S, €z, 2+a], 7, >n)
+oo
:Z/o Ey (¥ (Xg) ;Y + Sk €[2,2+a], 7y > k)

z'eX
XP,(Xypp=2",y+ Spr€dy’, 7, >n—k)
“+00
<Y B @X) sy + Se €z +a)

r’'eX
XP, (Xpp=2",y+Spedy,n,>n—k).

Using the uniform bound (4.5.14) in Corollary 4.5.5, we obtain that
cllyll 2
Ey< —==(1+a )P, (1, >n—k).
0 \/E ( ) ( y )

By the point 2 of Proposition 4.2.2, we get

< ¥l (1 +a?) (1 + max(y, 0))

Ey < )
0 Vivn — k

Since n —k > n/2 and k > n/4 for any n > 4, the lemma is proved (the case when n < 4
is trivial). O

Lemma 4.6.2. Assume Hypotheses M4.1-M}.3. There exists ¢ > 0 such that for any
a > 0, non-negative function p € €, y€R, 2>0andn > 1

¢ [19]l o

n3/2

supE, (v (X,) ;y+ S, € [2,24+a], 7, >n) < (14 a®) (1 + 2) (1 + max(y,0)).

zeX
Proof. Set again k = |n/2]. By the Markov property
Ey:=E, (¥ (X,) ;y+Sn €z, 24+a], 7, >n)
+o0
-y /0 Ey () (Xi); y' + S € 2,2 +d], 7y > k) (4.6.1)

z'eX

=:E)
XP,(Xpp=2",y+Spedy,n,>n—k).

Using Lemma 4.3.2 with m = 4, and

F(zy,...,21) = ¢(xk)IL{y'+f(l“1)'“"i‘f(flfk)e[zaz'f‘a}7Vi€{1 ,,,,, kY, y' +f(z1)+ -+ f(x:)>0}>
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we have

Ly (Xio)
v (X:H)

Vi {1 kb F X)) 4+ (X ) >o>.

ESZEi(¢(Xf) DY (XD + e+ f(XT) €22 4 d]

By the Markov property,

By =B, (Y (XD 05 (X3) 5y + F (X)) + -+ f(X]) € [2,2 +d],
Vie {1k} v+ FOX) + o+ (X)) > 0).
where
_P(et,7) P, Y) 1

oty =, [ Mer (KT _
(") Ex*< o (X0 ) ) o) S o) (4.6.2)

On the event {y'+ f(X;)+ -+ f(X7) €[,z +al} = {z+a+S; €Y,y +ad]}, we
have

{Vie{l,....kh o+ F(XD)+-+ [ (Xii1) > 0,/ > 0}
cl{vie{l,. .. k—1} z4a—f(X;,) == f(X])>0,24+a+S; >0}
= {TZ*JFG > k:}
So, for any ¢’ > 0,
Ey<clvll Py (z+a+S; €,y +al, ha > k).
Using Lemma 4.6.1 we have uniformly in y’ > 0,

¢ 19l
k

E; < W(lqtﬁ)(lqtmax(z—i—a,())) < (1+a*)(1+2). (4.6.3)

Putting together (4.6.3) and (4.6.1) and using the point 2 of Proposition 4.2.2,

By < C||12H<>o<1+a3) (1+2)P, (1, >n—k) < %(1 +a) (1 + 2) (1 + max(y,0)).
Since n — k > n/2 and k > n/4 for any n > 4, the lemma is proved. O]

4.7 Proof of Theorem 4.2.4
The aim of this section is to bound
Ey:=E, (¢ (X,);y+ S, €lz,2+al, 7, >n) (4.7.1)
uniformly in the end point z. The point is to split the time n into n = n; + ng, where

ny = |e*n] and n; = n — |e3n], and € € (0,1). Using the Markov property, we shall
bound the process between n; and n by the local limit theorem (Corollary 4.5.5) and
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between 1 and ny by the integral theorem (Proposition 4.2.3). Following this idea we
write

Eo=E, (¢ (Xn) ;y+ Su € [2,24 0], 7y >m)
=:F
—E, (¥ (X,);y+Sn€lz,24+a],m <7, <n). (4.7.2)

=:Fs

For the ease of reading the bounds of F; and F5 are given in separate sections.

4.7.1 Control of E;

Lemma 4.7.1. Assume Hypotheses M4.1-M}4.83. For any a > 0 and ¢ € (0,1/4) there
exist ¢ = ¢, > 0 depending only on a and c. > 0 such that for any non-negative function
Y EE, anyy € R and n €N, such that e3n > 1 we have

_ S,
sup n|FE, — a4 V(w)IEx<g0<y “t 1) ;Ty>n1>
20

z€X,2>0 n \/ N0

< (14 max0) ol (2 + 5

where By = B, (¥ (X,) ; y+ Sn € [2,2+a], 7, > n1), na = €30, ny = n — |e3n] and
+2
p(t) =e"z /\/2m.

Proof. By the Markov property,

+oo
Ei=) /0 By (¥ (Xny) 1 Y + Spy € [2,2 + )
z'eX
=:E]

XP,(y+ S, €dy, X, =2', 7y >my).  (4.7.3)
From now on we consider that the real a > 0 is fixed. By Corollary 4.5.5, for any

%2 < e €(0,1/4),

1 —ceno
NG ‘E{ — a4 Jngo (2 — y’)y(¢)’ < el <\/n_2 +e2 e ) :

with ¢ depending only on a. Consequently, using (4.7.3) and the fact that ny = |e3n| >
C€n7

’El—au(w)Ez (gp\/@,(y—z—i-Snl) P Ty >n1)‘

< C||77Z)||oo <C~5 +€5/2 +c. e%n) P, (Ty > nl) )

\/ M2 \/ﬁ
Therefore, by (4.5.1) and the point 2 of Proposition 4.2.2, we obtain that

a Yy — 2+ Sy, )
- g o (2 ) s

< —_— | — + .
C||¢||°° \/Ma+/MN1 \/ﬁ c
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Since ng > (1 — Tn) and ny > 5, we have

1 +maX(yaO) Ce 1 —I—max(y,()) Ce Ce
vl ——=F2— [ =+ <clvll, /%(H) ﬁﬂ@/z

V21 Vn n
1 + max(y, 0) Ce
< R
el e+
and the lemma follows. O

To find the limit behaviour of E;, we will develop \/%Ew (<p (y+5"172) Ty > nl). To

V2o
this aim, we prove the following lemma which we will apply first with the standard normal

density function ¢, and later on with the Rayleigh density ¢ .

Lemma 4.7.2. Assume Hypotheses M4.1-M4.3. Let ¥ : R — R be a non-negative
derivable function such that W(t) — 0 as t — 4o0o. Moreover we suppose that V' is

2
a continuous function on R such that max(|U(t)|, |V (¢)]) < ce™T. There exists gy €
(0,1/2) such that for any € € (0,20), y € R, my > 1 and mqy > 1, we have

(o5 o)
e ([

(1+max(y,0))* 1+ max(y,0)
C

< ~Cry )
S Ce mi/me /M <

sup
zeX, 220

2
where @ (t) =te = .

Proof. Let x € X,y € R, 2> 0, m; > 1 and my > 1 and fix €; € (0,1). We consider two
cases. Assume first that z < \/mjo/e;. Using the regularity of the function ¥, we note

that
Jo = E, <W<y+sm1_ ) Ty>m1>

_ Hoe mi . < y+Sm1
_/ [Rddas \11(/ el ™ T )]P’( - t,Ty>m1>dt.

Denote by J; the following integral:

Jii= — 2‘/35 Vi y) /+°o \/qu, <\/;2 \/ﬂ%a> <1—e 2>dt (4.7.4)

Using the point 2 of Proposition 4.2.3, with ¢ty = 2/ey, there exists g > 0 such that for
any € € (0,g9),

(1 + max(y,0 m
|Jo — Ji| < ceey 1/2+5 / —
QV(x Y) my
o " Er / \/
+ ( Lo + (Ty > m1)> % .

= |ar
A/ Mo 0

ma z
v’ —1— dt.
( mo ‘/m20'>
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Using the point 2 of Proposition 4.2.1 and the point 2 of Proposition 4.2.2, with || ¥'||

sup;cg [ /(1)
2
Vi iz)

1 0))? A +oo
|J0 _ J1| ng( +max(y, )) ||\If,|| + max y7 ml / — dt
mi/ms >

(14 max(y,0))*> 1+ max(y,0
g CE,El £ —'I_ Cc / pos dS
mi+/mo \/m / m; ( o )
Since z < @, we have 21 ﬁo > 1 o2 > 1 and so
1 0 1 0 m 52
|Jo — J1| < 05781( LA nlax(y, ) +c + max(y, 0) e s [ e ¥ ds. (4.7.5)
mi\/msa N R
Moreover, by the definition of J; in (4.7.4), we have
2 t2 f=oo
5= V) l_q, ( my oz ) (1- )]
\/27'('777,10' mo \/ o0 =0
2V (z,y) [too m z 2
—_— v —1 — t dt
+ \/27T77110'A < meo mo0 ¢’
2V (z,y) /+°° my z
= ———" v —t— t)dt. 4.7.6
v 2mmao Jo Mo Moo P+ (1) ( )

Now, assume that z > 7VZN We write

(v+Smy —2)* /myo
Ty > My

Jo < cE, (e amae® sy S, < —
281

Jmio
+ ||| Py <y+Sm1 > 4251 L Ty > m1>
1

S 2¢e
<ce " P, (1, > my) + ||| \/m_llaEx (Y + Sy 5 7y > M)

Using the points 3 and 1 of Proposition 4.2.1, we can verify that
E; (y 4 Spy s 7y > ma) < Ep 2V (y + Sy s Xony ) +¢5 7 > my)
So by the point 2 of Proposition 4.2.2 and the point 2 of Proposition 4.2.1,

<2V(x,y) +c

1 0 _cmg
A 0) S (1 max(y,0)).

Jo <
A/ T A/ T

_W/O+°°q;< My = >s0+(t)dt

2eq

c(1+max(y,0)) | [z ——(t— ’ oo 2
; / Le e \'TVmE) o (1) dt + ||\Il”oo/1 te = dt
0

/
3

1 0 __m +00 1 rtoo 2
C( + maX<y7 )) [e lﬁmge% / ¢+(t) dt + ||\Il”oo e 168% / te—% dt‘|
0 0
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From the last two bounds it follows that for any z > 7@07

c(1+ max(y, 0 _emy
’J() — J1| < J() + J1 < ( \/m_l(y )) (e m2 —|—€1> . (477)

Putting together (4.7.6), (4.7.7) and (4.7.5) and taking ¢, = €%, we obtain the desired
inequality for any z > 0,

‘JO - Jl‘ < Ce

(1+max(y,0))° | e(1+max(y,0)) (% 1et).
m§./mo /m
L]

Lemma 4.7.3. Assume Hypotheses M4.1- M4 3. There exists ey € (0,1/2) such that
for any € € (0,29), y € R, n € N such that e3n > 1, we have

g (o () o) - 2 ()
(1 + max(y,0))*

< G ne tc (1 + max(y, 0)) &

sup
2€X, 230

2 2
where p(t) = e~ T /27, pi(t) =te = Loy, e = [e%n] and ny = n — |3n].

Proof. Denote
Y+ Sp, — 2
Jo :=E, 7 >
’ <¢ < V20 ) K nl)

_2V(x,y) /+°° n z
Ju= V2mnio Jo 4 ngt \/_a () dt
2V (x y oo ng () dt
V2mnio Jo ny \/ﬁ \/_a P+

- w{¢f e (WU) | s

where ¢¢4(-) is defined in (4.5.1). By Lemma 4.7.2 we have

and

1 0))? 1 0) / _.m
pp— ‘JO - Jl‘ anl( + mEZX(y? )) +cn —+ maX(y’ ) (e "; —|—€4> .
\/_ nin, Vity/m

Since 2 < ny < nand e*n—1 < ny < e,

1 0)> 1 0 . .
n o — 4] gCE( + max(y,0)) Le + max(y, )<1+0) (e—sg +€4>
/n2 nE 53/2 n
1 0))
< ca( + max(y, 0)) + ¢ (1 4+ max(y,0))e. (4.7.9)
nE

Let J5 be the following term:

Ty 1= 2‘\//(2_3;1/)\7/: (\/Z_U> (4.7.10)
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Using (4.7.8),
2V (x, n
P AR 2V(z,y) /o ( )y

20 M SD

i o

By the point 2 of Proposition 4.2.1, we write

J%ul—ﬂ\ ¢ (1+ max(y,0)) ]| /wﬁoﬁ)\trdt

¢ (14 max(y,0 1/ / ) |s|ds

¢ (1 4 max(y,0)) %2 (4.7.11)
Putting together (4.7.9) and (4.7.11), we obtain that

1 + max(y, 0 2
suip —" o — | <c€( max(y,0))
x€X,z>0 /T2 neé

+ ¢ (1 4+ max(y,0))e. (4.7.12)

It remains to link J; from (4.7.10) to the desired equivalent. We distinguish two cases.

If £ < 42,
n 2V (z,y) 2 n 2 z
Ty — < Vo) | Loy ) —ou [
e ()| < v m“”(fa) “”(fo)‘
z
< V) (lonl |2 - 1)+ | )
: LI
1
<cV(a:,y)<n2+1— - ﬁ)
ny /i nl| ¢
3
< cV(x,y) (83—1—86).
Ifz>‘f rwehave

eV (z,y)sup oy (u) < ¢V (z,y)e <.

u}é

o2 )

Therefore, using the point 2 of Proposition 4.2.1, we obtain that in each case

n 2V (x,y) z 2
Jy — <e(l L0)) &2, 4713
\/n—2 2 oo P+ <\/HO'>‘ C( +maX(y ))6 ( )
Putting together (4.7.12) and (4.7.13), proves the lemma. ]

Another consequence of Lemma 4.7.2 is the following lemma which will be used in
Section 4.8.

Lemma 4.7.4. Assume Hypotheses M},.1- M4 3. There exists ey € (0,1/2) such that
for any e € (0,20), y € R, n € N such that 3n > 2, we have

n’/? Y+ Sn V(z,y)
7E 71 . J— 7’
ng — 1 <90+ (x/n2—10> ’ Ty>n1> o

(1 + max(y,0))

n&

sup
zeX

+ ¢ (14 max(y,0))e,

=X €
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2
where o, (t) = te = L0y is the Rayleigh density function, ny = n — |e3n]| and ny =
|e3n].

Proof. Using Lemma 4.7.2 with ¥ = ¢, , m; = ny, mg =no — 1 and z = 0,

n3/? o — | < (1 + max(y,0))*n3/2 N (1 + max(y, 0)) n®? (e L +€4>
— S| < e c 2
ng—1'" 71 (ng — 1)3/2n% (ng —1)y/m
2
L m0) | mes(u0) () e sy
ne g3 n
1 0))?
< cg( + max(y, 0)) + ¢ (1 + max(y,0)) ¢, (4.7.14)
nE
where 5
JO —]E:Jc (90+< y+ = > 7Ty>n1>
Nng — 1
and

n3/? n3/2 2V (x,y) (oo ny
Jp = 4 / t t)dt
ng — 1 ! Ny — 1 v/2mn0 s nz—l (1)

n3?2 2V (x,y) +O<> 1+1) q
t
ng —1+/2mno\ny — 1 /

B n3%2 2V (x,y) +°° 271 (ng — 1)
7(712—13/2 2mo n—1

where ¢¢4(-) is defined in (4.5.1). So,

n3/? 5= n3/? 2V (x,y) ny—1
ne—1"" Vn—-1ng—1) o 2n—1)
__n? V(zy)
C(n—132 o
By the point 2 of Proposition 4.2.1,
n3/? V(x y) c
— ’ —(1 . 4.7.1
e (i I (RN UAD) (4.7.15)
The lemma follows from (4.7.14) and (4.7.15). O

Thanks to Lemmata 4.7.1 and 4.7.3 we can bound E; from (4.7.2) as follows.

Lemma 4.7.5. Assume Hypotheses M4.1-M/.3. For anya > 0 there exists gy € (0,1/4)
such that for any € € (0,g¢), any non-negative function ¢ € €, anyy € R and n € N
such that €3n > 1, we have

L @V [
z€X, Iz)>0 ! V2mo? Vno

o1+ max(s,0) o] (5 + =100 ),

where By = E, (Y (X,) ; y+ Sy € [2, z+a] T, >n1), m = n— |e3n] and ¢ is the
Rayleigh density function: ¢, (t) =te” T Lit=0y-
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Proof. From Lemmas 4.7.1 and 4.7.3, it follows that

e ()

< c(l + maX(y,())) H¢||oo (5 + j%)

av () ‘ (Cs (1 + max(y,0))?

o ne

+

+ ¢ (1 + max(y,0)) 8)

< (1 +max(y, 0)) ] ( e *m“(y’o”) .

n8

4.7.2 Control of F,

In this section we bound the term F5 defined by (4.7.2). To this aim let us recall and

introduce some notations: for any ¢ € (0,1), we consider ny = |€3n], ny = n —ny =

n—|e3n], ng = {%J and ny = ny — n3. We define also

Ey =E, (g[)(Xn) Y+ S €z, z+al, y+ Sp <evn,ng <71y <n> (4.7.16)
Ey :=E, (zp(Xn) s y+ S, €lz,z44al, y+ S >evn, g <7y <n1+n3> (4.7.17)
Eo3 = E, (w( n) s y+Sy€lz,z+al, y+ Sy, >6\/ﬁ,n1+n3<ry<n) (4.7.18)

and we note that
EQ == E21 + E22 + Egg. (4719)

Lemma 4.7.6. Assume Hypotheses M4.1-M4.3. For anya > 0 there exists gy € (0,1/4)
such that for any € € (0,g¢), any non-negative function » € €, any y € R and n € N
such that £3n > 1, we have

z€X,2>0 neé

= (1 ;0
sup 1B < ¢l (1-+ ma(y,0) (V2 4 U000 )
where Eyy is given as in (4.7.16) by
Ey =E, (@/J(Xn) cy+ Sy €z, z+al, y+ Su, <evn,n <71y <n)

and ny =n — |e%n].

Proof. Using the Markov property and the uniform bound (4.5.14) of Corollary 4.5.5,
with ny = |&3n],

+oco
Ey = Z /0 Ey (¥ (Xn,) 5y + Sny € [2,24a], 7y < o)

z’'eX
XPI<Xn1:x/’y+Snl edy ,y+ S, <ce¢ n,Ty>n1)

CHw”OOIP’QC (y+ Spy, K evn, 7, > n1> .

NG

<
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We note that ;\/\/1% < - f753 < %5 and so by the point 2 of Proposition 4.2.3 with
ty = 28/0'2

Eo <

¥l (cwac,wq,+ ( wﬁ) Ll +max<y,o>2>> |
\/n—2 \/n—l U\/n_1 n1/2+€

Using the point 2 of Proposition 4.2.1 and taking into account that ny, > &3n (1 — %),
ny = n/2 and that ®7(¢) < D1 (t) < % for any t € (0, o),

(3 £ 1 ’O
nks; < ‘ ”f/!m <1 + C) (14 max(y,0)) <€2 4 C (1+ meax(y ))>
€ n n

ce (1 +max(y,0))> |

nE

< e, (1 + max(y, 0) <\/E+

which implies the assertion of the lemma. m

Lemma 4.7.7. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists gy € (0,1/4)
such that for any € € (0,&¢), any non-negative function ¥ € €, any y € R, andn € N
satisfying e3n > 2, we have

sup nFp < c||v., (1+ max(y,0)) (es +°’6) ,

zeX,2>0

where Eqy is given as in (4.7.17) by

E22:Em(w<Xn)ay+Sne [Zaz+a]7y+5n1 >5\/ﬁan1<7-y<n1+n3)

andny = n — |&*n ], n = [*n] andny = | 2.

Proof. By the Markov property,

+oo
Fp= Y [TEe0(X0) ¥ + S € 52 bl 7y < ) (4.7.20)

z'eX

!
EQZ

xPx(Xm:x’,y—i—Sm edy,y+ S, >¢ n,Ty>n1).

Bound of Eb,. By the Markov property and the uniform bound (4.5.14) in Corollary
4.5.5, with ng =ny —ng =n —nq — ng,

EéZ = Z ‘/REZ‘” (¢ (Xn4) ; y” + Sn4 € [z,z—i—a])

z'’eX
X Py (Xpy =2", Yy + Spy € dy”, 7y < 3)

clly
< |\|/nLLOO]P)x/ (Ty’ < n3)-

Let (B;)i=0 be the Brownian motion defined by Proposition 4.10.4. Denote by A, the
following event:

A, = { sSup ‘SLth - O-Btn‘ < n1/2_6} )

t€[0,1]
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and by A, its complement. We have
[Po (1 <, Ang) + P (7 <mg, Ay )] (4.7.21)
Note that for any 2’ € X and any ¢y’ > e/n,

P (1y <z, Apy) <P (rﬁﬁln;p_s < ng) ,

where, for any y” > 0, 7‘5,’,” is the exit time of the Brownian motion starting at y” defined
by (4.10.7). Since y' > e4/n, it implies that

IPJ-'E/ (Ty, < ns, Ang) < P ( inf O-Btn:), < né/Q—E — y/>

t€(0,1]
5377, 1/2—e
<P| inf 0By, < |—+ —
(o () o

nE

81/2735
<P ( infl] 0Bin, < —v/n <1 — >> .
t€lo,

< ce s, (4.7.22)
Therefore, putting together (4.7.21) and (4.7.22) and using Proposition 4.10.4,
c|l¢] _e(1-= - el [ ey ce
El < o°] (Ce 5( nE) +]P)x, An ) g o] e e( ns) _1_7 .
22 /—n4 ( 3) TL4 n§

Since ny = ny /2 > 537" (1 - C—E) and ng > ny/2 —1> Ei”( — C—f), we have

n 2 n

/ clly| ( Ca) ( _c ce C,g) c || ( e C€>
E < 0 — cent +— | L o) < ) 7
22 e3/2, /n b n)\& ¢ ne) = \/n ¢ ne (4.7.23)

Inserting (4.7.23) in (4.7.20) and using the point 2 of Proposition 4.2.2 and the fact
that n; > n/2, we conclude that

Wl O (0,00 g

n

Ey < oy

[
Lemma 4.7.8. Assume Hypotheses M4.1-M4.3. For any a > 0 there exists gy € (0,1/4)

such that for any e € (0,&¢), any non-negative function ¥ € €, any y € R, andn € N
such that £n > 3, we have

sup nkys < cl[Y|, (1 +max(y,0)) <€ + :;) ’

z€X,2>0
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where Ey3 is given as in (4.7.18) by

Eys = E, (@/J(Xn);y+Sn€[z,z—|—a],y—|—Sm >5\/ﬁ,n1+n3<7'y<n>

and ny =n — [e°n], ny = [e®n] and nz = {%J

Proof. By the Markov property,

Eas < Z/ Eo (W (Xpny) 3 ' + Sny € [2,2 4+ a], ng < 7y < g)

z'eX
=:E;

Py (Xo, =2, y+Sn, €AY, y+Su > v/, 7, >m). (4.7.24)

Ef

We consider two cases: when z < ‘f and when z >
Fix first 0 < z < E‘Qf. Using Corollary 4.5.5, we have for any iy > ey/n,

Xny) ;3 Y + Sn,y € [2, Z+a])

By <Equ (9 (
<z—y’>2
Y)Wl (L s )

2n20

C||¢||oo Ce e Ce 5/2 —cen
<83/2\/ﬁ<1+n) e 820’ — 4 %" 4 c.e

|l e\ [ —e, C | 5
<53/2\/ﬁ<1+n) Ccrtmte )
So, when 0 < z < 6\2/77, we have

B, < Wl (jﬁ —i—a) . (4.7.25)

Now we consider that z > # Using Lemma 4.3.2 with m = §,, and

//\

F(xl,.. Zl]nz)

we obtain

By =Ky (Y (Xn,) ;¥ + Sny € [2,244a], ng < 7y < o)

Ly (Xiai1)
v (X;;QH)

EIk:E{ng—i—l,...,ng—l},y’+f(X;2)+...+f(X;2_k+1)<O).

<IE,*,(¢(X;‘) ;y’+f(X;;2)+---+f(X;‘)e[z,z+a},

By the Markov property,

By < |0l By (v (X3,) 0/ + £ (X)) + -+ F(X]) € [z, 2+ ],
ke {ns+1,. o= Ly + F(X5) 4+ f (X0, ) <0).
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where 1}, is a function defined on X by the equation (4.6.2). We note that, on the event
{y’ + f (X;j?) +- 4+ f(X7) € [z,z—ira]} = {z—i—S;iQ €y — a,y’]}, we have

{Feefns+1,. .. oma— 150/ + F(X5) 4+ F(Xop) <O}
C{ake{ns+1,.. . ,ma—1}, 2= f (X5, ) — - — F(X]) <0}
— {7 <ny—ny— 1},
Consequently,
Epy <cllvll Py (24 S, € v —ay], 7 <na—1),

3

with ny = ny —n3 = |e3n| — V%"J = 5t (1 — %) Proceeding in the same way as for the

term Eb, in (4.7.23) and using the fact that z is larger than cey/n, we have

By < S0 ’%“ (6‘5 +Z> : (4.7.26)

Putting together (4.7.25) and (4.7.26), for any z > 0, we obtain

c Ce

Inserting this bound in (4.7.24) and using the point 2 of Proposition 4.2.2, we conclude
that

B < Wl O max(u0) (e
n neé

]

Putting together Lemmas 4.7.6, 4.7.7 and 4.7.8, by (4.7.19), we obtain the following
bound for Fs:

Lemma 4.7.9. Assume Hypotheses M4.1-M}.3. For anya > 0 there exists ey € (0,1/4)
such that for any € € (0,g¢), any non-negative function » € €, any y € R and n € N
such that £3n > 3, we have

sup nEy < ¢y, (1 + max(y,0)) <\/g TG (1 + max(y, 0))) 7

z€X,z>0 neé
where Ey is given as in (4.7.2) by
E2:E!E(2/}(Xn) ) y+Sn S [Z,Z+a],n1 < Ty gn)

and ny =n — |3n].

4.7.3 Proof of Theorem 4.2.4
By (4.7.1) and (4.7.2),

E, (¢ (Xn);y+ S, €lz,2+4a], 7, >n) =E, + Es.

Lemma 4.7.5 estimates F; and Lemma 4.7.9 bounds F,. Taking into account these two
lemmas, Theorem 4.2.4 follows.
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4.8 Proof of Theorem 4.2.5

4.8.1 Preliminary results

Lemma 4.8.1. Assume Hypotheses M4.1-M4.3. For any a > 0 and p € N*, there
exists €9 € (0,1/4) such that for any ¢ € (0,e0) there exists no(e) = 1 such that any
non-negative function ¥ € €, anyy’' >0, 2> 0, k € {0,...,p— 1} and n > ny(e), we
have

b B < 2a Y
u < —
x’elgg F V 27Tp(712 - ].)0'2 ot oy/ng — 1

<8 (w0 v (Xt Sst) i > 1)

- (1
+C||1/)||oo(1+z) <€+C ( E—:Z)>

n n

and

/

2a Y

inf £, >
wex ¥ V2mp(ng — 1)0? o (m/ng —1

JE: (0 () v (i 800 7, > 1)

ne®

where B}, = E,/ (@b (Xn,) ;Y + Sy, € (zk,zk + %} ) Ty > ng), 2 = z+%“ andny = |e3n].
Proof. Using Lemma 4.3.2 with m = §,, and
F(Z’l, ..

we have
E, =E; (w (X)) e (X,) v +F (X)) +- + F (X)) € <zk,zk+]ﬂ :
Vie{l,...,no}, vy + f (X;2> et f (X:Z_Z,H) > 0) '

where 9%, is the function defined on X by (4.6.2).
The upper bound. Note that, on the event

frer () +oarone (mas 2l = {artase
p p

a
y/ay/_l_)}?
p

we have
Vie{l,...om} o+ f(X5,)+ -+ f (X0, i) >0,/ >0}
C{‘v’ie{l,...,ng—l}, Zk—i_z_f(X;kLz—i)_"'_f<X;<)>0;
2k+g+522 >0}
p

_ {T;Ha > nz}. (4.8.1)
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So, for any y' > 0,

B< B (v (X0 v (X2) st 450, e

/ / a *
Y,y +p> 7Tzk+% >n2>

Z/ 2"V E*, (w (X5, 1) 52"+ S, € ly Y+

S

,T://>n2—1>
xIP’l",(Xf:dx”,zk—ka—l—SfEdz",Tjﬁa>1>.
P P

8

Using Theorem 4.2.4 for the reverse chain with ¢’ = ® we obtain that

/ 2av (¢;’) // *
B < \/ﬂ(ng—l)pozgmr( n2—10> Z / V)

aeX

x P (Xik =da", 2z + — +Si‘ €dz", 7,40 > 1)
p P

N9 — 1 p

y (\/E_i_cs(l—f—max(zkjLz—l—Sf,O))) 7T;k+a>1)'

(ng — 1)

Note that by (4.6.2), v (¢%) = 1 and ||¢L], < ¢ So,

/ 2(1 y, * * *
HwH O+€ﬁ(y+@<§+c41+@>

e3n ne®

and the upper bound of the lemma is proved.

The lower bound. Similarly as in the proof of the upper bound we note that, on the
event {y’ +f (X;iz) +--+ f(X)) € (zk,zk + %}} = {zk + Sy, € [y’ — %,y’)}, we have

Ivie {1,...oma}, o/ + £ (X5) 4+ (X0 i) > 0]
S{vie{l, .o —1} a—f(X5,) - — F(X]) >0}
= {T:k > ng — 1} D {T;k > ng}. (4.8.2)

Let ¢/, == max(y’ — a/p,0) and o' := min(y’, a/p) € (0,a]. For any n € (0,d"),

a
E,.>E; <w (X7) ¥ (X:LQ) sz + Sy, € [y’ _ p7y/> , o> nz)

Z/ ") EX, (w (X;j2 1) 2+ Sy € [y+,y++a —77} T:,,>n2—1)

// EX

xP;(X;:dx”,zk+5fedz",¢;k >1).
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Using Theorem 4.2.4,

2(d’ —n)v (dy)
E/ > x / // V*
k 2 (ns — 1)0? P+ /—10 gx (2", 2")
x Py (X7 =da”, 5+ Sf €de”, 77, > 1)
Y —

" (\/§+c€(1+max(zk+5f,0))> - >1>

(n2 _ 1)58 » T2k

2(a’ — 1) i ¥ o s . .
> V2 (ng — 1)0290+ (mg E, (@U (XT) V" (XY, 21+ 57) T, > 1)

_C”ﬂw (1+f;> (1+2) <e4+c‘5(1+2)>-

Note that, if ¥ > a/p we have

e () - (o ()

and if 0 <y < a/p we have

(a" —n)p ) o (Yo) e (L) - | S
* Vny — lo - P + Vo — 1o Flloo pyvng — 1o
a Yy’ , a?
> (= - —L |- .
(p 77) Pt (\/ng — 10> ‘ Prlloo p*\/ng — lo

Moreover, using the points 1 and 2 of Proposition 4.2.1, we observe that
Ej (¢ (X7) VS (X7, 2+ 1), 75 > 1) < cflobll,, (1+2).

Consequently, for any ¢ > 0,

o 2(-1) v (1 (X7) V* (X :
E) > m(n2_1)02¢+< n2_10> Ey (v (X)) V* (X7, %+ S7) L 75 > 1)
. (1
C%!‘"’ (1+z)—c|’ﬁ”°‘°(1+z) <€+c ( +2)>.

ne

Taking the limit as n — 0, the lower bound of the lemma follows. m

Lemma 4.8.2. Assume Hypotheses M4.1-M4.3. For any a > 0 and p € N*, there
exists €9 € (0,1/4) such that for any ¢ € (0,e0) there exists no(e) = 1 such that any
non-negative function ¥ € €, anyy € R, 2 > 0 and n > ny(e), we have

24V (
sugn?’/QEo ;\/%az ZE*( % <Xf,zk—|—p—l—5*> ; zk+a > 1>
xe —
c: (14 z 4+ max(y, O)))

el (14 2) (1m0 (s 21
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and
2an ,Y)
3/2 * * * *\ . K
R ey ZE (P XDV (X2 +81) 5 75, > 1)

e8

ce (1 + z + max(y, O)))

— pellll, (1 + =) (1 + max(y, 0)) <s+

where Ey = E, (Y (X,,) ; y+ Sy € (2,244a] , 7, >n) and for any k € {0,...,p — 1},
Zk22+%.

Proof. Set ny =n — |en] and ny = [3n]. By the Markov property, for any p > 1,

Ey, = Z/ Xny) 5y + Sny € (2,24 0], Ty > n2)
r’'eX
X P, (X, =da’, y+ Sp, €dy’, 7, > n1)

+oo P~
- Z/ Z B, x By (Xp, =de, y+ S, €dy, 7, > 1),

z’eX

where for any k € {0,...,p— 1},
Ellc = ]E:t:’ <¢ (an) ; y/ + Snz € <Zkvzk + ;] y Ty > 77,2)

and z, = z + %a.
The upper bound. By Lemma 4.8.1,

2a Ly y+ S
Ey < E, (oo (2228 ) 0 r) > | ik
" P(n2—1)\/27“72k2:%) <¢+<avn2—1> " n1> 1(F)
p—1 1
#5 Whe g (4 0T b 1, ),
k=0

where J (k) = E? (¢ (X V* (Xf 2+ 24 81) 3 750 > 1), for any k € {0, ..., p—1}.
By Lemma 4.7.4 and the point 2 of Proposition 4.2.2,

3/2E0 p\/%O.Q Z Jl )
= (1 0
+ - Z Sy (k ( - n:;X(yy ) +c(1+max(y,0) 6)

+pc||v], (1+ 2) (5 + cE(;ﬁ) (1 + max(y,0)) .

Note that, using the points 1 and 2 of Proposition 4.2.1, we have

1271

*ZJl Scllflle (X +2).
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Therefore
24V (x y
32E, < Ji(
oS V2o Z '

c: (14 z 4+ max(y, O)))
ne®

+ pc || (1 + 2) (1 +max(y,0)) (6 +

and the upper bound of the lemma is proved.
The lower bound. The proof of the lower bound is similar to the proof of the upper
bound and therefore will not be detailed. O

4.8.2 Proof of Theorem 4.2.5.

The second point of Theorem 4.2.5 was proved by Lemma 4.6.2. It remains to prove
the first point. Let v € €, a >0, x € X, y € R and z > 0. Suppose first that z > 0. For
any n > 1 and n € (0, min(z, 1)),

E, (¥ (X5) s y+ Sn € 2,2+ 4a], 7y > n) < Eo(n), (4.8.3)

where Ey(n) = E, (¢ (X,) ; y+ S, € (2 —n,2+a] , 7, > n). Taking the limit as n —
+00 in Lemma 4.8.2, we have, for any p € N* and € € (0,¢0(p)),

lim sup n®/2 FEy(n)
n—-+00
2(a+n)V a-+mn
< * * 3 .
< \/%pa?’ ];)E <¢ v <X1,zk7,+ » +SI> Tt ot > 1)

+pc Y] (1 + 2 —n) (1 +max(y,0))e,

with 2, =2 —n+ W for k € {0,...,p — 1}. Taking the limit as ¢ — 0,

lim sup n/2 Ey(n)
n—+00
2(a+n)V a-+n
< E; XV XY zen + +S* ST Lain > 1
A L (2 00V (ot S5 7 1)

By the point 2 of Proposition 4.2.1, the function u — V* (2*,u — f(2*)) Liu—f(@)>0} is
monotonic and so is Riemann integrable. Since X is finite, we have

lim a+”ZE*< (X7)V* (Xf,zk,n+m+3;> L7 +a+,7>1>
P P

p——+00 =0 2k

z+a
=, (v (x7) / VL S g0y 0

—/ E: (¢ (X)) V* (X5, 2+ S0) 7 > 1)de.
Therefore,
2V (z,y)
lim sup n®/2E, / B (b (X3 V* (X5, 2+ ST) 5 7 > 1) d.
msupn™Eo(n) S A= (X1, 2"+ 51) 5 72 > 1) dz
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Taking the limit as 7 — 0 and using (4.8.3), we obtain that, for any z > 0,

limsup n®*’E, (¥ (X,) ; y + Su € 2,2+ a], 7, > n)

n—-+o0o

_ 2V
\/2_117 Z / B, (0 (XD) V" (X7, 2"+ 57) s 2 > 1)de’. (4.84)
(ye

If 2 =0, we have
E, (¥ (X,);y+S,€[0,a], 7,>n)=E; (¢ (X,); y+ 5, €(0,a], 7, >n).

Using Lemma 4.8.2 and the same arguments as before, it is easy to see that (4.8.4) holds
for z = 0.
Since [z, z 4+ a] D (z, z + a] we have obviously

E, (¥ (Xn);y+Sp€lz,z2+al, 7, >n) 2E, (¥(X,);y+ S, € (2,244, 7, >n).

Using this and Lemma 4.8.2 we obtain (4.8.4) with liminf instead of limsup, which
concludes the proof of the theorem.

4.9 Proof of Theorems 4.2.7 and 4.2.8

4.9.1 Preliminaries results.

Lemma 4.9.1. Assume Hypotheses M4.1-M4.3. For anyx € X, y € R, 2 >0, a > 0,
any non-negative function ¥: X — R and any non-negative and continuous function g:
(2,2 +a] = R, we have

lim n*°E, (gy+S)(Xn) s y+ Sy €lz,24a), 7, >n)

n—-+o00

2V 'Z‘7y #ta * * * * * *
= 2V [T g (6 () V(X 4 87) 7> D,

Proof. Fixx € X, y € R, 2 > 0, a > 0, and let ¢y: X — R, be a non-negative function
and ¢: [z,z+ a] - Ry be a non-negative and continuous function. For any measurable
non-negative and bounded function ¢: R — R, we define

Io(p) = n*"*Eq (4 (Xa) @ (y + Sn) 5 7y > n).
We first prove that for any 0 < o < § we have

2V (x,y)

B
* * * x ! *\ .k !
]0 (]]_[a,ﬁ)) njoo WA ]EV (w (Xl) V (Xl , & + Sl) ) TZ/ > 1) dZ . (491)

Since [a, #) C [a, f], the upper limit is a straightforward consequence of Theorem 4.2.5:

lim sup I, (]l[aﬂ)) < limsupn®?E, (¥ (X,) ; y+ S, € [a, 5], Ty, > 1)

n—-+o0o n—-+o0o

v
\/gaz / E: (¢ (X)) V* (X5, 2 + S 7 > 1)d2.
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and for the lower limit, we write for any n € (0,5 — a),
lim inf Iy (Lja,)) > limjnf n®°E, (¢ (X,) 5 y + S € [0, 8 = 0], 7, > n)

2V (xz,y) o
=" E; XOHV(X], 2 +S7) ;7 >1)d7.
A TR 6 )V (X 4 S s> )
Taking the limit as n — 0, it proves (4.9.1).
From (4.9.1), it is clear that by linearity, for any non-negative step function ¢ =
Z]kvzl Yieliag,8,), Where N > 1, y,...,9v €E Ry and 0 < oy < B = ap < -+ < By, we
have

2V(z,y)
lim 1, —_—
n~1>IJIrloo 0 ( ) \/%0-3

Since g is continuous on [z, z+al, for any e € (0, 1) there exists ¢; . and ¢, . two stepwise
functions on [z, z 4+ a) such that ¢ —e < 1. < g < o < g+ ¢. Consequently,

BN
[ B (0 (X)) V(X724 80) 5 7 > 1) de

lim_1o(g) — oY) /f“ (8 (6 (X0 V" (X7, 24 §1) 5 75 > 1) 02

n—+o0 \/ 2703
2V (x,y) / ,
E; ( OVA(Xy, 2 +87) 515 >1)dz
\/%03 ( 1 ) )
Taking the limit as ¢ — 0, concludes the proof of the lemma. n

For any [ > 1 we denote by &;" (Xl X R) the set of measurable non-negative functions

g: X! x R — R, bounded and such that for any (z,,...,7;) € X!, the function z
g(x1,..., 2y, 2) is continuous.

Lemma 4.9.2. Assume Hypotheses M4.1-M4.3. Foranyx € X, y € R, 2 >0, a > 0,
[ > 1, any non-negative functions ¢: X — R, and g € €," (XZ X R), we have

lim nS/QEx(g(Xlw-->Xlay+5n)w(Xn) ) y"'SnE [Z72+&)7 Ty>n)

n——+o00

2 zt+a
:\/%03/ E.(9(X1,.. ., Xi, )V (X,y+ 8) 7y > 1)
X Ei (w (Xik> V* (Xf’zl‘i‘ST) : 7_;/ > 1)dzl.

Proof. We reduce the proof to the previous case using the Markov property. Fix z € X|
yeR, 220,a>0,12>1,: X—>R+andg€‘5b+<xl><]R). For any n > [ 4+ 1, by the
Markov property,

Iy =n*"E, (9(X1,.. ., X,y +S) ¢ (X,) s y+ S, €[2,2+a), 7, >n)
:]Ex (ng/QJn—l (Xla-"abe_‘_Sl) , Ty > l)a

where for any (xy,...,7) € X,/ € Rand k > 1
Je(z1, .o xn,y) =By (9 (21,2, + Sk) 0 (Xe) 5 ¥ + Sk € (2,24 a), 7y > k).
By the point 2 of Theorem 4.2.5,

w2 du (X1 Xy + ) < ellgllog 19l (14 2) (14 max (y + 5, 0)).
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Consequently, by the Lebesgue dominated convergence theorem (in fact the expectation
E, is a finite sum) and Lemma 4.9.1,

lim Iy =

, .
n=—+oo \/% / X17"‘7XZ7Z)V(Xl,y+S[),Ty>l)

x B (¢ (X7)VH(XT, 2+ 8)) ;> 1)d7.

Lemma 4.9.2 can be reformulated for the dual Markov walk as follows:

Lemma 4.9.3. Assume Hypotheses M4.1-M4.3. For any ' € X, 2> 0,4y >0, a > 0,
m > 1 and any function g € 6," (X™ x R), we have

1
lim n*%E; | (X5, ..., X!y — S e=h Srely,y >
n%u}kloon g( m? ) 17 n) (X;:+1) 7Z+ n [y7y +a>77-z n

2 y'+a
= o ], B0 XD g V(X2 8 7 m)
Y
x V(2 y") dy".

Proof. Fix 2 € X, 2> 0,9y >20,a>0,m >1and g € 6" (X™ x R). Let ¢ be the
function defined on X by (4.6.2) and consider for any n > m + 1,

Iy = 0By (g (X, X1y = S0 (X0) s 2+ 8 € Iy +a), 72> ).

n

By Lemma 4.9.2 applied to the dual Markov walk, we have

2 y'+a
s X [ B (9 (X XY 2 =) V(X2 85) 57> )

0o —
notoo \2mod Sk v
X E,, ('(ﬁ;;/ (Xl) Vv (Xl, y" + Sl) s Ty > 1) V(CL’*) dy”.
Moreover, using (4.6.2) and the fact that v is P-invariant, for any 2’ € X, 3" > 0,
E, (y (X1) V (X1,y" + 51) 5 7y > 1)
P2, x
= ¥ POy b 0 T s s
r1eX ’/(xl)

=E, (V(X1,y"+ S1); 7pr > 1).

By the point 1 of Proposition 4.2.1, the function V' is harmonic and so

y'+a
lim IO / ]Ei (g(X;kn,,Xik,y/—y”—i-Z) V* (X;,Z—l-S:.L) ) T,: > m)

n—+00 V. 27T<73
<V ([El, y//) dy".

]

Lemma 4.9.4. Assume Hypotheses M4.1-M4.3. For anyx € X, y € R, 2 >0, a > 0,
m > 1 and any function g € 6," (X™ x R), we have

lim n%2E, (9 (Xp-mits--» Xy +Sn) 5 4+ Sp € (2,2 +a], 7, >n)

n——+o00

2ny
E; (g G XA VE(XEL S+ SE) T > m)de
\/%0_3/ ) 1> m) m/) 'z



4.9. PROOF OF THEOREMS 4.2.7 AND 4.2.8 207

Proof. Fixz €e X,y € R, 2> 0,a>0,m>1and g € 6, (X" x R). For any n > m,
consider

L(z,y) =E; (9 (Xo—mt1, -, X, ¥+ Sn) 5 y+ S € (2,24+4a], 7y >n). (4.9.2)
For any [ > 1 and n > [ + m, by the Markov property, we have

n3/2fn(x,y) =E, (n3/2fn,l (X, y+5) ;17> l) ) (4.9.3)

Forany p > 1 and 0 < k < pwedeﬁnezk'—z+ .Forany 2 € X,y >0, n>1+m
and p > 1, we write

n*L, (2, y) Zn?’/%E Xonctcmts s Xnet, ¥ + Snt) ;
Y+ Sno1 € (2ky 2p11], Ty >0 —1).

Using Lemma 4.3.2, we get

WLy Zn3/2E*( (X0 X0 = S5 ) v (X))

v =S, € (zky21a1], Vi e {1,...,n—1}, y’+f(XT*H)+ f(X;: I z+1) >O),

where 9%, is defined by (4.6.2).
The upper bound. Using (4.8.1), we have

2L (2 y) zn3/21E*( (X0 Xy = S v (X))
e+ S €,y +alp), T >n—l).

Zk+1

By Lemma 4.9.3,

2 PZ. y'+a/p
lim sup n*?1,_(x / ey — "V (2, y") dy”,
im sup (2 y) < \/%03];) Ry =y )V (@) dy

where for any £ > 0 and t € R,

Ji(t) ::Ez(g(X:;w-"aXf7t+Zk+l)V*(Xm7zk+l+S )T >m).

Zk+1

Note that for any t € [—a/p, 0]

Jk(t) < E;ﬁ ( sup g (X:w Tt 7Xik7t+ Zk—H) Ve (va 241+ Sy ) ) zk+1 > m) : (494)

t€[—a/p,0]

—.JP
=:JP

Since y” +— V (2/,y") is non-decreasing (see the point 2 of Proposition 4.2.1), we have

3/2 p—l 2Jp oy, @
lim sup n*/*I,,_; (2’ T,y +— .
n~>+o§) l y p ];) \% 27T03 ( Y p>
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Moreover, by (4.9.2) and the point 2 of Theorem 4.2.5,
n* 21, (X, y +S) < |lgll., ¢ (14 2) (1 + max(y + S, 0)) .

Consequently, by (4.9.3) and the Lebesgue dominated convergence theorem (or using just
the fact that X is finite),

3/2 a2 2JP a
lim sup n*/*1,,(x X,y+Si+—|;1,>1).
nﬁJroop ) p,;)\/%a?’ ( < akd : p) Y >

Using the point 3 of Proposition 4.2.1, for any ¢ € (0, 1),

pfl P
2J; a
lim su n3/Ix K (1496 + S +—|+cs; T >1
n~>+oop y pkz:ov 271'0'3 ) Y : p o

and again using the point 3 of Proposition 4.2.1, for any ¢ € (0, 1),

af= 2J7 140 a
lim su n3/21' (x b V(X,y+S)+2—+cs; 1, >1].
n—>+oop y pkz;]\/%(fg _5 ( LY l) D ) y

Using the point 1 of Proposition 4.2.1 and the point 2 of Proposition 4.2.2 and taking
the limit as [ — o0,

-1
l;niigopﬁn] z,y) p:ZO \/22_;]:;31%—5‘/(93 Y).
Taking the limit as 6 — 0,
. 3/2 a Pt 2Jp
ggilolopn I(x,y) <5 kz:o Jome? V(z,y). (4.9.5)

For any (zf,...,2},) € X" and u € R, let

gm(w) =g (z),, ..., x],u),
Vi (u) == V*(zy, u—f(f{) — = f@ ) L ue f @) >0, i f @)= flap)>0) (4.9.6)

The function v — g,,(u) is uniformly continuous on [z,z + a]. Consequently, for any
€ > 0, there exists py > 1 such that for any p > py,

p—1
* a *
- E SUD G (¢ + 2041) Vin(2h1) < = D (g (241) + ) Vi (2811)-
D —ytel—a/p,0] 2t

Moreover, using the point 2 of Proposition 4.2.1, it is easy to see that the function
u — V*(u) is non-decreasing and so is Riemann-integrable. Therefore, as p — +o0, we
have

p—1

. a . zZ+a .
lim sup — Z sUp  gm (t+ 2k41) Vi (2641) < / (gm (2) + &) VE(2) d7.
p—+oo P p_gte[~a/p0] z

Thus, when € — 0,
p—1

z+a
lim sup a S osup g (E+ 2641) Vi (2i41) < / gm () V() dZ. (4.9.7)
p—+oo P k—0 t€[—a/p,0] z
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Moreover, since u — V% (u) is non-decreasing,

p—1

=Y sup g (t+ 2e01) Vin(z41) < lgllo Vin (2 + a)a.
p k=0 t€[—a/p,0]

Consequently, by the Lebesgue dominated convergence theorem, (4.9.4), (4.9.7) and the
Fubini theorem,

p—1 P
a 2J
lim sup — FV(x,
p~>+oop P = V2mo3 (z.9)
2V (2,y) : a k=~
= ——"FE° [ limsup — sup  g(X,, ..., X{ t+ 2k
V2mo3 P00 p,;)te[fa/p,o] ( ! +1)
XV (X zer1 +50) 5 Z*M > m)
2V$y / Er (g(X), . X7, 2V V(X5 2+ S8) s 5 >m)dZ.
= V2rod

By (4.9.5), we obtain that,

lim sup n*/ %1, (z, y)

n—-+0o00

2Va:y
E; ( G XA VH(XE L+ SE) s T > m)de
\/%0_3/ ) 1> m> m/) 1 'z

The lower bound. Repeating similar arguments as in the upper bound, by (4.8.2), we
have forany 2’ e X, ¢/ >0, > 1,n>1l+m+1,p > 1,

2L, (o) an/QE*( (X5 Xivy = 85w (X))
at S el —afpy). T, > n—1)
- pf WPy (g (Xo . Xy +d = Sp) e (X)) s
s+ S € Whvh +d), T > n—1),

where 3, = max(y’ — a/p,0) and @’ = min(y’,a/p) € (0,a/p). Using Lemma 4.9.3,

Y +a’
lim inf n®21,_ (', y/) Z \/%03/+ Li(y, +d —y" )V (', y") dy”,

n——+00
where, for any t € R,
Li(t) =By (g (Xp - Xt + 20) V(X 2+ S3) 5 75, > m).

Since y” +— V (2/,y") is non-decreasing (see the point 2 of Proposition 4.2.1), we have

o ©ooy
l}lr_r}ligofn L2,y Z\/_a?’ ( 7y+>a
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where

Ly =E; ( inf g(X,,..., X{,t+2)V (X, za+S,); 7 > m) . (4.9.8)

te€[0,a/p]

Moreover, by the point 3 of Proposition 4.2.1, for any ¢ € (0, 1),

a\ a al—9¢ a a ’
- B 1— _ajya 277 /7 NnN_“. |z —Cs.
WV y) > (1=)a'yf,—cs > 5’<y p>p B s VT (p) ’

Consequently, using (4.9.3) and the Fatou Lemma,

lim inf n®/1,, (x Pz—:l 2L al- 5V(X +5)—c¢ (1+a2> Ty > 1
pryreiuses y \/%0_3 x +5 LY l § y Ty .

Using the point 1 of Proposition 4.2.1 and the point 2 of Proposition 4.2.2 and taking
the limit as [ — +oc and then as 6 — 0,

3/2 a’f= 2L
lim inf n*/*1, (z V(z,y).
n—-4o00 y p kz%) A /27-(—03 y)

Using the notation from (4.9.6) and the fact that v — g,,(u) is uniformly continuous on
[z, 2z + a], for any € > 0,

(4.9.9)

p—1

z+a
lim inf S inf g (E+ 2) Vi(zk) = / (gm (2) —e) VE(Z)d.

p—+oo P P Ote[O a/p]

Taking the limit as ¢ — 0,

z+a
lim inf — Z inf g, (t+20) Vi (21) = / gm () V() dZ.

p—+oo P P OtG[O a/p]

By the Fatou lemma, (4.9.8) and (4.9.9), we conclude that

2V(z,y)
3/2 T\ I * *
léglfolofn L(z,y) > NG E} l})r_{lirgof D E te{l&f/p} g(Xo, . . XTt+ z)

XV ( Xy, 2 +8y,) 5 > m)

2ny
E; ( W XD A VE(X L+ S s > m) de
\/%0_3/ ) 1> m? ) z

]

From now on, we consider that the dual Markov chain (X}), ., is independent of
(Xn),50- Recall that its transition probability P~ is defined by (4.2.4) and that, for any
z > 0, the associated Markov walk (z+ S%),>0 and the associated exit time 7 are defined
by (4.2.5) and (4.2.6) respectively. Recall also that for any (z,z*) € X2, we denote by
P, .+ and E, .- the probability and the expectation generated by the finite dimensional
distributions of the Markov chains (X,,)n>0 and (X}),>o starting at Xo = = and X = z*
respectively.
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Lemma 4.9.5. Assume Hypotheses M4.1-M4.3. For anyx € X, y € R, 2 >0, a > 0,
[>1,m>1 and any function g € €, (X”m X ]R), we have

grf PR, (9 (X1, Xty Xnemits - s Xy ¥ +50) 5y + S, € (2,2 +a], 7, > n)
/ S B (9(Xos . X0 X0, XT )

~ V2m08 oreX
XV (X, y+ S)V* (X, 2 +S5) 7y > 1, 75 >m)dz'v(z).

Proof. FiwaX,yGR,z}O,a>0,l}l,m}landg€%+<xl+me). For any
n = | + m, by the Markov property,

Io:=n*"E, (9 (X1, s Xt Xoomits - Xy ¥ +50) 5y + S € (2,2 + 4], 7, > n)
- Z ng/QEml (g (xla sy Ly, Xn—l—m+17 e 7Xn—l»yl + Sn—l) ;

yl+SnflE(sz+a]7Tyl>n_l)XP1<X1:xla-"7Xl:xlaTy>l)7

where y; = x1 + - - - + x;. Using the Lebesgue dominated convergence theorem (or simply
the fact that X! is finite) and Lemma 4.9.4, we conclude that

nEIEOOIOZ m Z Vie,y) Py (Xqa =a1,..., Xy = 2,1 > 1)

z+a
X/ Ey (g (x1,... 2, X0, .., X7, 2) V(X 2+ Sh) 5 1 >m)d7.

O

4.9.2 Proof of Theorem 4.2.7.

For any [ > 1, denote by € (X! x R,) the set of non-negative functions g: X! x R, —
R, satisfying the following properties:

— for any (x1,...,1;) € X!, the function z — g(x1,...,1;,2) is continuous,

— there exists € > 0 such that max,, zexsup,sqg(z1,..., 2, 2)(1+ 2)*" < +o0.

FixzeX yeR [I>1,m>1landge €™ (X”m X R). For brevity, denote
Gm(Y+5) =9 (X1, ., Xi, Xommt1, - X, Yy + 5n)
Set
Iy == 0*?Eq (gun(y + Su) s 7 > 1)

“+oo
=3 03, (gum(y + Sn); y+ Sn € (k,k+1], 7, > n).
k=0

=:Ix(n)

Since g € € (X”m X ]R), we have

T B 0+ S, € (ki k1], 7, > ),
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where N(g) = maxg, . o, exSUP,0 9(T1, - - ., Tiym, 2)(1 + 2)*T¢ < 400. By the point 2
of Theorem 4.2.5, we have
cN(g)(1 + max(y,0))

(/{7 + 1)1+5

Consequently, by the Lebesgue dominated convergence theorem,

lim I, = Z lim 7%’ (gim(y+ Sn); y+Su € (k,k+1], 7, >n),

n——+oo n—>+oo

By Lemma 4.9.5,

k+1
li Iy = / Ey o (gm(Z2)V (X, y+ S) V(X 2"+ S0) 5
n—1>r—&I-100 0 \/%0'3Z xgx 7 (gl7 (Z) ( " l) ( " m)

Ty, >, >m)dZv(z"),
which establishes Theorem 4.2.7.

4.9.3 Proof of Theorem 4.2.8.

Theorem 4.2.8 will be deduced from Theorem 4.2.7.
Let z € X, y € Rand n > 1. Since X is finite we note that ||f|| = sup,ex |f(x)]
exists. This implies

Po(ry=n+1) =Fo(y+ Sn+ f(Xn1) <O, y+ 50 € [0, [ fll] 5 7 > ).
By the Markov property,
P, (ry=n+1)=E, (9(Xn,y+ Sn); 7, >n),
where, for any (2/,¢y') € X x R,

g(x/7y/> = IED:L" (y/ + f(X1> < O) ﬂ{yle[07||f|‘m]} - ﬂ{y/e[07||f“w]} ZGXP(x/,$1>1{y/+f($l)<o}.
x1

Since g(a',-) is a staircase function, for any ¢ > 0 there exist two functions ¢, and . on
X xR and N C X x R such that

— for any 2’/ € X, the functions ¢.(2',-) and 9.(2’,-) are continuous and have a
compact support included in [—1, || f|| . + 1],
— for any (2/,y') € (X x R) \ N, it holds ¢.(2,y') =
 forany (7)€ % x R, i holds 0 € (/) € ') < (et 4 < 1,
— the set N is sufficiently small:
11l oo +1
/ B (V* (X1, 2480 ;75 > 1, (X1,2) € N)dz < e. (4.9.10)
-1
The upper bound. For any € > 0, using Theorem 4.2.7, we have
It = limsup n®?P, (1, = n + 1)

n—-+oo

< lim sup n3/2Ez <w€(Xn7 Y+ Sn) P Ty > n)

n—-+00

2 Foo
= E, .« (v (X7, 2) V(Xy, S
Fimot 3 Be (0 (X2 V Xy 81

V(X7 24+ 57); 1, >1, 77 >1)v(z")dz.
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Using the point 1 of Proposition 4.2.1,

2V €,y ||fH°°+1 * * * % * *
I+<\/2(_7TU3)_/0 E;, (Y (X7,2) VI(XT, 2+ 57); 70 > 1)dz
\/Q(_WJS)/ Eu(g(X17Z>V<X17Z+Sl);Tz>1)dz
=:1
QV(ZB,y) HfHoo-i_l * * * * * *
+W/ Er (VX7 2+ S7); 75 >1, (X),2) € N)dz.  (4.9.11)
=:15
Since v is P*-invariant, we have
2V (z,y) (Ml § i}
W= [ 06 Vs ) s a”) 4
T*e
2V (x y /1l e i}
Y Ltsen<oP @ z)v @)V (2", 2 — f(27) L pan)>0) dz
V2mo3
z*,x1eX
2V (z,y) [/l . .
mag Z Lt f(an) <0}P (z1, ") (o) V(2" 2 — f(x ))l{sz(z*)>0} dz
z*,x1eX
2V (z,y) [Ifls o § .
RRvr=s 3 Vs (@B, (VX 2+ 87)5 77 > 1) d
Using the point 1 of Proposition 4.2.1,
2V(x,y) (Mo . .
h=—2Y /0 E;, (V*(X],2); Sf > 2)dz. (4.9.12)
Moreover, by (4.9.10), we get
2V
< V&), (4.9.13)
\/271'0’3

Putting together (4.9.11), (4.9.12) and (4.9.13) and taking the limit as ¢ — 0, we obtain
that oy
V2mo3

Lower bound. In a similar way, using Theorem 4.2.7, we write

1 £1l oo
/ E: (VA(XE,2); S5 > 2)de. (4.9.14)
0

[~ = liminf n*P, (1, = n + 1)

n—-+o0o

> liminf n®?E, (p.(Xpn,y + S,); 7, > n)

n—-+o0o

_ 2V(z,y)

vV 2mo3
> 1 — Is.

£l +1
[ B e (X1 ) VX 2 4 57 72 > 1) ds
0

Using (4.9.12) and (4.9.13) and taking the limit as ¢ — 0, we obtain that

~ \2ro3

which together with (4.9.14) concludes the proof.

11l oo
I / E;, (V*(X],z2); S] = 2)dz,
0
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4.10 Appendix

4.10.1 The non degeneracy of the Markov walk

In [38] (Chapter 3), it is proved that the statements of Propositions 4.2.1-4.2.3 hold
under more general assumptions (see Hypotheses M1-M5 of [38]/Chapter 3). We will
link these assumptions to our Hypotheses M4.1-M4.3. The assumptions M1-M3 in [3§]
(Chapter 3), with the Banach space %, are well known consequences of Hypothesis M4.1
of this paper. Hypothesis M4 in [38] (Chapter 3) is also obvious with N = N; = --- = 0.
By Hypothesis M4.2, to obtain Hypothesis M5 of [38] (Chapter 3), it remains only to
prove that o defined by (4.2.2) is strictly positive. First we give a necessary and sufficient
condition. Recall that the words path and orbit are defined in Section 4.4.

Lemma 4.10.1. Assume Hypothesis M4.1. The following statements are equivalent:

1. The Cesaro mean of f on the orbits is constant: there exists m € R such that for any
orbit xg, ..., x, we have

flzo)+ -+ f(zn) = (n+1)m
2. There erist a constant m € R and a function h € € such that for any (x,2") € X2,
P(z,2)f(2) = P(z,2') (h(z) — h(2) + m) .

3. The following real 2 is equal to 0O
& =v(f)-v +2§j[ P ) —v(f)] =0.

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix zq € X
and set h(zg) = 0. For any = € X, we define h(z) in the following way: for any path
To, X1,...,T,, T in X, we set

W) = =f(x) = flan) = = flz1) + (n+1)m

We shall verify that h is well defined. By Hypothesis M4.1, we can find at least a path
to define h(x). Now we have to check that this definition does not depend on the choice
of the path. Let zo,x1,..., 2,z and xo,y1, . . .,Yq, ¢ be two paths. By Hypothesis M4.1,

there exists a path x, 21, . . ., 2, ©o in X between x and z¢. Since zg, 1, ...,2p, T, 21, ..., 2y
and o, Y1, ...,Yp, T, 21, ..., 2, are two orbits, by the point 1, we have
—f(@) = flzp) = = flz) + (p+ m = f(zo) + f(21) + - + f(2a) — (n+ 1)m
=—f(@) = f(yg) = = fly) + (¢ +1)m

and so the function h is well defined on X. Now let (z,2’) € X? such that P(x,2") >
0. By Hypothesis M4.1, there exists xg,z1,...,x,, z a path between xy and x. Since
P(zo, 1) - - P(x,, )P (z,2") > 0, by the definition of h, we have

W) = —f(x) = flzn) = = flz2) + (n+ 1)m
ha') = =f(2) = f(z) = flzn) = = f(21) + (n + 2)m
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In particular

h(z') = —f(2') + h(z) + m.

The point 2 implies the point 1. Suppose that the point 2 holds and let x,...,x, be
an orbit. Using the point 2,

h(zo) = h(zn) — f(zo) + m = -+ = h(zo) — f(z0) — f(xn) — - = flz1) + (R + )m,

and the point 1 follows. )
The point 2 implies the point 3. Suppose that the point 2 holds. Denote by f the
v-centred function:

f(z)=f(z)—v(f), VreX (4.10.1)
By the point 2, for any x € X,
Pf(z) = h(z) — Ph(z) + m — v(f). (4.10.2)

Using the fact that v is P-invariant, we obtain that v (f) =0=m —v(f) and so,
m = v(f). (4.10.3)

Consequently, by (4.10.2), P"f = P"~'h — P"h for any n > 1 and therefore,

ﬁéfﬂfezh-P”h. (4.10.4)

k=1
Let
~ +OO ~
0:=)Y PFf
k=0

be the solution of the Poisson equation © — PO = f , which by (4.2.1), is well defined.
Taking the limit as n — 400 in (4.10.4) and using (4.2.1),

PO =0 —f=h—v(h).
Therefore, for any (z,2') € X2,
O(2') — PO(z) = f(2') + PO(z)) — PO(x) = f(a') + h(2') — h(x).
Using the point 2 and (4.10.3), it follows that
O(z') — PO(x) = 0, (4.10.5)
for any (z, ') € X? such that P(z,2") > 0. Moreover,

7= () 42w (7P'f) v (7 (7 +200)) = v (6~ P0) (6.4 PO)).

Since v is P-invariant,

= Y |6 - 26(2")PO(a) + (PO(x))’| P(z,a')v(x)
(z,2")eX
= Y (6() - P6()) Pla, 2 )w(x). (4.10.6)
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By (4.10.5), we conclude that 5% = 0.
The point 3 implies the point 2. Suppose that the point 3 holds. By (4.10.6), for any
(x,2") € X such that P(z,2") > 0 we have
O(z') — PO(x) =
Let h = PO. Since O is the solution of the Poisson equation,
f(@) + h(z') = h(z) = 0.

By the definition of f in (4.10.1), for any (z,2’) € X such that P(z,z’) > 0,

with m = v(f). O
Note that under Hypothesis M4.2, Lemma 4.10.1 can be rewritten as follows.

Lemma 4.10.2. Assume Hypotheses M4.1 and M4.2. The following statements are
equivalent:

1. The mean of f on the orbits is equal to zero: for any orbit xg, ..., x,, we have
f(@o) + -+ + flzn) = 0.

2. There exists a function h € € such that for any (z,z') € X2,

3. The real 0? is equal to 0:
=v(f) +2Z (fP"f) = 0.

Now we prove that the Hypothesis M4.3 ("non-lattice condition"), implies that the
Markov walk is non-degenerated.

Lemma 4.10.3. Under Hypotheses M4.1-M4.3, we have

=v(f )+2Z P f) >

Proof. We proceed by reductio ad absurdum. Suppose that 02 = 0. By Lemma 4.10.2,
for any orbit xg,...,x,, we have

f(xo) + -+ flan) =0,

which implies the negation of Hypothesis M4.3 with = a = 0. O]
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4.10.2 Strong approximation

Let (By)i=o be the standard Brownian motion on R defined on the probability space
(Q,.Z,P). Consider the exit time

7" =inf{t > 0, y+ 0B, <0}, (4.10.7)

where o is defined by (4.2.2). It is proved in Grama, Le Page and Peigné [40] that there
is a version of the Markov walk (S,),>0 and of the standard Brownian motion (B;):=0o
living on the same probability space which are close enough in the following sense:

Proposition 4.10.4. There exists g > 0 such that, for any ¢ € (0,e0], * € X and
n = 1, without loss of generality (on an extension of the initial probability space) one can

reconstruct the sequence (Sy)n>0 with a continuous time Brownian motion (By)icr, , such

that

P, (Sup ’SLth - O-Btn’ > n1/2_6> < &

0<t<1 ne
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Chapter 5

The survival probability of critical
and subcritical branching processes
in finite state space Markovian
environment

RESUME. Soit (Z,)ns0 un processus de branchement en environnement aléatoire défini
par une chaine de Markov (X,,),>0 prenant ses valeurs dans un espace d’états fini X et
partant de Xy = ¢ € X. Nous étudions le comportement asymptotique de la probabilité
que Z, > 0 lorsque n — +o0o. Nous montrons que l'ordre de convergence dépend de
la fonction k(A) := lim, o Ei/n (e)‘S” , A€ Reti e X, ou (S,)n=0 correspond a la

marche markovienne associée. Dans la classification qui en découle, nous étudions quatre
cas différents : critique, fortement, intermédiaire et faiblement sous-critique.

ABSTRACT. Let (Z,)n>0 be a branching process in a random environment defined by
a Markov chain (X,,),>o with values in a finite state space X starting at Xy = i € X.
We study the asymptotic behaviour of the probability that Z, > 0 as n — +oo0. We
found that it depends on the values of the function k() := lim,_,4 E, /n (e’\S"> ,AeER
and ¢ € X, where (S),),>0 is the associated Markov walk. The function k permits to
give a classification of types of the asymptotic behaviours of the survival probability. In
particular we analyse four different cases: critical and strongly, intermediate and weakly

subcritical regimes.

5.1 Introduction

Galton-Watson branching process is one of the most used models in the dynamic of
populations. It has numerous applications in different areas such as biology, medicine,
physics, economics etc; for an introduction we refer to Harris [46] or Athreya and Ney [5]
and to the references therein. A significant advancement in the theory and practice was
made with the introduction of the branching process in which the offspring distributions
vary according to a random environment, see Smith and Wilkinson [62] and Athreya and
Karlin [4, 3]. This allowed a more adequate modeling and turned out to be very fruitful
from the practical as well as from the mathematical points of view. The recent advances
in the study of conditioned limit theorems for sums of functions defined on Markov chains
in [41], [36], [38] and [37] (Chapters 2, 3 and 4) open the way to treat some unsolved
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questions in the case of Markovian environments. The problem we are interested here is
to study the asymptotic behaviour of the survival probability.

Assume first that on the probability space (€2,.%,P) we are given a branching pro-
cess (Zn),so in a random environment represented by the i.i.d. sequence (X,),., with
values in the space X. Let f;(-) be the probability generating function of the offspring
distributions of (Zy),, provided the value of the environment is i € X. In a remark-
able series of papers Afanasyev [1|, Dekking [14], Kozlov [53], Liu [58], D’Souza and
Hambly [23], Geiger and Kersting [32], Guivarc’h and Liu [44] and Geiger, Kersting and
Vatutin [33] under various assumptions have determined the asymptotic behaviour as
n — +oo of the survival probability P(Z, > 0). Let ¢(\) be the Laplace transform of
the random variable In f% (1): ¢(A) = E (e)‘ln fsﬁ(l)), A € R, where E is the expectation
pertaining to P. In function of the values of the derivatives ¢'(0) = E(In f%, (1)) and
¢'(1) = E(fx,(1)In f% (1)) and under some additional moment assumptions on the vari-
ables In f% (1) and Z;, the following asymptotic results have been found. In the critical
case, ¢'(0) = 0, it was shown in [53] and [32] that P(Z, > 0) ~ —%; hereafter ¢ stands
for a constant and ~ means equivalence of sequences as n — +o0o. The behaviour in
the subcritical case, ¢'(0) < 0, turns out to depend on the value ¢'(1). The strongly
subcritical case, ¢'(0) < 0 & ¢'(1) < 0, has been studied in [23] and [44] where it was
shown that P(Z, > 0) ~ cé(1)", with 0 < ¢(1) = Ef% (1) < 1. In the intermediate and
weakly subcritical cases, ¢'(0) < 0 & ¢'(1) = 0 and ¢/(0) < 0 & ¢/(1) > 0, respectively,
it was shown in [33] that P(Z, > 0) ~ cn~Y2¢(1)" and P(Z,, > 0) ~ en=3/2¢(\)", where
A is the unique critical point of ¢: ¢’'(A) = 0.

The goal of the present paper is to determine the asymptotic behaviour as n — +oo of
the survival probability P;(Z, > 0) when the environment (X,,), ., is a Markov chain with
values in a finite state space X. Hereafter P; and [E; are the probability and expectation
generated by the trajectories of (X,,),., starting at Xy = i € X. Set p(i) = In f/(1),
i € X. Consider the associated Markov walk S, = >}, p(X1), n > 0. In the case of a
Markovian environment the behaviour of the survival probability P;(Z, > 0) depends on

the function
B = lim B (X))

n—-+00

which is well defined, analytic in A € R and does not depend on i € X (see Section 5.3.4).
In some sense the function £ plays the same role that the function ¢ in the case of i.i.d.
environment.

Let us present briefly the main results of the paper. Under appropriate conditions,
we show the asymptotic behaviour of the survival probability P;(Z, > 0) in function of
the following classification:

— Critical case: if £'(0) = 0, then, for any 7,5 € X
_ wul)
n—-—+oo \/ﬁ !
where u(7) is a constant depending on 7 and v is the stationary probability measure
of the Markov chain (X,,),,--
— Strongly subcritical case: if £/(0) < 0 and £'(1) < 0, then, for any 7, j € X|

Pi (Z, >0, X, =j)

IP; (Zn >0, X, = ]) ~ Ul(@)u(])k(l)n

n—-+oo

where u(j) and v;(7) are depending only on j and i respectively.
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— Intermediate subcritical case: if £'(0) < 0 and £'(1) = 0, then, for any i, j € X,

Pi(Z, >0, X =)y, wliuli) 7o

where u(i) depends only on i.
— Weakly subcritical case: if £'(0) < 0 and £'(1) > 0, then, for any 7, j € X

By (Zy >0, Xo =) ~ k(i)

n——+o0o n3/2 ’

where u(i, 7) depends only on ¢ and j and A is the critical point of k: &'(A) = 0.

The critical case has been considered in Le Page and Ye [56] in a more general setting.
However, the conditions in their paper do not cover the present situation and the employed
method is different from ours.

From the results of Section 5.3.4 it follows that the classification stated above coincides
with the usual classification for branching processes when the environment is i.i.d. Indeed,
Lemma 5.3.15 implies that £'(0) = E,, (ln fj(l(l)), where E,, is the expectation generated
by the finite dimensional distributions of the Markov chain (X,),., in the stationary
regime. For an ii.d. environment this is exactly E(In f% (1)) = ¢'(0). The value £'(1)
can also be related to the first moment of the random variable In f% (1). For this we
need the transfer operator Py related to the Markov chain (X,), -, see Section 5.3.4 for

details. The normalized transfer operator P, generates a Markov chain whose invariant

probability is denoted by ©y. Again by Lemma 5.3.15, it holds % = fE,;A (111 j}l(l)) ,

where I~F£,~,A is the expectation generated by the finite dimensional distributions of the
Markov chain (X,,),>o with transition probabilities P, in the stationary regime. For an
i.i.d. environment, we have % =E (fj(l(l)ln f&l(l)) = ¢/(1), which shows that both
classifications are equivalent.

Now we shall shortly explain the approach of the paper. We start with a well known
relation between the survival probability P;(Z, > 0) and the associated random walk
(Sn)pso which goes back to Agresti [2] and which is adapted it to the Markov environment

as follows: for any initial state Xy = i,
n—1
Pi(Z, > 0) =Ei(g,),  where g,'=e " +> e, (5.1.1)
k=0

and under the assumptions of the paper the random variables 7,41, are bounded. Our
proof is essentially based on three tools: conditioned limit theorems for Markov chains
which have been obtained recently in [38] and [37] (Chapters 3 and 4), the exponential
change of measure which is defined with the help of the transfer operator, see Guivarc’h
and Hardy [42], and the duality for Markov chains which we develop in Section 5.3.2.

Let us first consider the critical case. Let 7, be the first moment when the random walk
(y + Sn)n>0 becomes negative. In the critical case, one can show that only the trajectories
that stay positive (i.e. when 7, > n) have impact on the survival probability, so that the
probability \/nP (Z, > 0,7, < n) is negligible as n — 400 and y — +o00. This permits to
replace the expectation \/nE;(g,) by v/nE; (¢,; 7, > n) = /nE; (g | 7y > n)P; (1, > n).
The asymptotic behaviour of \/nlP; (1, > n) is given in [38] (Chapter 3) and using the
local limit theorem from [37] (Chapter 4) we show that E; (¢, |7, > n) converges to a
positive constant.



222 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

The subcritical case is much more delicate. Using the normalized transfer operator
P, we apply a change of the probability measure, say P;, under which (5.1.1) reduces to
the study of the expectation k(\)"E; (e"\S"qn). Choosing A = 1, we have E; (e_S"qn) =
E? (¢), where E¥ is the expectation generated by the dual Markov walk (S5 ) =05

()~ =1+ e % (5.1.2)
k=1

and the random variables 7; are bounded. In the strongly subcritical case the series in
(5.1.2) converges by the law of large numbers for (Sy;), -, so the resulting rate of conver-
gence is determined only by k(1)". To find the asymptotic behaviour of the expectation
E: (¢) in the intermediate subcritical case we proceed basically in the same way as in the
critical case which explains the apparition of the factor n=%/2. In the weakly subcritical
case we choose A to be the critical point of k: k'(A) = 0. We make use of the conditioned
local limit theorem which, in addition to k(A\)", contributes with the factor n=/2.
The outline of the paper is as follows:

— Section 5.2: We give the necessary notations and formulate the main results.

— Section 5.3: Introduce the associated Markov chain and relate it to the survival
probability. Introduce the dual Markov chain. State some useful assertions for
walks on Markov chains conditioned to stay positive and on the transfer operator.

— Sections 5.4, 5.5, 5.6 and 5.7: Proofs in the critical, strongly subcritical, intermedi-
ate subcritical and weakly subcritical cases, respectively.

Let us end this section by fixing some notations. The symbol ¢ will denote a positive
constant depending on the all previously introduced constants. Sometimes, to stress
the dependence of the constants on some parameters «, 3, ... we shall use the notations
CasCa, - ... All these constants are likely to change their values every occurrence. The
indicator of an event A is denoted by 14. For any bounded measurable function f on X,
random variable X in some measurable space X and event A, the integral [; f(z)P(X €
dz, A) means the expectation E (f(X); A) = E (f(X)1,).

5.2 Notations and main results

Assume that (Xn)n>0 is a homogeneous Markov chain defined on the probability space
(Q,.7,P) with values in the finite state space X. Let & be the set of functions from X
to C. Denote by P the transition operator of the chain (X,,),>0: Pg(i) = E; (9(X1)), for
any g € ¢ and i € X. Set P(4,j) = P(6;)(¢), where 6;(i) = 1 if i = 5 and §;(i) = 0 else.
Note that the iterated operator P, n > 0 is given by P"g(7) = E; (9(X,,)) . Let P; be the
probability on (€,.%) generated by the finite dimensional distributions of the Markov
chain (X,), -, starting at Xy = i. Denote by E and E; the corresponding expectation
associated to P and IP;.

We assume in the sequel that (X,,), ., is irreducible and aperiodic. This is known to
be equivalent to the following condition:

Condition 5.1. The matriz P is primitive, which means that there exists kg > 1 such
that, for any non-negative and non-identically zero function g € € and i € X,

P*g(i) > 0.
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By the Perron-Frobenius theorem, under Condition 5.1, there exist positive constants
c1 and ¢y, a unique positive P-invariant probability  on X and an operator (Q on % such
that for any g € ¢ and n > 1,

Pg(i) =v(g9) + Q(g)(i)) and  [[Q@"(9)|l <cre "9,

where v(g) := Yiex 9(0)v(3), Q (1) = v (Q(g)) = 0 and ||g||, = max;ex |g(¢)|. In partic-
ular, for any (4, j) € X2, we have

|P"(i,7) —v(j)| < cre ", (5.2.1)

The branching process in the Markov environment (X,,),., is defined with the help
of a collection of generating functions

fils) =E(s%), VieX selo1], (5.2.2)

where the random variable §; takes its values in N and means the total offspring of one
individual when the environment is i € X. For any i € X, let (£ )jn>1 be independent
and identically distributed random variables with the same generating function f; living
on the same probability space (€2,.#,P). We assume that the sequence (&7);,>1 is
independent of the Markov chain (X,,),- -

Assume that the offspring distribution satisfies the following moment constraints.

Condition 5.2. For any i € X, the random variable &; is non-identically zero and has a
finite variance:
0<E() and E(¢2) < +o0, Vi € X.

Note that, under Condition 5.2 we have,
Vi € X, 0<E(&)=fl(1) < +oo.

and
VieX,  f/(1) =E()—E(&) < +o.

7

Define the branching process (Z,),,. iteratively: for each timen = 1,2, ..., given the
environment X,, = 4, the total offspring of each individual j € {1,...7Z,_} is given by
the random variable &7, so that the total population is

Zn1
Zy=1 and Zn =Y &%, Vn > 1. (5.2.3)
=1

We shall consider branching processes (Z,),,-, in one of the following two regimes:
critical or subcritical (see below for the precise definition). In both cases the probability
that the population survives until the n-th generation tends to zero, P(Z, > 0) — 0 as
n — +00, see Smith and Wilkinson [63]. As noted in the introduction, when the environ-
ment is i.i.d., the question of determining the speed of this convergence was answered in
[32], [44] and [33]. The key point in establishing their results is a close relation between
the branching process and the associated random walk. Let us introduce the associated
Markov walk corresponding to our setting. Define the real function p on X by

p(i) =l f/(1), VieX. (5.2.4)
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The associated Markov walk (S),),, is defined as follows:
Sor=0 and  Sy=In(fi (1) fi, (D) =D p(Xp), Yn=1.  (5.25)
k=1

In order to state the precise results we need one more condition, namely that the
Markov walk (Sy,),>0 is non-lattice:

Condition 5.3. For any (0,a) € R?, there exist xy, ..., z, in X such that
P(zo,z1) - P(xp_1,2,)P(xpn, o) > 0

and
p(zo) + -+ p(xn) — (n+1)0 ¢ aZ.

The following function plays an important role in determining the asymptotic be-
haviour of the branching processes when the environment is Markovian. It will be shown
in Section 5.3.4 that under Conditions 5.1 and 5.3, for any A € R and any ¢ € X, the
following limit exists and does not depend on the initial state of the Markov chain X, = ¢:

L . 1/n AS,,
Le us recall some facts on the function & which will be discussed in details in Section
5.3.4 and which are used here for the formulation of the main results. The function k is
closely related to the so-called transfer operator P, which is defined for any A € R on ¥
by the relation

Pag(i) =P (Mg) (i) = E; (X g(X1)), for ge%,icX (5.2.6)

In particular, k(\) is an eigenvalue of the operator P, corresponding to an eigenvector
vy and is equal to its spectral radius. Moreover, the function k(\) is analytic on R, see
Lemma 5.3.15. Note also that the transfer operator P, is not Markov, but it can be
easily normalized so that the operator Pyg = % is Markovian. We shall denote by
U, its unique invariant probability measure.

The branching process in Markovian environment is said to be subcritical if k'(0) < 0,
critical if k'(0) = 0 and supercritical if k'(0) > 0. This definition at first glance may
appear different from what is expected in the case of branching processes with i.i.d.
environment. With a closer look, however, the relation to the usual i.i.d. classification
becomes clear from the following identity, which is established in Lemma 5.3.15:

K'(0) = v(p) = By (p(X1) = Ey (In fi, (1)) , (5.2.7)

where [E, is the expectation generated by the finite dimensional distributions of the
Markov chain (X,),., in the stationary regime, i.e. when the starting point Xy is a
random variable distributed according to the P-invariant measure v. In particular, when
the environment (X,,),., is just an i.i.d. sequence of random variables with common law
v, it follows from (5.2.7) that the two classifications coincide.

We proceed to formulate our main result in the critical case.
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Theorem 5.2.1 (Critical case). Assume Conditions 5.1-5.3 and
k'(0) = 0.

Then, there exists a positive function u on X such that for any (i,7) € X2,

L v
P, (Z, >0, X, =) ety VA

The asymptotic for the probability that Z,, > 0 in the case of i.i.d. environment has
been established earlier by Geiger and Kersting [32] under some moment assumptions
on the random variable p(X;) = In ( f&l(l)), which are weaker that our assumption on
finiteness of the state space X. Since we deal with dependent environment, Theorem 5.2.1
is not covered by the results in [32].

Now we consider the subcritical case. The classification of the asymptotic behaviours
of the survival time of a branching process (Z,),,., in the subcritical case &'(0) < 0 is
made in function of the values of £’(1). We say that the branching process in Markovian
environment is strongly subcritical if k'(0) < 0,k (1) < 0, intermediately subcritical if
K'(0) <0,k (1) = 0 and weakly subcritical if k'(0) < 0,%'(1) > 0. In order to relate these
definitions to the values of some moments of the random variable In f% (1), we note that,
again by Lemma 5.3.15,

k(1)
k(1)

= 1(p) = By, (p(X1) = By, (In /i, (1)) (5.2.8)

where E;, is the expectation generated by the finite dimensional distributions of the
Markov chain (X,),>0 with transition probabilities P, in the stationary regime, i.e. when
the starting point Xj is a random variable distributed according to the unique positive
P,-invariant probability . Since k(1) > 0, the equivalent classification can be done

according to the value of the expectation Eg, Sln ( I, (1))) When the environment is an

i.i.d. sequence of common law & we have in addition
Y) By, (1n i (1) = By (fi (D) fl (1) = 6101 (5.2.9)
k(].) 1 X1 X1 X1 v ?

where ¢,(\) = E, (e”nfgﬁ(l)), A € R. This shows that both classifications (the one ac-
cording to the values of £'(1) and the other according to the values of ¢},(1)) for branching
processes with i.i.d. environment are equivalent. We would like to stress that, in general,
the identity (5.2.9) is not fulfilled for a Markovian environment and therefore the function
¢, (A) is not the appropriate one for the classification. For a Markovian environment the
classification equally can be done using the function K’()\), where K(\) = Ink(A), A € R.

Note that by Lemma 5.3.15 the function A — K(A) is strictly convex. In the strongly
and intermediate subcritical cases, this implies that 0 < k() < 1.

The following theorem gives the asymptotic behaviour of the survival probability
jointly with the state of the Markov chain in the strongly subcritical case.

Theorem 5.2.2 (Strongly subcritical case). Assume Conditions 5.1-5.3 and
K'(0) <0, K (1) <O0.
Then, there exists a positive function u on X such that for any (i,7) € X2,

P; (Zn >0, X, = ]) ~ k(l)nvl(z)u(])

n—+o0o
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Recall that vy is the eigenfunction of the transfer operator P; (see also Section 5.3.4
eq. (5.3.31) for details). Note also that in the formulation of the Theorem 5.2.2 we
can drop the assumption £’'(0) < 0, since it is implied by the assumption £'(1) < 0, by
strict convexity of K(\). The corresponding result in the case when the environment is
i.i.d. has been established by Guivarc’h and Liu [44] under some moment assumptions
on the random variable p(X;) = In ( f, ( 1)) Our result extends [44] to finite dependent
environments.

A break trough in determining the behaviour of the survival probability for inter-
mediate subcritical and weakly subcritical cases for branching processes with i.i.d. envi-
ronment was made by Geiger, Kersting and Vatutin [33]. Note that the original results
in [33] have been established under some moment assumptions on the random variable
p(X1) = In ( f&l(l)) For these two cases and finite Markovian environments we give
below the asymptotic of the survival probability jointly with the state of the Markov
chain.

Theorem 5.2.3 (Intermediate subcritical case). Assume Conditions 5.1-5.3 and
K'(0) <0, k(1) =0.

Then, there exists a positive function u on X such that for any (i,j) € X2,

iy o U1 (0)u(y)
As in the previous Theorem 5.2.2, £’(1) = 0 implies the assumption £'(0) < 0, since
the function A — K(A\) = In(k())) is strictly convex (see Lemma 5.3.15).

Theorem 5.2.4 (Weakly subcritical case). Assume Conditions 5.1-5.3 and
k'(0) <0, k(1) > 0.

Then, there exist a unique X € (0,1) satisfying k'(\) = 0 and a positive function u on X?
such that for any (i,7) € X2,

u(t
Pi(Zy>0, Xu=j) ~ k)" 753’/‘5).

The existence and the unicity of A € (0,1) satisfying &'(A) = 0 and 0 < k(\) < 1
in Theorem 5.2.4 is an obvious consequence of the strict convexity of K. Note that
Theorems 5.2.1 , 5.2.2, 5.2.3 and 5.2.4 give the asymptotic behaviour of the joint prob-
abilities P; (Z, > 0, X,, = j). By summing both sides of the corresponding equivalences
in j we obtain the asymptotic behaviour of the survival probability P; (Z, > 0). The
corresponding results for the survival probability when the Markovian environment is in
the stationary regime are easily obtained by integrating the previous ones with respect
to the invariant measure v.

5.3 Preliminary results on the Markov walk

The aim of this section is to provide necessary assertions on the Markov chain (X,),>0
and on the associated Markov walk (.S,,),>0 defined by (5.2.5) and to relate them to the
survival probability of (Z,),>0 at generation n. For the ease of the reader we recall the
outline of the section:
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— Subsection 5.3.1: Relate the branching process (Z,)n>0 to the associated Markov
walk (5,)n>0-

— Subsection 5.3.2: Construct the dual Markov chain (X}),>o.
— Subsection 5.3.3: Recall results on the Markov walks conditioned to stay positive.

— Subsection 5.3.4: Introduce the transfer operator of the Markov chain (X,,),>0
and the change of the probability measure. State the properties of the associated
Markov walk (S;,),>0 under the changed measure.

5.3.1 The link between the branching process and the associ-
ated Markov walk

In this section we recall some identities on the branching process. Some of them are
stated for the commodity of the reader and are merely adaptations to the Markovian
environments of the well-known statements in the i.i.d. case.

The first one is a representation of the conditioned probability generating function
given the environment:

Lemma 5.3.1 (Conditioned generating function). For any s € [0,1] and n > 1,
Xl,...,Xn) = fx, 00 fx, ().

Proof. Forall s € [0,1], n > 1, (21,...,2,-1) € N*"Land (i1, ...,i,) € X", by (5.2.3), we
have

E; (SZ”

n,J

. . Z_nfl n,
E; (SZn Z) = 21, .. wZn—l = Zn—l;Xl =11,... ,Xn = Zn) =E (SZJ—l Sin ) .

Since (ﬁ’ZLJ) _, areiid., by (5.2.2),
-7/

E; (SZ”

Zl = Z1,.- '7Zn71 = anl,Xl = il, Ce 7Xn = Zn) = fin(5>2"_l.
From this we get,

E; (szn Xi=11,...,X, = Zn) =, (fin(s)znfl

Xl = Z.la s 7XTL—1 = in—l) .
By induction, for any (i1, ...,i,) € X",

Xlzil,...,Xn:in) :filo."ofin(s)'

and the assertion of the lemma follows. O

El‘ (SZ"

For any n > 1 and s € [0, 1] set
Gn(s) ==1— fx, 0---0 fx, (s) and Gn = qn(0). (5.3.1)
Lemma 5.3.1 implies that
Pi(Z,>0|Xy,...,Xn) = qn- (5.3.2)

Taking the expectation in (5.3.2), we obtain the well-known equality, which will be the
starting point for our study:

P; (Z, > 0) =E,; (g,). (5.3.3)
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Under Condition 5.2, for any i € X and s € [0,1), we have f;(s) € [0,1). Therefore
fx, 00 fx,(s) €1]0,1) and in particular

€(0,1, Vn>1. (5.3.4)

Introduce some additional notations, which will be used all over the paper:

fiom =[x, 00 fx,, Vn>1, Vk e {1,...,n}, (5.3.5)
Jot1n i=1d, Vn > 1, (5.3.6)
1 1 .
gi(s) == i) ) —s) VieX, Vs e€0,1), (5.3.7)
nk,n(s) = 0xy (fk—i—l,n(s)) vn = 17 Vk € {17 B 7n}7 Vs € [Oa 1)7 (5 3. 8)
N = 77k,n(0) = 9x;, (fk+1,n<0)) Vn > 17 Vk € {17 o 7n}' (5 3. 9)

The key point in proving our main results is the following assertion which relies the
random variable g,(s) to the associated Markov walk (S;,)n>0, see (5.2.5). This relation
is known from Agresti [2] in the case of linear fractional generating functions. It turned
out to be very useful for studying general branching processes and was generalized in
Geiger and Kersting [32]. We adapt their argument to the case when the environment is
Markovian.

Lemma 5.3.2. For any s € [0,1) and n > 1,

, e s
Qn<3)_ - + Z ek nk—l—l,n(s)-
k=0

1—s

Proof. With the notations (5.3.6)-(5.3.9) we write for any s € [0,1) and n > 1,

-1 ._ !
qn<8) = ]_—fX1 o...oan(S)
1
T 1= fuals)
h (1)
=Jx, (f2,n(s>> + 1f_1J(f21(5)

(@ £, ) + ax. (o8]

1—s
T i (Fa) - Fe () g, ()

—Sn

+Z€ nkJrln )

]

Taking s = 0 in Lemma 5.3.2 we obtain the following identity which will play the
central role in the proofs:

g, = _S"+Ze Merin, V> 1 (5.3.10)
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Since f; is convex on [0, 1] for all i € X the function g; is non-negative,
Si)(@ =) = (1= fi(s))
Vs € |0,1), gi(s) == >0, 5.3.11
0L s =T R A - ) 31
which, in turn, implies that the random variables 71, are non-negative for any n > 1
and k € {0,...,n—1}.
Lemma 5.3.3. Assume Condition 5.2. For anyn > 2, (i1,...,i,) € X" and s € [0, 1),
we have ,
S

0<gi, (fi,o---ofi(s)<n: —maxf/( )2 < +o00.

Moreover, for any (ip)ns1 € X, and any k > 1

lim g, (i, 00 £i,(0)) €[0,7). (5.3.12)

n—-+oo
Proof. Fix (in)p>1 € XV, For any i € X and s € [0,1), we have f;(s) € [0,1). So
fi,o---ofi (s) €[0,1). In addition, by (5.3.11), g; is non-negative on [0, 1) for any i € X
therefore g;, (fi, -+ 0 fi,(s)) = 0. Moreover by the lemma 2.1 of [32], for any i € X and
any s € [0,1),
S

A OR

By Condition 5.2, n < +o00 and so g;, (fi, 0+ 0 f; (s)) € [0,n], for any s € [0, 1).
Since f; is increasing on [0,1) for any ¢ € X, it follows that for any £ > 1 and any
n>k+1,

(5.3.13)

0< fip, 00 fi,(0) < fi,,0 -0 fi, o fi,.,(0) <1,
and the sequence (fik+1 o---0 fln(O)) Ly COnmverges to a limit, say [ € [0,1]. For any

i € X, the function g; is continuous on [0, 1) and we have

i (s) = tig S =9 A FED) _ L) =1 = fill)a=D) 1=
s o () (1= fils) (L—s) 521 fil (s— 1) 1= .(s)
(
21

)
LB L )
[HORERNIOREIHE

Denoting g;(l) = 2 if I = 1, we conclude that g;, (flk+1 e fln(())) converges to
[

2f
g, (1) as n — +o0. By (5.3.11) and (5.3.13), we obtain that g; (1) € [0,7]. O

< 400. (5.3.14)

5.3.2 The dual Markov walk

We will introduce the dual Markov chain (X),>o and the associated dual Markov
walk (S}),>0 and state some of their properties.
Since v is positive on X, the following dual Markov kernel P* is well defined:

P (i) = 2D (1), vi4) € X (5:3.15)
v(i)
Let (X;),5o be a dual Markov chain, independent of the chain (X,),.,, defined on

(Q,.Z,P), living on X and with transition probability P*. We define the dual Markov
walk by

n

Sg=0 and Si=->p(X;), Vn>1 (5.3.16)

k=1
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For any z € R, let 77 be the associated exit time
=inf{k>1:24+S; <0}. (5.3.17)

For any 7 € X, denote by P} and E? the probability, respectively the expectation generated
by the finite dimensional distributions of the Markov chain (X}),>o starting at X§ = ¢.
It is easy to see that v is also P*-invariant and for any n > 1, (4, j) € X2,

v(j)
v(i)

This last formula implies in particular the following result.

(P*)" (i, j) = P"(j, )

Lemma 5.3.4. Assume Conditions 5.1 and 5.3 for the Markov kernel P. Then Condi-
tions 5.1 and 5.3 hold also for dual kernel P*.

Similarly to (5.2.1), we have for any (i, j) € X?,
((P)" (i, ) —v(j)| < ce™™. (5.3.18)

Note that the operator P* is the adjoint of P in the space L* (v) : for any functions
f and g on X
v(f(P)"g) =v(gP"f).
For any measure m on X, let E, (respectively E!) be the expectation associated to the
probability generated by the finite dimensional distributions of the Markov chain (X5,),,-
(respectively (X7), -,) with the initial law m.

Lemma 5.3.5 (Duality). For any probability measure m on X, any n > 1 and any
function g: X" — C,

m(X:L—O—l)
En(9(X1,..., X0)) =E; Q(X;w-wa)m :

Moreover, for any n > 1 and any function g: X™ — C,

Ei(9(X1,.. .. Xp) s X1 = j) = E (g(X;,...,X ) X5 =i )

Proof. The first equality is proved in Lemma 3.2 of [37] (Lemma 4.3.2 of Chapter 4). The
second can be deduced from the first as follows. Taking m = §; and (i1, - ,in,inst1) =
g(it, -+ ,in) L, =5}, from the first equality of the lemma, we see that

. * [~ * * * . 1
El(g(XlaaXn) ;Xn-i-lzj):Eu (g<Xn+1a"'>X1) Xn+2 )I/(Z)
B o (X X5) 1 X520, X =)
Since v is P*-invariant, we obtain

B g (Xiy s X0) s Xoer =) = Y B (9 (X0 XD 5 Xy = 1) L)

i1€X

— B (9 (Xpo oo XD) s X =) 20
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5.3.3 Markov walks conditioned to stay positive

In this section we recall the main results from [38] and [37] (Chapters 3 and 4) for
Markov walks conditioned to stay positive. We complement these results by some new
assertions which will be used in the proofs.

For any y € R define the first time when the Markov walk (S,),,., becomes non-
positive by setting

=inf{k>1:y+ S, <0}.

Under Conditions 5.1, 5.3 and v(p) = 0 the stopping time 7, is well defined and finite
P;-almost surely for any i € X.

The following three assertions deal with the existence of the harmonic function, the
limit behaviour of the probability of the exit time and of the law of the random walk
y + Sp, conditioned to stay positive and are taken from [38] (Chapter 3).

Proposition 5.3.6 (Preliminary results, part I). Assume Conditions 5.1, 5.3 and v(p) =
0. There exists a non-negative function V on X X R such that

1. Forany (i,y) e XxRandn >1
E,(V(X,,y+5S,) ;7 >n)=V(i,y).
2. For any i € X, the function V(i,-) is non-decreasing and for any (i,y) € X x R,
V(i,y) < ¢(1 +max(y,0)).
3. Foranyi e X, y>0and o€ (0,1),
(1=0)y—cs <V(iy) <(1+0d)y+cs
We define
o? =v(p?) —v(p)+2 Z v (pP"p) — v (p)*]. (5.3.19)

It is known that under Conditions 5.1 and 5.3 we have 0® > 0, see Lemma 10.3 in [37]
(Lemma 4.10.3 of Chapter 4).

Proposition 5.3.7 (Preliminary results, part II). Assume v(p) = 0, Conditions 5.1 and
5.5.

1. For any (i,y) € X x R,

2V (i, y)
nEIEoo \/—P (Ty > TL) 2o )
where o is defined by (5.3.19).
2. For any (i,y) € X xR andn >1
1 + max(y, 0)

P;(r, >n) <c T
We denote by supp(V) = {(i,y) € X x R: V(i,y) > 0} the support of the function
V. Note that from property 3 of Proposition 5.3.6, for any fixed i € X, the function

y — V(i,y) is positive for large y. For more details on the properties of supp(V') see [38]
(Chapter 3).
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Proposition 5.3.8 (Preliminary results, part III). Assume Conditions 5.1, 5.3 and
v(p) =0.
1. For any (i,y) € supp(V) and t > 0,

Y+ Sp
P, <t
(O’\/ﬁ

+
n>n) S B0
t2
where ®1(t) =1 — e~ 7 is the Rayleigh distribution function.
2. There exists g > 0 such that, for any ¢ € (0,e9), n = 1, to > 0, t € [0,¢y] and
(1,y) € X x R,
2V (i,y)

2mno

1 + max(y, 0)?)
nl/2+e ’

P; (y + S, < tvno, 7, > n) — <I>+(t)| < cavt()(

The next assertions are two local limit theorems for the associated Markov walk y+.5,

from [37] (Chapter 4).

Proposition 5.3.9 (Preliminary results, part IV). Assume Conditions 5.1, 5.3 and
v(p) = 0.

1. Foranyi e X, a>0,y R, z>0 and any non-negative function p: X — R,

lim 7%%E; (¥(X,); y+ Sn € [2,24a], 7, > n)

n—-+o00

2
\‘//2_2%/ Ey (( X))V (X], 2"+ S5)) 5 7 > 1)d2.
o

2. Moreover, for any a > 0, y € R, 2z > 0, n > 1 and any non-negative function :
X =Ry,

DI () y+ S € [ ka7 > ) < SR g (142) (1 4 mas(y,0).

Recall that the dual chain (X}),> is constructed independently of the chain (X,,),>0.
For any (7,7) € X2, the probability generated by the finite dimensional distributions of
the two dimensional Markov chain (X,,, X),> starting at (Xo, X{) = (4,7) is given by
P;; = P, x P;. Let E,;; be the corresponding expectation. For any [ > 1 we define
E (Xl X R+> the set of non-negative function ¢g: X! x R, — R, satisfying the following
properties:

— for any (i1, ...,4) € X!, the function 2 — g(i1, ..., i, 2) is continuous,

— there exists € > 0 such that max;, _;exsup,sqg(i1, ..., i, 2)(1+ 2)*T < +oo.

Proposition 5.3.10 (Preliminary results, part V). Assume Conditions 5.1, 5.3 and
v(p)=0. Foranyi e X, yeR, I >1, m=>1 andgE%*(X”meJr),

lim n*%E; (¢ (X1, X0 Xnmits - Xy + S0) Ty, >n)

n—-+0o0o

+o0o
B (g (Xt . X0 X5, X5 2
\/27m3/ ]%;g i (g (&% ! %)

XV (X,y+S)V (X, 2+ 8,) ;17 >1, 77 >m)v(j)dz.
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We complete these results by determining the asymptotic behaviour of the law of the
Markov chain (X,,),>1 jointly with {7, > n}.

Lemma 5.3.11. Assume Conditions 5.1, 5.3 and v(p) = 0. Then, for any (i,y) € X xR
and j € X, we have

2V (i, y)v ()

2ro

lim /nP; (X, =j,7, >n)=

n—-+o0o

Proof. Fix (i,y) € X x R and j € X. We will prove that

M hmmf\/_P( =Jj,Ty>n)

271'0' n—-+o0o

2V (i .
< limsup vnP; (X, = j, 7, > n) < V(,yv()
n—+oo AQr0

The upper bound. By the Markov property, for any n > 1 and k£ = { 1/ 4J we have
P (X,=yj,7 >n) <IP’Z-(Xn:j,Ty>n—k):]Ei(Pk(Xn_k,j) : Ty>n—k).
Using (5.2.1), we obtain that
P, (X, =7,7,>n) < (V(j) —|—ce_0k) P; (ry >n—k).
Using the point 1 of Proposition 5.3.7 and the fact that k = {nl/‘LJ,

2V (3, ) (i)

limsup v/nP; (X, =j, 7, >n) < (5.3.20)
n—+00 2mo
The lower bound. Again, let n > 1 and k = { 1/4J. We have
P,(Xn=7,7y>n) 2P (X,=j,7,>n—k)—P;(n—k<7,<n). (5.3.21)
As for the upper bound, using the Markov property and (5.2.1),
Pi(Xn=j, 7 >n—k) =E (P"(X, x,); 7y >n—k)
> (u(j) — ce’C’“) P (ry >n—k).
Using the point 1 of Proposition 5.3.7 and using the fact that k£ = Lnl/‘lJ,
liminf /nP; (X, =7, 7, >n—k) > M (5.3.22)

Furthermore, on the event {n — k < 7, < n}, we have

0> min y+.5 >y+ Sk —klpl

n—k<i<n oo’
where |[|p[| is the maximum of |p| on X. Consequently,
Pn—k<t,<n)<Pi(y+Shr<ck, 7y >n—k)

:Pi<y+5n_k< ek \/n—k‘,Ty>n—k‘>.

vn—k



234 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

Now, using the point 2 of Proposition 5.3.8 with ¢y = max, > \/%, we obtain that, for
€ > 0 small enough,

ck?

2V (i, y) (1+9%)

P,(n—k<t, <n)< (1 - e_2<”—k)) FRPLC I A
! 2n(n — k)o (n — k)l/>te

N

Therefore, since k = {nl/ 4J,

lim /nP;(n—k<7,<n)=0. (5.3.23)

n——4o00

Putting together (5.3.21), (5.3.22) and (5.3.23), we conclude that

(i
liminf VAP, (X, = 7, 7, > n) > 2L YVU)
n—+o0o o

which together with (5.3.20) concludes the proof of the lemma. O

Now, with the help of the function V' from Proposition 5.3.6, for any (¢, y) € supp(V),
we define a new probability P{, on o (X,,,n > 1) and the corresponding expectation Ef,
which are characterized by the following property: for any n > 1 and any ¢g: X" — C,

b
V(i,y)
The fact that IP’;’ry is a probability measure and that it does not depend on n follows easily

from the point 1 of Proposition 5.3.6. The probability IP’;: , is extended obviously to the
hole probability space (2, .%,P). The corresponding expectation is again denoted by E;Ly

Ef, (9 (X1, ... Xp)) = Ei(g(Xy,.... Xo) V(Xn,y+Sp) 57y >n). (5.3.24)

Lemma 5.3.12. Assume Conditions 5.1, 5.3 and v(p) = 0. Let m > 1. For anyn > 1,
bounded measurable function g: X™ — C, (i,y) € supp(V) and j € X,

Iim E;(¢(X1,...,.Xn); Xn=J|7 >n) :E:y(g(Xl,...,Xm))l/(j).

n—-+00

Proof. For the sake of brevity, for any (i,7) € X?, y € Rand n > 1, set
In(i, J,y) =P (X, =7, 7 >n).

Fix m > 1 and let g be a function X — C. By the point 1 of Proposition 5.3.7, it is
clear that for any (i,y) € supp(V) and n large enough, P; (1, > n) > 0. By the Markov
property, for any j € X and n > m + 1 large enough,

Iy =B (g(X1,...,Xp) : Xo=j|7, >n)

Jn—m (Xon, J, Y + Sm
t\'yY

;Ty>m>.

Using Lemma 5.3.11 and the point 1 of Proposition 5.3.7, by the Lebesgue dominated
convergence theorem,

V(X y+ Sm)
V(i,y)
— B!, (9 (X1, X)) V().

n—-+o0o

lim I, =E; <g<X1,,Xm) ; Ty>m> V(j)
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Lemma 5.3.13. Assume Conditions 5.1, 5.3 and v(p) = 0. For any (i,y) € supp(V),
we have, for any k > 1,

L/ _g ¢ (14 max(y,0))e¥
]E@y <e k) g ]{,'B/ZV(i’ y)

In particular,

= 1 + max(y,0))e?
Ef ( e‘5k> < el —
\& Vi)

Proof. By (5.3.24), for any k > 1

_ _ V(Xk y—i—Sk)
+ Sk _ W S )
E/, (e k) =E; (e g V(i9) Ty >k

Using the point 2 of Proposition 5.3.6,

Ej,y( )<eyE< (y+55) € (1+max(0 y+Sk))’ y>k>

V(i,y)
—eyZ]E —(y+5k) (1+max.(07y+8k));y+Sk€(p,p+1],ry>k:
V(i,y)
eyz —» £ ) P, (y+ Sk €pp+1], 7> k).

(Z, )

By the point 2 of Proposition 5.3.9,

+00 Y
v c Z . 2e¥ (1 +max(0,y))
Eivy <e k> < k3/2 P:Oe (1 + p) V(Zv y)

¢ (1 +max(0,y)) e
K32V (i, y)

This proves the first inequality of the lemma. Summing both sides in k& and using the
Lebesgue monotone convergence theorem, it proves also the second inequality of the
lemma. O

5.3.4 The change of measure related to the Markov walk

In this section we shall establish some useful properties of the Markov chain under
the exponential change of the probability measure, which will be crucial in the proofs of
the results of the paper.

For any A € R, let P, be the transfer operator defined on € by, for any g € € and
1€ X,

Pg(i) =P (e¥g) (i) = E; (X g(X1)). (5.3.25)
From the Markov property, it follows easily that, for any g € ¢, i € X and n > 0,
Plg(i) = E; (X (X)) (5.3.26)

For any non-negative function ¢ > 0, A € R, 2 € X and n > 1, we have

Plg(i) > min_ ere@)ttelen) prg(p) (5.3.27)



236 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

Therefore the matrix P, is primitive i.e. satisfies the Condition 5.1. By the Perron-
Frobenius theorem, there exists a positive number k£(\) > 0, a positive function v, :
X — R%, a positive linear form v: ¢ — C and a linear operator (), on ¢ such that for
any g € ¢, and i € X,

Pig(i) = k(Mvalg)ua(@) + Qx(9)(0), (5.3.28)
va(vy)=1 and  Qx(vy) =v\(Qa(9)) = (5.3.29)

where the spectral radius of @, is strictly less than k(\):
18 < cyeom gL, (53.30)

Note that, in particular, k(\) is equal to the spectral radius of P, and, moreover, k()
is an eigenvalue associated to the eigenvector vy:

From (5.3.28) and (5.3.29), we have for any n > 1,
Pg(i) = k(A)"va(g)va(z) + @x(9) (D). (5.3.32)
By (5.3.30), for any g € ¢ and i € X

. PRg()

= va(g)ua(i)

and so for any non-negative and non-identically zero function g € ¥ and i € X,

k(N = lim (Phg(i)"" = lim E/" (e g(X,)). (5.3.33)

n—-+4o0o n—-+4o0o

Note that when A = 0, we have k(0) = 1, v9(i) = 1 and vy(i) = v (i), for any i € X.
However, in general case, the operator P is no longer a Markov operator and we define
P, for any A € R by

i Pa(gon)(i) _ P (Mg00) () Ei (M g(X0)ur(X)))

Pyg(2) = - = , = : , 5.3.34
20 = 200 k(N ox(d) k(N ox(d) (53:34)
for any g € € and i € X. It is clear that Py is a Markov operator: by (5.3.31),
P (vx)(4)
p AN
)\UO( ) k(}\)@)\( ) )

where for any i € X, v(i) = 1. Iterating (5.3.34) and using (5.3.26), we see that for any
n>=1 g€ % andieX.

Pi(gun)(i) _ Ei (X g(Xa)ur(Xn))

290 = T () NG, (5.3.35)
In particular, as in (5.3.27),
S . P"g(i)
no(i) > Mp(er)++p(an)) ‘
PAg(Z) - x17-~r~r,lrlafl€X” ¢ "U)\(.Tn) k()\)n’l})\(l)

The following lemma is an easy consequence of this last inequality.
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Lemma 5.3.14. Assume Conditions 5.1 and 5.3 for the Markov kernel P. Then for any
A € R, Conditions 5.1 and 5.3 hold also for the operator P .

Using (5.3.32) and (5.3.35), the spectral decomposition of Py is given by

BRo() = s (gmn) i) + ZHIN = oaa)n) + G310)).
with, for any A € R, g € ¥ and i € X,
)=l ad Q0 = DI (5.3.36)
By (5.3.29),
o (@) = (B9) <0 ana - Que) = 2 -
Consequently, &7y is the positive invariant measure of Py and since by (5.3.30),
1@ (g0 [l

|@x)] . <+

< —C)\N
(/\)n miﬂiexv,\ X COh€ ||g||oo7

we can conclude that for any (i, 7) € X2,
P3(J) — ()] < cxe "

Fix A € R and let P; and E; be the probability, respectively the expectation, gener-
ated by the finite dimensional distributions of the Markov chain (X,),>o with transition
operator P, and starting at Xo =4. Foranyn > 1, g: X — C and 7 € X,

@ E; (e g(Xy, ..., X,)ua (X,
Bl ) = ( g<k(>\)"w(z'))( )

We are now interested in establishing some properties of the function A — k() which
are important to distinguish between the different subcritical cases.

(5.3.37)

Lemma 5.3.15. Assume Conditions 5.1 and 5.3. The function X\ — k(X) is analytic on
R. Moreover the function K: XA — In (k(X)) is strictly conver and satisfies for any A € R,

K'()) = Z&) — 5y(p), (5.3.38)

~—

and
K"(\) = (p?) = 0x (p)° +2 f o5 (0Php) — 2 (p)°] =: 63 (5.3.39)

Proof. 1t is clear that A — P, is analytic on R and consequently, by the perturbation
theory for linear operators (see for example [50] or [24]) A — k(N), A — vy and A — v,
are also analytic on R. In particular we write for any h € R,
h2
Py, =Py +hP) + ?Pg’ + o(h?),
! h2 " 2
Unin = Uy + hol + 5 U + o(h?),

EA+h) = k(\) + hE' (X)) + h;k”(A) + o(h?),
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where for any i € R, o(h?) refers to an operator, a function or a real such that o(h?)/h? —
0 as h — 0. Since vy, is an eigenvector of Py,; we have Py pvain = k(A + h)uay, and
its development gives

P)\U)\ = k(/\)’v/\,

Pyv) + Phox = k(A)vy + K (Moa, (5.3.40)
1 1 1 1
iP,\vf\’ + Pl + §P'/\’U,\ = 5]{:()\)1)1\' + K (M) + 5]{:"()\)1),\. (5.3.41)

Since v, is an invariant measure, v, (Pyg) = k(A)v,(g) and (5.3.40) implies that
k(AMva (v)) +va (Phoy) = k(Avs (v)) + K (A).
In addition, by (5.3.25), P\v, = P, (pvy). Therefore,
k(Nva (pva) = K'(N),

which, with the definition of &, in (5.3.36), proves (5.3.38).
From (5.3.41) and the fact that v, (Pyg) = k(A)r(g), we have

’“(QA)W (5) + k(\wa (pv)) + ’“(;)m (P*vs) = ;m)w (W) + K (Vv (v)) + ;k”()\).
So,
’2((;)) = vy (pP0s) +2 luA (pv}) — ’Z&; INCAIE
By (5.3.38), we obtain that
= vy (P0r) = 13 (poa) + 2 [pa (pv) — a (pua) wa (03] (5.3.42)

It remains to determine v. By (5.3.40), we have

o P Palonn) KN
ATERO) k(Y k()

and for any n > 0, using (5.3.38),

n,. /! n+1, ./ n+1
Pl P 0} P (puy)

N - - : 5.3.43
k(A" k(A E(\)n+l v (pua) va ( )
Note that
P7;\+1 (pv/\) ;\H—l (p,U)\>
i v = S
By (5.3.30),
P"’H‘l
ka(p) “a (| < ae 0 o, = e 0,
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Plol  PITu
COVERNTOVES

Consequently, by (5.3.43), the series Y50 ] converges absolutely and we

deduce that N "
X | PY v
=Y [w — vy (puy) U)j| :

n=0

In particular,
+oo

va (1)) =D [va(pua) — va(pon)] =0,

n=0

and

+oo V) PT;+1 UV 9
NEVEDY [ (p]g<)\)”+<10 ) — v (pva) ] :

n=0

Therefore (5.3.42) becomes

too | vy ].:)n+1 (N
K"(\) = wx (p*02) = 3 (pv3) + 23 [ (pk(;)nff ) — U (PUA)QI -

n=0
To conclude the proof of the lemma, we establish that K”(\) > 0, from which the strict
convexity of K follows. By (5.3.36),

K"(\) = Dy (ﬁi) +2 io {M (ﬁxf’?ﬁx)} 7 (5.3.44)

where for any A € R, py = p — Ux(p)vg. Moreover, Conditions 5.1 and 5.3 and Lemma
5.3.14 imply that the normalized transfer operator P together with the function jy
satisfies Conditions 5.1 and 5.3. In conjunction with (5.3.44) and Lemma 10.3 of [37],
this proves that (5.3.44) and so (5.3.39) is positive. O

5.4 Proofs in the critical case

In this section we prove Theorem 5.2.1. By (5.3.3) and (5.3.10), the survival proba-
bility of the branching process is related to the study of the sum

n—1

-1 —Sh -S|

g, =Y e g
k=0

where (S,,),>0 is a Markov walk defined by (5.2.5). Very roughly speaking, the sum g, *
converges mainly when the walk stays positive: S; > 0 for any £ > 1 and we will see that
(at least in the critical case) only positive trajectories of the Markov walk (.S,,),>¢ count
for the survival of the branching process.

Recall that the hypotheses of Theorem 5.2.1 are Conditions 5.1-5.3 and £'(0) = v(p) =
0. Under these assumptions the conclusions of all the theorems of Section 5.3.3 hold for
the probability P;, for any ¢ € X. Recall also that Ef , is the expectation corresponding
to the probability measure (5.3.24). We carry out the proof through a series of lemmata.

Lemma 5.4.1. Assume conditions of Theorem 5.2.1. For any m > 1, (i,y) € supp(V),
and j € X, we have

lim P;(Z,>0; X, =j|7,>n)=E (¢.)v(j).

n—-+o0o



240 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

Proof. Fix m > 1, (i,y) € supp(V), and j € X. By (5.3.2), for any n > m + 1,

Pi(Zn>0,X,=3,7>n)=E P (Z,>0|X1,....X,) ; Xpn=7,7,>n)
:Ei(Ei(Qm‘Xlw--an>;Xn:j77y>n)
:Ei(Qm;Xn:j>Ty>n)'

Thereby, using Lemma 5.3.12, we conclude that

lim P;(Z,>0;X,=j|7,>n) :nl_iglooEi(qm; Xn=7l1y>n)=E, (¢gm)v(j).

n—-+o00

0
By Lemma 5.3.3, we have for any (i,y) € supp(V), k> 1and n > k + 1,
0 < 7 < 1 i= max J{g(<11))2 <400 P -as. (5.4.1)
By (5.3.11) and (5.3.13), this equation holds also when n = k. Moreover, by Lemma
5.3.3,
Moo = 1M 7p € 0,7 P -as. (5.4.2)

Let ¢ be the following random variable:
+o0 -1
(oo i= [Z e 5k nkﬂ,oo} € [0, +o0]. (5.4.3)
k=0
The random variable ¢3! is P -integrable for any (i,y) € supp(V): indeed by (5.4.2),
+00
o <D e,
k=0

Using Lemma 5.3.13, for any (i,y) € supp(V)

= (1 + max(y,0))e?
Ef, (4 ) < 7E, < e5k> < i < +00. (5.4.4)
() N kz:;) V(i,y)

Lemma 5.4.2. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V),

lim Ef, (|g." - al]) =0, (5.4.5)

m—+0o0 Y

and
lim Ef (|gm — goo]) = 0. (5.4.6)

m—+oo Y

Proof. Let (i,y) € supp(V) and fix [ > 1. By (5.3.10) and (5.4.3), we have for all
m=1+2,

B2, (o' — ) <B4

m—1 +o0o
—Sm -S -S
e+ e K g — Y€ knkJrl,oo)
k=0 k=0

l
< EZ?/ (e_S'rn) + ]Ez_y (Z e Mht1,m — nk+1700|>
k=0

k=l+1 =

m—1 40
+ E::y ( Z e_sk |77k+1,m - nk+1,oo|> + ]E:y (Z e—sk 77k+1,oo> .
k=m
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By (5.4.1) and (5.4.2),

l +o00
]E‘Z_y (’q;zl — g ) < Ez_y (e_sm) + E;,_y (l;) e Mig1m — 7]k+1,oo|> + UE;,ry (kzl:l e—&) .
= =i+

Using Lemma 5.3.13 and the Lebesgue monotone convergence theorem,

E, (|an' - a2])

¢ (14 max(y,0))e¥ 1 oo (&
s V(i y) mrz 2 |3/2 +E 1;)6 "Mt 1m — Mht 1,00

k=1+1
c(1+ max(y,0))e? [ 1 0 Lo
< ; . - ) . n
V(i y) m3/2 + Vi T iy I;)e k41, Mhe-+1,00|

Moreover, by (5.4.1) and (5.4.2), we have St ;e ™ [Mei1m — Thitoo]l < 1420 e 5k

which is ]P;,r ,-integrable by Lemma 5.3.13. Consequently, using the Lebesgue dominated

convergence theorem and (5.4.2), when m — 400, we obtain that for any [ > 1,

. _ _ cn (1 4+ max(y,0)) e
e, (o o) < LD
m o] 7y) l

Letting | — +o0 it proves (5.4.5).
Now, it follows easily from (5.3.4) that ¢, < 1: for any ¢ > 0 and m > 1, we
write that Py, (¢! <1—¢) <Pf, (¢5) —¢,,' < —¢). Since by (5.4.5), g, converges in

m

Py, -probability to ¢, it follows that for any e > 0, Pf, (¢3! <1—¢) =0 and so

oo < 1 P} -a.s. (5.4.7)

Consequently, ‘Qm _QOo’ = ml ’(.ZT_rLl _qO_O:L’ < |q7711 _qgoly and by (545)7 it proves
(5.4.6). O

Let U be a function defined on supp(V') by
U(i,y) = Ef, (4eo) -
Note that for any (i,y) € supp(V), by (5.4.4), ¢ > 0 P{,-a.s. and so
Uli,y) > 0. (5.4.8)
By (5.4.7), we have also U(i,y) < 1.

Lemma 5.4.3. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V) and
J € X, we have

lim lim P;(Z,>0;X,=j|n >n)=v()U(,y).

m——+00 n——+00

Proof. By Lemma 5.4.1, for any (i,y) € supp(V), 7 € X and m > 1, we have

Wm P;(Zny >0; X, =j|7,>n)=v()E], (gn)-

n—-+o0o

By (5.4.6), we obtain the desired equality. O



242 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

Lemma 5.4.4. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V) and
0€(0,1),
lim limsupP; (Zm >0, Zign = OlTy > n) = 0.

m—+00 n_1c0
Proof. Fix (i,y) € supp(V) and 6 € (0,1). For any m > 1 and any n > 1 such that
|0n| > m + 1 we define 6,, = |On] and we write
Iy :Pz(Zm >0, Zgn =0, Ty >TL)

=P (Z,>0,7,>n)—P;(Zy, >0, 7, >n)

:Ez(Pz(Zm >O|X1,,Xm> ) Ty >7’L)—EZ(IP)Z(Zgn >0|X1,,X@n) 3 Ty >n)
By (5.3.2),

Io = Ei (|gm — g0,] ; 7y > 7).

We define J,(i,y) :=P; (7, > p) for any (i,y) € X x R and p > 0 and consider

I :PZ<Zm >O, Zgn :0’7'3/ >n)
for any (i,y) € supp(V'). By the Markov property, for any (i,y) € supp(V),

[0 Jn79 <X9 Y+ 59 ) )
- L 2 LT, >0, .
Jn(i,y) Jn(i,y) Y

By the point 2 of Proposition 5.3.7,

[1:

=E, (Iqm — o, |

C

\/ (1 - G)an(z, y)

Using also the point 3 of Proposition 5.3.6, we have

I; < ]Ei(|qm_q9n|(]‘+y+89n) §Ty>9n)'

C

\/ (1 - 0)”‘]“(27 y)

Using (5.3.4) and (5.3.24), we obtain that

I <

Ei (|Qm - QOH‘ (1 + V(X9n7y+ SHn)) s Ty > en) :

&
Il < ]P)i (T > en) + V(Zv y)Ej— (|Qm — 4o,
(1= 0)ndn(i,y) ( ’ !

Using the point 1 of Proposition 5.3.7, for any (i,y) € supp(V),

).

1 1 2mo

JO=0Ondu(iy) S = 0P (r, > n) "+ 2/T— 8V (i,y)

Moreover using again the point 1 of Proposition 5.3.7 and using (5.4.6),

P, (7, > 0,) + VEWES, (g0 — a0.]) — VEWEL, (40— g.l).

Therefore, we obtain that, for any m > 1 and 6 € (0, 1),

J’_
By (Iam — aool) -

limsup [; <

C
n—-+oo vV 1 — 8

Letting m go to 400 and using (5.4.6), we conclude that

lim limsup/; = lim limsupP; (Z,, >0, Zy, =0|1, >n)=0.

Mm—+00 p_ 100 m—400 p_y400
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Lemma 5.4.5. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V), j € X
and 6§ € (0,1),

lim P; (Zjgn) >0, X, =3 |7, >n) =v(j)U(i,y).

n—-+o0o
In particular,
lim P, (ZtgnJ >0 ‘ Ty > n) =U(i,y). (5.4.9)

n——+00

Proof. Fix (i,y) € supp(V') and j E X. Let 0, := [6n] for any 0 € (0,1) and n > 1. For
any m > 1 and n > 1 such that 6,, > m + 1, we erte

P;(Zy, >0, X, =j|1,>n)
=Pi(Zn>0, 2y, >0, X, =j|7,>n)
=P (Z,>0,X,=j|1,>n)—P;(Z,>0,2Zy, =0, X,,=3j|7, >n).
By Lemma 5.4.4,
lim limsupP; (Z,, >0, Zp, =0, X,, =j|7, >n)

m—=+00 p_stoo

< lim limsupP; (Z, >0, Zp, =0|7, >n) =0.

m—+00 py4o0

Therefore, using Lemma 5.4.3, it follows that

lim P;(Zy, >0, X, =j|7, >n)=v()U(,y).

n—-+o0o

Lemma 5.4.6. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V),
lim P;(Z,>0|1,>p)=U(,y).

p—r—+o0
Proof. Fix (1,y) € supp(V). For any p > 1 and 6 € (0,1), we have
Pi(Z,>0,7,>8+1)+P(2,>0,p<7,<b+1)
P; (Ty > p) .

P, (Z,>0|1,>p) =

Let n = [gJ + 1 and note that [6n] = p. So, by (5.4.9),

, , P (Z,>0,p<T7,<n)
lim P;(Z, lim ————= - F ’ g
i Bi(Z > 017, > p) = Ulig) Jim okt =0 S

By the point 1 of Proposition 5.3.7, we obtain that

P, (Z,>0,p<1,<n)
pgmooIP’ (Z,>0|1,>p)=U(i, y)\/_—f-pll)gloo B (7, > p) :

Moreover, using again the point 1 of Proposition 5.3.7, for any 6 € (0, 1),

P (Z,>0,p<7,<n) <Pi(7—y>p)_Pi(Ty>n> — 1-0.
P; (1, > p) P; (1y > p) proo

Letting 6 — 1, we conclude that
lim P;(Z,>0]|1,>p)=U(i,y).

p—)OO
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Lemma 5.4.7. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V) and
6 € (0,1),
lim P; (Zign >0, Zn:O‘Ty>n> =0.

n—-+o0o

Proof. For any (i,y) € supp(V), 0 € (0,1) and n > 1,
Pi (Zign) >0, Zn=0|7y > n) =PBi (Zjgn) > 0|7, >n) = P; (Zy > 0|7, > n).
From (5.4.9) and Lemma 5.4.6, it follows

Pi (Zion) >0, Zo = 0|7y >n) — Uli,y) = U(i,y) = 0.

n—-+0o0o
0
Lemma 5.4.8. Assume conditions of Theorem 5.2.1. For any (i,y) € supp(V) and

JjeX,
lim P;(Z,>0,X,=j|1,>n)=v()U(y).

n—-oo
Proof. For any (i,y) € supp(V), j € X, 0 € (0,1) and n > 1,
Pi(Zy >0, Xo=j|7y>n)=Pi(Zpn >0, X, =j|7,>n)
~Pi (Zign) > 0, Z, =0, Xp = j| 7, >n)
Using Lemmas 5.4.5 and 5.4.7, the result follows. O]
Proof of Theorem 5.2.1. Fix (i,7) € X2, For any y € R, we have
0<P(Z,>0,X,=5)-P;(Z,>0,X,=j,7,>n)<P;(Z,>0,7,<n). (5.4.10)

Using (5.3.2),
P;(Z, >0, Tygn):Ei(qn; Ty <n).

Moreover, by the definition of ¢, in (5.3.1), for any & > 1,

/ / _ .5
@ < fy, (1) X oo X fy, (1) = e
Since (qx)r>1 is non-increasing, we have ¢, = minjcp<, g < e™Mi<k<n 5t Therefore

P;(Z,>0,1,<n)

ming<p<n Sk .
< E; (e Isksn 2k o1, < n)

+o0o
— oY | eminicr<n{y+Sk} . _ i < — < )
e I;}El (e i —(p+1) < lr&lgn{erSk} <—p, 7, <Nn

+oo
<e Y e PP (Typr1 > n). (5.4.11)
p=0

By the point 2 of Proposition 5.3.7,

ce ¥ X ce ¥ (1 + max(y,0))
P, (Z,>0,71,<n)= e ?(1+p+1+max(y,0)) < L
! Vn ; Vn

(5.4.12)
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Note that from the point 3 of Proposition 5.3.6, it is clear that there exits yo = yo(i) < +00
such that for any y > yo, we have V (i,y) > 0 i.e. (i,y) € supp(V) (for more information
on supp(V') see [38] /Chapter 3). Using Lemma 5.4.8 and the point 1 of Proposition 5.3.7,
for any y > vo,

WU )V (i,y)

VIl (Zn >0, Xo = J s 7y > ) 22 (5.4.13)
n—-+4o0o 27T0'
Let
I(i,§) = lim inf /nP; (Z, > 0, Xy = j)
and

J(i,7) = limsupv/nlP; (Z, >0, X, = j).

n—-+o0o

Using (5.4.10), (5.4.12) and (5.4.13), we obtain that, for any y > yo(4),

2v(j)U (i, y)V (i,y)

oo < I(i,7)

2v(HU G, y)V (i, y)

< J(4,7) <
2ro

+ce ¥ (14 max(y,0)) < +o0.
(5.4.14)

From (5.4.13), it is clear that y — W is non-decreasing and from (5.4.14) the

function is bounded by 1(i,7)/v(j) < +o0o. Therefore

u(i) :== lim 20 (i, y)V (i, y)

y—too 2ro
exists. Moreover by (5.4.8), for any y > (i),

2U (i, y)V (i,y)

2mo

> 0.

uli) =

Taking the limit as y — +o0 in (5.4.14), we conclude that

lim 0P (Z, >0, X, = j) = v(j)u(i),

n—-+o00

which finishes the proof of Theorem 5.2.1.

5.5 Proofs in the strongly subcritical case

Assume the hypotheses of Theorem 5.2.2 that is Conditions 5.1-5.3 and k(1) < 0. We
fix A = 1 and define the probability P; and the corresponding expectation E; by (5.3.37),
such that, for any n > 1 and any ¢g: X" — C,

~ EZ GS" X17---7Xn V1 Xn

(5.5.1)
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By (5.3.2), we have, for any (i,7) € X? and n > 1,
Pi (Zne1 >0, Xo1 = j) = Ei (gns1, Xng1 =)

i X k(1)
(5 et e =3 K1)

INEi (e_Sn dn (f](())) ) Xn+1 = ]) k(l)

Il
=h

v1(4)

Y

where ¢,(s) is defined for any s € [0, 1] by (5.3.1). From Lemma 5.3.2, we write

e gy (f;(0)) = [1—11}(0) + :z: en =Sk Mt (f](()))]
1 n - -1
= [1—12(0) + kz::l I it (f](()))l . (5.5.2)

As in Section 5.3.2, we define the dual Markov chain (X),.,, where the dual Markov
kernel is given, for any (i, j) € X?, by

e’ vy ()
k(Dvy(i)

Let (S¥)n=0 be the associated Markov walk defined by (5.3.16) and

Pi(i, j) = P1(5,1)

= P(]al)

i) = |+ et (553

where

Me(J) = gx; (fx,;g1 o---0 fxro fj(o)) and  77(j) == gx; (f;(0)). (5.5.4)

Following the proof of Lemma 5.3.2, we obtain

¢ (j) = e (1—fX;;0"‘OfX{0fj(0))- (5.5.5)

We are going to apply duality Lemma 5.3.5. The following correspondences designed by
the two-sided arrow <— are included for the ease of the reader:

X]: — Xn—k+17

Sy +— Sp_k — S,
Ni(J) < Mn—is1,n (f5(0)),
@i (j) — e g, (f;(0)).

Now Lemma 5.3.5 implies,

na1 21(7)v1(7) e=*U)

P; (Zn-i-l >0, Xn+1 = ]) = INE;( (qZO) ; X;Lk"‘l - Z) k(l) I)l(l)?}l(])

. (5.5.6)

where IE; is the expectation generated by the trajectories of the Markov chain (X})
starting at X = 7.

n=0
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Note that, under Condition 5.2, by Lemma 5.3.3 we have, for any j € X and £ > 1

S () < 0= max g <t Fas (5.5.7)

In particular, by (5.5.3),
(7)€ (0,1}, Vn>1.

For any j € X, consider the random variable

-1

. (j) = 1_f]( +Ze k(g € [0,1]. (5.5.8)

Lemma 5.5.1. Assume that the conditions of Theorem 5.2.2 are satisfied. For any j € X,

i () =qG) € 0.1, Bjas (5.5.9)
and
i B (1430) - 4 () = 0. (5.5.10)

Proof. Fix j € X. By the law of large numbers for finite Markov chains,

Sl;k ~ TH*
= e U1(—p), P’-a.s.

This means that there exists a set N of null probability I@’;"(N ) = 0, such that for any
w e Q\ N and any € > 0, there exists ko(w, €) such that for any k > ko(w, €),

e S () (w) < e iTRe g

where for the last inequality we used the bound (5.5.7). By Lemma 5.3.15, we have
v1(p) = K'(1)/k(1) < 0. Taking e = —1(p)/2 we obtain that, for any k > ko(w),

—S*(w %/ - 1(p)
0 < e i) (w) <72 .

~' € [1,400) which proves

Consequently, the series (¢%(j))”" converges a.s. to (g% (5))
(5.5.9).
Now the sequence (¢ (j))n>1 belongs to [0,1) a.s. and so by the Lebesgue dominated

convergence theorem,
lim E5 (lg () — ¢%()]) = 0.

n——+o0

]

Lemma 5.5.2. Assume that the conditions of Theorem 5.2.2 are satisfied. For any
(i,7) € X2,
lim E5 (¢507); X =) = 21()E; (¢ (4))

n—+oo  J

Proof. Let m > 1. For any (i,7) € X% and n > m,
B (4307): Xow = 1) = B (00)5 Xis = 1)+ (420) — ()5 Xy =) . (5.5.11)

By the Markov property,

E; (45,(5); Xpp1 =) = E; (q:n@ (P
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Using (5.3.18) (which holds also for P} by Lemmas 5.3.14 and 5.3.4) and (5.5.10), we
have

lim lim IE*( () Xo :z') = lim E* (g5, (9) 21(3) = IE (¢ (7)) D1(3). (5.5.12)

m—-+00 n—-+00 m—+400

Moreover, again by (5.5.10),

E; (0n07) = (i) Xopn =) < lim Tim B3 (g5 () — g5 ()])

m—-+00 n—-+00

= lim B} (lg%(5) — 4 (7))

m——+00

=0.

lim lim
m—+400 n—-+00

Together with (5.5.11) and (5.5.12), this concludes the lemma. O
Proof of Theorem 5.2.2. By (5.5.9), the function

D1(j) e "D EX (¢ (7))
U1 (])

u(j) =

is positive. The result of the theorem follows from Lemma 5.5.2 and the identity (5.5.6).

5.6 Proofs in the intermediate subcritical case

We assume the conditions of Theorem 5.2.3, that is Conditions 5.1-5.3 and £'(1) = 0.
As in the critical case the proof is carried out through a series of lemmata.

The beginning of the reasoning is the same as in the strongly subcritical case. Keeping
the same notation as in Section 5.5 (see (5.5.1)-(5.5.6)), we have

(9 D e—rU)
Pi Zn >07Xn =7 :E* (J 7X* =1) k(1 n+1V1(]>U1(Z)e .
( +1 +1 j) j (Qn(j) n+1 ) ( ) 1/1( ) 1(])

Under the hypotheses of Theorem 5.2.3, the Markov walk (S;;)n>0 is centred under
the probability IP); for any j € X: indeed 1/1( p) = —k'(1)/k(1) =0 (see Lemma 5.3.15)
and by Lemma 5.3.14, Conditions 5.1 and 5.3 hold for P;. In this case, by Lemma 5.3.4,
Conditions 5.1 and 5.3 hold also for P*. Therefore all the results of Section 5.3.3 hold
for the probability P*. Let 7* be the exit time of the Markov walk (z + S*),=o:

(5.6.1)

=inf{k>1:2+5; <0}.

Denote by ‘N/l* the harmonic function defined by Proposition 5.3.6 with respect to the

probability P*. As in (5.3.24), for any (j,z) € supp(V;"), define a new probability I@’ﬁ
and its associated expectation E; on o (X, n > 1) by

Tk * * 1 * * *\ Y7k * * *

Bt (g(X7,. - X)) o= =B (g (X7, ..., X)) V7 (X5, 24 83) 5 72 > n)
Vi'(J, )

for any n > 1 and any ¢g: X" — C.

Lemma 5.6.1. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
m > 1, (j,2) € supp(V)*), and i € X, we have
lim ]E*( an(j); Xoy =

n—+too 7

i| 7> n4+1) =EL (g,() 9100).
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Proof. The equation (5.5.5) gives an explicit formula for ¢, (j) in terms of (X7,..., X}).
Therefore, the assertion of the lemma is a straightforward consequence of Lemma 5.3.12.
O

As in Section 5.5, using Lemma 5.3.3 we have for any (4, z) € supp(V;*) and k > 1

x( : _ f//( ) m*+
0 < 7i(j) < n = max e and ¢ (j)€(0,1], Pilas.  (5.6.2)
Consider the random variable
1 —1
G () = ll—f —i—Ze ] e [0,1]. (5.6.3)
] —

Lemma 5.6.2. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(4, 2) € supp(Vy")

Jlim E5E (|0, 0) 7 = (@ 0))7Y]) =0, (5.6.4)
and
Jlim E5E (1a5,() — 4% () = 0. (5.6.5)

Proof. Fix (j,2) € supp(V;"). By (5.5.3), (5.6.3) and (5.6.2), for any m > 1,

k=m-+1

B (a0 — (a2 )™)) < Bt ( = ) |

From this bound, by Lemma 5.3.13 and the dominated convergence theorem when m —
+00, we obtain (5.6.4).
Now by (5.6.2) and (5.6.3) we have for any m > 1,

Bt (15, () — a0 = E5L (143 ()ai ) (g6 ™ = (a2 G) 7))
<EL (|00 = (@G) ),
which proves (5.6.5). O

Let U be the function defined on supp(V;*) by
U*(4,2) = E;f (a5.(4)) -

Using (5.6.2) and Lemma 5.3.13, we have
INEd * 0 \\— 1 * S*
Bt ((a0))7") < o it (Ze k> < +o0. (5.6.6)
j

Therefore ¢, > 0 Pf,-a.s. and so U*(j, z) > 0. In addition, by (5.6.3), U*(j,z) < 1. For

any (j, z) € supp(Vy*),
U*(j, 2) € (0,1]. (5.6.7)

Lemma 5.6.3. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(7,2) € supp(Vy") and i € X, we have

lim lim E*( ) X =

m—+oon—+oo  J

i| 72> n41) = UG, 2)i(i).
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Proof. The assertion of the lemma is straightforward consequence of Lemmas 5.6.1 and
5.6.2. 0

Lemma 5.6.4. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(7,2) € supp(V}*) and 6 € (0,1), we have

TS >n+1):0.

lim lim supIE — lon )‘

m—+00 p_y 105 (‘qm

Proof. Fix (j,2) € supp(V;") and @ € (0,1). Let m > 1and n > 1 be such that fn > m+1.
Set 6, = [6n]. Denote

a:.(5) — 4, 5)]

Note that by the point 1 of Proposition 5.3.7, we have J,,(j, z) > 0 for any n large enough.
By the Markov property and the point 2 of Proposition 5.3.7,

]0 = E;(

T, >n+ 1) and In(jy 2) == ~;‘- (17 >n).

z

Iy = E*(

G ) = 45, ()] Jnsro, (X5, 2+ S5,) 3 75 > 6a)

() = a5, (D] (1+2+S5,) 575> 6a) .

Jn+1(j7 Z)
< ¢ fE“f(
= Jr1(J,2)vVn+1—6, 7

Using the point 3 of Proposition 5.3.6 and (5.6.2),

() = a5, )| (L+ V7 (X5, 24 55,)) 5 72 > 6a)

Iy < ¢ £ (
Jn+1(j7 Z) TL(]. - 6)
C ~ ~ ~
< P’ (17 > 6,) + Vi(j, 2)EE
Jni1 (G, 2)/n(1 = 6) (F A

By the point 1 of Proposition 5.3.7 and (5.6.5), we obtain that

a.(0) = 4,0)))) -

limsup Iy < limsup ————E* (|g2,(7) — 45, ()]) = ——E5F (l4.() — ¢ ()])-
n—+00 n—+oo  /n(1 —0) (1-0)

Taking the limit as m — 400 and using (5.6.5), we conclude that

lim hmsupE* (‘q;(j) ~ Qlon] (j)‘ TS >n+ 1) = 0.

m—+00 p_sio00
]

Lemma 5.6.5. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(7,2) € supp(Vy*), i € X and 6 € (0,1), we have

lim E ( lon) ()3 Xop1 =

n—-+00

i\ > 1) = U, 2)i(i).

Proof. For any (j,2) € supp(Vy), i € X, 6 € (0,1), m > 1 and n > m + 1 such that
|On| > m, we have

Iy = E}k (QTgnJ () Xoy1 =

=E; (q:n(J) P X =1

i\ >n+1)

>0+ 1) + B (qfon () — gh(); Xpo =i |7 >n+1).

=:1
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By Lemma 5.6.4,

lim sup lim sup | /1| < hm hmsupE (’qwn qm(j)‘ T, >n+ 1) =0.

m—+400 n—+o00 —+00 pyt

Consequently, using Lemma 5.6.3,

lim Io= lim lim Ej(q,(); Xpp, =i

n—-+00 m—4oon—+oo 7

5> n41) = U, 2)i(0).
O

Lemma 5.6.6. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(7,2) € supp(Vy*), we have

RLRACHE)

Proof. Fix (j,2) € supp(V;*). For any p > 1 and # € (0,1) set n = |p/#] + 1. Note that
= |On|. We write, for any p > 1,

T >p+1) =U(j,2).

]E; (q;(j); T >n+1)+]Ej» (q;(j);p+1<7'j<n+1)
P (mr>p+1) '

E; (g5()

7'2*>p+1>:

By Lemma 5.6.5 and the point 1 of Proposition 5.3.7,

E* (¢ T >n+1 ~*7‘>n+1
](f;( dk ) ZE*(% X1 =1|7; >n+1) ~i( )
Ps(rr >p+1) =t (rr>p+1)
e U*(4, 2)V0.
Moreover, using (5.6.2) and the point 1 of Proposition 5.3.7,
E(q¢();p+l<ti<n+1 Pr(r7>n+1
](qp(J)N*p )<1— (>ntl) o
Pj(7:>p+1) IP (¥ >p+1) portoo
Therefore, for any 0 € (0, 1),
pErEOOE (@) | >p+1)-U (j,z)\@‘ <1-0.
Taking the limit as & — 1 it concludes the proof. O

Lemma 5.6.7. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(7,2) € supp(V}*) and 6 € (0, 1), we have

lim E* (‘q’[gnJ(j)—qu(j)’ Tz*>n+1> =0.

n—-+00 J

Proof. Using the fact that n;(j) are non-negative and the definition of ¢’ (j) in (5.5.3),
we see that (¢%(j))n>1 is non-increasing. Therefore, using Lemmas 5.6.5 and 5.6.6,

Iy:= Tim B (|glon () - q,t(j)! T >n+1)
ZnEfEOOZE (alon) ()5 Xy = T:>n+1)—ng§mx@*( ¢ T >n+1)

= U*(]7 ) - U*(]v ) =0.
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Lemma 5.6.8. Assume that the conditions of Theorem 5.2.5 are satisfied. For any
(7,2) € supp(Vy*) and i € X, we have
lim B (q5(); Xy =

n—+oo  J

i| 7> n41) = UG, 2)i(i).

Proof. By Lemmas 5.6.5 and 5.6.7, for any (7, z) € supp(V;*), i € X and 6 € (0,1),

I ::nE{POOE ( n(): Xpp =1\ T >n+1)
+ lim B (63(5) = alon () Xip = |72 > n+1)

:U(7 )Vl()‘
L]

Lemma 5.6.9. Assume that the conditions of Theorem 5.2.3 are satisfied. There exists
@ a positive function on X such that, for any (i,7) € X2, we have

B; (1:0): Xen =1) "

Proof. Fix (i,7) € X2. For any z € Rand n > 1
0 <ES (q0(); Xppy =) —E; (¢3(); Xipy =i, 77 > n+1)
SENg(); o <n+1). (5.6.8)
Since ¢£(j) < 1 (see (5.6.2)), we have
E; (gn(7); 72 <n+1) SEj (q(7) s 72 <n) + B (72 =n+1). (5.6.9)

By (5.5.5), ¢;(j) < e%, for any k n. Since (¢:(j))n>1 is non-increasing, we have
@ (J) = minycpen gi(j) < emMisken 5 Consequently,

fE*’ (q7*1<]) ; o < n) <e’” ]E;( (eminlgkgn 245} : T; < n)

—+oco
ge—zze—pp*< (p+1) < m1n z+ 5 < paT;<n>

\\TL

—+o00
< e’ZZe’pIP’* ( il > n)
p=0

Using the point 2 of Proposition 5.3.7,

ce * (1 + max(0, z))
vn '
By the point 3 of Proposition 5.3.6, there exists zp € R such that for any 2z > z,

Vi(j,2) > 0, which means that (j,z) € supp(V;"). Therefore, using the point 1 of
Proposition 5.3.7, for any z > z,

Jlim VP (r =n+1) = im VnPj (17 >n) — Jlim VnPj (17 >n+1)=0.
(5.6.11)

E? (q;(j); 2 < n) < (5.6.10)
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Putting together (5.6.9), (5.6.10) and (5.6.11), we obtain that, for any z > =z,

lim \/ﬁf@;‘ (gr(5); 7 <n+1)<ce®(1+max(0,2)). (5.6.12)

n—-+4o0o

Moreover, using Lemma 5.6.8 and the point 1 of Proposition 5.3.7,

. Tk * [ - * . * 2‘71*(]7 Z) * [ - ~ .
Jlim /nlE; (:0); Xppa =i, 77 >n+1) = WU (J, 2)&1(4), (5.6.13)

where &, is defined in (5.3.39). Denoting
16, ) = lim inf v/} (q;(j); X5i0 = i)
and

J(i,§) = limsup v/nlE; (g5(j) 5 Xjyy = 1)

n—-+00

and using (5.6.8), (5.6.12) and (5.6.13), we obtain that, for any z > 2z,

U219y < 169 (5.6.14)
< J(i,7) < Wl;gi;f)U*(j, 2)01(i) + ce™* (1 + max(0, 2)) .

By (5.6.13), we observe that z +— M is non-decreasing and by (5.6.14), this
y V276

function is bounded by (i, 7)/P1(i). Consequently the limit

L 2V, ) U (G, 2)

exists and for any z > zg, by (5.6.7),

2V (4, 2)U* (4, 2)
vV 271'5'1

Taking the limit as z — +o0 in (5.6.14), we conclude that

u(j) = > 0. (5.6.15)

1(7’7]) = J<Z7j> = ﬁ(])l)l(l)

Proof of Theorem 5.2.3. By (5.6.15) the function

u(j) = a(j) . VieX,

is positive on X. The assertion of Theorem 5.2.3 is a consequence of (5.6.1) and Lemma
5.6.9.
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5.7 Proofs in the weakly subcritical case

We assume the conditions of Theorem 5.2.4, that is Conditions 5.1-5.3 and v(p) =
K'(0) < 0, K'(1) > 0. By Lemma 5.3.15, the function A — K’()) is non-decreasing (in
fact increasing under Condition 5.3, see Lemma 10.3 in [37]/Lemma 4.10.3 of Chapter
4). Consequently, there exists A € (0, 1) such that

K'(\) = ’;&) = 0y(p) = 0. (5.7.1)

For this A and any ¢ € X, define the changed probability measure P; and the corresponding
expectation E; by (5.3.37), such that for any n > 1 and any g: X" — C,

Ei (X g(Xa,-, Xo)oa (X))
TNEING! '

Our starting point is the following formula which is a consequence of (5.3.1): for any
(i,j) € X* and n > 1,

Ei (g(Xb s 7Xn)) =

(5.7.2)

E; (%Hrl; Xn+1 =7, Ty > n)
=:* (e_)‘s" G (f;0) s Xy =34, 7y > n) k(X)L oA (=xoti) (5.7.3)
N)
The transition probabilities of (X,,), ., under the changed measure are given by (5.3.34):

e vy (5)
k(Ao (i)

By (5.7.1), the Markov walk (S,,),>0 is centred under ;. Note that under the hypotheses
of Theorem 5.2.4, by Lemma 5.3.14, Conditions 5.1 and 5.3 hold also for P. Therefore
all the results of Section 5.3.3 hold for the Markov walk (S,,), ., under P;.

/

Let (X}),=o be the dual Markov chain independent of (X,),,.,, with transition prob-
abilities P% defined by (cp. (5.3.15))

5o ) g, s valg) eV
Pi(i,j) = —=P(j,7) = - P(y,7). 5.74
A( j) V)\<Z) (.7 ) I/)\(Z) k‘()\) (j ) ( )
As in Section 5.3.2, we define the dual Markov walk (S7),~0 by (5.3.16) and its exit time
77 for any z € R by (5.3.17). Let P;; be the probability on (€,.%) generated by the
finite dimensional distributions of (X, X}')n>o starting at (Xo, Xg) = (4,7). By (5.7.1),
the Markov walk (S}),>1 is centred under P, ;:

vA(p) =va(=p) =0

and by Lemma 5.3.4, Conditions 5.1 and 5.3 hold for f’* Let V, and ‘7/\* be the harmonic
functions of the Markov walks (S,),,-, and (Sy),~,, respectively (see Proposition 5.3.6).

The idea of the proof is in the line with that of the previous sections: the positive
trajectories (corresponding to the event {7, > n}) affect the asymptotic behaviour of
the survival probability. However, in the weakly subcritical case, the factor e %" in
the expectation E;(e %" ¢, (f;(0)) ; X,41 = j) contributes in such a way that, only the
trajectories starting at y € R conditioned to stay positive and to finish nearby 0, have an
impact on the asymptotic of I (e_’\sn ¢ (f;(0)) ;s Xpi1 = j).

We start by some preliminary bounds. The following assertion is similar to Lemma
5.3.13.
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Lemma 5.7.1. Assume that the conditions of Theorem 5.2.4 are satisfied. For anyi € X,
yeR, k>1andn > k+ 1, we have

end/?
(n _ k)3/2k3/2'
Proof. Fix1 € X,y € R, k> 1 and n > k + 1. By the Markov property,

Iy := n®?E, (e_Sk e Mn Ty > n)

n3/2Ei (efsk e*/\sn P Ty > n) < e(lJr)‘)y(l + maX(y, O))

+o00 ~
< Zn3/2€)\ye_)\pEi (e_Sk ;Y + Sn € [pap+ 1] » Ty > TL)
=0

400 _
= Zn3/2 M e E; (e_s’“ Jn—k (Xk,y + Sk) ; Ty > k‘) ,

p=0
where for any i’ € X,y e Rand p > 1
Tnw('y) =P (y + Sk € [p,p+1], 7y >n— k).

By the point 2 of Proposition 5.3.9,

, c
Jn—k(i'y) < m(l +p)(1+ max(y/, 0)).
Consequently,
32 00
[O < e)\y mEZ (e_sk (1 + Yy + Sk) y Ty > l{) Ze_)‘p(l -+
My en?/?

<€ mﬁz (e_sk (1+y+Sk>,Ty>k)

3/2
cn
<e(1+mwze PR+ pPi(y+ Sk €pp+1]5 7, > k).

(

Again by the point 2 of Proposition 5.3.9,

cnd /2 +o00

I, < oMy (1+max(y,0))wze P2+ p)(1+p).

This concludes the proof of the lemma. n

Forany [ >1andn > 141, set
@ (f500)) =1 = fra1a (f5(0)) =1 = fx,y 0+ 0 fx, © f5(0),

In the same way as in Lemma 5.3.2, we obtain:

oSi—5n

“1-50) z_: e 1 (£5(0)) (5.7.5)

where 7y11.,(s) are defined by (5.3.8). Moreover, similarly to (5.3.4), we have for any
n=>l+122,

G (£3(0) 7

Gn (£;(0)) € (0,1]  Pi-as. (5.7.6)
In addition, by Lemma 5.3.3, for any k < n — 1,

0 < mprin (f5(0) <n Pras, (5.7.7)
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Lemma 5.7.2. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i,7) € X2 and y € R, we have

lim limsup n3/2E (‘ ~Snm n—m.n (fj(o))_l —e 5 4in (fj(o))_l' e Ty > n) = 0.

I;m—+00 pstoo
Proof. Fix (i,j) € X?and y € R. Forany [ > 1, m > 1 and n > [+ m + 1, we have
o 1= 08, (|5 g ((0)) 7 = ¢ i (£(0)) e 5 7, > )

n—m—1

:ng/QE< Z e 77k+1n (f;(0))e )‘S"QTy>n>-

Using (5.7.7) and Lemma 5.7.1,

n—m—1 3/2

1+/\ cn

Let ny := |n/2]. We note that

n—m—1 3/2 cn3/2 1 Cn3/2 n—m—1 1
S G < Z pE T 2 e
— 1 ny k=n1+1
400 1 +o0 1

gc;w+ckg W

Consequently,

n——+o0o

400 1 +o0 1
limsup Iy < cn e(1+A)y(1 + max(y,0)) <Z 1.3/2 + Z 3/2)
k=l k k=m k

Taking the limits as [ — 400 and m — +o0, proves the lemma. O

Forany [ >1,m >1and n > [+ m+ 1, consider the random variables

™) =1 fu ({1 ~ flrnem() (L= fammiin (fj(O)))r)
=1—fx, 00 fx ([1= fi,, () x ...
- X f;(n_m(l) (1 - an—erl ©--0 an © fﬂ(0>>r)

where [t|t = max(¢,0) for any ¢ € R. The random variable r,(ll’m)(j) approximates
¢» (f;(0)) in the following sense:

Lemma 5.7.3. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i,7) € X? and y € R,

(£(0)) =™ ()| e 25 5 7y > ) = 0.

lim limsupn*?E; (

I;m—+00 p—stoo

Proof. Fix (i,7) € X? and y € R. Since for any 7 € X, fy is increasing and convex, the
function fi41,,—m is convex. So, forany [ > 1, m>1andn > 1+ m + 1,

Frern (F50)) = frsrmom G (F500)) 2 [1 = fi1 (D) (1= famirn (£00)]
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Since fi, is increasing,

gn (f3(0)) = 1= fun (£;(0)) < 0™ (),
or equivalently
0 <™ (7) = aa (£5(0)).
Moreover, by the convexity of fi,
i) = an (£5(0))
= 110 it (5(0) = Fua (L= Hesun D) (= i (550))] )
< S0 (St 50 = [1= HercnD) (= fomrran (50))])

< 1) (flprnem(Dan- mn<fj< ) = ain (£5(0)))
= ¥ g (£5(0)) = €% g (£5(0))
= ¥ g (£5(0)) €% i (fj( )

X (7% un (£5(0) 7 = e g (£5(0)) 7).

By (5.7.5), we have g, (f;(0)) < e~ and so

() = da (£5(0)) < € (€ qun (£5(0)" = € G (£35(0)) 7).

In addition, by the definition of r{:™ (j) and g, (f;(0)), we have r{"™(j) — g, (f;(0)) < L.
Therefore, P;-a.s. it holds,

r ™ (5) = go (£5(0)) < min (1,25 (€75 g (£3(0) ™ = ™5 g (£(0)) 7))
Using the previous bound, it follows that, for any integer N > 1,
Iy := n®’E, ( +(0)) — rg’m)(j)’ e M > n)

n (f
< 2WV-Y) 32, (‘ S im (fj(O))_l Y M. (fj(0)>_1‘ e~ ASn . 7, > n)
+ n%?E, (e_AS"; y+S, >N, 1, > n) .

Moreover, using the point 2 of Proposition 5.3.9,

n*2E, (e‘AS"; y+S,>N,1,> n) <> eMe P (y+ S, € pp+ 1], 7, >n)
p=N

< ce(1 4 max(y, 0 Z e P(1+p).
Consequently, using Lemma 5.7.2, we obtain that
li li I 1 (1
it limsup o < ™ (1 + max(y, 0 Ze +p).

Taking the limit as N — +o0, proves the lemma. O



258 CHAPTER 5. BRANCHING PROCESSES IN MARKOVIAN ENVIRONMENT

We now introduce the following random variable: for any 7 € X, v € R, [ > 1 and
m =1

r&m(ju) =1 fx, 00 fx, ([1 —e et q;(j)]+> 0.1

where, as in (5.5.3) and (5.5.5), for any m > 1,

-1
o . ] no
o) = 55 (1 fs 000 fxz 0 f3(0)) = [ Py e nkm]
and as in (5.5.4), for any k > 2,

m() = gx; (fx; 0o fx; o f5(0))  and  nj = gx; (£;(0)).

For any (i,y) € supp(V3) and (j, 2) € supp(Vy), let B}, . and Ef, . . be, respectively,

the probability and its associated expectation defined for any n > 1 and any function g:
Xtm — C by

1%\ (Xl,y-i-Sz)x
V)\(Zay)
;Ty>l,7';>m>.

(5.7.8)

E;yﬁjﬁz (9(X1,..., X, X5, ..., X)) =K, (g (X1, .. X5, X5 XD)

Vi (X, 2+ S5)
Vi (j, 2)

For any j € X let z5(j) € R be the unique real such that (7, z) € supp (‘7,\*) for any

z > zp and (j, z) ¢ supp (VA") for any z < zg (see [38] /Chapter 3 for details on the domain
of positivity of the harmonic function). Set zy(j)™ = max {2(j), 0}.

Lemma 5.7.4. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(4,y) € supp (V,\>, jeX, l>1andm>1,

lim n%/%E, (r(l’m)(j) e M X =4, 7, > n)

n—-+0o00 n

2 Ay oo Az T+ (ym) ¢ ; o Sk - .
= Vorod / e Sy se (rE 0,2 = ) VAl 9) VR, 2) dzia ().
20

Proof. Fix (i,y) € supp (VA), j€X,l>1andm > 1and let g be a function X'*™ xR —
R, defined by

Gl i ety -0y 2) = e Loy Po(in, 5) [1 — fi 0

o fil ({1 _ oz y=plin) = =plin—m+1)=p(i)——p(i1) (1 _ finim+1 o---0f; o f](()))r_)

for all (i1, ..., %, in—mt1s---»in, 2) € X' x R and note that on {7, > n},
g(Xla s 7Xl7Xn—m+17 oo 7Xn7y+ Sn) = T;Lm)(j) e—ASn P)\(lnaj)

Observe also that since 0 < g(i1, .-, i1, tnomt1s - - -+ n, 2) < € e 1,50y, the function

g belongs to the set, say €+ (X”m X R+), of non-negative function g: X'*™ x R, — R
satisfying the following properties:
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— for any (i1,...,41m) € X' the function z — g(iy,. .., 414m, 2) is continuous,
— there exists € > 0 such that max;, ., exSup,sqg(i1, ..., i4m, 2)(1+ 2)?*e < +oo.
Therefore, by the Markov property and Proposition 5.3.10, we obtain that

Iy = lim n’*’E; ( Em) () e X, 1 =7, Ty > n)

n—-+o00

= lim n%°E; (g (X1, X X1+, Xy + 50) 5 1y > n)

n—+o0o
2 e i ) )
= A SR, (P8 (G 2 — ) PA(XE, VA (X y + S
€ i T , 2 , ,
| iy (A2~ 0P )T (Ko + 59

XVI(X5,z+85) 51, > 1,70 > m) Uy\(j') dz.

Since v, is P}-invariant, we write

2 +oo S N~ T m ¥
/ e ST P, AU E (r™ (2 — 9)Va (Xiy + S)

Iy =
V2mo3 Jo =

X Vi (XE, 24 5%) T, > 1, 7] >m‘Xf :jl)dz.
Using the definition of P% in (5.7.4), we have

o= [ e () (MG — )T (X 4 )
V2ra3 Jo 7 ’ ’

XV (X5, 2488 1, > 1, 7 > m) dz.

Now, note that when (7, z) ¢ supp (‘7/{"), using the point 1 of Proposition 5.3.6,
Eij (&G = p)VA (X + SO VY (X 2+ 85) 57 > 1, 72 > m)

<SE (Vi (Xiy+8) 57 > OB (V5 (X, 24 85) 5 770 > m) = Va(i,y)Vi(j, 2) =
Together with (5.7.8), it proves the lemma. O

Consider for any [ > 1, j € X and u € R,

P9 () = 1 — s 0+ 0 fx, ([1 e S q:;o(j)}*) 0,1, (579

where as in (5.5.8),

(i) = L_f]( +Ze‘5 (7 ]_1-

Lemma 5.7.5. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(4,y) € supp (V)\>; (J, 2) € supp (V)\> [>1andu € R,

) = e G w)]) = 0.

Proof. Fix (i,y) € supp <1~/)\> (j,z) € supp (‘7/\*), [ > 1 and u € R. By the convexity of

fi1,, for any m > 1, we have P

lim E (

m—r—+0o0 Y:Ji2

e &S

e () = 189 ()|
< (fx, o---ofxl>'<1>\[1 —e e ()] - [1-eSer g ()]

S
< e

e et qn (j) —e et g, (j)‘
— g, (a0 (@) = (@)Y
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Moreover, for any m > 1,

) = [T+ e )] e 0.1
1 00 -1
(i) = [1_“0) 3]
and by Lemma 5.3.3, for any k£ > 1,
0 < i) <. (5.7.10)
Therefore,
P 0) =G| < ey S e,
k=m-+1

Using Lemma 5.3.13 and the Lebesgue dominated convergence theorem,

By (

2,Y,7,%

M (j,u) = 9 (G u)]) < e 3 B, (e7%).

k=m+1

By Lemma 5.3.13, we conclude that

m1—1>r-|r-looEj_y]Z ( r ) =G U)D =0
O
Forany [ > 1, 7 € X and u € R, set
. u ok N
siju) = [1—e e g2 (4)] . (5.7.11)

Note that, by Lemma 5.3.13, (g% (j)) " is integrable and so finite a.s. (see (5.6.6)). There-
fore s;(j,u) € [0,1). In addition, by the convexity of fx, ,, we have for any j € X, u € R
and [ > 1,

Fr (D) (= s111(5,w))

le+1 (SH‘l(j’ U)) >
= (Xz+1) —Si41 g qzo (]) =1—ede" q; (])

1—
1—

Since fx,,, is non-negative on [0, 1], we see that fx, , (s;11(j,%)) = 5;(j, «) and so for any
k=21, (fir11(s1(4, 1)), is non-decreasing and bounded by 1. Using the continuity of
9x, and (5.3.14), we deduce that (1(s1(j, u))),s, converges and we denote for any k > 1,

Moo (J5 1) == lgfloo Mk (5107, 1)) (5.7.12)

Moreover, by Lemma 5.3.3, we have for any £ > 1,1 > k and u € R,

0<mu(si(fyw) <n and 0 < meooldiu) <. (5.7.13)

For any 7 € X and u € R, set

_u -1

Too(j7u)' q ( +Ze Mk+1,00 .]7 )
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Lemma 5.7.6. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(1,y) € supp (VA>, (7, 2) € supp (VA*) and u € R,
lim E; (

Jim EF ([l (o) = reo(Gw)]) = 0.

Proof. Fix (i,y) € supp (‘7,\), (7,2) € supp (V;) and v € R. By (5.7.9), Lemma 5.3.2
and (5.7.11), we have

(re ) =

So, for any p > 1 and [ > p, using (5.7.13),

-5

+Ze * M1, (5107, w))-

1_3137 k=0

, ~1 .
(T&OO) (j7 U)) - Too(]7 ’ Z e S |77k+1 l(sl(]v )) - nk+1,oo(.]7 U)|
efu e*Sl +oo
+ | — |+ 2 Y ek
w0) TGl T2
Therefore,
. 71 . —

IO _E:ryjz((rgg(m)(.]?u)) _Too(jvu) 1)

Z Elyjz ( 5 |nk+1,l(sl(j7 u)) - nk+1,oo(j7 U)|)

—u 400
- c oS € mt -S
+]Ezy12< ) € l>q* (j)>+277Ei,y<Z € k)?
[e's] k:p+1

where ]?’;L is the marginal law of IP’”” ,ono(X,,n>1). Using Lemma 5.3.13 and the
Lebesgue dominated convergence theorem,

~ +oo B
Iy <Ef, (e Sl)+ZEW( 5 i (5107, 0) — Moo (G w)]) + 20 Y B, (e75)
k=p+1
c(1 4+ max(y,0))eY [ 1 =
< ( x(y ) S 31/2
V(i,y) [ rpin K

+ ZEly]Z ( S ‘nkJrl,l(Sl(j? u)) o nkJrl,OO(j? U)‘) :

—u

-5

T(j)

Since [Mer1,(s51(7, 1)) — Mt1,00(J, w)| < 2m, by the Lebesgue dominated convergence theo-
rem and (5.7.12)

. c(1+max(y,0))e? X 7p
limsup I < -
msup o Vg o, W

Letting p — 400, we obtain that lim; ,, ., Iy = 0. Moreover, by (5.7.9) for any [ > 1,
7o) (5, u) € [0,1]. In the same manner as we proved (5.4.7), we have also

roo(jyu) < 1.
Consequently,
. T+ (l,00) ( ; _ ; ; —
lim E; (‘roo (7,u) roo(],u)D < lginoolo =0.

=400 Y52
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We now consider the function

. . 2 eAMy=r(3) 4, (i too . . . o
Uli,p.3) = MM B s~ ) GG, 2) ),

\/271'0'3 /U)\<j) 20(j

Using (5.7.10), (5.7.13) and Lemma 5.3.13, for any (i,y) € supp (‘7,\>, (7, %) € supp (\7/\*)
and u € R,

1 400 . +o00
; -1 —u -S _S
e (reoliiu)™) <e <1_fj( )+77E1y]z<kzle k>>+n]Ely”<kzle k><+oo.

So 7oo(j,u) > 0 IF’;FMZ a.s. and therefore, for any (i,y) € supp (VA), jexX,

Ui, y,j) > 0. (5.7.14)

Lemma 5.7.7. Assume that the conditions of Theorem 5.2.4 are satisfied. For any
(i,y) € supp (V,\) and j € X, we have

Ui, y, k(N
n—-+oo (n + 1)3/2

Ei (Qn-i-l ; Xn—i—l = i? Ty > n)

Proof. Fix (i,y) € supp (V,\> and j € X. By (5.7.3), for any n > 1,

n+1)%2 -
lo = (k‘(A)”)JrlEi (15 X1 =, 7y > 1)
1\ a—A(5)
uxlt)e ~ _ .
- (U))\(j)(n + 1)%2E; (67" guyrs X1 =3, 7 > n) .

Using Lemmas 5.7.3 and 5.7.4,

vy (i) e=0)

: : 3/2% (..(Lm) [\ o—ASn . _
”EIEOO fo= (lm’})lgl-i-oo nglfoo v (7) (n+ 177, ( (7)€ P X1 =357y > n)
20, (1) My—p(j too )
= lim M y=r(7) Azt rbm (5 2 —
(IL,m)—4o0 \/271'0'31})\( ) 20(j)+ 1,Y,7,2 ( 00 (j y))

X VA(L y)‘N/;(ja Z) dzl))\(])

Since for any [ > 1, m > 1 and u € R, »{™(j,u) < 1, by the Lebesgue dominated
convergence theorem and Lemmas 5.7.5 and 5.7.6,

. 21})\( )\(y p ) 7)\2 + (l 00)
ol fo = V2robon(j) / dim Ef . (r (re™.2 =)

x Wa(i, ) Vi (4, 2) dziy(§)

20, (7) ‘ s .
\/%JBUA Ay—p(i )/ g)+ Zyjz(roo(],z—y))V,\(z,y)VA (7,2) dz)\(j)

=U(i,y,7).
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Proof of Theorem 5.2.4. We use arguments similar to those of the proof of Lemma
5.6.9. Fix (i,7) € X2, Forany y € Rand n > 1, let

Iy = WEZ (@ns1; Xngy1=17J)
and
I =1y — W]Ei (Gni1; Xng1 =4, 7 > n) (5.7.15)
= O R 0 (00 X =57 < )

Since f;(0) > 0, it is easy to see that g, (f;(0)
is non-increasing and Lemma 5.3.2, it holds ¢
Therefore, as in (5.4.11),

(n +1)3/2

(n+1)3/2 B 400 - .
< k( n+1 yze pP n+1:]77_y+p+1>n)-

) < ¢,(0). Using the fact that (gx(0)),,
n (f5(0)) < mingcpen gr(0) < eMmsken 2k,

I

N

E; (emmlgkgn Sy X1 =34, 7y < n)

By (5.7.2),

(n+1)3/2 U)\(Z) o _too . -
L < n3/2 m(]) o Ze " E; (e S Typa > n)

< C ( e Y~ Ap(g Zefpze (y+p+1) 7)\l
p=0

U,\(J)

><n3/2IP’Z-(y—|—p—|—1—|—Sn€ LU+ 1] ;5 Tyrpr > 1)

Using the point 2 of Proposition 5.3.9,

N a=Mo() +00 +00
AP UL Y S e 9P S oM (1 4 max(y + p + 1,0))(1+ 1)
U)\(]) p=0 =0
) e—2P()
% e~ (1=VY(1 4 max(y, 0)).
uA(d)

Moreover, there exists yo(i) € R such that, for any y > y(4) it holds (i,y) € supp (VA)
Using (5.7.15) and Lemma 5.7.7, we obtain that, for any y > yo(i),

n—-+o0o
vy (i) e=0)

e~ (=N max . ..
() (1+ (y,0)). (5.7.16)

This proves that limsup,_,. . [y is a finite real which does not depend on y and so
y — U(i,y,7) is a bounded function. Moreover, by Lemma 5.7.7,

n+1)3/2 _
QE% (Qn+l; Xn+1 =17, Ty > n)
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and so y — U(1,y, j) is non-decreasing. Let u be its limit:
u(i,j) = lim U(iy,j) € R.
By (5.7.14), for any y > yo(i),
uli, j) > Uli,y,5) > 0.
Taking the limit as y — +o0 in (5.7.16),
nl—lgloo Iy = u(i, 7).

Finally, by (5.3.2),

_(n+ 1) o (ng)e
nl_l){{loo WR (Zns1 >0, X1 =7) = nl_lgloo W

= u(i, 7).

E; <Qn+1 ; Xng1 = j)
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