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CONDITIONED LOCAL LIMIT THEOREMS FOR RANDOM WALKS

DEFINED ON FINITE MARKOV CHAINS

ION GRAMA, RONAN LAUVERGNAT, AND ÉMILE LE PAGE

Abstract. Let (Xn)n>0 be a Markov chain with values in a finite state space X starting
at X0 = x ∈ X and let f be a real function defined on X. Set Sn =

∑n
k=1

f(Xk), n > 1.
For any y ∈ R denote by τy the first time when y + Sn becomes non-positive. We study
the asymptotic behaviour of the probability Px (y + Sn ∈ [z, z + a] , τy > n) as n → +∞.

We first establish for this probability a conditional version of the local limit theorem of
Stone. Then we find for it an asymptotic equivalent of order n3/2 and give a generalization
which is useful in applications. We also describe the asymptotic behaviour of the probability
Px (τy = n) as n → +∞.

1. Introduction

Assume that on the probability space (Ω,F ,P) we are given a sequence of real valued
random variables (Xn)n>1. Consider the random walk Sn =

∑n
k=1Xk, n > 1. Suppose first

that (Xn)n>1 are independent identically distributed of zero mean and finite variance. For
any y > 0 denote by τy the first time when y + Sn becomes non-positive. The study of the
asymptotic behaviour of the probability P(τy > n) and of the law of y + Sn conditioned to
stay positive (i.e. given the event {τy > n}) has been initiated by Spitzer [25] and developed
subsequently by Iglehart [18], Bolthausen [2], Doney [9], Bertoin and Doney [1], Borovkov
[3, 4], to cite only a few. Important progress has been achieved by employing a new approach
based on the existence of the harmonic function in Varopoulos [27], [28], Eichelbacher and
König [10] and recently by Denisov and Wachtel [6, 7, 8]. In this line Grama, Le Page and
Peigné [16] and the authors in [12], [13] have studied sums of functions defined on Markov
chains under spectral gap assumptions. The goal of the present paper is to complete these
investigations by establishing local limit theorems for random walks defined on finite Markov
chains and conditioned to stay positive.

Local limit theorems for the sum of independent random variables without conditioning
have attracted much attention, since the pioneering work of Gnedenko [11] and Stone [26].
The first local limit theorem for a random walk conditioned to stay positive has been estab-
lished in Iglehart [19] in the context of walks with negative drift EX1 < 0. Caravenna [5]
studied conditioned local limit theorems for random variables in the domain of attraction
of the normal law and Vatutin and Wachtel [29] for random variables Xk in the domain of
attraction of the stable law. Denisov and Wachtel [8] obtained a local limit theorem for
random walks in Zd conditioned to stay in a cone based on the harmonic function approach.

The ordinary and conditioned local limit theorems in the case of Markov chains are less
studied in the literature. Le Page [21] stated a local limit theorem for products of random
matrices and Guivarch and Hardy [17] have considered a local limit theorem for sums Sn =
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∑n
k=1 f(Xk), where (Xn)n>0 is a Markov chain under spectral gap assumptions and f a real

function defined on the state space of the chain. In the conditional case we are aware only
of the results of Presman [23] and [24] who has considered the case of finite Markov chains
in a more general setting but which, because of rather stringent assumptions, does not cover
the results of this paper. We note also the work of Le Page and Peigné [22] who have proved
a conditioned local limit theorem for the stochastic recursion.

Let us briefly review main results of the paper concerning conditioned local limit behaviour
of the walk Sn =

∑n
k=1 f(Xk) defined on a finite Markov chain (Xn)n>0. From more general

statement of Theorem 2.4, under the conditions that the underlying Markov chain is irre-
ducible and aperiodic and that (Sn)n>0 is centred and non-lattice, for fixed x ∈ X and y ∈ R,
it follows that, uniformly in z > 0,

(1.1) lim
n→∞

(
nPx (y + Sn ∈ [z, z + a] , τy > n) − 2aV (x, y)√

2πσ2
ϕ+

(
z√
nσ

))
= 0,

where ϕ+(t) = t e− t2

2
1{t>0} is the Rayleigh density. The relation (1.1) is an extension of

the classical local limit theorem by Stone [26] to the case of Markov chains. We refer
to Caravenna [5] and Vatutin and Wachtel [29], where the corresponding result has been
obtained for independent random variables in the domain of attraction of the normal law.

We note that while (1.1) is consistent for large z, it is not informative for z in a compact
set. A meaningful local limit behaviour for fixed values of z can be obtained from our
Theorem 2.5. Under the same assumptions, for any fixed x ∈ X, y ∈ R and z > 0,

lim
n→+∞

n3/2
Px (y + Sn ∈ [z, z + a] , τy > n) =

2V (x, y)√
2πσ3

∫ z+a

z

∫

X

V ∗ (x′, z′) ν(dx′) dz′.(1.2)

For sums of independent random variables similar limit behaviour was found in Vatutin and
Wachtel [29]. It should be noted that (1.1) and (1.2) complement each other: the main term
in (1.1) is meaningful for large z such that z ∼ n1/2 as n → ∞, while (1.2) holds for z in
compact sets.

We also state extensions of (1.1) and (1.2) to the joint law of Xn and y + Sn. These
extensions are useful in applications, in particular, for determining the exact asymptotic
behaviour of the survival time for branching processes in a Markovian environment. They
also allow us to infer the local limit behaviour of the exit time τy (see Theorem 2.8): under
the assumptions mentioned before, for any x ∈ X and y ∈ R,

lim
n→+∞

n3/2
Px (τy = n) =

2V (x, y)√
2πσ3

∫ +∞

0
E

∗
ν

(V ∗(X∗
1 , z) ; S∗

1 > z) dz.

The approach employed in this paper is different from that in [23], [24] and [22] which
all are based on Wiener-Hopf arguments. Our technique is close to that in Denisov and
Wachtel [8], however, in order to make it work for a random walk Sn =

∑n
k=1 f(Xk) defined

on a Markov chain (Xn)n>0, we have to overcome some essential difficulties. One of them
is related to the problem of the reversibility of the Markov walk (Sn)n>0. Let us explain
this point in more details. When (Xn)n>1 are Z-valued independent identically distributed
random variables, let (S∗

n)n>1 be the reverse walk given by S∗
n =

∑n
k=1X

∗
k , where (X∗

n)n>1

is a sequence of independent identically distributed random variables of the same law as
−X1. Denote by τ ∗

z the first time when (z + S∗
k)k>0 becomes non-positive. Then, due to
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exchangeability of the random variables (Xn)n>1, we have

(1.3) P(y + Sn = z, τy > n) = P(z + S∗
n = y, τ ∗

z > n).

This relation does not hold any more for the walk Sn =
∑n

k=1 f(Xk), where (Xn)n>0 is a
Markov chain. Even though (Xn)n>0 takes values on a finite state space X and there exists a
dual chain (X∗

n)n>0, the main difficulty is that the function f : X 7→ R can be arbitrary and
therefore the Markov walk (Sn)n>0 is not necessarily lattice valued. In this case the Markov
chain formed by the couple (Xn, y+ Sn)n>0 cannot be reversed directly as in (1.3). We cope
with this by altering the arrival interval [z, z + h] in the following two-sided bound
∑

x∗∈X

E
∗
x∗

(
ψ∗

x(X∗
n)1{z+S∗

n∈[y−h,y], τ∗
z >n}

)
ν(x∗)

6 Px(y + Sn ∈ [z, z + h], τy > n)(1.4)

6
∑

x∗∈X

E
∗
x∗

(
ψ∗

x(X∗
n)1{z+h+S∗

n∈[y,y+h], τ∗
z+h

>n}
)

ν(x∗),

where ν is the invariant probability of the Markov chain (Xn)n>1, ψ
∗
x : X 7→ R+ is a function

such that ν (ψ∗
x) = 1 (see (6.2) for a precise definition) and S∗

n = −∑n
k=1 f (X∗

k), ∀n > 1.
Following this idea, for a fixed a > 0 we split the interval [z, z + a] into p subintervals of
length h = a/p and we determine the exact upper and lower bounds for the corresponding
expectations in (1.4). We then patch up the obtained bounds to obtain a precise asymptotic
as n → +∞ for the probabilities Px(y + Sn ∈ [z, z + a], τy > n) for a fixed a > 0 and let
then p go to +∞. This resumes very succinctly how we suggest generalizing (1.3) to the
non-lattice case. Together with some further developments in Sections 7 and 8, this allows
us to establish Theorems 2.4 and 2.5.

The outline of the paper is as follows:

• Section 2: We give the necessary notations and formulate the main results.
• Section 3: Introduce the dual Markov chain and state some of its properties.
• Section 4: Introduce and study the perturbed transition operator.
• Section 5: We prove a non-asymptotic local limit theorem for sums defined on Markov

chains.
• Section 6: We collect some auxiliary bounds.
• Sections 7, 8 and 9 : Proofs of Theorems 2.4, 2.5 and 2.7, 2.8, respectively.
• Section 10. We state auxiliary assertions which are necessary for the proofs.

Let us end this section by fixing some notations. The symbol c will denote a positive con-
stant depending on the all previously introduced constants. Sometimes, to stress the depen-
dence of the constants on some parameters α, β, . . . we shall use the notations cα, cα,β, . . . . All
these constants are likely to change their values every occurrence. The indicator of an event A
is denoted by 1A. For any bounded measurable function f on X, random variable X in X and
event A, the integral

∫
X f(x)P(X ∈ dx,A) means the expectation E (f(X);A) = E (f(X)1A).

2. Notations and results

Let (Xn)n>0 be a homogeneous Markov chain on the probability space (Ω,F ,P) with
values in the finite state space X. Denote by C the set of complex functions defined on X

endowed with the norm ‖·‖∞: ‖g‖∞ = supx∈X |g(x)|, for any g ∈ C . Let P be the transition
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kernel of the Markov chain (Xn)n>0 to which we associate the following transition operator:
for any x ∈ X and g ∈ C ,

Pg(x) =
∑

x′∈X

g(x′)P(x, x′).

For any x ∈ X, denote by Px and Ex the probability, respectively the expectation, generated
by the finite dimensional distributions of the Markov chain (Xn)n>0 starting at X0 = x.
We assume that the Markov chain is irreducible and aperiodic, which is equivalent to the
following hypothesis.

Hypothesis M1. The matrix P is primitive: there exits k0 > 1 such that for any x ∈ X

and any non-negative and non identically zero function g ∈ C ,

Pk0g(x) > 0.

Let f be a real valued function defined on X and let (Sn)n>0 be the process defined by

S0 = 0 and Sn = f (X1) + · · · + f (Xn) , ∀n > 1.

For any starting point y ∈ R we consider the Markov walk (y + Sn)n>0 and we denote by τy

the first time when the Markov walk becomes non-positive:

τy := inf {k > 1, y + Sk 6 0} .
Under M1, by the Perron-Frobenius theorem, there is a unique positive invariant proba-

bility ν on X satisfying the following property: there exist c1 > 0 and c2 > 0 such that for
any function g ∈ C and n > 1,

(2.1) sup
x∈X

|Ex (g (Xn)) − ν(g)| = ‖Png − ν(g)‖∞ 6 ‖g‖∞ c1 e−c2n,

where ν(g) =
∑

x∈X g(x)ν(x).
The following two hypotheses ensure that the Markov walk has no-drift and is non-lattice,

respectively.

Hypothesis M2. The function f is centred:

ν (f) = 0.

Hypothesis M3. For any (θ, a) ∈ R2, there exists a sequence x0, . . . , xn in X such that

P(x0, x1) · · · P(xn−1, xn)P(xn, x0) > 0

and
f(x0) + · · · + f(xn) − (n+ 1)θ /∈ aZ.

Under Hypothesis M1, it is shown in Section 4 that Hypothesis M3 is equivalent to the
condition that the perturbed operator Pt has a spectral radius less than 1 for t 6= 0; for more
details we refer to Section 4. Furthermore, in the Appendix (see Lemma 10.3, Section 10),
we show that Hypotheses M1-M3 imply that the following number σ2, which is the limit of
Ex(S2

n)/n as n → +∞ for any x ∈ X, is not zero:

(2.2) σ2 := ν(f 2) + 2
+∞∑

n=1

ν (fPnf) > 0.

Under spectral gap assumptions, the asymptotic behaviour of the survival probability
Px (τy > n) and of the conditional law of the Markov walk y+Sn√

n
given the event {τy > n}

have been studied in [13]. It is easy to see that under M1, M2 and (2.2) the conditions of
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[13] are satisfied (see Section 10). We summarize the main results of [13] in the following
propositions.

Proposition 2.1 (Preliminary results, part I). Assume Hypotheses M1-M3. There exists
a non-degenerate non-negative function V on X × R such that

1. For any (x, y) ∈ X × R and n > 1,

Ex (V (Xn, y + Sn) ; τy > n) = V (x, y).

2. For any x ∈ X, the function V (x, ·) is non-decreasing and for any (x, y) ∈ X × R,

V (x, y) 6 c (1 + max(y, 0)) .

3. For any x ∈ X, y ∈ R and δ ∈ (0, 1),

(1 − δ) max(y, 0) − cδ 6 V (x, y) 6 (1 + δ) max(y, 0) + cδ.

Since the function V satisfies the point 1, it is said to be harmonic.

Proposition 2.2 (Preliminary results, part II). Assume Hypotheses M1-M3.

1. For any (x, y) ∈ X × R,

lim
n→+∞

√
nPx (τy > n) =

2V (x, y)√
2πσ

,

where σ is defined by (2.2).
2. For any (x, y) ∈ X × R and n > 1,

Px (τy > n) 6 c
1 + max(y, 0)√

n
.

Define the support of V by

(2.3) supp(V ) := {(x, y) ∈ X × R : V (x, y) > 0}.
Note that from property 3 of Proposition 2.1, for any fixed x ∈ X, the function y 7→ V (x, y)
is positive for large y. For further details on the properties of supp(V ) we refer to [13].

Proposition 2.3 (Preliminary results, part III). Assume Hypotheses M1-M3.

1. For any (x, y) ∈ supp(V ) and t > 0,

Px

(
y + Sn

σ
√
n

6 t

∣∣∣∣∣ τy > n

)
−→

n→+∞
Φ+(t),

where Φ+(t) = 1 − e− t2

2 is the Rayleigh distribution function.
2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n > 1, t0 > 0, t ∈ [0, t0] and (x, y) ∈

X × R,
∣∣∣∣∣Px

(
y + Sn 6 t

√
nσ , τy > n

)
− 2V (x, y)√

2πnσ
Φ+(t)

∣∣∣∣∣ 6 cε,t0

(1 + max(y, 0)2)

n1/2+ε
.

In the point 1 of Proposition 2.2 and the point 2 of Proposition 2.3, the function V can
be zero, so that for all pairs (x, y) satisfying V (x, y) = 0 it holds

lim
n→+∞

√
nPx (τy > n) = 0

and
lim

n→+∞

√
nPx

(
y + Sn 6 t

√
nσ , τy > n

)
= 0.
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Now we proceed to formulate the main results of the paper. Our first result is an extension
of Gnedenko-Stone local limit theorem originally stated for sums of independent random
variables. The following theorem generalizes it to the case of sums of random variables
defined on Markov chains conditioned to stay positive.

Theorem 2.4. Assume Hypotheses M1-M3. Let a > 0 be a positive real. Then there exists
ε0 ∈ (0, 1/4) such that for any ε ∈ (0, ε0), non-negative function ψ ∈ C , y ∈ R and n > 3ε−3,
we have

sup
x∈X, z>0

n

∣∣∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) − 2aν (ψ)V (x, y)√
2πσ2n

ϕ+

(
z√
nσ

)∣∣∣∣∣

6 c (1 + max(y, 0)) ‖ψ‖∞

(√
ε+

cε (1 + max(y, 0))

nε

)
,

where ϕ+(t) = t e− t2

2
1{t>0} is the Rayleigh density and the constants c and cε may depend

on a.

Note that Theorem 2.4 is meaningful only for large values of z such that z ∼ n1/2 as
n → ∞. Indeed, the remainder term is of order n−1−ε, with some small ε > 0, while for
a fixed z the leading term is of order n−3/2. When z = cn1/2 the leading term becomes of
order n−1 while the remainder is still o(n−1). To deal with the case of z in compact sets a
more refined result will be given below. We will deduce it from Theorem 2.4, however for
the proof we need the concept of duality.

Let us introduce the dual Markov chain and the corresponding associated Markov walk.
Since ν is positive on X, the following dual Markov kernel P∗ is well defined:

(2.4) P∗ (x, x∗) =
ν (x∗)

ν(x)
P (x∗, x) , ∀(x, x∗) ∈ X

2.

It is easy to see that ν is also P∗-invariant. The dual of (Xn)n>0 is the Markov chain (X∗
n)n>0

with values in X and transition probability P∗. Without loss of generality we can consider
that the dual Markov chain (X∗

n)n>0 is defined on an extension of the probability space
(Ω,F ,P) and that it is independent of the Markov chain (Xn)n>0. We define the associated
dual Markov walk by

(2.5) S∗
0 = 0 and S∗

n =
n∑

k=1

−f (X∗
k) , ∀n > 1.

For any z ∈ R, define also the exit time

(2.6) τ ∗
z := inf {k > 1 : z + S∗

k 6 0} .
For any ∈ X, denote by P∗

x and E∗
x the probability, respectively the expectation, generated

by the finite dimensional distributions of the Markov chain (X∗
n)n>0 starting at X∗

0 = x.
It is shown in Section 3 that the dual Markov chain (X∗

n)n>0 satisfies Hypotheses M1-M3

as do the original chain (Xn)n>0. Thus, Propositions 2.1-2.3 hold also for (X∗
n)n>0 with V,

τ, (Sn)n>0 and Px replaced by V ∗, τ ∗, (S∗
n)n>0 and P∗

x. Note also that both chains have
the same invariant probability ν. Denote by Eν , E∗

ν
the expectations generated by the

finite dimensional distributions of the Markov chains (Xn)n>0 and (X∗
n)n>0 in the stationary

regime.
Our second result is a conditional version of the local limit theorem for fixed x, y and z.
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Theorem 2.5. Assume Hypotheses M1-M3.

1. For any non-negative function ψ ∈ C , a > 0, x ∈ X, y ∈ R and z > 0,

lim
n→+∞

n3/2
Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

=
2V (x, y)√

2πσ3

∫ z+a

z
E

∗
ν (ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′.

2. Moreover, there exists c > 0 such that for any a > 0, non-negative function ψ ∈ C , y ∈ R,
z > 0 and n > 1,

sup
x∈X

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6
c ‖ψ‖∞
n3/2

(
1 + a3

)
(1 + z) (1 + max(y, 0)) .

In the particular case when ψ = 1, the previous theorem rewrites as follows:

Corollary 2.6. Assume Hypotheses M1-M3.

1. For any a > 0, x ∈ X, y ∈ R and z > 0,

lim
n→+∞

n3/2
Px (y + Sn ∈ [z, z + a] , τy > n)

=
2V (x, y)√

2πσ3

∫ z+a

z

∫

X

V ∗ (x′, z′) ν(dx′) dz′.

2. Moreover, there exists c > 0 such that for any a > 0, y ∈ R, z > 0 and n > 1,

sup
x∈X

Px (y + Sn ∈ [z, z + a] , τy > n) 6
c

n3/2

(
1 + a3

)
(1 + z) (1 + max(y, 0)) .

Note that the assertion 1 of Theorem 2.5 and assertion 1 of Corollary 2.6 hold for fixed
a > 0, x ∈ X, y ∈ R and z > 0 and that these results are no longer true when z is not in a
compact set, for instance when z ∼ n1/2.

The following result extends Theorem 2.5 to some functionals of the trajectories of the
chain (Xn)n>0. For any (x, x∗) ∈ X2, the probability generated by the finite dimensional
distributions of the two dimensional Markov chain (Xn, X

∗
n)n>0 starting at (X0, X

∗
0 ) = (x, x∗)

is given by Px,x∗ = Px × P∗
x∗ . Let Ex,x∗ be the corresponding expectation. For any l > 1,

denote by C +(Xl × R+) the set of non-negative functions g: Xl × R+ → R+ satisfying the
following properties:

• for any (x1, . . . , xl) ∈ Xl, the function z 7→ g(x1, . . . , xl, z) is continuous,
• there exists ε > 0 such that maxx1,...xl∈X supz>0 g(x1, . . . , xl, z)(1 + z)2+ε < +∞.

Theorem 2.7. Assume Hypotheses M1-M3. For any x ∈ X, y ∈ R, l > 1, m > 1 and

g ∈ C +
(
Xl+m × R+

)
,

lim
n→+∞

n3/2
Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; τy > n)

=
2√

2πσ3

∫ +∞

0

∑

x∗∈X

Ex,x∗ (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z)

×V (Xl, y + Sl)V
∗ (X∗

m, z + S∗
m) ; τy > l , τ∗

z > m) ν(x∗) dz.

As a consequence of Theorem 2.7 we deduce the following asymptotic behaviour of the
probability of the event {τy = n} as n → +∞.
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Theorem 2.8. Assume Hypotheses M1-M3. For any x ∈ X and y ∈ R,

lim
n→+∞

n3/2
Px (τy = n) =

2V (x, y)√
2πσ3

∫ +∞

0
E

∗
ν

(V ∗(X∗
1 , z) ; S∗

1 > z) dz.

3. Properties of the dual Markov chain

In this section we establish some properties of the dual Markov chain and of the corre-
sponding Markov walk.

Lemma 3.1. Suppose that the operator P satisfies Hypotheses M1-M3. Then the dual
operator P∗ satisfies also M1-M3.

Proof. By the definition of P∗, for any x∗ ∈ X,
∑

x∈X

ν(x)P∗ (x, x∗) =
∑

x∈X

P (x∗, x) ν (x∗) = ν(x∗),

which proves that ν is also P∗-invariant. Thus Hypothesis M2, ν(f) = ν(−f) = 0, is
satisfied for both chains. Moreover, it is easy to see that for any n > 1, (x, x∗) ∈ X2,

(P∗)n (x, x∗) = Pn(x∗, x)
ν(x∗)

ν(x)
.

This shows that P∗ satisfies M1 and M3. �

Note that the operator P∗ is the adjoint operator of P in the space L2 (ν) : for any
functions g and h on X,

ν (g (P∗)n h) = ν (hPng) .

In particular for any n > 1, ν (f (P∗)n f) = ν (fPnf) and we note that

σ2 = ν

(
(−f)2

)
+
∑

n

ν ((−f) (P∗)n (−f)) .

The following assertion plays a key role in the proofs.

Lemma 3.2 (Duality). For any probability measure m on X, any n > 1 and any function
F from Xn to R,

Em (F (X1, . . . , Xn−1, Xn)) = E
∗
ν


F

(
X∗

n, X
∗
n−1, . . . , X

∗
1

) m
(
X∗

n+1

)

ν (X∗
n+1)


 .

Proof. We write

Em (F (X1, . . . , Xn−1, Xn))

=
∑

x0,x1,...,xn−1,xn,xn+1∈X

F (x1, . . . , xn−1, xn)m(x0)

Px0 (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn, Xn+1 = xn+1) .
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By the definition of P∗, we have

Px0 (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn, Xn+1 = xn+1)

= P(x0, x1)P(x1, x2) . . .P(xn−1, xn)P(xn, xn+1)

= P∗(x1, x0)
ν(x1)

ν(x0)
P∗(x2, x1)

ν(x2)

ν(x1)
. . .P∗(xn, xn−1)

ν(xn)

ν(xn−1)
P∗(xn+1, xn)

ν(xn+1)

ν(xn)

=
ν(xn+1)

ν(x0)
P

∗
xn+1

(
X∗

1 = xn, X
∗
2 = xn−1, . . . , X

∗
n = x1, X

∗
n+1 = x0

)

and the result of the lemma follows. �

4. The perturbed operator

For any t ∈ R, denote by Pt the perturbed transition operator defined by

Ptg(x) = P
(
eitf g

)
(x) = Ex

(
eitf(X1) g(X1)

)
, for any g ∈ C , x ∈ X,

where i is the complex i2 = −1. Let also rt be the spectral radius of Pt. Note that for any

g ∈ C , ‖Ptg‖∞ 6
∥∥∥eitf g

∥∥∥
∞

= ‖g‖∞ and so

(4.1) rt 6 1.

We introduce the two following definitions:

• A sequence x0, x1, . . . , xn ∈ X, is a path (between x0 and xn) if

P(x0, x1) · · · P(xn−1, xn) > 0.

• A sequence x0, x1, . . . , xn ∈ X, is an orbit if x0, x1, . . . , xn, x0 is a path.

Note that under Hypothesis M1, for any x0, x ∈ X it is always possible to connect x0 and x
by a path x0, x1, . . . , xn, x in X.

Lemma 4.1. Assume Hypothesis M1. The following statements are equivalent:

1. There exists (θ, a) ∈ R2 such that for any orbit x0, . . . , xn in X, we have

f(x0) + · · · + f(xn) − (n+ 1)θ ∈ aZ.

2. There exist t ∈ R∗, h ∈ C \ {0} and θ ∈ R such that for any (x, x′) ∈ X2,

h(x′) eitf(x′) P(x, x′) = h(x) eitθ P(x, x′).

3. There exists t ∈ R∗ such that

rt = 1.

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix x0 ∈ X and set
h(x0) = 1. For any x ∈ X, define h(x) in the following way: for any path x0, . . . , xn, x in X

we set

h(x) = eitθ(n+1) e−it(f(x1)+···+f(xn)+f(x)),

where t = 2π
a

. Note that if a = 0, then the point 1 holds also for a = 1 and so, without lost
of generality, we assume that a 6= 0. We first verify that h is well defined on X. Recall that
under Hypothesis M1, for any x ∈ X it is always possible to connect x0 and x by a path.
We have to check that the value of h(x) does not depend on the choice of the path. Let
p, q > 1 and x0, x1, . . . , xp, x in X and x0, y1, . . . , yq, x in X be two paths between x0 and x.
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We complete these paths to orbits as follows. Under Hypothesis M1, there exist n > 1 and
z1, . . . , zn in X such that

P(x, z1) · · · P(zn, x0) > 0,

i.e. the sequence x, z1, . . . , zn, x0 is a path. So, the sequences x0, x1, . . . , xp, x, z1, . . . , zn and
x0, y1, . . . , yq, x, z1, . . . , zn are orbits. By the point 1, there exist l1, l2 ∈ Z such that

f(x1) + · · · + f(xp) + f(x) = al1 − (f(z1) + · · · + f(zn) + f(x0)) + (p+ n+ 2)θ

= al1 − al2 + (f(y1) + · · · + f(yq) + f(x))

− (q + n + 2)θ + (p+ n+ 2)θ.

Therefore,

eitθ(p+1) e−it(f(x1)+···+f(xp)+f(x)) = e−it(al1−al2) eitθ(q+1) e−it(f(y1)+···+f(yq)+f(x))

and since ta = 2π it proves that h is well defined. Now let (x, x′) ∈ X2 be such that
P(x, x′) > 0. There exists a path x0, x1, . . . , xn, x between x0 and x and so

h(x) = eitθ(n+1) e−it(f(x1)+···+f(xn)+f(x)) .

Since x0, x1, . . . , xn, x, x
′ is a path between x0 and x′, we have also

h(x′) = eitθ(n+2) e−it(f(x1)+···+f(xn)+f(x)+f(x′)) = h(x) eitθ e−itf(x′) .

Note that since the modulus of h is 1, this function belongs to C \ {0}.
The point 2 implies the point 1. Suppose that the point 2 holds and let x0, . . . , xn be an

orbit. Using the point 2 repeatedly, we have

h(x0) = h(xn) eitθ e−itf(x0) = · · · = h(x0) eitθ(n+1) e−it(f(x0)+···+f(xn)) .

Since h is a non-identically zero function with a constant modulus, necessarily, h is never
equal to 0 and so f(x0) + · · · + f(xn) − (n+ 1)θ ∈ 2π

t
Z.

The point 2 implies the point 3. Suppose that the point 2 holds. Summing on x′ we have,
for any x ∈ X,

P
(
h eitf

)
(x) = Pth(x) = h(x) eitθ .

Therefore h is an eigenvector of Pt associated to the eigenvalue eitθ which implies that

rt >
∣∣∣eitθ

∣∣∣ = 1 and by (4.1), rt = 1.

The point 3 implies the point 2. Suppose that the point 3 holds. There exist h ∈ C \ {0}
and θ ∈ R such that Pth = h eitθ. Without loss of generality, we suppose that ‖h‖∞ = 1.
Since Pn

t h = h eitnθ for any n > 1, by (2.1), for any x ∈ X, we have

(4.2) |h(x)| = |Pn
t h(x)| 6 Pn |h| (x) −→

n→+∞
ν (|h|) .

From (4.2), letting x0 ∈ X be such that |h(x0)| = ‖h‖∞ = 1, it is easy to see that

|h(x0)| 6
∑

x∈X

|h(x)| ν(x) 6 |h(x0)| .

From this it follows that the modulus of h is constant on X: |h(x)| = |h(x0)| = 1 for any
x ∈ X. Consequently, there exists α: X → R such that for any x ∈ X,

(4.3) h(x) = eiα(x) .

With (4.3) the equation Pth = h eitθ can be rewritten as

∀x ∈ X,
∑

x′∈X

eiα(x′) eitf(x′) P(x, x′) = eiα(x) eitθ .
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Since eiα(x) eitθ ∈ {z ∈ C : |z| = 1} and eiα(x′) eif(x′) ∈ {z ∈ C : |z| = 1}, for any x′ ∈ X, the
previous equation holds only if h(x′) eitf(x′) = eiα(x′) eitf(x′) = eiα(x) eitθ = h(x) eitθ for any
x′ ∈ X such that P(x, x′) > 0. �

Define the operator norm ‖·‖
C →C

on C as follows: for any operator R: C → C , set

‖R‖
C →C

:= sup
g∈C \{0}

‖R(g)‖∞
‖g‖∞

.

Lemma 4.2. Assume Hypotheses M1 and M3. For any compact set K included in R∗ there
exist constants cK > 0 and c′

K > 0 such that for any n > 1,

sup
t∈K

‖Pn
t ‖

C →C
6 cK e−c′

Kn .

Proof. By Lemma 4.1, under Hypotheses M1 and M3, we have rt 6= 1 for any t 6= 0 and
hence, using (4.1),

rt < 1, ∀t ∈ R
∗.

It is well known that
rt = lim

n→+∞
‖Pn

t ‖1/n
C →C

.

Since t 7→ Pt is continuous, the function t 7→ rt is the infimum of the sequence of upper

semi-continuous functions t 7→ ‖Pn
t ‖1/n

C →C
and therefore is itself upper semi-continuous. In

particular, for any compact set K included in R∗, there exists t0 ∈ K such that

sup
t∈K

rt = rt0 < 1.

We deduce that for ε = (1 − supt∈K rt)/2 > 0 there exists n0 > 1 such that for any n > n0,

‖Pn
t ‖1/n

C →C
6 sup

t∈K
rt + ε < 1.

Choosing cK ′ = − ln (supt∈K rt + ε) and cK = maxn6n0 ‖Pn
t ‖

C →C
ecK′ n +1, the lemma is

proved. �

In the proofs we make use of the following assertion which is a consequence of the pertur-
bation theory of linear operator (see for example [20]). The point 5 is proved in Lemma 2
of Guivarc’h and Hardy [17].

Proposition 4.3. Assume Hypotheses M1 and M2. There exist a real ε0 > 0 and operator
valued functions Πt and Qt acting from [−ε0, ε0] to the set of operators onto C such that

1. the maps t 7→ Πt, t 7→ Qt and t 7→ λt are analytic at 0,
2. the operator Pt has the following decomposition,

Pt = λtΠt +Qt, ∀t ∈ [−ε0, ε0],

3. for any t ∈ [−ε0, ε0], Πt is a one-dimensional projector and ΠtQt = QtΠt = 0,
4. there exist c1 > 0 and c2 > 0 such that, for any n ∈ N∗,

sup
t∈[−ε0,ε0]

‖Qn
t ‖

C →C
6 c1 e−c2n,

5. the function λt has the following expansion at 0: for any t ∈ [−ε0, ε0],
∣∣∣∣∣λt − 1 +

t2σ2

2

∣∣∣∣∣ 6 c |t|3 .
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Note that λ0 = 1 and Π0(·) = Π(·) = ν(·)e, where e is the unit function of X: e(x) = 1,
for any x ∈ X.

Lemma 4.4. Assume Hypotheses M1 and M2. There exists ε0 > 0 such that for any n > 1
and t ∈ [−ε0

√
n, ε0

√
n],
∥∥∥∥P

n
t√
n

− e− t2σ2

2 Π

∥∥∥∥
C →C

6
c√
n

e− t2σ2

4 +c e−cn .

Proof. By the points 2 and 3 of Proposition 4.3, for any t/
√
n ∈ [−ε0, ε0],

Pn
t√
n

= λn
t√
n
Π t√

n
+Qn

t√
n
.

By the points 1 and 4 of Proposition 4.3, for n > 1,
∥∥∥∥Π t√

n
− Π

∥∥∥∥
C →C

6 sup
u∈[−ε0,ε0]

‖Π′
u‖

C →C

|t|√
n
6 c

|t|√
n
,(4.4)

sup
t∈[−ε0,ε0]

∥∥∥∥Q
n

t√
n

∥∥∥∥
C →C

6 c e−cn .(4.5)

Let α be the complex valued function defined on [−ε0, ε0] by α(t) = 1
t3

(
λt − 1 + t2σ2

2

)
for

any t ∈ [−ε0, ε0] \ {0} and α(0) = 0. By the point 5 of Proposition 4.3, there exists c > 0
such that

(4.6) ∀t ∈ [−ε0, ε0], |α(t)| 6 c.

With this notation, we have for any t/
√
n ∈ [−ε0, ε0],

∣∣∣∣λ
n

t√
n

− e− t2σ2

2

∣∣∣∣ 6
∣∣∣∣∣

(
1 − t2σ2

2n
+

t3

n3/2
α

(
t√
n

))n

−
(

1 − t2σ2

2n

)n∣∣∣∣∣
︸ ︷︷ ︸

=:I1

+

∣∣∣∣∣

(
1 − t2σ2

2n

)n

− e− t2σ2

2

∣∣∣∣∣
︸ ︷︷ ︸

=:I2

.(4.7)

Without loss of generality, the value of ε0 > 0 can be chosen such that ε2
0σ

2 6 1 and so for

any t/
√
n ∈ [−ε0, ε0], we have 1 − t2σ2

2n
> 1/2. Therefore,

I1 6

(
1 − t2σ2

2n

)n
∣∣∣∣∣∣


1 +

t3

n3/2
(
1 − t2σ2

2n

)α
(

t√
n

)


n

− 1

∣∣∣∣∣∣

6

(
1 − t2σ2

2n

)n n∑

k=1

(
n
k

) ∣∣∣∣∣∣
t3

n3/2
(
1 − t2σ2

2n

)α
(

t√
n

)∣∣∣∣∣∣

k

=

(
1 − t2σ2

2n

)n



1 +

|t|3

n3/2
(
1 − t2σ2

2n

)
∣∣∣∣∣α
(

t√
n

)∣∣∣∣∣




n

− 1


 .

Using the inequality 1 + u 6 eu for u ∈ R, the fact that 1 − t2σ2

2n
> 1/2 and the bound (4.6),

we have

I1 6 e− t2σ2

2

(
e

c|t|3√
n −1

)
.
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Next, using the inequality eu −1 6 u eu for u > 0 and the fact that |t| /√n 6 ε0,

(4.8) I1 6 e− t2σ2

2
c√
n

|t|3 ecε0t2

.

Again, without loss of generality, the value of ε0 > 0 can be chosen such that cε2
0 6 σ2/8

(this have no impact on (4.6) which holds for any [−ε′
0, ε

′
0] ⊆ [−ε0, ε0]). Thus, from (4.8) it

follows that

(4.9) I1 6
c√
n

e− t2σ2

4 .

Using the inequalities 1 − u 6 e−u for u ∈ R and ln(1 − u) > −u− u2 for u 6 1, we have

(4.10) I2 = e− t2σ2

2 −
(

1 − t2σ2

2n

)n

6 e− t2σ2

2 − e− t2σ2

2
− t4σ4

4n 6
t4σ4

4n
e− t2σ2

2 6
c√
n

e− t2σ2

4 .

Putting together (4.7), (4.9) and (4.10), we obtain that, for any t/
√
n ∈ [−ε0, ε0],

(4.11)

∣∣∣∣λ
n

t√
n

− e− t2σ2

2

∣∣∣∣ 6
c√
n

e− t2σ2

4 .

In the same way, one can prove that

(4.12) |t|
∣∣∣∣λ

n
t√
n

∣∣∣∣ 6 e− t2σ2

4 .

The right hand side in the assertion of the lemma can be bounded as follows:
∥∥∥∥P

n
t√
n

− e− t2σ2

2 Π

∥∥∥∥
C →C

6

∣∣∣∣λ
n

t√
n

∣∣∣∣
∥∥∥∥Π t√

n
− Π

∥∥∥∥
C →C

+

∣∣∣∣λ
n

t√
n

− e− t2σ2

2

∣∣∣∣ ‖Π‖
C →C

+

∥∥∥∥Q
n

t√
n

∥∥∥∥
C →C

.

Using (4.4), (4.5), (4.11) and (4.12), we obtain that, for any t/
√
n ∈ [ε0, ε0],

∥∥∥∥P
n

t√
n

− e− t2σ2

2 Π

∥∥∥∥
C →C

6
c√
n

e− t2σ2

4 +c e−cn .

�

5. A non asymptotic local limit theorem

In this section we establish a local limit theorem for the Markov walk jointly with the
Markov chain. Our result is similar to that in Grama and Le Page [14] where the case of
sums of independent random variables is considered under the Cramér condition. We refer
to Guivarc’h and Hardy [17] for local limit theorem for a Markov chain with compact state
space. In contrast to [17] our local limit theorem gives a control of the remainder term.

We first establish a local limit theorem for integrable functions with Fourier transforms
with compact supports. For any integrable function h: R → R denote by ĥ its Fourier
transform:

ĥ(t) =
∫

R

e−itu h(u) du, ∀t ∈ R.

When ĥ is integrable, by the inversion formula,

h(u) =
1

2π

∫

R

eitu ĥ(t) dt, ∀u ∈ R.

For any integrable functions h and g, let

h ∗ g(u) =
∫

R

h(v)g(u− v) dv
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be the convolution of h and g. Denote by ϕσ the density of the centred normal law with
variance σ2:

(5.1) ϕσ(u) =
1√
2πσ

e− u2

2σ2 , ∀u ∈ R.

Lemma 5.1. Assume Hypotheses M1-M3. For any A > 0, any integrable function h on R

whose Fourier transform ĥ has a compact support included in [−A,A], any real function ψ
defined on X and any n > 1,

sup
y∈R

√
n
∣∣∣Ex (h (y + Sn)ψ (Xn)) − h ∗ ϕ√

nσ(y)ν (ψ)
∣∣∣

6 ‖ψ‖∞

(
c√
n

‖h‖L1 +
∥∥∥ĥ
∥∥∥

L1
cA e−cAn

)
.

Proof. By the inversion formula and the Fubini theorem,

I0 :=
√
n
∣∣∣Ex (h (y + Sn)ψ (Xn)) − h ∗ ϕ√

nσ(y)ν (ψ)
∣∣∣

=

√
n

2π

∣∣∣∣Ex

(∫

R

eit(y+Sn) ĥ(t) dtψ (Xn)
)

−
∫

R

ĥ(t)ϕ̂√
nσ(t) eity dtν (ψ)

∣∣∣∣

=

√
n

2π

∣∣∣∣
∫

R

eity
(

Pn
t ψ(x) − e− t2σ2n

2 ν (ψ)
)
ĥ(t) dt

∣∣∣∣ .

Since ĥ(t) = 0 for any t /∈ [−A,A], we write

I0 6

√
n

2π

∣∣∣∣∣

∫

ε06|t|6A
eity

(
Pn

t ψ(x) − e− t2σ2n
2 ν (ψ)

)
ĥ(t) dt

∣∣∣∣∣
︸ ︷︷ ︸

=:I1

+

√
n

2π

∣∣∣∣∣

∫

|t|6ε0

eity
(

Pn
t ψ(x) − e− t2σ2n

2 ν (ψ)
)
ĥ(t) dt

∣∣∣∣∣
︸ ︷︷ ︸

=:I2

,(5.2)

where ε0 is defined by Lemma 4.4.
Bound of I1. By Lemma 4.2, for any ε0 6 |t| 6 A, we have

‖Pn
t ψ‖∞ 6 ‖ψ‖∞ cA,ε0 e−cA,ε0

n .

Consequently,

I1 6

√
n

2π

(
‖ψ‖∞ cA,ε0 e−cA,ε0

n + e− ε2
0

σ2n

2 |ν(ψ)|
)∥∥∥ĥ

∥∥∥
L1

6 ‖ψ‖∞

∥∥∥ĥ
∥∥∥

L1
cA,ε0 e−cA,ε0

n .(5.3)

Bound of I2. Substituting s = t
√
n, we write

I2 =
1

2π

∣∣∣∣∣

∫

|s|6ε0
√

n
e

i sy√
n

(
Pn

s√
n
ψ(x) − e− s2σ2

2 ν (ψ)
)
ĥ

(
s√
n

)
ds

∣∣∣∣∣

6
1

2π

∫

|s|6ε0
√

n

∣∣∣∣P
n

s√
n
ψ(x) − e− s2σ2

2 ν (ψ)
∣∣∣∣

∣∣∣∣∣ĥ
(
s√
n

)∣∣∣∣∣ ds.
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By Lemma 4.4, for any |s| 6 ε0

√
n, we have

∣∣∣∣P
n

s√
n
ψ(x) − e− s2σ2

2 ν (ψ)

∣∣∣∣ 6
∥∥∥∥P

n
s√
n

(ψ) − e− s2σ2

2 Π (ψ)

∥∥∥∥
∞

6 ‖ψ‖∞

∥∥∥∥P
n

s√
n

− e− s2σ2

2 Π

∥∥∥∥
C →C

6 ‖ψ‖∞

(
c√
n

e− s2σ2

4 +c e−cn

)
.

Therefore,

I2 6 ‖ψ‖∞

(
c√
n

∫

R

e− s2σ2

4

∥∥∥ĥ
∥∥∥

∞
ds+ c e−cn

∥∥∥ĥ
∥∥∥

L1

)

6 ‖ψ‖∞

(
c√
n

‖h‖L1 + c e−cn
∥∥∥ĥ
∥∥∥

L1

)
.(5.4)

Putting together (5.2), (5.3) and (5.4), concludes the proof. �

We extend the result of Lemma 5.1 for any integrable function (with not necessarily
integrable Fourier transform). As in Stone [26], we introduce the kernel κ defined on R by

κ(u) =
1

2π




sin
(

u
2

)

u
2




2

, ∀u ∈ R
∗ and κ(0) =

1

2π
.

The function κ is integrable and its Fourier transform is given by

κ̂(t) = 1 − |t| , ∀t ∈ [−1, 1], and κ̂(t) = 0 otherwise.

Note that ∫

R

κ(u) du = κ̂(0) = 1 =
∫

R

κ̂(t) dt.

For any ε > 0, we define the function κε on R by

κε(u) =
1

ε
κ
(
u

ε

)
.

Its Fourier transform is given by κ̂ε(t) = κ̂(εt). Note also that, for any ε > 0, we have

(5.5)
∫

|u|> 1
ε

κ(u) du 6
1

π

∫ +∞

1
ε

4

u2
du =

4

π
ε.

For any non-negative and locally bounded function h defined on R and any ε > 0, let hε

and hε be the "thickened" functions: for any u ∈ R,

hε(u) = sup
v∈[u−ε,u+ε]

h(v) and hε(u) = inf
v∈[u−ε,u+ε]

h(v).

For any ε > 0, denote by Hε the set of non-negative and locally bounded functions h such
that h, hε and hε are measurable from (R,B (R)) to (R+,B (R+)) and Lebesgue-integrable
(where B (R), B (R+) are the Borel σ-algebras).

Lemma 5.2. For any function h ∈ Hε, ε ∈ (0, 1/4) and u ∈ R,

hε ∗ κε2(u) −
∫

|v|>ε
hε (u− v) κε2(v) dv 6 h(u) 6 (1 + 4ε)hε ∗ κε2(u).
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Proof. Note that for any |v| 6 ε and u ∈ R, we have u ∈ [u− v − ε, u− v + ε]. So,

(5.6) hε (u− v) 6 h(u) 6 hε (u− v) .

Using the fact that
∫
R κε2(u) du = 1 and (5.5), we write

h(u) =
∫

|v|6ε
h(u)κε2(v) dv + h(u)

∫

|v|>ε
κε2(v) dv

6

∫

|v|6ε
hε (u− v)κε2(v) dv + h(u)

4

π
ε.

Therefore,

h(u)
(

1 − 4

π
ε
)
6

∫

R

hε (u− v) κε2(v) dv = hε ∗ κε2(u).

For any ε ∈ (0, 1/4),

h(u) 6
1

1 − 2ε
hε ∗ κε2(u) 6 (1 + 4ε)hε ∗ κε2(u).

Moreover, from (5.6),

h(u) >
∫

|v|6ε
h(u)κε2(v) dv

>

∫

|v|6ε
hε (u− v)κε2(v) dv

= hε ∗ κε2(u) −
∫

|v|>ε
hε (u− v)κε2(v) dv.

�

Lemma 5.3. Let ε > 0 and h ∈ Hε.

1. For any y ∈ R and n > 1,
√
n
(
hε ∗ κε2

)
∗ ϕ√

nσ(y) 6
√
n
(
h ∗ ϕ√

nσ

)
(y) + c

∥∥∥h2ε − h
∥∥∥

L1
+ cε ‖h‖L1 ,

where ϕ√
nσ(·) is defined by (5.1).

2. For any y ∈ R and n > 1,
√
n
(
hε ∗ κε2

)
∗ ϕ√

nσ(y) 6 c
∥∥∥hε

∥∥∥
L1
.

3. For any y ∈ R and n > 1,
√
n (hε ∗ κε2) ∗ ϕ√

nσ(y) >
√
n
(
h ∗ ϕ√

nσ

)
(y) − c ‖h− h2ε‖L1 − cε ‖h‖L1 .

Proof. For any ε > 0, |v| 6 ε and u ∈ R it holds [u − v − ε, u − v + ε] ⊂ [u − 2ε, u + 2ε].
Therefore,

(5.7) hε(u− v) > h2ε(u) and hε(u− v) 6 h2ε(u).

Consequently, for any u ∈ R,

hε ∗ κε2(u) 6 h2ε(u)
∫

|v|6ε
κε2(v) dv +

∫

|v|>ε
hε(u− v)κε2(v) dv

6 h2ε(u) +
∫

|v|>ε
hε(u− v)κε2(v) dv.
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From this, using the bound
√
nϕ√

nσ(·) 6 1/(
√

2πσ) and (5.5), we obtain that

√
n
(
hε ∗ κε2

)
∗ ϕ√

nσ(y) 6
√
n
(
h2ε ∗ ϕ√

nσ

)
(y)

+
1√
2πσ

∫

R

∫

|v|>ε
hε(u− v)κε2(v) dv du

=
√
n
(
h2ε ∗ ϕ√

nσ

)
(y) +

2
√

2

π3/2σ
ε
∥∥∥hε

∥∥∥
L1
.

Using again the bound
√
nϕ√

nσ(·) 6 1/(
√

2πσ), we get

√
n
(
hε ∗ κε2

)
∗ ϕ√

nσ(y) 6
√
n
(
h ∗ ϕ√

nσ

)
(y) +

∫

R

∣∣∣h2ε(u) − h(u)
∣∣∣

du√
2πσ

+ cε
∥∥∥hε

∥∥∥
L1

6
√
n
(
h ∗ ϕ√

nσ

)
(y) + c

∥∥∥h2ε − h
∥∥∥

L1
+ cε

∥∥∥h2ε

∥∥∥
L1

6
√
n
(
h ∗ ϕ√

nσ

)
(y) + (c+ cε)

∥∥∥h2ε − h
∥∥∥

L1
+ cε ‖h‖L1 ,

which proves the claim 1.
In the same way,

√
n
(
hε ∗ κε2

)
∗ ϕ√

nσ(y) 6
1√
2πσ

∥∥∥hε ∗ κε2

∥∥∥
L1

=
1√
2πσ

∥∥∥hε

∥∥∥
L1
,

which establishes the claim 2.
By (5.7) and (5.5),

hε ∗ κε2(u) > h2ε(u)
∫

|v|6ε
κε2(v) dv >

(
1 − 4

π
ε
)
h2ε(u).

Integrating this inequality and using once again the bound
√
nϕ√

nσ(·) 6 1√
2πσ

, we have

√
n (hε ∗ κε2) ∗ ϕ√

nσ(y) >
√
n
(

1 − 4

π
ε
)
h2ε ∗ ϕ√

nσ(y)

>
√
n
(
h2ε ∗ ϕ√

nσ

)
(y) − 4

π
ε

1√
2πσ

‖h2ε‖L1 .

Inserting h, we conclude that

√
n (hε ∗ κε2) ∗ ϕ√

nσ(y) >
√
n
(
h ∗ ϕ√

nσ

)
(y) − 1√

2πσ
‖h− h2ε‖L1 − cε ‖h2ε‖L1

>
√
n
(
h ∗ ϕ√

nσ

)
(y) − c ‖h− h2ε‖L1 − cε ‖h‖L1 .

�

We are now equipped to prove a non-asymptotic theorem for a large class of functions h.

Lemma 5.4. Assume Hypotheses M1-M3. Let ε ∈ (0, 1/4). For any function h ∈ Hε, any
non-negative function ψ ∈ C and any n > 1,

sup
x∈X, y∈R

√
n
∣∣∣Ex (h (y + Sn)ψ (Xn)) − h ∗ ϕ√

nσ(y)ν (ψ)
∣∣∣

6 c ‖ψ‖∞

(
‖h− h2ε‖L1 +

∥∥∥h2ε − h
∥∥∥

L1

)
+ c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1√
n

+ ε+ cε e−cεn

)
,
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where ϕ√
nσ(·) is defined by (5.1). Moreover,

sup
x∈X, y∈R

√
nEx (h (y + Sn)ψ (Xn)) 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1 + cε e−cεn

)
.

Proof. We prove upper and lower bounds for
√
nEx (h (y + Sn)ψ (Xn)) from which the claim

wills follow.
The upper bound. By Lemma 5.2, we have, for any x ∈ X, n > 1, y ∈ R and ε ∈ (0, 1/4),

Ex (h (y + Sn)ψ (Xn)) 6 (1 + 4ε)Ex

(
hε ∗ κε2 (y + Sn)ψ (Xn)

)

Since hε is integrable, the function u 7→ hε ∗ κε2(u) is integrable and its Fourier transform

u 7→ ĥε(u)κ̂ε2(u) has a support included in [−1/ε2, 1/ε2]. Consequently, by Lemma 5.1,

I0 :=
√
nEx (h (y + Sn)ψ (Xn))

6
√
n (1 + 4ε)

(
hε ∗ κε2

)
∗ ϕ√

nσ(y)ν (ψ)

+ 2 ‖ψ‖∞

(
c√
n

∥∥∥hε ∗ κε2

∥∥∥
L1

+

∥∥∥∥ĥεκ̂ε2

∥∥∥∥
L1
cε e−cεn

)
.

Using the points 1 and 2 of Lemma 5.3 and the fact that |ν (ψ)| 6 ‖ψ‖∞, we deduce that

I0 6
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) + ‖ψ‖∞

(
c
∥∥∥h2ε − h

∥∥∥
L1

+ cε ‖h‖L1

)
+ 4εc

∥∥∥hε

∥∥∥
L1

‖ψ‖∞

+ 2 ‖ψ‖∞

(
c√
n

∥∥∥hε ∗ κε2

∥∥∥
L1

+

∥∥∥∥ĥεκ̂ε2

∥∥∥∥
L1
cε e−cεn

)
.

Note that
∥∥∥hε ∗ κε2

∥∥∥
L1

=
∥∥∥hε

∥∥∥
L1

and

∥∥∥∥ĥεκ̂ε2

∥∥∥∥
L1

6
∥∥∥hε

∥∥∥
L1

∫

R

κ̂ε2(t) dt =
∥∥∥hε

∥∥∥
L1

∫

R

κ̂(ε2t) dt =
1

ε2

∥∥∥hε

∥∥∥
L1
.

Consequently,

I0 6
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) + c ‖ψ‖∞

∥∥∥h2ε − h
∥∥∥

L1

+ c ‖ψ‖∞

∥∥∥hε

∥∥∥
L1

(
1√
n

+ ε+ cε e−cεn

)
.(5.8)

From (5.8), taking into account that
√
n
(
h ∗ ϕ√

nσ

)
(y) 6 c ‖h‖L1 , we deduce, in addition,

that

(5.9) I0 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1 + cε e−cεn

)
.

The lower bound. By Lemma 5.2, we write that

I0 >
√
nEx (hε ∗ κε2 (y + Sn)ψ (Xn))︸ ︷︷ ︸

=:I1

−
√
nEx

(∫

|v|>ε
hε (y + Sn − v)κε2(v) dvψ (Xn)

)

︸ ︷︷ ︸
=:I2

.(5.10)
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Bound of I1. The Fourier transform of hε ∗ κε2 has a compact support included in
[−1/ε2, 1/ε2]. So by Lemma 5.1,

I1 >
√
n (hε ∗ κε2) ∗ ϕ√

nσ(y)ν (ψ) − ‖ψ‖∞

(
c√
n

‖hε ∗ κε2‖L1 +
∥∥∥ĥε ∗ κε2

∥∥∥
L1
cε e−cεn

)
,

Using the point 3 of Lemma 5.3 and the fact that |ν (ψ)| 6 ‖ψ‖∞,

I1 >
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) − c ‖ψ‖∞ (‖h− h2ε‖L1 + ε ‖h‖L1)

− ‖ψ‖∞

(
c√
n

‖hε ∗ κε2‖L1 +
∥∥∥ĥε ∗ κε2

∥∥∥
L1
cε e−cεn

)
.

Since ‖hε ∗ κε2‖L1 = ‖hε‖L1 6 ‖h‖L1 and since
∥∥∥ĥε ∗ κε2

∥∥∥
L1

6 ‖hε‖L1 ‖κ̂ε2‖L1 = 1
ε2 ‖hε‖L1 6

1
ε2 ‖h‖L1, we deduce that

I1 >
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) − c ‖ψ‖∞ ‖h− h2ε‖L1

− c ‖ψ‖∞ ‖h‖L1

(
1√
n

+ ε+ cε e−cεn

)
.(5.11)

Bound of I2. With the notation gε,v(u) = hε (u− v), we have

I2 =
∫

|v|>ε

√
nEx (gε,v (y + Sn)ψ (Xn)) κε2(v) dv.

Consequently, using (5.9), we find that

I2 6 c ‖ψ‖∞

(
1 + cε e−cεn

) ∫

|v|>ε

∥∥∥(gε,v)2ε

∥∥∥
L1
κε2(v) dv.

Note that, for any u and v ∈ R,

(gε,v)2ε(u) = sup
w∈[u−2ε,u+2ε]

hε (w − v) 6 sup
w∈[u−2ε,u+2ε]

h (w − v) = h2ε(u− v).

So,
∥∥∥(gε,v)2ε

∥∥∥
L1

6
∥∥∥h2ε

∥∥∥
L1

and

I2 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1 + cε e−cεn

) ∫

|v|>ε
κε2(v) dv.

By (5.5),

(5.12) I2 6 c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
ε+ cε e−cεn

)
.

Putting together (5.10), (5.11) and (5.12), we obtain that

I0 >
√
n
(
h ∗ ϕ√

nσ

)
(y)ν (ψ) − c ‖ψ‖∞ ‖h− h2ε‖L1

− c ‖ψ‖∞

∥∥∥h2ε

∥∥∥
L1

(
1√
n

+ ε+ cε e−cεn

)
.(5.13)

Putting together the upper bound (5.8) and the lower bound (5.13), the first inequality of
the lemma follows. The second inequality is proved in (5.9). �

We now apply Lemma 5.4 when the function h is an indicator of an interval.
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Corollary 5.5. Assume Hypotheses M1-M3. For any a > 0, ε ∈ (0, 1/4), any non-negative
function ψ ∈ C and any n > 1,

sup
x∈X, y∈R, z>0

√
n
∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a]) − aϕ√

nσ(z − y)ν (ψ)
∣∣∣

6 c(a + ε) ‖ψ‖∞

(
1√
n

+
a

n
+ ε+ cε e−cεn

)
,

where ϕ√
nσ(·) is defined by (5.1). In particular, there exists c > 0 such that for any a > 0,

(5.14) sup
x∈X, y∈R, z>0

√
nEx (ψ (Xn) ; y + Sn ∈ [z, z + a]) 6 c(1 + a2) ‖ψ‖∞ .

Proof. Let z > 0, a > 0, ε ∈ (0, 1/4). For any y ∈ R set

h(y) = 1[z,z+a](y).

It is clear that

hε(y) = 1[z−ε,z+a+ε](y) and hε(y) = 1[z+ε,z+a−ε](y),

where by convention 1[z+ε,z+a−ε](y) = 0 when a 6 2ε. It is also easy to see that

‖h− h2ε‖L1 =
∥∥∥h2ε − h

∥∥∥
L1

= 4ε and
∥∥∥h2ε

∥∥∥
L1

= a+ 4ε.

Taking into account these last equalities and using Lemma 5.4, we find that
∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a]) − 1[z,z+a] ∗ ϕ√

nσ(y)ν (ψ)
∣∣∣

6 c(a+ ε) ‖ψ‖∞

(
1√
n

+ ε+ cε e−cεn

)
.(5.15)

Moreover, the convolution 1[z,z+a] ∗ ϕ√
nσ is equal to

1[z,z+a] ∗ ϕ√
nσ(y) =

∫

R

1{z6y−u6z+a}
e− u2

2nσ2

√
2πnσ

du = Φ√
nσ(y − z) − Φ√

nσ(y − z − a),

where Φ√
nσ(t) =

∫ t
−∞

e
− u2

2nσ2√
2πnσ

du is the distribution function of the centred normal law of

variance nσ2. By the Taylor-Lagrange formula, there exists ξ ∈ (y − z − a, y − z) such that

Φ√
nσ(y − z − a) = Φ√

nσ(y − z) − aϕ√
nσ(y − z) +

a2

2
ϕ′√

nσ(ξ).

Using the fact that supu∈R |u| e−u2
6 c,

(5.16)
∣∣∣1[z,z+a] ∗ ϕ√

nσ(y) − aϕ√
nσ(z − y)

∣∣∣ 6
ca2

n
.

Putting together (5.15) and (5.16), we conclude that
∣∣∣Ex (ψ (Xn) ; y + Sn ∈ [z, z + a]) − aϕ√

nσ(z − y)ν (ψ)
∣∣∣

6 c(a + ε) ‖ψ‖∞

(
1√
n

+
a

n
+ ε+ cε e−cεn

)
.

�
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6. Auxiliary bounds

We state two bounds on the expectation Ex (ψ(Xn) ; y + Sn ∈ [z, z + a] , τy > n). The first
one is of order 1/n and independent of z. Then we reverse the Markov chain to improve it
to a bound of order 1/n3/2. We refer to Denisov and Wachtel [8] for related results in the
case of lattice valued independent random variables.

Lemma 6.1. Assume Hypotheses M1-M3. There exists c > 0 such that for any a > 0,
non-negative function ψ ∈ C , y ∈ R and n > 1

sup
x∈X, z>0

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6
c

n
‖ψ‖∞ (1 + a2) (1 + max(y, 0)) .

Proof. We split the time n into two parts k := ⌊n/2⌋ and n− k. By the Markov property,

E0 := Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

=
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xk) ; y′ + Sk ∈ [z, z + a] , τy′ > k)

× Px (Xn−k = x′ , y + Sn−k ∈ dy′ , τy > n− k)

6
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xk) ; y′ + Sk ∈ [z, z + a])

× Px (Xn−k = x′ , y + Sn−k ∈ dy′ , τy > n− k) .

Using the uniform bound (5.14) in Corollary 5.5, we obtain that

E0 6
c ‖ψ‖∞√

k
(1 + a2)Px (τy > n− k) .

By the point 2 of Proposition 2.2, we get

E0 6
c ‖ψ‖∞ (1 + a2) (1 + max(y, 0))√

k
√
n− k

.

Since n− k > n/2 and k > n/4 for any n > 4, the lemma is proved (the case when n 6 4 is
trivial). �

Lemma 6.2. Assume Hypotheses M1-M3. There exists c > 0 such that for any a > 0,
non-negative function ψ ∈ C , y ∈ R, z > 0 and n > 1

sup
x∈X

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6
c ‖ψ‖∞
n3/2

(1 + a3) (1 + z) (1 + max(y, 0)) .

Proof. Set again k = ⌊n/2⌋. By the Markov property

E0 := Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

=
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xk) ; y′ + Sk ∈ [z, z + a] , τy′ > k)
︸ ︷︷ ︸

=:E′
0

(6.1)

× Px (Xn−k = x′ , y + Sn−k ∈ dy′ , τy > n− k) .

Using Lemma 3.2 with m = δx′ and

F (x1, . . . , xk) = ψ(xk)1{y′+f(x1)···+f(xk)∈[z,z+a] , ∀i∈{1,...,k}, y′+f(x1)+···+f(xi)>0},
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we have

E ′
0 = E

∗
ν


ψ (X∗

1 )
1{x′}

(
X∗

k+1

)

ν

(
X∗

k+1

) ; y′ + f (X∗
k) + · · · + f (X∗

1 ) ∈ [z, z + a] ,

∀i ∈ {1, . . . , k}, y′ + f (X∗
k) + · · · + f

(
X∗

k−i+1

)
> 0


 .

By the Markov property,

E ′
0 = E

∗
ν (ψ (X∗

1 )ψ∗
x′ (X∗

k) ; y′ + f (X∗
k) + · · · + f (X∗

1 ) ∈ [z, z + a] ,

∀i ∈ {1, . . . , k}, y′ + f (X∗
k) + · · · + f

(
X∗

k−i+1

)
> 0

)
.

where

(6.2) ψ∗
x′(x∗) = E

∗
x∗

(
1{x′} (X∗

1 )

ν (X∗
1 )

)
=

P∗(x∗, x′)

ν(x′)
=

P(x′, x∗)

ν(x∗)
6

1

infx∈X ν(x)
.

On the event {y′ + f (X∗
k) + · · · + f (X∗

1 ) ∈ [z, z + a]} = {z + a + S∗
k ∈ [y′, y′ + a]}, we have

{
∀i ∈ {1, . . . , k}, y′ + f (X∗

k) + · · · + f
(
X∗

k−i+1

)
> 0, y′ > 0

}

⊂
{
∀i ∈ {1, . . . , k − 1}, z + a− f

(
X∗

k−i

)
− · · · − f (X∗

1 ) > 0, z + a+ S∗
k > 0

}

=
{
τ ∗

z+a > k
}
.

So, for any y′ > 0,

E ′
0 6 c ‖ψ‖∞ P

∗
ν

(
z + a+ S∗

k ∈ [y′, y′ + a] , τ ∗
z+a > k

)
.

Using Lemma 6.1 we have uniformly in y′ > 0,

(6.3) E ′
0 6

c ‖ψ‖∞
k

(1 + a2) (1 + max(z + a, 0)) 6
c ‖ψ‖∞
k

(1 + a3) (1 + z) .

Putting together (6.3) and (6.1) and using the point 2 of Proposition 2.2,

E0 6
c ‖ψ‖∞
k

(1 + a3) (1 + z)Px (τy > n− k) 6
c ‖ψ‖∞
k
√
n− k

(1 + a3) (1 + z) (1 + max(y, 0)) .

Since n− k > n/2 and k > n/4 for any n > 4, the lemma is proved. �

7. Proof of Theorem 2.4

The aim of this section is to bound

(7.1) E0 := Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

uniformly in the end point z. The point is to split the time n into n = n1 + n2, where
n2 = ⌊ε3n⌋ and n1 = n− ⌊ε3n⌋, and ε ∈ (0, 1). Using the Markov property, we shall bound
the process between n1 and n by the local limit theorem (Corollary 5.5) and between 1 and
n1 by the integral theorem (Proposition 2.3). Following this idea we write

E0 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n1)
︸ ︷︷ ︸

=:E1

− Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , n1 < τy 6 n)
︸ ︷︷ ︸

=:E2

.(7.2)
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For the ease of reading the bounds of E1 and E2 are given in separate sections.

7.1. Control of E1.

Lemma 7.1. Assume Hypotheses M1-M3. For any a > 0 and ε ∈ (0, 1/4) there exist
c = ca > 0 depending only on a and cε > 0 such that for any non-negative function ψ ∈ C ,
any y ∈ R and n ∈ N, such that ε3n > 1 we have

sup
x∈X,z>0

n

∣∣∣∣∣E1 − a√
n2σ

ν (ψ)Ex

(
ϕ

(
y − z + Sn1√

n2σ

)
; τy > n1

)∣∣∣∣∣

6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+

cε√
n

)
.

where E1 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n1), n2 = ⌊ε3n⌋, n1 = n − ⌊ε3n⌋ and

ϕ(t) = e− t2

2 /
√

2π.

Proof. By the Markov property,

E1 =
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a])︸ ︷︷ ︸

=:E′
1

× Px (y + Sn1 ∈ dy′ , Xn1 = x′ , τy > n1) .(7.3)

From now on we consider that the real a > 0 is fixed. By Corollary 5.5, for any ε5/2 6 ε ∈
(0, 1/4),

√
n2

∣∣∣E ′
1 − aϕ√

n2σ(z − y′)ν (ψ)
∣∣∣ 6 c ‖ψ‖∞

(
1√
n2

+ ε5/2 + cε e−cεn2

)
,

with c depending only on a. Consequently, using (7.3) and the fact that n2 = ⌊ε3n⌋ > cεn,
∣∣∣E1 − aν (ψ)Ex

(
ϕ√

n2σ (y − z + Sn1) ; τy > n1

)∣∣∣

6
c ‖ψ‖∞√

n2

(
cε√
n

+ ε5/2 + cε e−cεn

)
Px (τy > n1) .

Therefore, by (5.1) and the point 2 of Proposition 2.2, we obtain that
∣∣∣∣∣E1 − a√

n2σ
ν (ψ)Ex

(
ϕ

(
y − z + Sn1√

n2σ

)
; τy > n1

)∣∣∣∣∣ 6 c ‖ψ‖∞
1 + max(y, 0)√

n2
√
n1

(
cε√
n

+ ε5/2

)
.

Since n2 > ε3n
(
1 − 1

ε3n

)
and n1 > n

2
, we have

c ‖ψ‖∞
1 + max(y, 0)√

n2
√
n1

(
cε√
n

+ ε5/2

)
6 c ‖ψ‖∞

1 + max(y, 0)

ε3/2n

(
1 +

cε

n

)(
cε√
n

+ ε5/2

)

6 c ‖ψ‖∞
1 + max(y, 0)

n

(
ε+

cε√
n

)

and the lemma follows. �

To find the limit behaviour of E1, we will develop 1√
n2
Ex

(
ϕ
(

y+Sn1 −z√
n2σ

)
; τy > n1

)
. To this

aim, we prove the following lemma which we will apply first with the standard normal density
function ϕ, and later on with the Rayleigh density ϕ+.
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Lemma 7.2. Assume Hypotheses M1-M3. Let Ψ : R → R be a non-negative derivable
function such that Ψ(t) → 0 as t → +∞. Moreover we suppose that Ψ′ is a continuous

function on R such that max(|Ψ(t)| , |Ψ′(t)|) 6 c e− t2

4 . There exists ε0 ∈ (0, 1/2) such that
for any ε ∈ (0, ε0), y ∈ R, m1 > 1 and m2 > 1, we have

sup
x∈X, z>0

∣∣∣∣∣Ex

(
Ψ

(
y + Sm1 − z√

m2σ

)
; τy > m1

)
− 2V (x, y)√

2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t− z√

m2σ

)
ϕ+(t) dt

∣∣∣∣∣

6 cε
(1 + max(y, 0))2

mε
1

√
m2

+ c
1 + max(y, 0)√

m1

(
e

−c
m1
m2 +ε4

)
,

where ϕ+(t) = t e− t2

2 .

Proof. Let x ∈ X, y ∈ R, z > 0, m1 > 1 and m2 > 1 and fix ε1 ∈ (0, 1). We consider two
cases. Assume first that z 6

√
m1σ/ε1. Using the regularity of the function Ψ, we note that

J0 := Ex

(
Ψ

(
y + Sm1 − z√

m2σ

)
; τy > m1

)

= −
∫ +∞

0

√
m1

m2
Ψ′
(√

m1

m2
t− z√

m2σ

)
Px

(
y + Sm1√
m1σ

6 t , τy > m1

)
dt.

Denote by J1 the following integral:

(7.4) J1 := − 2V (x, y)√
2πm1σ

∫ +∞

0

√
m1

m2
Ψ′
(√

m1

m2
t− z√

m2σ

)(
1 − e− t2

2

)
dt.

Using the point 2 of Proposition 2.3, with t0 = 2/ε1, there exists ε0 > 0 such that for any
ε ∈ (0, ε0),

|J0 − J1| 6 cε,ε1

(1 + max(y, 0))2

m
1/2+ε
1

∫ 2
ε1

0

√
m1

m2

∣∣∣∣∣Ψ
′
(√

m1

m2

t− z√
m2σ

)∣∣∣∣∣ dt

+

(
2V (x, y)√

2πm1σ
+ Px (τy > m1)

)∫ +∞

2
ε1

√
m1

m2

∣∣∣∣∣Ψ
′
(√

m1

m2
t− z√

m2σ

)∣∣∣∣∣ dt.

Using the point 2 of Proposition 2.1 and the point 2 of Proposition 2.2, with ‖Ψ′‖∞ =
supt∈R |Ψ′(t)|,

|J0 − J1| 6 cε,ε1

(1 + max(y, 0))2

mε
1

√
m2

‖Ψ′‖∞ + c
1 + max(y, 0)√

m1

√
m1

m2

∫ +∞

2
ε1

e−

(√
m1
m2

t− z√
m2σ

)2

4 dt

6 cε,ε1

(1 + max(y, 0))2

mε
1

√
m2

+ c
1 + max(y, 0)√

m1

∫ +∞
√

m1
m2

(
2

ε1
− z√

m1σ

) e− s2

4 ds.

Since z 6
√

m1σ

ε1
, we have 2

ε1
− z√

m1σ
> 1

ε1
> 1 and so

(7.5) |J0 − J1| 6 cε,ε1

(1 + max(y, 0))2

mε
1

√
m2

+ c
1 + max(y, 0)√

m1
e

− m1
8m2

∫

R

e− s2

8 ds.



CONDITIONED LOCAL LIMIT THEOREMS 25

Moreover, by the definition of J1 in (7.4), we have

J1 =
2V (x, y)√

2πm1σ

[
−Ψ

(√
m1

m2
t− z√

m2σ

)(
1 − e− t2

2

)]t=+∞

t=0

+
2V (x, y)√

2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t− z√

m2σ

)
t e− t2

2 dt

=
2V (x, y)√

2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t− z√

m2σ

)
ϕ+(t) dt.(7.6)

Now, assume that z >
√

m1σ

ε1
. We write

J0 6 cEx

(
e

− (y+Sm1 −z)2

4m2σ2 ; y + Sm1 6

√
m1σ

2ε1

, τy > m1

)

+ ‖Ψ‖∞ Px

(
y + Sm1 >

√
m1σ

2ε1
, τy > m1

)

6 c e
− m1

16m2ε2
1 Px (τy > m1) + ‖Ψ‖∞

2ε1√
m1σ

Ex (y + Sm1 ; τy > m1) .

Using the points 3 and 1 of Proposition 2.1, we can verify that

Ex (y + Sm1 ; τy > m1) 6 Ex (2V (y + Sm1 , Xm1) + c ; τy > m1) 6 2V (x, y) + c.

So by the point 2 of Proposition 2.2 and the point 2 of Proposition 2.1,

J0 6 c
1 + max(y, 0)√

m1
e

− cm1
m2 +

cε1√
m1

(1 + max(y, 0)) .

In the same way,

J1 =
2V (x, y)√

2πm1σ

∫ +∞

0
Ψ

(√
m1

m2
t− z√

m2σ

)
ϕ+(t) dt

6
c (1 + max(y, 0))√

m1



∫ 1

2ε1

0
e

− m1
4m2

(
t− z√

m1σ

)2

ϕ+(t) dt+ ‖Ψ‖∞

∫ +∞

1
2ε1

t e− t2

2 dt




6
c (1 + max(y, 0))√

m1

[
e

− m1
16m2ε2

1

∫ +∞

0
ϕ+(t) dt+ ‖Ψ‖∞ e

− 1

16ε2
1

∫ +∞

0
t e− t2

4 dt

]

6
c (1 + max(y, 0))√

m1

(
e

− cm1
m2 + e

− c

ε2
1

)
.

From the last two bounds it follows that for any z >
√

m1σ

ε1
,

(7.7) |J0 − J1| 6 J0 + J1 6
c (1 + max(y, 0))√

m1

(
e

− cm1
m2 +ε1

)
.

Putting together (7.6), (7.7) and (7.5) and taking ε1 = ε4, we obtain the desired inequality
for any z > 0,

|J0 − J1| 6 cε
(1 + max(y, 0))2

mε
1

√
m2

+
c (1 + max(y, 0))√

m1

(
e

− cm1
m2 +ε4

)
.

�
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Lemma 7.3. Assume Hypotheses M1-M3. There exists ε0 ∈ (0, 1/2) such that for any
ε ∈ (0, ε0), y ∈ R, n ∈ N such that ε3n > 1, we have

sup
x∈X, z>0

∣∣∣∣∣
n√
n2

Ex

(
ϕ

(
y + Sn1 − z√

n2σ

)
; τy > n1

)
− 2V (x, y)√

2πσ
ϕ+

(
z√
nσ

)∣∣∣∣∣

6 cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,

where ϕ(t) = e− t2

2 /
√

2π, ϕ+(t) = t e− t2

2
1{t>0}, n2 = ⌊ε3n⌋ and n1 = n− ⌊ε3n⌋.

Proof. Denote

J0 := Ex

(
ϕ

(
y + Sn1 − z√

n2σ

)
; τy > n1

)

and

J1 :=
2V (x, y)√

2πn1σ

∫ +∞

0
ϕ

(√
n1

n2
t− z√

n2σ

)
ϕ+(t) dt

=
2V (x, y)√

2πn1σ

∫ +∞

0

√
n2

n1
ϕ√n2

n1

(
t− z√

n1σ

)
ϕ+(t) dt

=
2V (x, y)√

2πσ

√
n2

n1
ϕ√n2

n1

∗ ϕ+

(
z√
n1σ

)
,(7.8)

where ϕ{·}(·) is defined in (5.1). By Lemma 7.2 we have

n1√
n2

|J0 − J1| 6 cεn1
(1 + max(y, 0))2

nε
1n2

+ cn1
1 + max(y, 0)√

n1
√
n2

(
e

−c
n1
n2 +ε4

)
.

Since n
2
6 n1 6 n and ε3n− 1 6 n2 6 ε3n,

n√
n2

|J0 − J1| 6 cε
(1 + max(y, 0))2

nε
+ c

1 + max(y, 0)

ε3/2

(
1 +

cε

n

) (
e− c

ε3 +ε4
)

6 cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε.(7.9)

Let J2 be the following term:

(7.10) J2 :=
2V (x, y)√

2πσ

√
n2

n1
ϕ+

(
z√
n1σ

)
.

Using (7.8),

|J1 − J2| 6
2V (x, y)√

2πσ

√
n2

n1

∫

R

ϕ√n2
n1

(t)

∣∣∣∣∣ϕ+

(
z√
n1σ

− t

)
− ϕ+

(
z√
n1σ

)∣∣∣∣∣ dt.

By the point 2 of Proposition 2.1, we write
n√
n2

|J1 − J2| 6 c (1 + max(y, 0))
∥∥∥ϕ′

+

∥∥∥
∞

∫

R

ϕ√n2
n1

(t) |t| dt

6 c (1 + max(y, 0))

√
n2

n1

∫

R

ϕ(s) |s| ds

6 c (1 + max(y, 0)) ε3/2.(7.11)
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Putting together (7.9) and (7.11), we obtain that

(7.12) sup
x∈X,z>0

n√
n2

|J0 − J2| 6 cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε.

It remains to link J2 from (7.10) to the desired equivalent. We distinguish two cases. If
z
σ
6

√
n

ε
,

∣∣∣∣∣
n√
n2
J2 − 2V (x, y)√

2πσ
ϕ+

(
z√
nσ

)∣∣∣∣∣ 6 cV (x, y)

∣∣∣∣∣
n

n1
ϕ+

(
z√
n1σ

)
− ϕ+

(
z√
nσ

)∣∣∣∣∣

6 cV (x, y)

(
‖ϕ+‖∞

∣∣∣∣
n

n1
− 1

∣∣∣∣+
∣∣∣∣∣

1√
n1

− 1√
n

∣∣∣∣∣

∣∣∣∣
z

σ

∣∣∣∣
∥∥∥ϕ′

+

∥∥∥
∞

)

6 cV (x, y)

(
n2

n1
+

1√
n1

∣∣∣∣1 −
√

1 − n2

n

∣∣∣∣

√
n

ε

)

6 cV (x, y)

(
ε3 +

ε3

ε

)
.

If z
σ
>

√
n

ε
>

√
n1

ε
, we have

∣∣∣∣∣
n√
n2
J2 − 2V (x, y)√

2πσ
ϕ+

(
z√
nσ

)∣∣∣∣∣ 6 cV (x, y) sup
u> 1

ε

ϕ+ (u) 6 cV (x, y) e− c
ε2 .

Therefore, using the point 2 of Proposition 2.1, we obtain that in each case

(7.13)

∣∣∣∣∣
n√
n2
J2 − 2V (x, y)√

2πσ
ϕ+

(
z√
nσ

)∣∣∣∣∣ 6 c (1 + max(y, 0)) ε2.

Putting together (7.12) and (7.13), proves the lemma. �

Another consequence of Lemma 7.2 is the following lemma which will be used in Section
8.

Lemma 7.4. Assume Hypotheses M1-M3. There exists ε0 ∈ (0, 1/2) such that for any
ε ∈ (0, ε0), y ∈ R, n ∈ N such that ε3n > 2, we have

sup
x∈X

∣∣∣∣∣
n3/2

n2 − 1
Ex

(
ϕ+

(
y + Sn1√
n2 − 1σ

)
; τy > n1

)
− V (x, y)

σ

∣∣∣∣∣

6 cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,

where ϕ+(t) = t e− t2

2
1{t>0} is the Rayleigh density function, n1 = n− ⌊ε3n⌋ and n2 = ⌊ε3n⌋.

Proof. Using Lemma 7.2 with Ψ = ϕ+, m1 = n1, m2 = n2 − 1 and z = 0,

n3/2

n2 − 1
|J0 − J1| 6 cε

(1 + max(y, 0))2 n3/2

(n2 − 1)3/2nε
1

+ c
(1 + max(y, 0))n3/2

(n2 − 1)
√
n1

(
e

−c
n1

(n2−1) +ε4
)

6 cε
(1 + max(y, 0))2

nε
+ c

(1 + max(y, 0))

ε3

(
1 +

cε

n

) (
e− c

ε3 +ε4
)

6 cε
(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε,(7.14)
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where

J0 := Ex

(
ϕ+

(
y + Sn1√
n2 − 1σ

)
; τy > n1

)

and

n3/2

n2 − 1
J1 :=

n3/2

n2 − 1

2V (x, y)√
2πn1σ

∫ +∞

0
ϕ+

(√
n1

n2 − 1
t

)
ϕ+(t) dt

=
n3/2

n2 − 1

2V (x, y)√
2πn1σ

√
n1

n2 − 1

∫ +∞

0
t2 e−

( n1
n2−1

+1)t2

2 dt

=
n3/2

(n2 − 1)3/2

2V (x, y)√
2πσ

∫ +∞

0
t2
√

2π(n2 − 1)

n− 1
ϕ√

n2−1

n−1

(t) dt

where ϕ{·}(·) is defined in (5.1). So,

n3/2

n2 − 1
J1 =

n3/2

√
n− 1(n2 − 1)

2V (x, y)

σ

n2 − 1

2(n− 1)

=
n3/2

(n− 1)3/2

V (x, y)

σ
.

By the point 2 of Proposition 2.1,

(7.15)

∣∣∣∣∣
n3/2

n2 − 1
J1 − V (x, y)

σ

∣∣∣∣∣ 6
c

n
(1 + max(y, 0)) .

The lemma follows from (7.14) and (7.15). �

Thanks to Lemmata 7.1 and 7.3 we can bound E1 from (7.2) as follows.

Lemma 7.5. Assume Hypotheses M1-M3. For any a > 0 there exists ε0 ∈ (0, 1/4) such
that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N such that
ε3n > 1, we have

sup
x∈X, z>0

n

∣∣∣∣∣E1 − 2aν (ψ)V (x, y)√
2πσ2

ϕ+

(
z√
nσ

)∣∣∣∣∣

6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+

cε (1 + max(y, 0))

nε

)
,

where E1 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n1), n1 = n−⌊ε3n⌋ and ϕ+ is the Rayleigh

density function: ϕ+(t) = t e− t2

2
1{t>0}.

Proof. From Lemmas 7.1 and 7.3, it follows that

n

∣∣∣∣∣E1 − 2aν (ψ)V (x, y)√
2πσ2

ϕ+

(
z√
nσ

)∣∣∣∣∣

6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+

cε√
n

)
+

∣∣∣∣∣
aν (ψ)

σ

∣∣∣∣∣

(
cε

(1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε

)

6 c (1 + max(y, 0)) ‖ψ‖∞

(
ε+

cε (1 + max(y, 0))

nε

)
.

�
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7.2. Control of E2. In this section we bound the term E2 defined by (7.2). To this aim
let us recall and introduce some notations: for any ε ∈ (0, 1), we consider n2 = ⌊ε3n⌋,

n1 = n− n2 = n− ⌊ε3n⌋, n3 =
⌊

n2

2

⌋
and n4 = n2 − n3. We define also

E21 := Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 6 ε

√
n , n1 < τy 6 n

)
(7.16)

E22 := Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 < τy 6 n1 + n3

)
(7.17)

E23 := Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 + n3 < τy 6 n

)
(7.18)

and we note that

(7.19) E2 = E21 + E22 + E23.

Lemma 7.6. Assume Hypotheses M1-M3. For any a > 0 there exists ε0 ∈ (0, 1/4) such
that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N such that
ε3n > 1, we have

sup
x∈X,z>0

nE21 6 c ‖ψ‖∞ (1 + max(y, 0))

(√
ε+

cε (1 + max(y, 0))

nε

)

where E21 is given as in (7.16) by

E21 = Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 6 ε

√
n , n1 < τy 6 n

)

and n1 = n− ⌊ε3n⌋.

Proof. Using the Markov property and the uniform bound (5.14) of Corollary 5.5, with
n2 = ⌊ε3n⌋,

E21 =
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , τy′ 6 n2)

× Px

(
Xn1 = x′ , y + Sn1 ∈ dy′ , y + Sn1 6 ε

√
n , τy > n1

)

6
c ‖ψ‖∞√

n2
Px

(
y + Sn1 6 ε

√
n , τy > n1

)
.

We note that ε
√

n
σ

√
n1

6 ε
σ

√
1−ε3 6 2

σ
ε and so by the point 2 of Proposition 2.3 with t0 = 2ε/σ:

E21 6
c ‖ψ‖∞√

n2

(
cV (x, y)√

n1

Φ+

(
ε
√
n

σ
√
n1

)
+
cε (1 + max(y, 0)2)

n
1/2+ε
1

)
.

Using the point 2 of Proposition 2.1 and taking into account that n2 > ε3n
(
1 − cε

n

)
, n1 > n/2

and that Φ+(t) 6 Φ+(t0) 6
t2
0

2
for any t ∈ (0, t0),

nE21 6
c ‖ψ‖∞
ε3/2

(
1 +

cε

n

)
(1 + max(y, 0))

(
ε2 +

cε (1 + max(y, 0))

nε

)

6 c ‖ψ‖∞ (1 + max(y, 0))

(√
ε+

cε (1 + max(y, 0))

nε

)
,

which implies the assertion of the lemma. �
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Lemma 7.7. Assume Hypotheses M1-M3. For any a > 0 there exists ε0 ∈ (0, 1/4) such
that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R, and n ∈ N satisfying
ε3n > 2, we have

sup
x∈X,z>0

nE22 6 c ‖ψ‖∞ (1 + max(y, 0))
(

e− c
ε +

cε

nε

)
,

where E22 is given as in (7.17) by

E22 = Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 < τy 6 n1 + n3

)

and n1 = n− ⌊ε3n⌋, n2 = ⌊ε3n⌋ and n3 =
⌊

n2

2

⌋
.

Proof. By the Markov property,

E22 =
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , τy′ 6 n3)
︸ ︷︷ ︸

E′
22

(7.20)

× Px

(
Xn1 = x′ , y + Sn1 ∈ dy′ , y + Sn1 > ε

√
n , τy > n1

)
.

Bound of E ′
22. By the Markov property and the uniform bound (5.14) in Corollary 5.5,

with n4 = n2 − n3 = n− n1 − n3,

E ′
22 =

∑

x′′∈X

∫

R

Ex′′ (ψ (Xn4) ; y′′ + Sn4 ∈ [z, z + a])

× Px′ (Xn3 = x′′ , y′ + Sn3 ∈ dy′′ , τy′ 6 n3)

6
c ‖ψ‖∞√

n4
Px′ (τy′ 6 n3) .

Let (Bt)t>0 be the Brownian motion defined by Proposition 10.4. Denote by An the following
event:

An =

{
sup

t∈[0,1]

∣∣∣S⌊tn⌋ − σBtn

∣∣∣ 6 n1/2−ε

}
,

and by An its complement. We have

(7.21) E ′
22 6

c ‖ψ‖∞√
n4

[
Px′ (τy′ 6 n3 , An3) + Px′

(
τy′ 6 n3 , An3

)]
.

Note that for any x′ ∈ X and any y′ > ε
√
n,

Px′ (τy′ 6 n3 , An3) 6 P

(
τ bm

y′−n
1/2−ε
3

6 n3

)
,

where, for any y′′ > 0, τ bm
y′′ is the exit time of the Brownian motion starting at y′′ defined by

(10.7). Since y′ > ε
√
n, it implies that

Px′ (τy′ 6 n3 , An3) 6 P

(
inf

t∈[0,1]
σBtn3 6 n

1/2−ε
3 − y′

)

6 P


 inf

t∈[0,1]
σBtn3 6

(
ε3n

2

)1/2−ε

− ε
√
n




6 P

(
inf

t∈[0,1]
σBtn3 6 −ε

√
n

(
1 − ε1/2−3ε

nε

))
.
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Since
√
n/

√
n3 >

√
2/ε3/2,

Px′ (τy′ 6 n3 , An3) 6 P

(∣∣∣∣∣
Bn3√
n3

∣∣∣∣∣ >
ε
√
n

σ
√
n3

(
1 − 1

nε

))

6 P

(
|B1| >

√
2

σ
√
ε

(
1 − 1

nε

))

6 c e− c
ε (1− c

nε ) .(7.22)

Therefore, putting together (7.21) and (7.22) and using Proposition 10.4,

E ′
22 6

c ‖ψ‖∞√
n4

(
c e− c

ε(1− c
nε ) +Px′

(
An3

))
6
c ‖ψ‖∞√

n4

(
e− c

ε(1− c
nε ) +

cε

nε
3

)
.

Since n4 > n2/2 > ε3n
2

(
1 − cε

n

)
and n3 > n2/2 − 1 > ε3n

2

(
1 − cε

n

)
, we have

(7.23) E ′
22 6

c ‖ψ‖∞
ε3/2

√
n

(
1 +

cε

n

)(
e− c

ε e
cε
nε +

cε

nε

)
6
c ‖ψ‖∞√

n

(
e− c

ε +
cε

nε

)
.

Inserting (7.23) in (7.20) and using the point 2 of Proposition 2.2 and the fact that
n1 > n/2, we conclude that

E22 6
c ‖ψ‖∞ (1 + max(y, 0))

n

(
e− c

ε +
cε

nε

)
.

�

Lemma 7.8. Assume Hypotheses M1-M3. For any a > 0 there exists ε0 ∈ (0, 1/4) such
that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R, and n ∈ N such that
ε3n > 3, we have

sup
x∈X,z>0

nE23 6 c ‖ψ‖∞ (1 + max(y, 0))
(
ε+

cε

nε

)
,

where E23 is given as in (7.18) by

E23 = Ex

(
ψ (Xn) ; y + Sn ∈ [z, z + a] , y + Sn1 > ε

√
n , n1 + n3 < τy 6 n

)

and n1 = n− ⌊ε3n⌋, n2 = ⌊ε3n⌋ and n3 =
⌊

n2

2

⌋
.

Proof. By the Markov property,

E23 6
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , n3 < τy′ 6 n2)︸ ︷︷ ︸

=:E′
23

Px

(
Xn1 = x′ , y + Sn1 ∈ dy′ , y + Sn1 > ε

√
n , τy > n1

)
.(7.24)

We consider two cases: when z 6 ε
√

n
2

and when z > ε
√

n
2

.
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Fix first 0 6 z 6 ε
√

n
2

. Using Corollary 5.5, we have for any y′ > ε
√
n,

E ′
23 6 Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a])

6
aν(ψ)√
2πn2σ

e
− (z−y′)2

2n2σ2 +
c ‖ψ‖∞√

n2

(
1√
n2

+ ε5/2 + cε e−cεn2

)

6
c ‖ψ‖∞
ε3/2

√
n

(
1 +

cε

n

)(
e

− ε2n
8n2σ2 +

cε√
n

+ ε5/2 + cε e−cεn

)

6
c ‖ψ‖∞
ε3/2

√
n

(
1 +

cε

n

)(
e− c

ε +
cε√
n

+ ε5/2

)
.

So, when 0 6 z 6 ε
√

n
2

, we have

(7.25) E ′
23 6

c ‖ψ‖∞√
n

(
cε√
n

+ ε

)
.

Now we consider that z > ε
√

n
2

. Using Lemma 3.2 with m = δx′ and

F (x1, . . . , xn2)

= ψ(xn2)1{y′+f(x1)+···+f(xn2 )∈[z,z+a] , ∃k∈{n3+1,...,n2−1}, y′+f(x1)+···+f(xk)60},
we obtain

E ′
23 := Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ [z, z + a] , n3 < τy′ 6 n2)

6 E
∗
ν


ψ (X∗

1 )
1{x′}

(
X∗

n2+1

)

ν

(
X∗

n2+1

) ; y′ + f
(
X∗

n2

)
+ · · · + f (X∗

1 ) ∈ [z, z + a] ,

∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f
(
X∗

n2

)
+ · · · + f

(
X∗

n2−k+1

)
6 0


 .

By the Markov property,

E ′
23 6 ‖ψ‖∞ E

∗
ν

(
ψ∗

x′

(
X∗

n2

)
; y′ + f

(
X∗

n2

)
+ · · · + f (X∗

1 ) ∈ [z, z + a] ,

∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f
(
X∗

n2

)
+ · · · + f

(
X∗

n2−k+1

)
6 0

)
.

where ψ∗
x′ is a function defined on X by the equation (6.2). We note that, on the event{

y′ + f
(
X∗

n2

)
+ · · · + f (X∗

1 ) ∈ [z, z + a]
}

=
{
z + S∗

n2
∈ [y′ − a, y′]

}
, we have

{
∃k ∈ {n3 + 1, . . . , n2 − 1}, y′ + f

(
X∗

n2

)
+ · · · + f

(
X∗

n2−k+1

)
6 0

}

⊂
{
∃k ∈ {n3 + 1, . . . , n2 − 1}, z − f

(
X∗

n2−k

)
− · · · − f (X∗

1 ) 6 0
}

= {τ ∗
z 6 n2 − n3 − 1} .

Consequently,

E ′
23 6 c ‖ψ‖∞ P

∗
ν

(
z + S∗

n2
∈ [y′ − a, y′] , τ ∗

z 6 n4 − 1
)
,

with n4 = n2 − n3 = ⌊ε3n⌋ −
⌊

ε3n
2

⌋
> ε3n

2

(
1 − cε

n

)
. Proceeding in the same way as for the

term E ′
22 in (7.23) and using the fact that z is larger than cε

√
n, we have

(7.26) E ′
23 6

c ‖ψ‖∞√
n

(
e− c

ε +
cε

nε

)
.
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Putting together (7.25) and (7.26), for any z > 0, we obtain

E ′
23 6

c ‖ψ‖∞√
n

(
ε+

cε

nε

)
.

Inserting this bound in (7.24) and using the point 2 of Proposition 2.2, we conclude that

E23 6
c ‖ψ‖∞ (1 + max(y, 0))

n

(
ε+

cε

nε

)
.

�

Putting together Lemmas 7.6, 7.7 and 7.8, by (7.19), we obtain the following bound for
E2:

Lemma 7.9. Assume Hypotheses M1-M3. For any a > 0 there exists ε0 ∈ (0, 1/4) such
that for any ε ∈ (0, ε0), any non-negative function ψ ∈ C , any y ∈ R and n ∈ N such that
ε3n > 3, we have

sup
x∈X,z>0

nE2 6 c ‖ψ‖∞ (1 + max(y, 0))

(√
ε+

cε (1 + max(y, 0))

nε

)
,

where E2 is given as in (7.2) by

E2 = Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , n1 < τy 6 n)

and n1 = n− ⌊ε3n⌋.

7.3. Proof of Theorem 2.4. By (7.1) and (7.2),

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) = E1 + E2.

Lemma 7.5 estimates E1 and Lemma 7.9 bounds E2. Taking into account these two lemmas,
Theorem 2.4 follows.

8. Proof of Theorem 2.5

8.1. Preliminary results.

Lemma 8.1. Assume Hypotheses M1-M3. For any a > 0 and p ∈ N∗, there exists ε0 ∈
(0, 1/4) such that for any ε ∈ (0, ε0) there exists n0(ε) > 1 such that any non-negative
function ψ ∈ C , any y′ > 0, z > 0, k ∈ {0, . . . , p− 1} and n > n0(ε), we have

sup
x′∈X

E ′
k 6

2a√
2πp(n2 − 1)σ2

ϕ+

(
y′

σ
√
n2 − 1

)
E

∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk +
a

p
+ S∗

1

)
; τ ∗

zk+ a
p
> 1

)

+
c ‖ψ‖∞
n

(1 + z)

(
ε+

cε (1 + z)

nε8

)

and

inf
x′∈X

E ′
k >

2a√
2πp(n2 − 1)σ2

ϕ+

(
y′

σ
√
n2 − 1

)
E

∗
ν

(
ψ (X∗

1 )V ∗ (X∗
1 , zk + S∗

1) ; τ ∗
zk
> 1

)

− c ‖ψ‖∞
n

(1 + z)

(
ε+

cε (1 + z)

nε8

)

where E ′
k = Ex′

(
ψ (Xn2) ; y′ + Sn2 ∈

(
zk, zk + a

p

]
, τy′ > n2

)
, zk = z + ka

p
and n2 = ⌊ε3n⌋.
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Proof. Using Lemma 3.2 with m = δx′ and

F (x1, . . . , xn2) = ψ(xn2)1{y′+f(x1)···+f(xn2 )∈(zk,zk+ a
p ] , ∀i∈{1,...,n2}, y′+f(x1)+···+f(xi)>0},

we have

E ′
k = E

∗
ν

(
ψ (X∗

1 )ψ∗
x′

(
X∗

n2

)
; y′ + f

(
X∗

n2

)
+ · · · + f (X∗

1 ) ∈
(
zk, zk +

a

p

]
,

∀i ∈ {1, . . . , n2}, y′ + f
(
X∗

n2

)
+ · · · + f

(
X∗

n2−i+1

)
> 0


 .

where ψ∗
x′ is the function defined on X by (6.2).

The upper bound. Note that, on the event
{
y′ + f

(
X∗

n2

)
+ · · · + f (X∗

1 ) ∈
(
zk, zk + a

p

]}
={

zk + a
p

+ S∗
n2

∈
[
y′, y′ + a

p

)}
, we have

{
∀i ∈ {1, . . . , n2}, y′ + f

(
X∗

n2

)
+ · · · + f

(
X∗

n2−i+1

)
> 0, y′ > 0

}

⊂
{

∀i ∈ {1, . . . , n2 − 1}, zk +
a

p
− f

(
X∗

n2−i

)
− · · · − f (X∗

1 ) > 0,

zk +
a

p
+ S∗

n2
> 0

}

=
{
τ ∗

zk+ a
p
> n2

}
.(8.1)

So, for any y′ > 0,

E ′
k 6 E

∗
ν

(
ψ (X∗

1 )ψ∗
x′

(
X∗

n2

)
; zk +

a

p
+ S∗

n2
∈
[
y′, y′ +

a

p

)
, τ ∗

zk+ a
p
> n2

)

6
∑

x′′∈X

∫ +∞

0
ψ (x′′)E∗

x′′

(
ψ∗

x′

(
X∗

n2−1

)
; z′′ + S∗

n2−1 ∈
[
y′, y′ +

a

p

]
, τ ∗

z′′ > n2 − 1

)

× P
∗
ν

(
X∗

1 = dx′′ , zk +
a

p
+ S∗

1 ∈ dz′′ , τ ∗
zk+ a

p
> 1

)
.

Using Theorem 2.4 for the reverse chain with ε′ = ε8, we obtain that

E ′
k 6

2aν (ψ∗
x′)√

2π(n2 − 1)pσ2
ϕ+

(
y′

√
n2 − 1σ

)
∑

x′′∈X

∫ +∞

0
ψ (x′′)V ∗ (x′′, z′′)

× P
∗
ν

(
X∗

1 = dx′′ , zk +
a

p
+ S∗

1 ∈ dz′′ , τzk+ a
p
> 1

)

+
c ‖ψ∗

x′‖∞ ‖ψ‖∞
n2 − 1

E
∗
ν

((
1 + max

(
zk +

a

p
+ S∗

1 , 0

))

×



√
ε8 +

cε

(
1 + max

(
zk + a

p
+ S∗

1 , 0
))

(n2 − 1)ε8


 , τ ∗

zk+ a
p
> 1


 .
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Note that by (6.2), ν (ψ∗
x′) = 1 and ‖ψ∗

x′‖∞ 6 c. So,

E ′
k 6

2a√
2π(n2 − 1)pσ2

ϕ+

(
y′

√
n2 − 1σ

)
E

∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk +
a

p
+ S∗

1

)
, τ ∗

zk+ a
p
> 1

)

+
c ‖ψ‖∞
ε3n

(
1 +

cε

n

)
(1 + z)

(
ε4 +

cε (1 + z)

nε8

)

and the upper bound of the lemma is proved.
The lower bound. Similarly as in the proof of the upper bound we note that, on the event{
y′ + f

(
X∗

n2

)
+ · · · + f (X∗

1 ) ∈
(
zk, zk + a

p

]}
=
{
zk + S∗

n2
∈
[
y′ − a

p
, y′
)}

, we have

{
∀i ∈ {1, . . . , n2}, y′ + f

(
X∗

n2

)
+ · · · + f

(
X∗

n2−i+1

)
> 0

}

⊃
{

∀i ∈ {1, . . . , n2 − 1}, zk − f
(
X∗

n2−i

)
− · · · − f (X∗

1 ) > 0
}

=
{
τ ∗

zk
> n2 − 1

}
⊃
{
τ ∗

zk
> n2

}
.(8.2)

Let y′
+ := max(y′ − a/p, 0) and a′ := min(y′, a/p) ∈ (0, a]. For any η ∈ (0, a′),

E ′
k > E

∗
ν

(
ψ (X∗

1 )ψ∗
x′

(
X∗

n2

)
; zk + S∗

n2
∈
[
y′ − a

p
, y′
)
, τ ∗

zk
> n2

)

>
∑

x′′∈X

∫ +∞

0
ψ (x′′)E∗

x′′

(
ψ∗

x′

(
X∗

n2−1

)
; z′′ + S∗

n2−1 ∈
[
y′

+, y
′
+ + a′ − η

]
, τ ∗

z′′ > n2 − 1
)

× P
∗
ν

(
X∗

1 = dx′′ , zk + S∗
1 ∈ dz′′ , τ ∗

zk
> 1

)
.

Using Theorem 2.4,

E ′
k >

2(a′ − η)ν (ψ∗
x′)√

2π(n2 − 1)σ2
ϕ+

(
y′

+√
n2 − 1σ

)
∑

x′′∈X

∫ +∞

0
ψ (x′′)V ∗ (x′′, z′′)

× P
∗
ν

(
X∗

1 = dx′′ , zk + S∗
1 ∈ dz′′ , τ ∗

zk
> 1

)

− c ‖ψ∗
x′‖∞ ‖ψ‖∞
n2 − 1

E
∗
ν

((1 + max (zk + S∗
1 , 0))

×
(√

ε8 +
cε (1 + max (zk + S∗

1 , 0))

(n2 − 1)ε8

)
, τ ∗

zk
> 1

)

>
2(a′ − η)√

2π(n2 − 1)σ2
ϕ+

(
y′

+√
n2 − 1σ

)
E

∗
ν

(
ψ (X∗

1 )V ∗ (X∗
1 , zk + S∗

1) , τ ∗
zk
> 1

)

− c ‖ψ‖∞
ε3n

(
1 +

cε

n

)
(1 + z)

(
ε4 +

cε (1 + z)

nε8

)
.

Note that, if y′ > a/p we have

(a′ − η)ϕ+

(
y′

+√
n2 − 1σ

)
=

(
a

p
− η

)
ϕ+

(
y′ − a

p√
n2 − 1σ

)

>

(
a

p
− η

)
ϕ+

(
y′

√
n2 − 1σ

)
−
∥∥∥ϕ′

+

∥∥∥
∞

a2

p2
√
n2 − 1σ
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and if 0 < y′ 6 a/p we have

(a′ − η)ϕ+

(
y′

+√
n2 − 1σ

)
= 0 >

(
a

p
− η

)
ϕ+

(
y′

√
n2 − 1σ

)
−
∥∥∥ϕ′

+

∥∥∥
∞

ay′

p
√
n2 − 1σ

>

(
a

p
− η

)
ϕ+

(
y′

√
n2 − 1σ

)
−
∥∥∥ϕ′

+

∥∥∥
∞

a2

p2
√
n2 − 1σ

.

Moreover, using the points 1 and 2 of Proposition 2.1, we observe that

E
∗
ν

(
ψ (X∗

1 )V ∗ (X∗
1 , zk + S∗

1) , τ ∗
zk
> 1

)
6 c ‖ψ‖∞ (1 + z) .

Consequently, for any y′ > 0,

E ′
k >

2
(

a
p

− η
)

√
2π(n2 − 1)σ2

ϕ+

(
y′

√
n2 − 1σ

)
E

∗
ν

(
ψ (X∗

1 )V ∗ (X∗
1 , zk + S∗

1) , τ ∗
zk
> 1

)

− cε ‖ψ‖∞
n3/2

(1 + z) − c ‖ψ‖∞
n

(1 + z)

(
ε+

cε (1 + z)

nε8

)
.

Taking the limit as η → 0, the lower bound of the lemma follows. �

Lemma 8.2. Assume Hypotheses M1-M3. For any a > 0 and p ∈ N∗, there exists ε0 ∈
(0, 1/4) such that for any ε ∈ (0, ε0) there exists n0(ε) > 1 such that any non-negative
function ψ ∈ C , any y ∈ R, z > 0 and n > n0(ε), we have

sup
x∈X

n3/2E0 6
2aV (x, y)

p
√

2πσ3

p−1∑

k=0

E
∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk +
a

p
+ S∗

1

)
; τ ∗

zk+ a
p
> 1

)

+ pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))

(
ε+

cε (1 + z + max(y, 0))

nε8

)

and

inf
x∈X

n3/2E0 >
2aV (x, y)

p
√

2πσ3

p−1∑

k=0

E
∗
ν

(
ψ (X∗

1 )V ∗ (X∗
1 , zk + S∗

1) ; τ ∗
zk
> 1

)

− pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))

(
ε+

cε (1 + z + max(y, 0))

nε8

)

where E0 = Ex (ψ (Xn) ; y + Sn ∈ (z, z + a] , τy > n) and for any k ∈ {0, . . . , p − 1}, zk =
z + ka

p
.

Proof. Set n1 = n− ⌊ε3n⌋ and n2 = ⌊ε3n⌋. By the Markov property, for any p > 1,

E0 =
∑

x′∈X

∫ +∞

0
Ex′ (ψ (Xn2) ; y′ + Sn2 ∈ (z, z + a] , τy′ > n2)

× Px (Xn1 = dx′ , y + Sn1 ∈ dy′ , τy > n1)

=
∑

x′∈X

∫ +∞

0

p−1∑

k=0

E ′
k × Px (Xn1 = dx′ , y + Sn1 ∈ dy′ , τy > n1) ,

where for any k ∈ {0, . . . , p− 1},

E ′
k = Ex′

(
ψ (Xn2) ; y′ + Sn2 ∈

(
zk, zk +

a

p

]
, τy′ > n2

)
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and zk = z + ka
p

.

The upper bound. By Lemma 8.1,

E0 6
2a

p(n2 − 1)
√

2πσ2

p−1∑

k=0

Ex

(
ϕ+

(
y + Sn1

σ
√
n2 − 1

)
; τy > n1

)
J1(k)

+
p−1∑

k=0

c ‖ψ‖∞
n

(1 + z)

(
ε+

cε (1 + z)

nε8

)
Px (τy > n1) ,

where J1(k) = E∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk + a
p

+ S∗
1

)
; τ ∗

zk+ a
p
> 1

)
, for any k ∈ {0, . . . , p−1}. By

Lemma 7.4 and the point 2 of Proposition 2.2,

n3/2E0 6
2a

p
√

2πσ2

p−1∑

k=0

J1(k)
V (x, y)

σ
+

1

p

p−1∑

k=0

J1(k)

(
cε (1 + max(y, 0))2

nε
+ c (1 + max(y, 0)) ε

)

+ pc ‖ψ‖∞ (1 + z)

(
ε+

cε (1 + z)

nε8

)
(1 + max(y, 0)) .

Note that, using the points 1 and 2 of Proposition 2.1, we have

1

p

p−1∑

k=0

J1(k) 6 c ‖ψ‖∞ (1 + z).

Therefore

n3/2E0 6
2aV (x, y)

p
√

2πσ3

p−1∑

k=0

J1(k)

+ pc ‖ψ‖∞ (1 + z) (1 + max(y, 0))

(
ε+

cε (1 + z + max(y, 0))

nε8

)

and the upper bound of the lemma is proved.
The lower bound. The proof of the lower bound is similar to the proof of the upper bound

and therefore will not be detailed. �

8.2. Proof of Theorem 2.5. The second point of Theorem 2.5 was proved by Lemma 6.2.
It remains to prove the first point. Let ψ ∈ C , a > 0, x ∈ X, y ∈ R and z > 0. Suppose first
that z > 0. For any n > 1 and η ∈ (0,min(z, 1)),

(8.3) Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) 6 E0(η),

where E0(η) = Ex (ψ (Xn) ; y + Sn ∈ (z − η, z + a] , τy > n). Taking the limit as n → +∞
in Lemma 8.2, we have, for any p ∈ N∗ and ε ∈ (0, ε0(p)),

lim sup
n→+∞

n3/2E0(η)

6
2(a+ η)V (x, y)√

2πpσ3

p−1∑

k=0

E
∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk,η +
a+ η

p
+ S∗

1

)
; τ ∗

zk,η+ a+η
p
> 1

)

+ pc ‖ψ‖∞ (1 + z − η) (1 + max(y, 0)) ε,
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with zk,η = z − η + k(a+η)
p

for k ∈ {0, . . . , p− 1}. Taking the limit as ε → 0,

lim sup
n→+∞

n3/2E0(η)

6
2(a+ η)V (x, y)√

2πpσ3

p−1∑

k=0

E
∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk,η +
a+ η

p
+ S∗

1

)
; τ ∗

zk,η+ a+η
p
> 1

)
.

By the point 2 of Proposition 2.1, the function u 7→ V ∗ (x∗, u− f(x∗))1{u−f(x∗)>0} is mono-
tonic and so is Riemann integrable. Since X is finite, we have

lim
p→+∞

a + η

p

p−1∑

k=0

E
∗
ν

(
ψ (X∗

1 )V ∗
(
X∗

1 , zk,η +
a + η

p
+ S∗

1

)
; τ ∗

zk,η+ a+η
p
> 1

)

= E
∗
ν

(
ψ (X∗

1 )
∫ z+a

z−η
V ∗ (X∗

1 , z
′ + S∗

1)1{z′+S∗
1 >0} dz′

)

=
∫ z+a

z−η
E

∗
ν

(ψ (X∗
1 )V ∗ (X∗

1 , z
′ + S∗

1) ; τ ∗
z′ > 1) dz′.

Therefore,

lim sup
n→+∞

n3/2E0(η) 6
2V (x, y)√

2πσ3

∫ z+a

z−η
E

∗
ν (ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′.

Taking the limit as η → 0 and using (8.3), we obtain that, for any z > 0,

lim sup
n→+∞

n3/2
Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n)

=
2V (x, y)√

2πσ3

∫ z+a

z
E

∗
ν (ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′.(8.4)

If z = 0, we have

Ex (ψ (Xn) ; y + Sn ∈ [0, a] , τy > n) = Ex (ψ (Xn) ; y + Sn ∈ (0, a] , τy > n) .

Using Lemma 8.2 and the same arguments as before, it is easy to see that (8.4) holds for
z = 0.

Since [z, z + a] ⊃ (z, z + a] we have obviously

Ex (ψ (Xn) ; y + Sn ∈ [z, z + a] , τy > n) > Ex (ψ (Xn) ; y + Sn ∈ (z, z + a] , τy > n) .

Using this and Lemma 8.2 we obtain (8.4) with lim inf instead of lim sup, which concludes
the proof of the theorem.

9. Proof of Theorems 2.7 and 2.8

9.1. Preliminaries results.

Lemma 9.1. Assume Hypotheses M1-M3. For any x ∈ X, y ∈ R, z > 0, a > 0, any non-
negative function ψ: X → R+ and any non-negative and continuous function g: [z, z+ a] →
R+, we have

lim
n→+∞

n3/2
Ex (g (y + Sn)ψ (Xn) ; y + Sn ∈ [z, z + a) , τy > n)

=
2V (x, y)√

2πσ3

∫ z+a

z
g(z′)E∗

ν
(ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′.
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Proof. Fix x ∈ X, y ∈ R, z > 0, a > 0, and let ψ: X → R+ be a non-negative function and g:
[z, z+a] → R+ be a non-negative and continuous function. For any measurable non-negative
and bounded function ϕ: R → R+, we define

I0(ϕ) := n3/2
Ex (ψ (Xn)ϕ (y + Sn) ; τy > n) .

We first prove that for any 0 6 α < β we have

(9.1) I0

(
1[α,β)

)
−→

n→+∞
2V (x, y)√

2πσ3

∫ β

α
E

∗
ν

(ψ (X∗
1 )V ∗ (X∗

1 , z
′ + S∗

1) ; τ ∗
z′ > 1) dz′.

Since [α, β) ⊂ [α, β], the upper limit is a straightforward consequence of Theorem 2.5:

lim sup
n→+∞

I0

(
1[α,β)

)
6 lim sup

n→+∞
n3/2

Ex (ψ (Xn) ; y + Sn ∈ [α, β] , τy > n)

=
2V (x, y)√

2πσ3

∫ β

α
E

∗
ν

(ψ (X∗
1 )V ∗ (X∗

1 , z
′ + S∗

1) ; τ ∗
z′ > 1) dz′.

and for the lower limit, we write for any η ∈ (0, β − α),

lim inf
n→+∞

I0

(
1[α,β)

)
> lim inf

n→+∞
n3/2

Ex (ψ (Xn) ; y + Sn ∈ [α, β − η] , τy > n)

=
2V (x, y)√

2πσ3

∫ β−η

α
E

∗
ν (ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′.

Taking the limit as η → 0, it proves (9.1).
From (9.1), it is clear that by linearity, for any non-negative stepwise function ϕ =∑N
k=1 γk1[αk ,βk), where N > 1, γ1, . . . , γN ∈ R+ and 0 < α1 < β1 = α2 < · · · < βN , we

have

lim
n→+∞

I0 (ϕ) =
2V (x, y)√

2πσ3

∫ βN

α1

ϕ(z′)E∗
ν

(ψ (X∗
1 )V ∗ (X∗

1 , z
′ + S∗

1) ; τ ∗
z′ > 1) dz′.

Since g is continuous on [z, z + a], for any ε ∈ (0, 1) there exists ϕ1,ε and ϕ2,ε two stepwise
functions on [z, z + a) such that g − ε 6 ϕ1,ε 6 g 6 ϕ2,ε 6 g + ε. Consequently,

∣∣∣∣∣ lim
n→+∞

I0(g) − 2V (x, y)√
2πσ3

∫ z+a

z
g(z′)E∗

ν
(ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′
∣∣∣∣∣

6
2V (x, y)√

2πσ3
ε
∫ z+a

z
E

∗
ν

(ψ (X∗
1 )V ∗ (X∗

1 , z
′ + S∗

1) ; τ ∗
z′ > 1) dz′.

Taking the limit as ε → 0, concludes the proof of the lemma. �

For any l > 1 we denote by C
+
b

(
Xl × R

)
the set of measurable non-negative functions

g: Xl × R → R+ bounded and such that for any (x1, . . . , xl) ∈ Xl, the function z 7→
g(x1, . . . , xl, z) is continuous.

Lemma 9.2. Assume Hypotheses M1-M3. For any x ∈ X, y ∈ R, z > 0, a > 0, l > 1, any

non-negative functions ψ: X → R+ and g ∈ C
+
b

(
Xl × R

)
, we have

lim
n→+∞

n3/2
Ex (g (X1, . . . , Xl, y + Sn)ψ (Xn) ; y + Sn ∈ [z, z + a) , τy > n)

=
2√

2πσ3

∫ z+a

z
Ex (g (X1, . . . , Xl, z

′)V (Xl, y + Sl) ; τy > l)

× E
∗
ν

(ψ (X∗
1 )V ∗ (X∗

1 , z
′ + S∗

1) ; τ ∗
z′ > 1) dz′.
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Proof. We reduce the proof to the previous case using the Markov property. Fix x ∈ X,

y ∈ R, z > 0, a > 0, l > 1, ψ: X → R+ and g ∈ C
+
b

(
Xl × R

)
. For any n > l + 1, by the

Markov property,

I0 := n3/2
Ex (g (X1, . . . , Xl, y + Sn)ψ (Xn) ; y + Sn ∈ [z, z + a) , τy > n)

= Ex

(
n3/2Jn−l (X1, . . . , Xl, y + Sl) , τy > l

)
,

where for any (x1, . . . , xl) ∈ Xl, y′ ∈ R and k > 1,

Jk(x1, . . . , xl, y
′) = Exl

(g (x1, . . . , xl, y
′ + Sk)ψ (Xk) ; y′ + Sk ∈ [z, z + a) , τy′ > k) .

By the point 2 of Theorem 2.5,

n3/2Jn−l (X1, . . . , Xl, y + Sl) 6 c ‖g‖∞ ‖ψ‖∞ (1 + z) (1 + max (y + Sl, 0)) .

Consequently, by the Lebesgue dominated convergence theorem (in fact the expectation Ex

is a finite sum) and Lemma 9.1,

lim
n→+∞

I0 =
2√

2πσ3

∫ z+a

z
Ex (g (X1, . . . , Xl, z

′)V (Xl, y + Sl) ; τy > l)

× E
∗
ν (ψ (X∗

1 )V ∗ (X∗
1 , z

′ + S∗
1) ; τ ∗

z′ > 1) dz′.

�

Lemma 9.2 can be reformulated for the dual Markov walk as follows:

Lemma 9.3. Assume Hypotheses M1-M3. For any x′ ∈ X, z > 0, y′ > 0, a > 0, m > 1
and any function g ∈ C

+
b (Xm × R), we have

lim
n→+∞

n3/2
E

∗
ν


g (X∗

m, . . . , X
∗
1 , y

′ − S∗
n)
1{X∗

n+1=x′}
ν (X∗

n+1)
; z + S∗

n ∈ [y′, y′ + a) , τ ∗
z > n




=
2√

2πσ3

∫ y′+a

y′
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , y

′ − y′′ + z) V ∗ (X∗
m, z + S∗

m) ; τ ∗
z > m)V (x′, y′′) dy′′.

Proof. Fix x′ ∈ X, z > 0, y′ > 0, a > 0, m > 1 and g ∈ C
+
b (Xm × R). Let ψ∗

x′ be the
function defined on X by (6.2) and consider for any n > m+ 1,

I0 := n3/2
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , y

′ − S∗
n)ψ∗

x′ (X∗
n) ; z + S∗

n ∈ [y′, y′ + a) , τ ∗
z > n) .

By Lemma 9.2 applied to the dual Markov walk, we have

I0 −→
n→+∞

2√
2πσ3

∑

x∗∈X

∫ y′+a

y′
E

∗
x∗ (g (X∗

m, . . . , X
∗
1 , y

′ + z − y′′)V ∗ (X∗
m, z + S∗

m) ; τ ∗
z > m) ν(x∗)

× Eν (ψ∗
x′ (X1)V (X1, y

′′ + S1) ; τy′′ > 1) dy′′.

Moreover, using (6.2) and the fact that ν is P-invariant, for any x′ ∈ X, y′′ > 0,

Eν (ψ∗
x′ (X1)V (X1, y

′′ + S1) ; τy′′ > 1)

=
∑

x1∈X

P(x′, x1)

ν(x1)
V (x1, y

′′ + f(x1))1{y′′+f(x1)>0}ν(x1)

= Ex′ (V (X1, y
′′ + S1) ; τy′′ > 1) .
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By the point 1 of Proposition 2.1, the function V is harmonic and so

lim
n→+∞

I0 =
2√

2πσ3

∫ y′+a

y′
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , y

′ − y′′ + z)V ∗ (X∗
m, z + S∗

m) ; τ ∗
z > m)

× V (x′, y′′) dy′′.

�

Lemma 9.4. Assume Hypotheses M1-M3. For any x ∈ X, y ∈ R, z > 0, a > 0, m > 1
and any function g ∈ C

+
b (Xm × R), we have

lim
n→+∞

n3/2
Ex (g (Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n)

=
2V (x, y)√

2πσ3

∫ z+a

z
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , z

′)V ∗ (X∗
m, z

′ + S∗
m) ; τ ∗

z′ > m) dz′.

Proof. Fix x ∈ X, y ∈ R, z > 0, a > 0, m > 1 and g ∈ C
+
b (Xm × R). For any n > m,

consider

(9.2) In(x, y) := Ex (g (Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n) .

For any l > 1 and n > l +m, by the Markov property, we have

(9.3) n3/2In(x, y) = Ex

(
n3/2In−l (Xl, y + Sl) ; τy > l

)
.

For any p > 1 and 0 6 k 6 p we define zk := z + ak
p

. For any x′ ∈ X, y′ > 0, n > l +m and
p > 1, we write

n3/2In−l(x
′, y′) =

p−1∑

k=0

n3/2
Ex′ (g (Xn−l−m+1, . . . , Xn−l, y

′ + Sn−l) ;

y′ + Sn−l ∈ (zk, zk+1] , τy′ > n− l) .

Using Lemma 3.2, we get

n3/2In−l(x
′, y′) =

p−1∑

k=0

n3/2
E

∗
ν

(
g
(
X∗

m, . . . , X
∗
1 , y

′ − S∗
n−l

)
ψ∗

x′

(
X∗

n−l

)
; y′ − S∗

n−l ∈ (zk, zk+1] ,

∀i ∈ {1, . . . , n− l}, y′ + f
(
X∗

n−l

)
+ · · · + f

(
X∗

n−l−i+1

)
> 0

)
,

where ψ∗
x′ is defined by (6.2).

The upper bound. Using (8.1), we have

n3/2In−l(x
′, y′) 6

p−1∑

k=0

n3/2
E

∗
ν

(
g
(
X∗

m, . . . , X
∗
1 , y

′ − S∗
n−l

)
ψ∗

x′

(
X∗

n−l

)
;

zk+1 + S∗
n−l ∈ [y′, y′ + a/p) , τ ∗

zk+1
> n− l

)
.

By Lemma 9.3,

lim sup
n→+∞

n3/2In−l(x
′, y′) 6

2√
2πσ3

p−1∑

k=0

∫ y′+a/p

y′
Jk(y′ − y′′)V (x′, y′′) dy′′,

where for any k > 0 and t ∈ R,

Jk(t) := E
∗
ν

(
g (X∗

m, . . . , X
∗
1 , t+ zk+1)V ∗ (X∗

m, zk+1 + S∗
m) ; τ ∗

zk+1
> m

)
.
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Note that for any t ∈ [−a/p, 0]

(9.4) Jk(t) 6 E
∗
ν

(
sup

t∈[−a/p,0]
g (X∗

m, . . . , X
∗
1 , t+ zk+1)V

∗ (X∗
m, zk+1 + S∗

m) ; τ ∗
zk+1

> m

)

︸ ︷︷ ︸
=:Jp

k

.

Since y′′ 7→ V (x′, y′′) is non-decreasing (see the point 2 of Proposition 2.1), we have

lim sup
n→+∞

n3/2In−l(x
′, y′) 6

a

p

p−1∑

k=0

2Jp
k√

2πσ3
V

(
x′, y′ +

a

p

)
.

Moreover, by (9.2) and the point 2 of Theorem 2.5,

n3/2In−l(Xl, y + Sl) 6 ‖g‖∞ c (1 + z) (1 + max(y + Sl, 0)) .

Consequently, by (9.3) and the Lebesgue dominated convergence theorem (or using just the
fact that X is finite),

lim sup
n→+∞

n3/2In(x, y) 6
a

p

p−1∑

k=0

2Jp
k√

2πσ3
Ex

(
V

(
Xl, y + Sl +

a

p

)
; τy > l

)
.

Using the point 3 of Proposition 2.1, for any δ ∈ (0, 1),

lim sup
n→+∞

n3/2In(x, y) 6
a

p

p−1∑

k=0

2Jp
k√

2πσ3
Ex

(
(1 + δ)

(
y + Sl +

a

p

)
+ cδ ; τy > l

)

and again using the point 3 of Proposition 2.1, for any δ ∈ (0, 1),

lim sup
n→+∞

n3/2In(x, y) 6
a

p

p−1∑

k=0

2Jp
k√

2πσ3
Ex

(
1 + δ

1 − δ
V (Xl, y + Sl) + 2

a

p
+ cδ ; τy > l

)
.

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the limit
as l → +∞,

lim sup
n→+∞

n3/2In(x, y) 6
a

p

p−1∑

k=0

2Jp
k√

2πσ3

1 + δ

1 − δ
V (x, y).

Taking the limit as δ → 0,

(9.5) lim sup
n→+∞

n3/2In(x, y) 6
a

p

p−1∑

k=0

2Jp
k√

2πσ3
V (x, y).

For any (x∗
1, . . . , x

∗
m) ∈ Xm and u ∈ R, let

gm(u) := g (x∗
m, . . . , x

∗
1, u) ,

V ∗
m(u) := V ∗(x∗

m, u− f(x∗
1) − · · · − f(x∗

m))1{u−f(x∗
1)>0,...,u−f(x∗

1)−···−f(x∗
m)>0}.(9.6)

The function u 7→ gm(u) is uniformly continuous on [z, z + a]. Consequently, for any ε > 0,
there exists p0 > 1 such that for any p > p0,

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V
∗

m(zk+1) 6
a

p

p−1∑

k=0

(gm (zk+1) + ε)V ∗
m(zk+1).
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Moreover, using the point 2 of Proposition 2.1, it is easy to see that the function u 7→ V ∗
m(u)

is non-decreasing and so is Riemann-integrable. Therefore, as p → +∞, we have

lim sup
p→+∞

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V
∗

m(zk+1) 6
∫ z+a

z
(gm (z′) + ε)V ∗

m(z′) dz′.

Thus, when ε → 0,

(9.7) lim sup
p→+∞

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V
∗

m(zk+1) 6
∫ z+a

z
gm (z′)V ∗

m(z′) dz′.

Moreover, since u 7→ V ∗
m(u) is non-decreasing,

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

gm (t+ zk+1)V
∗

m(zk+1) 6 ‖g‖∞ V ∗
m(z + a)a.

Consequently, by the Lebesgue dominated convergence theorem, (9.4), (9.7) and the Fubini
theorem,

lim sup
p→+∞

a

p

p−1∑

k=0

2Jp
k√

2πσ3
V (x, y)

=
2V (x, y)√

2πσ3
E

∗
ν


lim sup

p→+∞

a

p

p−1∑

k=0

sup
t∈[−a/p,0]

g (X∗
m, . . . , X

∗
1 , t+ zk+1)

×V ∗ (X∗
m, zk+1 + S∗

m) ; τ ∗
zk+1

> m
)

6
2V (x, y)√

2πσ3

∫ z+a

z
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , z

′)V ∗ (X∗
m, z

′ + S∗
m) ; τ ∗

z′ > m) dz′.

By (9.5), we obtain that,

lim sup
n→+∞

n3/2In(x, y)

6
2V (x, y)√

2πσ3

∫ z+a

z
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , z

′)V ∗ (X∗
m, z

′ + S∗
m) ; τ ∗

z′ > m) dz′.

The lower bound. Repeating similar arguments as in the upper bound, by (8.2), we have
for any x′ ∈ X, y′ > 0, l > 1, n > l +m+ 1, p > 1,

n3/2In−l(x
′, y′) >

p−1∑

k=0

n3/2
E

∗
ν

(
g
(
X∗

m, . . . , X
∗
1 , y

′ − S∗
n−l

)
ψ∗

x′

(
X∗

n−l

)
;

zk + S∗
n−l ∈ [y′ − a/p, y′) , τ ∗

zk
> n− l

)

=
p−1∑

k=0

n3/2
E

∗
ν

(
g
(
X∗

m, . . . , X
∗
1 , y

′
+ + a′ − S∗

n−l

)
ψ∗

x′

(
X∗

n−l

)
;

zk + S∗
n−l ∈ [y′

+, y
′
+ + a′) , τ ∗

zk
> n− l

)
,

where y′
+ = max(y′ − a/p, 0) and a′ = min(y′, a/p) ∈ (0, a/p). Using Lemma 9.3,

lim inf
n→+∞

n3/2In−l(x
′, y′) >

p−1∑

k=0

2√
2πσ3

∫ y′
++a′

y′
+

Lk(y′
+ + a′ − y′′)V (x′, y′′) dy′′,
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where, for any t ∈ R,

Lk(t) := E
∗
ν

(
g (X∗

m, . . . , X
∗
1 , t+ zk)V ∗ (X∗

m, zk + S∗
m) ; τ ∗

zk
> m

)
.

Since y′′ 7→ V (x′, y′′) is non-decreasing (see the point 2 of Proposition 2.1), we have

lim inf
n→+∞

n3/2In−l(x
′, y′) > a′

p−1∑

k=0

2Lp
k√

2πσ3
V
(
x′, y′

+

)
,

where

(9.8) Lp
k := E

∗
ν

(
inf

t∈[0,a/p]
g (X∗

m, . . . , X
∗
1 , t+ zk)V ∗ (X∗

m, zk + S∗
m) ; τ ∗

zk
> m

)
.

Moreover, by the point 3 of Proposition 2.1, for any δ ∈ (0, 1),

a′V (x′, y′
+) > (1−δ)a′y′

+ −cδ > (1−δ)

(
y′ − a

p

)
a

p
−cδ >

a

p

1 − δ

1 + δ
V (x′, y′)− a

p
cδ −

(
a

p

)2

−cδ.

Consequently, using (9.3) and the Fatou Lemma,

lim inf
n→+∞

n3/2In(x, y) >
p−1∑

k=0

2Lp
k√

2πσ3
Ex

(
a

p

1 − δ

1 + δ
V (Xl, y + Sl) − cδ

(
1 + a2

)
; τy > l

)
.

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the limit
as l → +∞ and then as δ → 0,

(9.9) lim inf
n→+∞

n3/2In(x, y) >
a

p

p−1∑

k=0

2Lp
k√

2πσ3
V (x, y).

Using the notation from (9.6) and the fact that u 7→ gm(u) is uniformly continuous on
[z, z + a], for any ε > 0,

lim inf
p→+∞

a

p

p−1∑

k=0

inf
t∈[0,a/p]

gm (t+ zk)V ∗
m(zk) >

∫ z+a

z
(gm (z′) − ε)V ∗

m(z′) dz′.

Taking the limit as ε → 0,

lim inf
p→+∞

a

p

p−1∑

k=0

inf
t∈[0,a/p]

gm (t+ zk)V ∗
m(zk) >

∫ z+a

z
gm (z′)V ∗

m(z′) dz′.

By the Fatou lemma, (9.8) and (9.9), we conclude that

lim inf
n→+∞

n3/2In(x, y) >
2V (x, y)√

2πσ3
E

∗
ν


lim inf

p→+∞
a

p

p−1∑

k=0

inf
t∈[0,a/p]

g (X∗
m, . . . , X

∗
1 , t+ zk)

× V ∗ (X∗
m, zk + S∗

m) ; τ ∗
zk
> m




>
2V (x, y)√

2πσ3

∫ z+a

z
E

∗
ν

(g (X∗
m, . . . , X

∗
1 , z

′)V ∗ (X∗
m, z

′ + S∗
m) ; τ ∗

z′ > m) dz′.

�
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From now on, we consider that the dual Markov chain (X∗
n)n>0 is independent of (Xn)n>0.

Recall that its transition probability P∗ is defined by (2.4) and that, for any z > 0, the
associated Markov walk (z + S∗

n)n>0 and the associated exit time τ ∗
z are defined by (2.5)

and (2.6) respectively. Recall also that for any (x, x∗) ∈ X2, we denote by Px,x∗ and Ex,x∗

the probability and the expectation generated by the finite dimensional distributions of the
Markov chains (Xn)n>0 and (X∗

n)n>0 starting at X0 = x and X∗
0 = x∗ respectively.

Lemma 9.5. Assume Hypotheses M1-M3. For any x ∈ X, y ∈ R, z > 0, a > 0, l > 1,

m > 1 and any function g ∈ C
+
b

(
Xl+m × R

)
, we have

lim
n→+∞

n3/2
Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n)

=
2√

2πσ3

∫ z+a

z

∑

x∗∈X

Ex,x∗ (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z

′)

×V (Xl, y + Sl)V
∗ (X∗

m, z
′ + S∗

m) ; τy > l , τ∗
z′ > m) dz′

ν(x∗).

Proof. Fix x ∈ X, y ∈ R, z > 0, a > 0, l > 1, m > 1 and g ∈ C
+
b

(
Xl+m × R

)
. For any

n > l +m, by the Markov property,

I0 := n3/2
Ex (g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) ; y + Sn ∈ (z, z + a] , τy > n)

=
∑

x1,...,xl∈Xl

n3/2
Exl

(g (x1, . . . , xl, Xn−l−m+1, . . . , Xn−l, yl + Sn−l) ;

yl + Sn−l ∈ (z, z + a] , τyl
> n− l) × Px (X1 = x1, . . . , Xl = xl, τy > l) ,

where yl = x1 + · · · +xl. Using the Lebesgue dominated convergence theorem (or simply the
fact that Xl is finite) and Lemma 9.4, we conclude that

lim
n→+∞

I0 =
2√

2πσ3

∑

x1,...,xl∈Xl

V (xl, yl)Px (X1 = x1, . . . , Xl = xl, τy > l)

×
∫ z+a

z
E

∗
ν (g (x1, . . . , xl, X

∗
m, . . . , X

∗
1 , z

′)V ∗ (X∗
m, z

′ + S∗
m) ; τ ∗

z′ > m) dz′.

�

9.2. Proof of Theorem 2.7. For any l > 1, denote by C +(Xl ×R+) the set of non-negative
functions g: Xl × R+ → R+ satisfying the following properties:

• for any (x1, . . . , xl) ∈ Xl, the function z 7→ g(x1, . . . , xl, z) is continuous,
• there exists ε > 0 such that maxx1,...xl∈X supz>0 g(x1, . . . , xl, z)(1 + z)2+ε < +∞.

Fix x ∈ X, y ∈ R, l > 1, m > 1 and g ∈ C +
(
Xl+m × R

)
. For brevity, denote

gl,m(y + Sn) = g (X1, . . . , Xl, Xn−m+1, . . . , Xn, y + Sn) .

Set

I0 := n3/2
Ex (gl,m(y + Sn) ; τy > n)

=
+∞∑

k=0

n3/2
Ex (gl,m(y + Sn) ; y + Sn ∈ (k, k + 1] , τy > n)

︸ ︷︷ ︸
=:Ik(n)

.
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Since g ∈ C +
(
Xl+m × R

)
, we have

Ik(n) 6
N(g)

(1 + k)2+ε
n3/2

Px (y + Sn ∈ (k, k + 1] , τy > n) ,

where N(g) = maxx1,...,xl+m∈X supz>0 g(x1, . . . , xl+m, z)(1 + z)2+ε < +∞. By the point 2 of
Theorem 2.5, we have

Ik(n) 6
cN(g)(1 + max(y, 0))

(k + 1)1+ε
.

Consequently, by the Lebesgue dominated convergence theorem,

lim
n→+∞

I0 =
+∞∑

k=0

lim
n→+∞

n3/2
Ex (gl,m(y + Sn) ; y + Sn ∈ (k, k + 1] , τy > n) .

By Lemma 9.5,

lim
n→+∞

I0 =
2√

2πσ3

+∞∑

k=0

∫ k+1

k

∑

x∗∈X

Ex,x∗ (g (X1, . . . , Xl, X
∗
m, . . . , X

∗
1 , z

′)V (Xl, y + Sl)

×V ∗ (X∗
m, z

′ + S∗
m) ; τy > l , τ∗

z′ > m) dz′
ν(x∗),

which establishes Theorem 2.7.

9.3. Proof of Theorem 2.8. Theorem 2.8 will be deduced from Theorem 2.7.
Let x ∈ X, y ∈ R and n > 1. Since X is finite we note that ‖f‖∞ = supx∈X |f(x)| exists.

This implies

Px (τy = n + 1) = Px (y + Sn + f(Xn+1) 6 0 , y + Sn ∈ [0, ‖f‖∞] , τy > n) .

By the Markov property,

Px (τy = n+ 1) = Ex (g(Xn, y + Sn) ; τy > n) ,

where, for any (x′, y′) ∈ X × R,

g(x′, y′) = Px′ (y′ + f(X1) 6 0)1{y′∈[0,‖f‖∞]} = 1{y′∈[0,‖f‖∞]}
∑

x1∈X

P(x′, x1)1{y′+f(x1)60}.

Since g(x′, ·) is a staircase function, for any ε > 0 there exist two functions ϕε and ψε on
X × R and N ⊂ X × R such that

• for any x′ ∈ X, the functions ϕε(x
′, ·) and ψε(x

′, ·) are continuous and have a compact
support included in [−1, ‖f‖∞ + 1],

• for any (x′, y′) ∈ (X × R) \N , it holds ϕε(x
′, y′) = g(x′, y′) = ψε(x

′, y′),
• for any (x′, y′) ∈ X × R, it holds 0 6 ϕε(x

′, y′) 6 g(x′, y′) 6 ψε(x
′, y′) 6 1,

• the set N is sufficiently small:

(9.10)
∫ ‖f‖∞+1

−1
E

∗
ν (V ∗ (X1, z + S∗

1) ; τ ∗
z > 1 , (X1, z) ∈ N) dz 6 ε.
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The upper bound. For any ε > 0, using Theorem 2.7, we have

I+ := lim sup
n→+∞

n3/2
Px (τy = n + 1)

6 lim sup
n→+∞

n3/2
Ex (ψε(Xn, y + Sn) ; τy > n)

=
2√

2πσ3

∫ +∞

0

∑

x∗∈X

Ex,x∗ (ψε (X∗
1 , z)V (X1, y + S1)

V ∗(X∗
1 , z + S∗

1) ; τy > 1 , τ ∗
z > 1) ν(x∗) dz.

Using the point 1 of Proposition 2.1,

I+ 6
2V (x, y)√

2πσ3

∫ ‖f‖∞+1

0
E

∗
ν (ψε (X∗

1 , z)V
∗(X∗

1 , z + S∗
1) ; τ ∗

z > 1) dz

6
2V (x, y)√

2πσ3

∫ ‖f‖∞

0
E

∗
ν (g (X∗

1 , z)V
∗(X∗

1 , z + S∗
1) ; τ ∗

z > 1) dz

︸ ︷︷ ︸
=:I1

+
2V (x, y)√

2πσ3

∫ ‖f‖∞+1

0
E

∗
ν

(V ∗(X∗
1 , z + S∗

1) ; τ ∗
z > 1 , (X∗

1 , z) ∈ N) dz

︸ ︷︷ ︸
=:I2

.(9.11)

Since ν is P∗-invariant, we have

I1 =
2V (x, y)√

2πσ3

∫ ‖f‖∞

0

∑

x∗∈X

g (x∗, z)V ∗(x∗, z − f(x∗))1{z−f(x∗)>0}ν(x∗) dz

=
2V (x, y)√

2πσ3

∫ ‖f‖∞

0

∑

x∗,x1∈X

1{z+f(x1)60}P(x∗, x1)ν(x∗)V ∗(x∗, z − f(x∗))1{z−f(x∗)>0} dz

=
2V (x, y)√

2πσ3

∫ ‖f‖∞

0

∑

x∗,x1∈X

1{z+f(x1)60}P∗(x1, x
∗)ν(x1)V ∗(x∗, z − f(x∗))1{z−f(x∗)>0} dz

=
2V (x, y)√

2πσ3

∫ ‖f‖∞

0

∑

x1∈X

1{z+f(x1)60}ν(x1)E∗
x1

(V ∗(X∗
1 , z + S∗

1) ; τ ∗
z > 1) dz.

Using the point 1 of Proposition 2.1,

(9.12) I1 =
2V (x, y)√

2πσ3

∫ ‖f‖∞

0
E

∗
ν (V ∗(X∗

1 , z) ; S∗
1 > z) dz.

Moreover, by (9.10), we get

(9.13) I2 6
2V (x, y)√

2πσ3
ε.

Putting together (9.11), (9.12) and (9.13) and taking the limit as ε → 0, we obtain that

(9.14) I+ 6
2V (x, y)√

2πσ3

∫ ‖f‖∞

0
E

∗
ν

(V ∗(X∗
1 , z) ; S∗

1 > z) dz.
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Lower bound. In a similar way, using Theorem 2.7, we write

I− := lim inf
n→+∞

n3/2
Px (τy = n+ 1)

> lim inf
n→+∞

n3/2
Ex (ϕε(Xn, y + Sn) ; τy > n)

=
2V (x, y)√

2πσ3

∫ ‖f‖∞+1

0
E

∗
ν (ϕε (X∗

1 , z)V
∗(X∗

1 , z + S∗
1) ; τ ∗

z > 1) dz

> I1 − I2.

Using (9.12) and (9.13) and taking the limit as ε → 0, we obtain that

I− >
2V (x, y)√

2πσ3

∫ ‖f‖∞

0
E

∗
ν

(V ∗(X∗
1 , z) ; S∗

1 > z) dz,

which together with (9.14) concludes the proof.

10. Appendix

10.1. The non degeneracy of the Markov walk. In [13], it is proved that the statements
of Propositions 2.1-2.3 hold under more general assumptions (see Hypotheses M1-M5 of [13]).
We will link these assumptions to our Hypotheses M1-M3. The assumptions M1-M3 in [13],
with the Banach space C , are well known consequences of Hypothesis M1 of this paper.
Hypothesis M4 in [13] is also obvious with N = N1 = · · · = 0. By Hypothesis M2, to obtain
Hypothesis M5 of [13], it remains only to prove that σ defined by (2.2) is strictly positive.
First we give a necessary and sufficient condition. Recall that the words path and orbit are
defined in Section 4.

Lemma 10.1. Assume Hypothesis M1. The following statements are equivalent:

1. The Cesáro mean of f on the orbits is constant: there exists m ∈ R such that for any
orbit x0, . . . , xn we have

f(x0) + · · · + f(xn) = (n + 1)m.

2. There exist a constant m ∈ R and a function h ∈ C such that for any (x, x′) ∈ X2,

P(x, x′)f(x′) = P(x, x′) (h(x) − h(x′) +m) .

3. The following real σ̃2 is equal to 0

σ̃2 = ν

(
f 2
)

− ν (f)2 + 2
+∞∑

n=1

[
ν (fPnf) − ν (f)2

]
= 0.

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix x0 ∈ X and set
h(x0) = 0. For any x ∈ X, we define h(x) in the following way: for any path x0, x1, . . . , xn, x
in X, we set

h(x) = −f(x) − f(xn) − · · · − f(x1) + (n + 1)m.

We shall verify that h is well defined. By Hypothesis M1, we can find at least a path to
define h(x). Now we have to check that this definition does not depend on the choice of
the path. Let x0, x1, . . . , xp, x and x0, y1, . . . , yq, x be two paths. By Hypothesis M1, there
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exists a path x, z1, . . . , zn, x0 in X between x and x0. Since x0, x1, . . . , xp, x, z1, . . . , zn and
x0, y1, . . . , yp, x, z1, . . . , zn are two orbits, by the point 1, we have

−f(x) − f(xp) − · · · − f(x1) + (p+ 1)m = f(x0) + f(z1) + · · · + f(zn) − (n + 1)m

= −f(x) − f(yq) − · · · − f(y1) + (q + 1)m

and so the function h is well defined on X. Now let (x, x′) ∈ X2 such that P(x, x′) >
0. By Hypothesis M1, there exists x0, x1, . . . , xn, x a path between x0 and x. Since
P(x0, x1) · · · P(xn, x)P(x, x′) > 0, by the definition of h, we have

h(x) = −f(x) − f(xn) − · · · − f(x1) + (n+ 1)m

h(x′) = −f(x′) − f(x) − f(xn) − · · · − f(x1) + (n+ 2)m.

In particular

h(x′) = −f(x′) + h(x) +m.

The point 2 implies the point 1. Suppose that the point 2 holds and let x0, . . . , xn be an
orbit. Using the point 2,

h(x0) = h(xn) − f(x0) +m = · · · = h(x0) − f(x0) − f(xn) − · · · − f(x1) + (n + 1)m,

and the point 1 follows.
The point 2 implies the point 3. Suppose that the point 2 holds. Denote by f̃ the ν-centred

function:

(10.1) f̃(x) = f(x) − ν(f), ∀x ∈ X.

By the point 2, for any x ∈ X,

(10.2) Pf̃(x) = h(x) − Ph(x) +m− ν(f).

Using the fact that ν is P-invariant, we obtain that ν

(
f̃
)

= 0 = m− ν(f) and so,

(10.3) m = ν(f).

Consequently, by (10.2), Pnf̃ = Pn−1h− Pnh for any n > 1 and therefore,

(10.4)
n∑

k=1

Pkf̃ = h− Pnh.

Let

Θ̃ :=
+∞∑

k=0

Pkf̃

be the solution of the Poisson equation Θ̃ − PΘ̃ = f̃ , which by (2.1), is well defined. Taking
the limit as n → +∞ in (10.4) and using (2.1),

PΘ̃ = Θ̃ − f̃ = h− ν(h).

Therefore, for any (x, x′) ∈ X2,

Θ̃(x′) − PΘ̃(x) = f̃(x′) + PΘ̃(x′) − PΘ̃(x) = f̃(x′) + h(x′) − h(x).

Using the point 2 and (10.3), it follows that

(10.5) Θ̃(x′) − PΘ̃(x) = 0,
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for any (x, x′) ∈ X2 such that P(x, x′) > 0. Moreover,

σ̃2 = ν

(
f̃ 2
)

+ 2
+∞∑

n=1

ν

(
f̃Pnf̃

)
= ν

(
f̃
(
f̃ + 2PΘ̃

))
= ν

((
Θ̃ − PΘ̃

) (
Θ̃ + PΘ̃

))
.

Since ν is P-invariant,

σ̃2 = ν

(
P
(
Θ̃2
))

− 2ν

((
PΘ̃

)2
)

+ ν

((
PΘ̃

)2
)

=
∑

(x,x′)∈X

[
Θ̃(x′)2 − 2Θ̃(x′)PΘ̃(x) +

(
PΘ̃(x)

)2
]

P(x, x′)ν(x)

=
∑

(x,x′)∈X

(
Θ̃(x′) − PΘ̃(x)

)2
P(x, x′)ν(x).(10.6)

By (10.5), we conclude that σ̃2 = 0.
The point 3 implies the point 2. Suppose that the point 3 holds. By (10.6), for any

(x, x′) ∈ X such that P(x, x′) > 0 we have

Θ̃(x′) − PΘ̃(x) = 0.

Let h = PΘ̃. Since Θ̃ is the solution of the Poisson equation,

f̃(x′) + h(x′) − h(x) = 0.

By the definition of f̃ in (10.1), for any (x, x′) ∈ X such that P(x, x′) > 0,

f(x′) = h(x) − h(x′) +m,

with m = ν(f). �

Note that under Hypothesis M2, Lemma 10.1 can be rewritten as follows.

Lemma 10.2. Assume Hypotheses M1 and M2. The following statements are equivalent:

1. The mean of f on the orbits is equal to zero: for any orbit x0, . . . , xn, we have

f(x0) + · · · + f(xn) = 0.

2. There exists a function h ∈ C such that for any (x, x′) ∈ X2,

P(x, x′)f(x′) = P(x, x′) (h(x) − h(x′)) .

3. The real σ2 is equal to 0:

σ2 = ν

(
f 2
)

+ 2
+∞∑

n=1

ν (fPnf) = 0.

Now we prove that the Hypothesis M3 (the "non-lattice" condition), implies that the
Markov walk has non-zero asymptotic variance.

Lemma 10.3. Under Hypotheses M1-M3, we have

σ2 = ν

(
f 2
)

+ 2
+∞∑

n=1

ν (fPnf) > 0

Proof. We proceed by reductio ad absurdum. Suppose that σ2 = 0. By Lemma 10.2, for any
orbit x0, . . . , xn, we have

f(x0) + · · · + f(xn) = 0,

which implies the negation of Hypothesis M3 with θ = a = 0. �
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10.2. Strong approximation. Let (Bt)t>0 be the standard Brownian motion on R defined
on the probability space (Ω,F ,P). Consider the exit time

(10.7) τ bm
y := inf{t > 0, y + σBt 6 0},

where σ is defined by (2.2). It is proved in Grama, Le Page and Peigné [15] that there is a
version of the Markov walk (Sn)n>0 and of the standard Brownian motion (Bt)t>0 living on
the same probability space which are close enough in the following sense:

Proposition 10.4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0], x ∈ X and n > 1,
without loss of generality (on an extension of the initial probability space) one can reconstruct
the sequence (Sn)n>0 with a continuous time Brownian motion (Bt)t∈R+, such that

Px

(
sup

06t61

∣∣∣S⌊tn⌋ − σBtn

∣∣∣ > n1/2−ε

)
6
cε

nε
.
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