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CONDITIONED LOCAL LIMIT THEOREMS FOR RANDOM WALKS
DEFINED ON FINITE MARKOV CHAINS

ION GRAMA, RONAN LAUVERGNAT, AND EMILE LE PAGE

ABSTRACT. Let (X,)n>0 be a Markov chain with values in a finite state space X starting
at Xo = 2 € X and let f be a real function defined on X. Set S, = >"}_, f(Xx), n > 1.
For any y € R denote by 7, the first time when y + S,, becomes non-positive. We study
the asymptotic behaviour of the probability P, (y + Sy, € [z,2 +a], 7y > n) as n — +o0.
We first establish for this probability a conditional version of the local limit theorem of
Stone. Then we find for it an asymptotic equivalent of order n/? and give a generalization
which is useful in applications. We also describe the asymptotic behaviour of the probability
P, (17y =n) as n — +oc.

1. INTRODUCTION

Assume that on the probability space (€2,.%,P) we are given a sequence of real valued
random variables (X,,),>1. Consider the random walk S,, = >7_; Xy, n > 1. Suppose first
that (X,),>1 are independent identically distributed of zero mean and finite variance. For
any y > 0 denote by 7, the first time when y + S,, becomes non-positive. The study of the
asymptotic behaviour of the probability P(7, > n) and of the law of y + S, conditioned to
stay positive (i.e. given the event {7, > n}) has been initiated by Spitzer [25] and developed
subsequently by Iglehart [18], Bolthausen [2], Doney [9], Bertoin and Doney [1], Borovkov
3, 4], to cite only a few. Important progress has been achieved by employing a new approach
based on the existence of the harmonic function in Varopoulos [27], [28], Eichelbacher and
Konig [10] and recently by Denisov and Wachtel [6, 7, 8]. In this line Grama, Le Page and
Peigné [16] and the authors in [12], [13] have studied sums of functions defined on Markov
chains under spectral gap assumptions. The goal of the present paper is to complete these
investigations by establishing local limit theorems for random walks defined on finite Markov
chains and conditioned to stay positive.

Local limit theorems for the sum of independent random variables without conditioning
have attracted much attention, since the pioneering work of Gnedenko [11] and Stone [26].
The first local limit theorem for a random walk conditioned to stay positive has been estab-
lished in Iglehart [19] in the context of walks with negative drift EX; < 0. Caravenna [5]
studied conditioned local limit theorems for random variables in the domain of attraction
of the normal law and Vatutin and Wachtel [29] for random variables X} in the domain of
attraction of the stable law. Denisov and Wachtel [8] obtained a local limit theorem for
random walks in Z? conditioned to stay in a cone based on the harmonic function approach.

The ordinary and conditioned local limit theorems in the case of Markov chains are less
studied in the literature. Le Page [21] stated a local limit theorem for products of random
matrices and Guivarch and Hardy [17] have considered a local limit theorem for sums S,, =
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S f(Xy), where (X,,)n>0 is a Markov chain under spectral gap assumptions and f a real
function defined on the state space of the chain. In the conditional case we are aware only
of the results of Presman [23] and [24] who has considered the case of finite Markov chains
in a more general setting but which, because of rather stringent assumptions, does not cover
the results of this paper. We note also the work of Le Page and Peigné [22] who have proved
a conditioned local limit theorem for the stochastic recursion.

Let us briefly review main results of the paper concerning conditioned local limit behaviour
of the walk S, = >°1_; f(Xx) defined on a finite Markov chain (X,,),>¢. From more general
statement of Theorem 2.4, under the conditions that the underlying Markov chain is irre-
ducible and aperiodic and that (.S,,),>0 is centred and non-lattice, for fixed z € X and y € R,
it follows that, uniformly in z > 0,

. 2aV (z,y) z
(1.1) Jim <nIP’x (y+ Sn€lz,244a], 7, >n) — Joror Pt <\/ﬁ0>> =0,

where ¢, (t) = te~% Lii=0y is the Rayleigh density. The relation (1.1) is an extension of
the classical local limit theorem by Stone [26] to the case of Markov chains. We refer
to Caravenna [5] and Vatutin and Wachtel [29], where the corresponding result has been
obtained for independent random variables in the domain of attraction of the normal law.
We note that while (1.1) is consistent for large z, it is not informative for z in a compact
set. A meaningful local limit behaviour for fixed values of z can be obtained from our
Theorem 2.5. Under the same assumptions, for any fixed x € X, y € R and z > 0,

) 3/9 2V (x,y) .
(1.2) nngn/Pm(y+Sn€[z,z+a],7'y>n) N /Z /V 2,2 v(da')dzZ.
For sums of independent random variables similar limit behaviour was found in Vatutin and
Wachtel [29]. It should be noted that (1.1) and (1.2) complement each other: the main term
in (1.1) is meaningful for large z such that z ~ n'/? as n — oo, while (1.2) holds for z in
compact sets.

We also state extensions of (1.1) and (1.2) to the joint law of X,, and y + S,. These
extensions are useful in applications, in particular, for determining the exact asymptotic
behaviour of the survival time for branching processes in a Markovian environment. They
also allow us to infer the local limit behaviour of the exit time 7, (see Theorem 2.8): under
the assumptions mentioned before, for any x € X and y € R,

2
lim n®?P, (ry=n) = 7V(x,y)

n—-4o0o A/ 27T0'3

The approach employed in this paper is different from that in [23], [24] and [22] which
all are based on Wiener-Hopf arguments. Our technique is close to that in Denisov and
Wachtel [8], however, in order to make it work for a random walk S,, = >3, f(X}) defined
on a Markov chain (X,),>0, we have to overcome some essential difficulties. One of them
is related to the problem of the reversibility of the Markov walk (S,)n>0. Let us explain
this point in more details. When (X,,),>1 are Z-valued independent identically distributed
random variables, let (S%),>1 be the reverse walk given by S* = >7_ | X;, where (X}),>1
is a sequence of independent identically distributed random variables of the same law as
—Xi. Denote by 7} the first time when (z + S})k=0 becomes non-positive. Then, due to

+o0o
[T V(X 2)s 8 2 2)de,
0
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exchangeability of the random variables (X,,),>1, we have
(1.3) Ply+S,=21,>n)=P(z+ S, =y,7, >n).

This relation does not hold any more for the walk S, = >-7_; f(Xx), where (X,,),>0 is a
Markov chain. Even though (X,,),>0 takes values on a finite state space X and there exists a
dual chain (X¥),>0, the main difficulty is that the function f : X — R can be arbitrary and
therefore the Markov walk (S,,),>0 is not necessarily lattice valued. In this case the Markov
chain formed by the couple (X,,,y + S, )n>0 cannot be reversed directly as in (1.3). We cope
with this by altering the arrival interval [z, z + h] in the following two-sided bound

> El (@(X;)1{z+5‘:e{y—h,y]vfé‘>"}) v(z")

z*eX
(14) gpm(y‘i_sn - [Z7Z+h],7'y >n)
< ZX E>. <¢;(X;)]1{z+h+s,te[y,y+h],T§+h>n}> v(z*),
x*e

where v is the invariant probability of the Markov chain (X,,),>1, ¥ : X — R, is a function
such that v (¢%) = 1 (see (6.2) for a precise definition) and S* = —>7_; f (X}), Vn > 1.
Following this idea, for a fixed a > 0 we split the interval [z, z + a] into p subintervals of
length h = a/p and we determine the exact upper and lower bounds for the corresponding
expectations in (1.4). We then patch up the obtained bounds to obtain a precise asymptotic
as n — oo for the probabilities P,(y + S, € [2,2 + a], 7, > n) for a fixed @ > 0 and let
then p go to +oo. This resumes very succinctly how we suggest generalizing (1.3) to the
non-lattice case. Together with some further developments in Sections 7 and 8, this allows
us to establish Theorems 2.4 and 2.5.
The outline of the paper is as follows:

e Section 2: We give the necessary notations and formulate the main results.

e Section 3: Introduce the dual Markov chain and state some of its properties.

e Section 4: Introduce and study the perturbed transition operator.

e Section 5: We prove a non-asymptotic local limit theorem for sums defined on Markov
chains.

e Section 6: We collect some auxiliary bounds.

e Sections 7, 8 and 9 : Proofs of Theorems 2.4, 2.5 and 2.7, 2.8, respectively.

e Section 10. We state auxiliary assertions which are necessary for the proofs.

Let us end this section by fixing some notations. The symbol ¢ will denote a positive con-
stant depending on the all previously introduced constants. Sometimes, to stress the depen-
dence of the constants on some parameters o, 3, . .. we shall use the notations c,, ¢o 3, . ... All
these constants are likely to change their values every occurrence. The indicator of an event A
is denoted by 14. For any bounded measurable function f on X, random variable X in X and
event A, the integral [ f(z)P(X € dz, A) means the expectation E (f(X); A) = E (f(X)1a).

2. NOTATIONS AND RESULTS

Let (X,)n>0 be a homogeneous Markov chain on the probability space (Q,.%#,P) with
values in the finite state space X. Denote by % the set of complex functions defined on X
endowed with the norm ||-|| : [|g]|., = sup,ex [9(2)|, for any g € €. Let P be the transition
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kernel of the Markov chain (X,,),>0 to which we associate the following transition operator:

for any z € X and g € €,
Pg(z) = Y g(2")P(z, 7).
z’eX
For any x € X, denote by P, and [E, the probability, respectively the expectation, generated
by the finite dimensional distributions of the Markov chain (X, ),>¢ starting at X, = x.
We assume that the Markov chain is irreducible and aperiodic, which is equivalent to the
following hypothesis.

Hypothesis M1. The matrix P is primitive: there exits kg > 1 such that for any v € X
and any non-negative and non identically zero function g € €,

P*g(z) > 0.
Let f be a real valued function defined on X and let (S,,),>0 be the process defined by

For any starting point y € R we consider the Markov walk (y + S,,),>0 and we denote by 7,
the first time when the Markov walk becomes non-positive:

1, =inf{k > 1, y+ 5, <0}.
Under M1, by the Perron-Frobenius theorem, there is a unique positive invariant proba-
bility v on X satisfying the following property: there exist ¢; > 0 and ¢ > 0 such that for
any function g € € and n > 1,

(2.1) sup [Ez (9 (Xn)) = v(9)] = [P"g = v(9) oo < llglloo 1 e™",
S

where v(g) = X,ex 9(2)v ().
The following two hypotheses ensure that the Markov walk has no-drift and is non-lattice,

respectively.
Hypothesis M2. The function f is centred:
v (f)=0.
Hypothesis M3. For any (0,a) € R?, there exists a sequence g, . . ., T, in X such that
P(xo,z1) - Pxp_1,2,)P(xn, 20) >0
and
flxo) + -+ f(zn) — (n+1)0 ¢ aZ.

Under Hypothesis M1, it is shown in Section 4 that Hypothesis M3 is equivalent to the
condition that the perturbed operator P; has a spectral radius less than 1 for ¢ # 0; for more
details we refer to Section 4. Furthermore, in the Appendix (see Lemma 10.3, Section 10),
we show that Hypotheses M1-M3 imply that the following number o2, which is the limit of
E.(S?)/n as n — +oo for any x € X, is not zero:

(2.2) o? i =v(f*) +2 Jio v (fP"f)>0.

Under spectral gap assumptions, the asymptotic behaviour of the survival probability
P, (1, > n) and of the conditional law of the Markov walk % given the event {7, > n}

have been studied in [13]. It is easy to see that under M1, M2 and (2.2) the conditions of
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[13] are satisfied (see Section 10). We summarize the main results of [13] in the following
propositions.

Proposition 2.1 (Preliminary results, part ). Assume Hypotheses M1-M3. There exists
a non-degenerate non-negative function V-on X x R such that

1. For any (z,y) e X xR andn > 1,
E, (V(Xn,y+ Sy) ; 7y >n) =V(z,y).
2. For any x € X, the function V (x,-) is non-decreasing and for any (x,y) € X x R,
V(z,y) < ¢(1+max(y,0)).
3. Foranyx € X, y € R and § € (0,1),
(1 —d0)max(y,0) —cs < V(z,y) < (1 +6)max(y,0) + cs.
Since the function V satisfies the point 1, it is said to be harmonic.

Proposition 2.2 (Preliminary results, part II). Assume Hypotheses M1-M3.
1. For any (z,y) € X xR,
. 2V (x,y)
lim /nP, (1, >n) = —=2-,
Vil (7 > n) N

where o is defined by (2.2).
2. For any (z,y) € X xR andn > 1,

1 + max(y, 0)

P, (r, >n) <c

Define the support of V' by
(2.3) supp(V) = {(z,y) e X x R : V(z,y) > 0}.
Note that from property 3 of Proposition 2.1, for any fixed = € X, the function y — V' (z,y)
is positive for large y. For further details on the properties of supp(V') we refer to [13].
Proposition 2.3 (Preliminary results, part I1I). Assume Hypotheses M1-M3.
1. For any (z,y) € supp(V) and t > 0,
P, <y + S, <
o\/n
t2
where ®T(t) =1 — e~z is the Rayleigh distribution function.

2. There exists eg > 0 such that, for any ¢ € (0,e0), n > 1, ty > 0, t € [0,%o] and (x,y) €
X xR,

Ty > n) e (1),

2V (x,y)
V2mnho

In the point 1 of Proposition 2.2 and the point 2 of Proposition 2.3, the function V' can
be zero, so that for all pairs (z,y) satisfying V(z,y) = 0 it holds

lim +/nP, (1, >n) =0

n—-+o0o

(1 + max(y, 0)?)

<c
~X E,to n1/2+5

(1)

Px(y+5n<t\/ﬁa,7y>n)—

and
nl_l)r_"l_loo VnP, (y + S, < tvno, 7, > n) =0.
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Now we proceed to formulate the main results of the paper. Our first result is an extension
of Gnedenko-Stone local limit theorem originally stated for sums of independent random
variables. The following theorem generalizes it to the case of sums of random variables
defined on Markov chains conditioned to stay positive.

Theorem 2.4. Assume Hypotheses M1-M3. Let a > 0 be a positive real. Then there exists
g0 € (0,1/4) such that for any e € (0,&q), non-negative function € €,y € R andn > 373,
we have

E, X, ; Sne ) ’ > -
S (Y (Xn) sy + 2,2+ a], 7, > n) T

< c(1+max(y,0)) ||¥|l (ﬁ 4 & (1 + max(y, 0))) ’

nE

200 () Viwy) <\/%U>‘

2
where vy (t) = te T Li>0y is the Rayleigh density and the constants ¢ and c. may depend
on a.

Note that Theorem 2.4 is meaningful only for large values of z such that z ~ n'/? as

n — oo. Indeed, the remainder term is of order n~!'=¢, with some small ¢ > 0, while for
a fixed z the leading term is of order n=3/2. When z = cn'/? the leading term becomes of
order n~! while the remainder is still o(n™!). To deal with the case of z in compact sets a
more refined result will be given below. We will deduce it from Theorem 2.4, however for
the proof we need the concept of duality.

Let us introduce the dual Markov chain and the corresponding associated Markov walk.
Since v is positive on X, the following dual Markov kernel P* is well defined:

v(x¥)

v(x)

(2.4) P (z,2") = P (z*,2), Y(z,2%)€ X2

with values in X and transition probability P*. Without loss of generality we can consider

that the dual Markov chain (X}), ., is defined on an extension of the probability space
(Q, .#,P) and that it is independent of the Markov chain (X,,),>0. We define the associated
dual Markov walk by

It is easy to see that v is also P*-invariant. The dual of (X, )n>¢ is the Markov chain (X}), .,

(2.5) Sg=0 and  Si=> —f(X;), Va>1
k=1

For any z € R, define also the exit time
(2.6) m=inf{k>1:2+ 5 <0}.

For any € X, denote by [P} and E} the probability, respectively the expectation, generated
by the finite dimensional distributions of the Markov chain (X}),>o starting at Xj = x.
It is shown in Section 3 that the dual Markov chain (X}), ., satisfies Hypotheses M1-M3
as do the original chain (X,),.,. Thus, Propositions 2.1-2.3 hold also for (X}) ., with V,
7, (Sp)nso0 and P, replaced by V*, 7%, (S}),>0 and P%. Note also that both chains have
the same invariant probability v. Denote by E,, E; the expectations generated by the
finite dimensional distributions of the Markov chains (X,,),>0 and (X),>¢ in the stationary
regime.
Our second result is a conditional version of the local limit theorem for fixed z,y and z.
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Theorem 2.5. Assume Hypotheses M1-MS3.
1. For any non-negative function ¢ € €, a >0,z € X, y € R and z > 0

lim n*?E, (¢ (X,) :y+ S, € (2,2 +a], 7y > n)

n—-+o0o
2V
”/ EL (0 (X3 V* (X2 + S0 ;w4 > 1) d
V2ro3

2. Moreover, there exists ¢ > 0 such that for any a > 0, non-negative function € €, y € R,
z=20andn>1,

supE, (¥ (X,) ; y+ S € [2,2+4a], 7, >n) < ¢ ||@3D/||200
reX n

(1+a*) (14 2) (1 + max(y,0)) .

In the particular case when ¢ = 1, the previous theorem rewrites as follows:

Corollary 2.6. Assume Hypotheses M1-MS3.
1. Foranya >0,z X, yceR and z > 0,

lim n%*P, (y + S, € [z, 2 + 4], Ty >n)

n—-+oo
2
Wiw,y) / /V* 7,2 ) v(da') d7.
V2ra3 Jz

2. Moreover, there exists ¢ > 0 such that for anya >0,y € R, 2>0andn > 1,

i‘ggpw(“& €lz,2+a], 7, >n) < 3/2 (1+a%) (1+ 2) (1 + max(y,0)).

Note that the assertion 1 of Theorem 2.5 and assertion 1 of Corollary 2.6 hold for fixed
a>0,reX, yeRand z > 0 and that these results are no longer true when z is not in a
compact set, for instance when z ~ n'/2.

The following result extends Theorem 2.5 to some functionals of the trajectories of the
chain (X, ),>o. For any (z,z*) € X?, the probability generated by the finite dimensional
distributions of the two dimensional Markov chain (X,,, X7¥),>0 starting at (Xo, X§) = (z, 2%)
is given by P, .« = P, x Pi.. Let E, ,« be the corresponding expectation. For any [ > 1,
denote by €+ (X! x R,) the set of non-negative functions g: X! x R, — R satisfying the
following properties:

o for any (z1,...,1;) € X!, the function z — g(x1, ..., 7y, 2) is continuous,
e there exists ¢ > 0 such that max,,  zexsup.og(zi, ...,z 2)(1+ 2)*t¢ < 4o0.

Theorem 2.7. Assume Hypotheses M1-M3. For any x € X, y € R, [ > 1, m > 1 and
geECT (X”m X R+),
lim 7*’E, (¢ (X1, X, Xoomit s Xy Y +Sn) 5 7, > 1)

n—-+00

2 +00 . )
:7271-0-3/0 Z]Emm Xl,...,Xl,Xm,...,Xl’Z)

z*eX

XV (X,y+S)V (X, z+80) 1, > 1, 70 >m)v(x")dz.

As a consequence of Theorem 2.7 we deduce the following asymptotic behaviour of the
probability of the event {7, = n} as n — 4o0.
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Theorem 2.8. Assume Hypotheses M1-M3. For any x € X and y € R,

2V (x,y) oo
3/2 _ _ ’ * * * . Q
Jim B (my = n) = <2 /0 E: (VA(XE,2); SF > 2)de.

3. PROPERTIES OF THE DUAL MARKOV CHAIN

In this section we establish some properties of the dual Markov chain and of the corre-
sponding Markov walk.

Lemma 3.1. Suppose that the operator P satisfies Hypotheses M1-M3. Then the dual
operator P* satisfies also M1-MS3.

Proof. By the definition of P*, for any z* € X,

S v(@)P* (z,2%) =Y P (a%,2) v (2*) = v(z¥),

zeX zeX

which proves that v is also P*-invariant. Thus Hypothesis M2, v(f) = v(—f) = 0, is
satisfied for both chains. Moreover, it is easy to see that for any n > 1, (z,z*) € X2,

(P)" (2, 27) = P"(2", 2)
This shows that P* satisfies M1 and M3. O

Note that the operator P* is the adjoint operator of P in the space L? (v) : for any
functions g and h on X,

v(g(P)"h) =v (hP"g).
In particular for any n > 1, v (f (P*)" f) = v (fP"f) and we note that

7= v (1) + v (=D P ().
The following assertion plays a key role in the proofs.

Lemma 3.2 (Duality). For any probability measure m on X, any n > 1 and any function

F from X" to R,
(X
) % ) '

n—1r--+>

Ew (F (X1,..., Xp-1,X,)) = Ef (F (x5 X5

Proof. We write
En (F(X1,..., X0 1,X3))
= Z F(xl,...,xn_l,xn) m(.ﬁ(70>

L0y L1y--ey w7L,1,wn,w7L+1€X

on (X1 =21, Xo=129,..., X1 =2p1, X, = SL’an+1 = l’n+1) .
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By the definition of P*, we have
on (X1 =21, Xo=129,..., X1 =Tp_1, X, = T, Xn+1 = In+1)
= P(SL’(], Il)P(SL’l, ZL’Q) . P(l’n_l, ZL’n)P(LUn, $n+1)

Cpe Ve v v b ()
= P* (x4, 0>V(x0)P (9, I)V(xl) Pz, n_l)l/(xn_l)P (Tpat, Tn) o ()
_ V(Tni1) o,

1 n 2 n—1y--- 1 1 0
(0) mnl( ) ) )y “in » “tn+4

and the result of the lemma follows. O
4. THE PERTURBED OPERATOR
For any t € R, denote by P; the perturbed transition operator defined by
P.g(z) =P (eitf g) (x) =E, (eitf(Xl) g(Xl)) , forany g€ ¥, v €X,

where i is the complex i = —1. Let also r; be the spectral radius of P,. Note that for any
g%, [Pl <[ g = llgll. and so

(4.1) ry < 1.
We introduce the two following definitions:
e A sequence xg,x1,...,x, € X, is a path (between xy and x,,) if
P(zg,21) - P(xp_1,2,) > 0.
e A sequence g, x1,...,%, € X, is an orbit if xg, x1,...,x,, T is a path.

Note that under Hypothesis M1, for any x(, x € X it is always possible to connect zy and x
by a path zg,zq,...,z,,z in X.

Lemma 4.1. Assume Hypothesis M1. The following statements are equivalent:
1. There exists (0,a) € R? such that for any orbit xo, ..., x, in X, we have

flzo)+ -+ flxn) — (n+1)0 € aZ.
2. There existt € R*, h € €\ {0} and 6 € R such that for any (z,z') € X2,
ha') @ Pz, 2) = h(x) e Pz, 2)).

3. There exists t € R* such that
Ty = 1

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix zy € X and set
h(xzo) = 1. For any x € X, define h(z) in the following way: for any path xq,...,z,,z in X

we set
h(:c) — lt0(nt1) —it(f(z1)++f(zn)+f(2))

where ¢t = 27” Note that if a = 0, then the point 1 holds also for a = 1 and so, without lost
of generality, we assume that a # 0. We first verify that h is well defined on X. Recall that
under Hypothesis M1, for any z € X it is always possible to connect zy and z by a path.
We have to check that the value of h(x) does not depend on the choice of the path. Let
p,q = 1 and 2o, 21,...,2,, ¢ in X and 9, y1, ..., ys 2 in X be two paths between zy and x.
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We complete these paths to orbits as follows. Under Hypothesis M1, there exist n > 1 and
Z1,...,%p in X such that

P(z,z) - P(zn,z0) >0,
i.e. the sequence z, 21, ..., 2,, %o is a path. So, the sequences x,z1,...,2p,7,21,..., 2, and
0, Y1s---,Yq, Ty 21, - - -, Zn are orbits. By the point 1, there exist [;, [y € Z such that

Flo) -+ fla) + fl@) = al = (f(2) + -+ F () + f(w0) + (0 n+2)0
=ali —aly + (f(y1) + -+ fyg) + [(2))
—(g+n+2)0+ (p+n+2)0.

Therefore,

HO(D1) (3t (F (@)t () 4 F(2)) _ it(al—als) it(gH1) o —it(F(y)++F (o) +F(x))

and since ta = 27 it proves that h is well defined. Now let (x,2') € X? be such that
P(x,2') > 0. There exists a path zg, x1, ..., x,,z between o and x and so

h(z) = itf(n+1) (—it(f(z1)++f(@n)+f(2))

Since xg, x1,...,T,, T, 2 is a path between xg and 2/, we have also
h(l’l) _ eitG(n+2) e—it(f(m)+~~~+f(acn)+f(ac)+f(ac’)) _ h(l’) eit@ e—itf(gc’) ‘

Note that since the modulus of h is 1, this function belongs to €\ {0}.
The point 2 implies the point 1. Suppose that the point 2 holds and let zg,...,x, be an
orbit. Using the point 2 repeatedly, we have

h(zo) = h(z,) e e H@0) = ... = p(z,) 0 +D) it (o)t f(en)

Since h is a non-identically zero function with a constant modulus, necessarily, h is never
equal to 0 and so f(xo) + -+ + f(z,) — (n+1)0 € ZZ.

The point 2 implies the point 3. Suppose that the point 2 holds. Summing on 2’ we have,
for any z € X

P (he') (z) = Pyh(z) = h(z) ™.

Therefore h is an eigenvector of P, associated to the eigenvalue e® which implies that
re > ’eiw =1 and by (4.1), r, = 1.

The point 3 implies the point 2. Suppose that the point 3 holds. There exist h € € \ {0}
and 6 € R such that P,h = he'®®. Without loss of generality, we suppose that ||h[|, = 1.
Since P"h = hel™ for any n > 1, by (2.1), for any = € X, we have

(4.2) (@) = [Plh(x)| < P[] (x) —— v([h]).

From (4.2), letting y € X be such that |h(x¢)| = ||h]|,, = 1, it is easy to see that
[h(zo)| < Y [h(@)|v(z) < [h(zo)] .

rzeX
From this it follows that the modulus of h is constant on X: |h(z)| = |h(zo)| = 1 for any
x € X. Consequently, there exists a: X — R such that for any = € X|
(4.3) h(z) = '@

With (4.3) the equation P;h = hel?? can be rewritten as
Vo € X, Z eia(m’) eitf(m’) P(QE‘, ZL’/) _ eia(w) eit@ )

z’/eX
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Since el*@el? ¢ {2 € C: |2| = 1} and el*@) /@) ¢ {2 € C: |2| = 1}, for any 2’ € X, the
previous equation holds only if h(z') et/(#) = elal@) git/(2) — ¢la(@) ol0 — 1 (1)l for any
2’ € X such that P(z,2’) > 0. O

Define the operator norm ||-||,_,, on € as follows: for any operator R: € — €, set

12(9) ]l

IR
gern(0)y 119l

CE =

Lemma 4.2. Assume Hypotheses M1 and M3. For any compact set K included in R* there
exist constants cx > 0 and ¢ > 0 such that for anyn > 1,

o
(6J_>(6J<CK6 CKTL‘

sup [P}
teK

Proof. By Lemma 4.1, under Hypotheses M1 and M3, we have r; # 1 for any ¢ # 0 and
hence, using (4.1),
e < 1, vVt € R*.

It is well known that
1/n
(g_yg .

— 3 n
o=l P

Since t — P, is continuous, the function ¢t — 7; is the infimum of the sequence of upper
semi-continuous functions ¢ ||P?||<lg/i<g and therefore is itself upper semi-continuous. In
particular, for any compact set K included in R*, there exists to € K such that

supry =1y, < 1.

teK

We deduce that for € = (1 — sup,cx 7¢)/2 > 0 there exists ng > 1 such that for any n > ny,

||P?||<lg/i<g <supr; +e¢e < 1.
tekK

Choosing cxr = —1In(sup,cx e +¢€) and cx = maxpcn, [|PY oy e ™ +1, the lemma is
proved. O

In the proofs we make use of the following assertion which is a consequence of the pertur-
bation theory of linear operator (see for example [20]). The point 5 is proved in Lemma 2
of Guivarc’h and Hardy [17].

Proposition 4.3. Assume Hypotheses M1 and M2. There exist a real £g > 0 and operator
valued functions I1; and Q; acting from [—¢eg, €o| to the set of operators onto € such that

1. the maps t — 1l;, t — Q; and t — N\ are analytic at 0,
2. the operator Py has the following decomposition,
P, = ML+ Q, Vt € [—eo, €0),

3. for any t € [—eo, o), I1; is a one-dimensional projector and 11,QQ; = Q:I1; = 0,
4. there exist ¢c; > 0 and co > 0 such that, for any n € N*¥,

sup  [|Q7

tE[—Eo,eo]

—can
g S 1€ )

5. the function A\ has the following expansion at 0: for any t € [—eg, £o),

t20?

A= Lt | <cltf

<clt].
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Note that Ay = 1 and IIy(-) = II(-) = v(+)e, where e is the unit function of X: e(x) = 1,
for any z € X.

Lemma 4.4. Assume Hypotheses M1 and M2. There exists g > 0 such that for anyn > 1
and t € [—on/ﬁ, on/ﬁ]
—e 1 H4ce .

P" —
H NG Gt \/ﬁ
Proof. By the points 2 and 3 of Proposition 4.3, for any t/\/n € [—¢q, €],
Pnt - )\nt H t nt .
Vo Vn * Qﬁ

C t2o'2

v
By the points 1 and 4 of Proposition 4.3, for n > 1,

1
4.4 HH ¢ —HH < sup |IT
(4.4) e S [ P f I
(4.5) sup  ||Q"L <ce ™
tE[—Eo,ao] v llg—%
Let a be the complex valued function defined on [—&g, g9] by a(t) = ()\t ) for

any t € [—eg,&0] \ {0} and «(0) = 0. By the point 5 of Proposition 4.3, there ex1sts c>0
such that

(4.6) Vt € [—¢o, €], la(t)] < e

With this notation, we have for any ¢/\/n € [—&o, £o],

)
2n n32 \/n 2n

=1

2452 2 2
(4.7) ‘(1—t—> —eE .

2n

=:1s

_ 202

Without loss of generality, the Value of g0 > 0 can be chosen such that 20? < 1 and so for
any t/\/n € [—eo, gg, we have 1 — £Z > 1/2. Therefore,

{252 £ V)
L <(1- 2= 1 — 1
1 ( 2n> (+n3/2(1—t202)a<f>>
2n
t20'2 n o n n t3
<(1--
(-2) £ () e (55)]

R |

Using the inequality 1+ u < e* for u € R, the fact that 1 — ‘7’1 > 1/2 and the bound (4.6),
we have
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Next, using the inequality e* —1 < ue" for u > 0 and the fact that |t| //n < ey,

3 cept?

4.8 I Le t
(4.8) 1 \F‘ "e
Again, without loss of generality, the value of £y > 0 can be chosen such that cg2 < 02/8
(this have no impact on (4.6) which holds for any [—¢j, €(] € [—€0,€0]). Thus, from (4.8) it
follows that

C t202
4.9 L £ —e
(4.9 <
Using the inequalities 1 —u < e™ for u € R and In(1 — u) > —u — u? for u < 1, we have
2,2 252 2,2 2,2 44 4 54 2,2 2,2
(4,10) Iy = e_tT — — t_g < e_tT —e_tT_tél—n < t_a e_tT < ie_tT
2n 4n Vn

Putting together (4.7), (4.9) and (4.10), we obtain that, for any ¢/\/n € [—&o, ¢l

4 11 )\ t2o'2 C t20'2
) "o—eT 2 | K ——e 1
( ) 3 e Tn e
In the same way, one can prove that

202
(4.12) it A | < e

+252

The right hand side in the assertion of the lemma can be bounded as follows:
HP"L B 0 Vi I =5
n

& oo +|0%|
< Lt il + Q2

Using (4.4), (4.5), (4.11) and (4.12), we obtain that, for any ¢/y/n € [g0, o],

-1

.Atz_ —e
Vvn G

_ t20'2 & t20'2
HI)Ti_ —e 2z ]I
Vvn

<—=e 1 Jce .

¢—e /N

5. A NON ASYMPTOTIC LOCAL LIMIT THEOREM

In this section we establish a local limit theorem for the Markov walk jointly with the
Markov chain. Our result is similar to that in Grama and Le Page [14] where the case of
sums of independent random variables is considered under the Cramér condition. We refer
to Guivarc’h and Hardy [17] for local limit theorem for a Markov chain with compact state
space. In contrast to [17] our local limit theorem gives a control of the remainder term.

We first establish a local limit theorem for integrable functions with Fourier transforms
with compact supports. For any integrable function h: R — R denote by h its Fourier
transform:

h(t) = / e~ h(u)du, Ve R.
R
When £ is integrable, by the inversion formula,

1 Lo~
hu) = 5 /R et h(t)dt, Vu e R.

For any integrable functions h and g, let

hxg(u) = /Rh(v)g(u —v)dv
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be the convolution of h and g. Denote by ¢, the density of the centred normal law with
variance o

1 u?
Yo (u) = me_m, Yu € R.

Lemma 5.1. Assume Hypotheses M1-M3. For any A > 0, any integrable function h on R

whose Fourier transform h has a compact support included in [—A, A], any real function 1
defined on X and anyn > 1,

Sup /By (h (y + Sn) 0 (X)) = b @ ia (y)v ()]

yeR

(5.1)

C

< Wl (S Dl + [

L1 €A e_cA"> .

Proof. By the inversion formula and the Fubini theorem,

I == v/ [Ba (B (y + S2) ¥ (X,)) = hox o o (y)v ()]

s (/]R WS (1) dta) (Xn>> B /R}A‘(t)@ﬁa(t) e div (W'

" or
_ g—f /R ity (Pw(x) _ e u(¢)> h(t) dt‘.

Since h(t) = 0 for any t ¢ [—A, A], we write

<Y
2T

t2o'2n

/so<t<A e <P?w(x) —e T v (w)) h(t) dt

=1

t2a2n

/t|<60 e (P?WI) —e 7 v (¢)> h(t) dt,

=:1s

(5.2) Lvn

2

where ¢ is defined by Lemma 4.4.
Bound of I;. By Lemma 4.2, for any ¢ < [t| < A, we have

IPiYlloe < M1l caeo ™0

Consequently,
n e n _5202n ~
n<¥" (nwnoocA,aOe hat 4 o |v<¢>|) 7]
i
(5.3) <l 2], caeeemoreom.
Bound of I5. Substituting s = ty/n, we write
b= |[ e F (P - Fuw)h()d
= — e vr s (x) —e — | ds
> 7 o1 [ Jisigeovm va N4

1
<3
27 J|s|<eov/n

820'

P () — e 5 u(w)} |B <i>

vn
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By Lemma 4.4, for any |s| < €94/, we have

< HP’% (V) —e”

820'2

P (e) e F v ()

5252
2

.

820'2

< [l [P, — e 1

C—€

C 520-2
< Y] \/—ﬁe_ T tce .

Therefore,
C _s2? 1 —cn ||
o< ol (= [ [ s o i,
c —cn |7
(5.4 < Wl (S Bl + e ).
Putting together (5.2), (5.3) and (5.4), concludes the proof. O

We extend the result of Lemma 5.1 for any integrable function (with not necessarily
integrable Fourier transform). As in Stone [26], we introduce the kernel s defined on R by

() = — (w) D VueR  and  (0) = —.

2

The function k is integrable and its Fourier transform is given by
R(t)y=1—[t|], Vte[-1,1], and R(t) =0 otherwise.

Note that

/R k(u)du = 7(0) = 1 = / R(t) dt.

R
For any € > 0, we define the function . on R by

1 /u
Ke(u) = R <g> .
Its Fourier transform is given by R.(t) = k(et). Note also that, for any € > 0, we have
1t 4 4
(5.5) / K(u)du < —/% = du = e
For any non-negative and locally bounded function h defined on R and any ¢ > 0, let A,
and h, be the "thickened" functions: for any u € R,

ho(u)= sup h(v) and h.(u)= inf  h(v).

vE[u—e,ute| vE[u—e,ute|

For any € > 0, denote by 7 the set of non-negative and locally bounded functions h such
that h, h. and h, are measurable from (R, # (R)) to (R, Z (R, )) and Lebesgue-integrable
(where & (R), # (R,) are the Borel o-algebras).

Lemma 5.2. For any function h € 7, € € (0,1/4) and u € R,

B, % o2 (u) —/ By (4 — ) k2 (0) do < B(u) < (1 + 4de) T # s (1),

|v|=e
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Proof. Note that for any |v| < e and v € R, we have u € [u —v —e,u — v +¢]. So,

(5.6) h, (u—v) < h(u) < he (u—10).
Using the fact that [p k.2(u)du =1 and (5.5), we write

h(u) = /v|<s h(u)kz2(v)dv + h(u) / Ke2(v) dv

|v[>e
< / he (U —v) k2 (v) dv + h(u)és.
lv|<e ™
Therefore,
(w) (1~ fg) < [T (u = ) ko (v) dv = . % o (1),
T R

1 — _
h(u) < ———h. * ke (u) < (14 4e) he * K2(u).

Lemma 5.3. Let ¢ >0 and h € ..
1. Foranyy € R andn > 1,
\/ﬁ(ﬁa */‘%2) * 0 me(Y) < \/ﬁ(h*gp\/ﬁo) (y) +CHEQ€ —h

where ¢ /m,(-) is defined by (5.1).
2. Foranyy € R andn > 1,

Vi (e k) 0o (y) < €
3. Foranyy € R andn > 1,
Vi (e  Ke2) % 0o (y) 2 Vi (h g ) () = ¢ [|h = hoc |1 = ce [[h]| -

Proof. For any € > 0, |[v] < ¢ and v € R it holds [u —v —e,u —v + €| C [u — 2¢e,u + 2¢].
Therefore,

(5.7) h(u—v) = hy(u) and  h.(u—v) < hoo(u).

e Bl

he

Lt

Consequently, for any v € R,
T iz (1) < Tooe (1) / k(@) do+ [ Bl —v)ke(v) do
|v<e |v[>e

< hae(u) + he(u — v)ke2(v) dv.

[v[>e
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From this, using the bound \/ny z,(-) < 1/(v27o) and (5.5), we obtain that
Vi (e % Kie2) 0 o (y) < V0 (h'2€ %0 ) (1)

2no / /|U>e V)ke2(v) dv du

= \/ﬁ (E% * Qp\/ﬁcr) (y) + %5 ‘ EE

Lt
Using again the bound \/ng s, (-) < 1/(v270), we get
— du —
\/ﬁ(he*,%ez)*gp\/—a \/_(h*gp\/—a —I—/‘hga — ’ 27m+05’h5 "

\/ﬁ(h*gofa) Y —|—0Hh25— 1—|—05HE2€ .
\/ﬁ(hwfa) y) + (c+ce) tha—h

e Bl

which proves the claim 1.
In the same way,

1’h

L! o2no

Vvn (EE * /152) * @ mo(y) < f

L’

which establishes the claim 2.
By (5.7) and (5.5),

o) 2 hoo() [ (o) o> (1= 22) hus().

lv|<e

Integrating this inequality and using once again the bound /ng, /. (-) < ﬁ, we have

V(e ) 0y ) 2 V(1= ) o 0, 1)

4
>n (ﬁzg * 90\/%) (y) — %5\/— Hh25HL1 .

Inserting h, we conclude that
1
\/ﬁ(ﬁa * g2 ) * ‘P\/_a(y) Vn (h * ‘P\/_cr) (y) — m |h — ﬁ2a||L1 —ce ||ﬁ25||L1
> Vi (hx 9yie) (1) = ellh = ol = = 1Al
O

We are now equipped to prove a non-asymptotic theorem for a large class of functions h.

Lemma 5.4. Assume Hypotheses M1-M3. Let ¢ € (0,1/4). For any function h € 2, any
non-negative function 1 € € and anyn > 1,

B (b (y + Su) ¢ (X)) = hox @ (v (1)

zeX,yeR

< el (1 = hocllys + [[Proe — B

L) el e

1 —cen
L <%+5+c€e ),
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where ¢ s, (+) is defined by (5.1). Moreover,
sup VB ((y+5.) ¢ (X0)) < e[[¢ ] [ee]

reX,yeR

Proof. We prove upper and lower bounds for \/nE, (h (y + S,) ¢ (X,,)) from which the claim

wills follow.
The upper bound. By Lemma 5.2, we have, for any x € X, n > 1, y € R and € € (0,1/4),

Eq (h (y+52) ¥ (X)) < (1+42) By (R * iz (y + 50) ¥ (X))

Since h. is integrable, the function u + h, * k.2(u) is integrable and its Fourier transform

(1 + ¢, e_CE”) )

u + h.(u)R.2(u) has a support included in [—1/¢2,1/¢2]. Consequently, by Lemma 5.1,
Iy == VnEq (h (y + Sn) ¥ (X))
< \/ﬁ (1 + 45) (Es * H€2) * (p\/ﬁa(y)u (w>

+2||¢||oo(i i

L1+

2 Ce e_csn> .
Ll

Using the points 1 and 2 of Lemma 5.3 and the fact that |v (¢)] < ||¢]|,,, we deduce that

To < v/ (e pumo) (v () + 1] (e [z — el

, e Hh||L1) + 4ec||h

+ 20| (i T I cEe_CE">.
L Ll
Note that ||h. * r.2 L= he. . and
L L
S N o 11—
hefica| | < = Ll/Rfisz(t)dt: he Ll/R At dt = S R,
Consequently,
Io < v/ (hx @ uao ) v () + e 0]l o = b
(5.8) +c vl |[R ( Tn +e+ece e_05”> .

From (5.8), taking into account that /n (h * goﬁa) (y) < c||h];1, we deduce, in addition,
that

(5.9) Iy <[]l [Pac|, (14 ™).
The lower bound. By Lemma 5.2, we write that

]0 = \/EE:C (hs * Ke2 (y + Sn) ¢ (Xn))

(5.10) — /nE, </v|28 h. (y + Sp — v) ke2(v) dvtp (Xn)> :

=:1s
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Bound of I,. The Fourier transform of h, % k.2 has a compact support included in

[—1/£%,1/€%. So by Lemma 5.1,
Lt Ce e_an> )
Using the point 3 of Lemma 5.3 and the fact that |v (¢)] < |||,
I 2 Vi (h oum) (09 (6) — el (1A = Boc s+ 1l)

1 Ce e_CE"> .

1 S Rl Bl = Z kel <

C —
L2 /(e s k) e ()Y () = 9] (ﬁ e k2l + |[he % e

C —_—
— ¥l (% | he * Ke2||p0 + Hﬁs * K2

—_—
h, * K2

Since ||he * k2|10 = ||he|l s < ||h]|;: and since ‘

= ||[l;1, we deduce that
13 Vi (B o) @0 () — el I — Bl

1
(511) —C Hlb“oo ||h||L1 <ﬁ +ée+ce e_65”> .

Bound of I,. With the notation g.,(u) = h. (u —v), we have

I, = VNE; (ge0 (y + Sn) ¥ (X)) K2 (v) do.

|v|>e

Consequently, using (5.9), we find that

I < c|[gll, (14 ccemm) /We |(Ge)s| 1 12 () o
Note that, for any v and v € R,
(gE,U)Qg(u) = sup ﬁe (w - U) < sup h ('LU - 'U) = E2a(u - U)'
we[u—2e,u+2¢] we[u—2e,u+2¢]
S0, [|(ge,v)q. iy < Hﬁga iy and
b < el [y (1ecem™) [ mer(w)
By (5.5),
(5.12) L <l R, (e +cem).

Putting together (5.10), (5.11) and (5.12), we obtain that
Io > Vi (s pums) W () — 1] IR = ol
7 1 —Cen
(5.13) —c [l [Pec] <% fedoee ) :

Putting together the upper bound (5.8) and the lower bound (5.13), the first inequality of
the lemma follows. The second inequality is proved in (5.9). O

We now apply Lemma 5.4 when the function h is an indicator of an interval.
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Corollary 5.5. Assume Hypotheses M1-M3. For any a > 0, € € (0,1/4), any non-negative
function p € € and anyn > 1,

sup  Vn|Eg (¢ (Xn) 5 ¥+ Sn € [2,2 4+ a]) — ap sy (2 —y)v(@b)’

zeX,yeR, z>0

1 a
<cla+e) ||Y]., <— + - +e+e e_05”> ,

Nz

where ¢ s, (+) is defined by (5.1). In particular, there exists ¢ > 0 such that for any a > 0,
(5.14) sup  VnE, (¥ (X)) 5 y+ S, € [2,2 +a]) <c(1+a) ||Y)., -

2EX, y€eR, 220
Proof. Let z > 0,a >0, ¢ € (0,1/4). For any y € R set
h(y) = 1z 240 (y)-
It is clear that
he(y) = L ztare](y) and he(y) = Lte zra—e)(v),

where by convention 1p.ic.4,—(y) = 0 when a < 2e. It is also easy to see that

|h = hol = Hﬁ2a_h =a+ 4e.

= 4e and Hﬁga

L! L!

Taking into account these last equalities and using Lemma 5.4, we find that

E, (& (Xn) ; 4+ Sn € [2,2 + ) = L ova * Oymo (y)V (1)

(5.15) <clate) o (%%Hae—cﬁ").

Moreover, the convolution 1, .14 * ¢ /m, 18 equal to

w2

6_ 2no2

Lz zta] * 90\/50(?/) = /R 1{z<y—u<z+a}m du = (I)\/ﬁo(y —z) — q)\/ﬁa(y —z—a),

_
e 2n

where @ (1) = I \/ﬁ’; du is the distribution function of the centred normal law of

variance no?. By the Taylor-Lagrange formula, there exists £ € (y — z — a,y — z) such that

2

a
Cyroly =2 —a) = Pymoly —2) = apymo(y = 2) + 50 o (§)-

Using the fact that sup,cg |ule ™ < ¢,

ca®

(5.16) Ue o) * DoY) — a2 = )| < P
Putting together (5.15) and (5.16), we conclude that
B, (4 (Xa) 5 y+ S € [2,2 + a) — agp i (2 — y)v (1)

1 a
< C(CL+8) HIbHOO <% + E +ée+ Cee_csn> .
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6. AUXILIARY BOUNDS

We state two bounds on the expectation E, (¢(X,,); y+ S, € [z, 2+ a], 7, > n). The first
one is of order 1/n and independent of z. Then we reverse the Markov chain to improve it
to a bound of order 1/n%2. We refer to Denisov and Wachtel [8] for related results in the
case of lattice valued independent random variables.

Lemma 6.1. Assume Hypotheses M1-M3. There exists ¢ > 0 such that for any a > 0,
non-negative function p € €, y € R and n > 1

sup Bo (Y (Xn) 5y +Sa € [z,2+a], 7y >n) < — II@DII (1+a*) (1+ max(y,0)).

zeX, z>0
Proof. We split the time n into two parts k := |n/2| and n — k. By the Markov property,
Ey:=E, (Y (Xn);y+Sn € [z,2+4a], 7y >n)

_Z/ E, Xi) ;Y + Sk €lz,2+4a], 7y > k)

z'eX

XP, (Xypp=2",y+ Spr€dy’, 7, >n—k)
<3[R iy + Szt a)

z'eX

XP, (Xypp=a",y+ Spredy, 7, >n—k).

Using the uniform bound (5.14) in Corollary 5.5, we obtain that
¢l

Vk
By the point 2 of Proposition 2.2, we get

i < Clll (4 @) (1 + max(,0)
= Vivn —k .

Since n —k > n/2 and k > n/4 for any n > 4, the lemma is proved (the case when n < 4 is
trivial). O

Ey < (1+a*)P, (1, >n—k).

Lemma 6.2. Assume Hypotheses M1-M3. There exists ¢ > 0 such that for any a > 0,
non-negative function p € €, y€R, 2> 0 andn > 1

C
sup B, (¢ (Xn) 5y +Sn € [2,2 0], 7y > n) < L',Lf/[""
zeX

(14 a®) (1 + 2) (1 + max(y,0)).
Proof. Set again k = |n/2]. By the Markov property
Ey:=E, (W (X,);y+ S, €lz,z2+4a], 7, >n)

(6.1) —Z/ Ey (4 (X0) 5y +Se € 2,2 +a], 7y > k)

z’eX

=:E)
XP,(Xpp=2",y+ S, rpedy,r,>n—k).
Using Lemma 3.2 with m = §,, and

F(xy,. o ak) = V(@) Ly f@) -+ f@n)elzztal Yie(Lk}, y/+ f 1)+ ()50}
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we have
Ly (Xis)

Y+ (X)) + -+ f(XY) €z 24 4],
o (X0) Y+ f(X5) (X7) € ]

Ey =E; (¢ (X7)

Vi {L. kb y + f (G + e+ f(Xi) >0) :
By the Markov property,
Ey =B, (v (X)) (X0) 5 ¢/ + F(X0) + -+ f(X]) €[22+,
Vi€ {1k f ) e f (X ) > 0)

where

g (L (XD _ PGt P 1
6 ) -E (RE) - <

On the event {y' + f(X})+---+ f (X)) € [z,2+a]} ={z+a+ S} € [y,y + a]}, we have
Vie{l,.. kLo +FX)+ -+ f(Xii) >0,y >0}
cl{vie{l, .. k—1} z4+a—f(X;,) = = f(X})>0,24a+S; >0}
:{T§+a>k}.
So, for any y' > 0,

v(z')  wv(x*) T infyexv(z)

Ey<clvll Py (2+a+S; €.y +al, ha > k).

Using Lemma 6.1 we have uniformly in ¢’ > 0,

(6.3) Ej < %(1 +a®) (1 + max(z + a,0)) < < Hi”“ (1+a*)(1+2).
Putting together (6.3) and (6.1) and using the point 2 of Proposition 2.2,

Ey < ¢ Hi”“(l +a*)(1+2)P, (1, >n—k) < %(1 +a®) (14 2) (1 + max(y, 0)).
Since n — k > n/2 and k > n/4 for any n > 4, the lemma is proved. O

7. PROOF OF THEOREM 2.4

The aim of this section is to bound
(7.1) Ey:=E, (¥ (X,);y+ S, €lz,2+al, 7, >n)
uniformly in the end point z. The point is to split the time n into n = ny; + ny, where
ny = |e3n] and ny = n — |e®n], and € € (0,1). Using the Markov property, we shall bound
the process between n; and n by the local limit theorem (Corollary 5.5) and between 1 and
ny by the integral theorem (Proposition 2.3). Following this idea we write

Ey=E, (Y (Xy) ; y+ Sn € [z,2+a], 7y >m1)
=:F
(7.2) —E,(¢¥(X,);y+Sn€lz,2+a],m <7, <n).

=:F
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For the ease of reading the bounds of F; and E, are given in separate sections.

7.1. Control of E;.

Lemma 7.1. Assume Hypotheses M1-M3. For any a > 0 and ¢ € (0,1/4) there exist
c = ¢, > 0 depending only on a and c. > 0 such that for any non-negative function v € €,
any y € R andn €N, such that £3n > 1 we have

sup n |E;

— v E, — | Ty >N
z€X,220 V120 2 <<p ( V120 ) Y '

e max(n0) o (< + 2 ).

where By = E, (¥ (X)) 5 y+ S, € [2,2+4a], 7, >n1), no = ], 1 = n — |®n] and
+2
o(t) =e 7 /\/2m.

Proof. By the Markov property,

E, = Z/ Ey (¢ (Xn,) 5 Y + Sny € [2, 2+ a])
z’'eX
=:E]
(7.3) X P, (y+ Sn, €dy', Xy, =2, 7, > nq).

From now on we consider that the real a > 0 is fixed. By Corollary 5.5, for any €2 < ¢ €

(0,1/4),

Vi B~ ap e = 1w )] € el (= + 4 o),

with ¢ depending only on a. Consequently, using (7.3) and the fact that ny = |€3n| > c.n,
‘El —av (w) Ez (Qp\/ﬁa (y —Z+ Sn1) y Ty > nl)’

< kel = [l (<2 + e 4 ¢, e_65"> P, (1, > nq).

e (G

Therefore, by (5.1) and the point 2 of Proposition 2.2, we obtain that

a y— 2+ 8, 1+ max(y,0) (e | 55
_ . < _ | — .
E, n2av(w) E, <g0 < Nt ) Ty > n1> <l NN NG +¢e
1

Since ng > (1 — Tn) and ny = 7, we have

vy \vn )\
1+ max(y, 0) Ce
< falininl A ) e
e
and the lemma follows. O

To find the limit behaviour of E;, we will develop \/%Em (go (y+jn_2(;2) Ty > nl). To this

aim, we prove the following lemma which we will apply first with the standard normal density
function ¢, and later on with the Rayleigh density ¢, .
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Lemma 7.2. Assume Hypotheses M1-M3. Let ¥ : R — R be a non-negative derivable
function such that V(t) — 0 as t — +o0o. Moreover we suppose that V' is a continuous

function on R such that max(|U(t)|, |V'(¢)]) < ce™T. There exists g0 € (0,1/2) such that
for any e € (0,20), y € R, my > 1 and my > 1, we have

Y+ Sm — 2\ _ 2W(zy) [t mi, 0z
E(\If( N ),Ty>m1> 7%0/0 v t 4 (t)dt

2
< ce(l + Hiax(y, 0)) N Cl + max(y, 0) ( —emL )
mi/Mo A/ T

+2

where o, (t) =te z.

sup
zeX, z>20

Proof. Let t € X,y € R, 2 >0, m; > 1 and my > 1 and fix ; € (0,1). We consider two
cases. Assume first that z < \/mjo/e;. Using the regularity of the function ¥, we note that

']0 =K, <\I]<y+5m1_ );Ty>m1>
_ ee / < Y + Smy
- / pyalie: xy(,/ N )IP( - t,Ty>m1>dt.

Denote by J; the following integral:

(7.4) Jyi= - 2V 2Vl y) /+°° \/7\1/’ <\/7 \/;_20> <1 - e_%) dt.

Using the point 2 of Proposition 2.3, with ¢y = 2/¢1, there exists 9 > 0 such that for any

e € (0,¢e9),
(1 + max(y, 0 my z
+oo z
(V mo w/m20>

n 2V(x,y)
v 2mmyo

Using the point 2 of Proposition 2.1 and the point 2 of Proposition 2.2, with ||V'|_ =

supyer |V'(2)],

dt.

+P, (7, > m1)>

ml

2
1+ max(y, 0 2 l—l—maxy, my [T Vit %Q)
= 3l < o B e d
RVALD’
(14 max(y,0))*> 1+ max(y,0 /
< d )
ST, (2 ) i
Sincezg*/z Wehave%—Jé_lUEé}landso
1 0)* 1 0) _m 2
(15) o B < o PO T 0) o [ o5 g,
ms\/ma /my R
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Moreover, by the definition of J; in (7.4), we have

2 2 f=too
g = Wy [_\I,< [, 2 )(1_6—7)]
\2mmyo Mo /Moo 0
2V (z,y) /+°° my z 2
—_— N —t— t dt
* v 2mmyo Jo Mo Moo ¢
2V (a,y) oo my z

Now, assume that » > Y%, We write

_ (y+Smy—2) Ao
Jo < ¢E, (e ampe? 4 S < 7251 ) Ty > m1>
1

10
+||\If||oom( 5, > YO Ty>ml)

m1

<ce P (1y > mq) + ||V

281

* Jmio

Using the points 3 and 1 of Proposition 2.1, we can verify that
E, (Y4 Smy; 7y >mp) <Ep 2V (y + Sy Xony) + ¢35 7y > my) < 2V (z,y) + ¢
So by the point 2 of Proposition 2.2 and the point 2 of Proposition 2.1,

E, (y + Sm, 5 7y > ma) .

1+ max(y,0) _em ce
c + (y> )e m21_|_ 1

Jo < —
A/ T A/ T

(1 + max(y,0)).

In the same way,
2V (x y

\If
Ji = 27r

1 _1 my _ z 2 —+oco +2
< “m“y’ {/2 4m2(t =) pae+ el [ te‘?dt]
0

2e1

m 1

1 ~+o00 2
( + max y7 T l6mpe? ( )dt + H\I,H 165 / te— T dt]
0

~X

< (1+max(y, (e i +e__%>.
Vv

From the last two bounds it follows that for any z > —\/Zlg,
1 0 _cm
¢ (14 max(y,0)) (e R +€1> ‘
VAL

Putting together (7.6), (7.7) and (7.5) and taking £; = €*, we obtain the desired inequality
for any z > 0,

(7.7) |Jo— 1| < Jo+ Ji <

(1 + max(y,0))? N ¢ (1 +max(y,0)) <e cmy 4> |

Jo— Ji| ¢ m2 £
|Jo 1] <e: me /i i +
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Lemma 7.3. Assume Hypotheses M1-M3. There exists eg € (0,1/2) such that for any
e €(0,20), y € R, n € N such that e3n > 1, we have

n Y+ Sy — 2\ 2V (z,y) z
G e (M) o) -2 ()
(1 + max(y,0))?

sup
zeX, 2>0

S G

+ ¢ (1 + max(y,0)) e,

t2 t2
where p(t) = ez /21, py(t) =te™ 2 Lysoy, ne = [€°n] and ny =n — [e°n].

Proof. Denote
Y+ Sp, —2
Jo :=E, |7 >

and
Jy = %/Ms@(\/mt \/;_20> P (t) dt
2‘/2:711@; +OO \/772 @ ( ) (1) dt
2V
(78) e anOF <\/770'>
where og4(-) is defined in (5.1). By Lemma 7.2 we have
R G

Since & < ny <nand e’n —1 < ny < e’n,

(1 + max(y, O))2 N Cl + max(y, 0) (1 N %) (e_i' 4)

n
— |Jo— Nl <e:

V2 ne g3/2 n ot
1 0))?
(7.9) < ce( i mz:;(y, ) + ¢ (1 + max(y,0))e.

Let J5 be the following term:

(7.10) Jo = 2‘\//(2%’5) {f“ <\/;,10> .
Using (7.8),

|J1_J|\2V(xy)x/7

t t dt.
V2o m %Z—f( s (\/” o ) <v 0>|
By the point 2 of Proposition 2.1, we write

\/%Ul—ngé ¢ (1 + max(y,0)) ||, _ /Wz(tﬂﬂdt

¢ (1 + max(y, 0 1/ / ) |s|ds

(7.11) ¢ (1 +max(y,0)) 2.
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Putting together (7.9) and (7.11), we obtain that

1 0))?
(7.12) sup — o — | < o, 1My, 0))
z€X,220 /12 neé

+ ¢ (1 + max(y,0))e.

It remains to link J, from (7.10) to the desired equivalent. We distinguish two cases. If
< ¥n

BN e )

n 2V (x,y) z
— <
/—n2 J2 Yo Y+ (\/ﬁ(f) ‘ X CV(QE, y)

z
o

n

m (T) o (T)‘

n 1 1]|=
< oV(z, 2+ = - —| & ]¢!
V(r,y) (nmnm\m 47 |l m)
1
ch(x,y)<@+—1— 1—@@>
1 A/ n £
3
< cVi(x,y) (53 + €> .
If§>@>@,wehave
n 2V (x,y) z _e
Jo — < cV(x,y)su u) < cVix,y)e 2.
e e (e )| < Ve wsme. < Ve
Therefore, using the point 2 of Proposition 2.1, we obtain that in each case
n 2V (z,y) z 5
7.13 — Sy — ——= < ¢ (1 4+ max(y,0))e”.
(7.13 gy B () < e man(0)
Putting together (7.12) and (7.13), proves the lemma. O

Another consequence of Lemma 7.2 is the following lemma which will be used in Section
8.

Lemma 7.4. Assume Hypotheses M1-M3. There exists eg € (0,1/2) such that for any
e €(0,20), y € R, n € N such that e3n > 2, we have

n? e R T W W A CY)
nyg—1 7" s Vng—1o) Y ! o
(14 max(y,0))*
/rLE

sup
zeX

+ ¢ (1 + max(y,0))e,

\CE

2
where ., (t) =te T Loy is the Rayleigh density function, ny = n— |e®n] and ny = [e°n].

Proof. Using Lemma 7.2 with ¥ = ¢, , m; =ny, me =ny — 1 and z = 0,

n3/2 o= Al <o (14 max(y, 0))* n3/? C(l + max(y, 0)) n*/? (e—cﬁ —|—g4>
ny—1'"7° 1= Te (ng — 1)3/2n5 (ne —1)y/m
2
. 5(1 +max(y,0))° (1 +max(y,0)) (| e (5 +)
ne 53 n
1 0))?
(7.14) < AW 14 max(y, 0)),

n&
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where
Y+ Sm
Jo = E, Y om )
(o (S )
and
n3/? n3/% 2V (x,y) [+o° ny
Jp = ’ / t t)dt
n2—11 n2—1\/27rn10 +< n2—1>(’0+()
W Way) TR e, (B
= Tz dt
Ny — 1 v/2mnio\ no — 1 /
ot 2V(a,y) +°° 2m(ny — 1)
(ne —1)32 /2r0 n—1
where ¢g3(-) is defined in (5.1). So,
n3/? J= n3/2 2V (x,y) ny—1
ng—1""" Vn—1(na—1) o 2(n—1)
_ V()
S (n—132 o
By the point 2 of Proposition 2.1,
n3/? Viz,y)| ¢
7.15 J — ’ —(1 0)).
(7.15) = T < £ 1 max(,0))
The lemma follows from (7.14) and (7.15). O

Thanks to Lemmata 7.1 and 7.3 we can bound F; from (7.2) as follows.

Lemma 7.5. Assume Hypotheses M1-M3. For any a > 0 there ezists ey € (0,1/4) such

that for any e € (0,e¢), any non-negative function ¥ € €, any y € R and n € N such that
e3n > 1, we have

2av (V) V(x,y) 2
mESXU,-IZ:;O m|E - V2ro? (ﬁa) ‘
(1 max(5,0) o] (5 + 20D,

where By =B, (¥ (X,,) ; vy + S € [z,244a], 7, > n1), n1 = n—|%n] and v, is the Rayleigh
density function: ¢ (t) =te = ]l{t>0}

Proof. From Lemmas 7.1 and 7.3, it follows that

g ()

< (1 +max(y,0)) ||¥|l <5 + ;%) +
(1 (. 00) [ <€ LG (1 + max(y, 0))) _

nE

o ne

av (¢) | <C€ (1 +max(y,0)) + ¢ (1 + max(y,0)) E)
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7.2. Control of FEs. In this section we bound the term Es defined by (7.2). To this aim
let us recall and introduce some notations: for any ¢ € (0,1), we consider ny, = |&3n],

n=n-—ny=n-—|en|, ng= {%J and ng = ny — ng. We define also

(7.16) EglzzEx(@b(Xn);y+Sn€[z,z+a],y+Sn1<5 n,n1<7‘y<n)
(7.17) E22::Em(1p(Xn);y+Sn€[z,z+a],y+Sm>5 n,n1<7y<n1+n3)
(7.18) E23::Ex(¢(Xn);y+Sn€[z,z+a],y+Sm>5 n,n1+n3<7'y<n)
and we note that

(7.19) Ey = E9 + Egg + Eas.

Lemma 7.6. Assume Hypotheses M1-M38. For any a > 0 there exists eg € (0,1/4) such
that for any e € (0,&¢), any non-negative function ¥ € €, any y € R and n € N such that
e*n > 1, we have

wpnEm<cwmmu+mwwﬁ»(wa;%ﬂ+mwwﬂ»>

z€X,z>0 ne

where Eyy is given as in (7.16) by
E21 :E:c (w(Xn) ) y+Sn € [Z>Z+a]ay+sn1 <5 n, ny <7—y <TL)
and ny =n — [e°n].

Proof. Using the Markov property and the uniform bound (5.14) of Corollary 5.5, with
ny = |&3n],

+o0o
Bn=3 [ Es@(Xu) iy + S €lnz+almy <my)
z'eX
x P, (Xo =/, y+Sm €dy, y+5u <evin, 7, >m)

gMPm(ijSm <e n,ry>n1).

/2

We note that ;\/*/% < J\/f_T < %5 and so by the point 2 of Proposition 2.3 with ¢y = 2¢/0o:

cYllse (V(@y) gr (eV/R ) | ce (14 max(y, 0)%)
VALY /N1 o+/n n1/2+6 )

Using the point 2 of Proposition 2.1 and taking into account that ny > £3n (1 — %), ny =n/2
and that & (t) < ®T(¢y) < % for any t € (0, o),

C Cg CE
nEs < |(|;f/|2|°° (1 + E) (1 4+ max(y,0)) <€2 +

(1 + max(y, 0))) ’

n&

Ey <

nE

(1+ max(y,O)))

<deﬂ+mM%W<ﬁ+%

which implies the assertion of the lemma. U
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Lemma 7.7. Assume Hypotheses M1-M38. For any a > 0 there exists eg € (0,1/4) such
that for any € € (0,&¢), any non-negative function 1p € €, any y € R, and n € N satisfying
e*n > 2, we have
e cC
sup nf < el (1+ max(y,0) (¢ +2),

2€X,2>0 ne
where Fas is given as in (7.17) by
Ey =E, (@D(Xn) cy+ Sy €z, z+al, y+ Sp >evn, nm <7y <n1+n3)
and ny =n — |n], ny = |e3n] and n3 = {%J
Proof. By the Markov property,

+oo
(7.20) Epy = Z/ Ey (¥ (Xny) 5§ + Suy € [2,2 4+ 0], 7y < n3)

z'eX

Egy
><IP’QC(X,L1 =12, y+ S, €Ay, y+ S, >evn, 7, >n1).
Bound of Eb,. By the Markov property and the uniform bound (5.14) in Corollary 5.5,

with ng =ns —ng =n —ny; —ng,

o= % [ B (0(Xa) 1 '+ Sus €[22+ a)

//eX
X Py (Xpy = 2",y + Spy € dy”, 7y < n3)
 cllvll
AvaLz!
Let (By)=0 be the Brownian motion defined by Proposition 10.4. Denote by A,, the following
event:

]P)x/ (Ty/ < 713) .

Ap { sup ‘S [tn] — UBtn‘ X 1/2_8} )
te[0,1]

and by A, its complement. We have
¢ |9l [

Ny

(7.21) Ey, < Py (1y < ng, Apy) + Pu (Ty/ < ns, an)} )

Note that for any 2/ € X and any ¢y’ > e/n,
Py (Ty' < N3, Ans) <P (Tgﬁnlns < ng) )
3

where, for any y” > 0, Tgﬁ” is the exit time of the Brownian motion starting at y” defined by
(10.7). Since y' > e/n, it implies that

P, (Ty/ < ng, An3) <P < 1nf}0-Btn3 né/2 e y/)

te[0,1
53’)’1, 1/2—6
<P f 0B, < | —- -
(tel:[% ) 7 tna < 2 ) =V

g1/2-3¢
<P<1nf 0B, < 5f<1— ))

te(0,1] ne
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Since \/n//nz = 2/,

]P) (7' <7’L3, ns3 \]P)<

(7.22)

Therefore, putting together (7.21) and (7.22) and using Proposition 10.4,
Ey < ¥l ( cems(- )HP’ (A )) < Il (e—g(l—n—g) +C_z> .
v NG ~

3

Sincem}m/Q}%(—%)andng ny/2—12> T"(l—c—;),wehave

/ o ( Ce) ( _c ce ) c||vl o ( e C€>
. < Woo (44 C) (o2 o3t < _
(7.23) Es, 7/ 1+ - e e +n€ NG +n€

Inserting (7.23) in (7.20) and using the point 2 of Proposition 2.2 and the fact that
ny = n/2, we conclude that

P AV 0000 (o ey,
n
[l

Lemma 7.8. Assume Hypotheses M1-M3. For any a > 0 there exists ey € (0,1/4) such
that for any € € (0,&¢), any non-negative function ¥ € €, any y € R, and n € N such that
en > 3, we have

sup nky < e[y, (14 max(y,0)) (€+%)’

zeX,z=0

where Eas is given as in (7.18) by

E23:Em(¢(Xn);y+5n€[z,z+a],y+5n1 >6\/ﬁ,n1+n3<7'y<n)

and ny =n — |n], ny = |e3n] and n3 = {%J

Proof. By the Markov property,

E23 Z/ E )?y/‘l'SngG[Z,Z+a],n3<7'y/<n2)

z'eX

—.
_'E23

(7.24) IP’x(anzz):’,y+Sn16dy',y+5m>5 n,7y>n1).

We consider two cases: when z < E\F and when z > E\F
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Fix first 0 < z < # Using Corollary 5.5, we have for any 3’ > e/n,
By < Ey (4 (Xon) £ 4/ + Sun €[22+ a))
L awly) = el

e 27L20

= /2mngo \/Ma <w/n2
CHwH € R Ce 5/2 —cen
<53/2\/7(1+E) e822+%—|—8 +cce
¥l Ce —e G 5/2
\gmf@+ﬁ)e”7i“ |

So, when 0 < z < 5\2/_, we have

—|—85/2 + . e—csn2>

vl [ ce
7.25 Eyy < = .
( ) 23 \/ﬁ \/ﬁ €
Now we consider that z > # Using Lemma 3.2 with m = §,, and
F(le'l, .. Z’nz)

we obtain

E£3 = Em’ (w (XnQ) 3 y/ —+ Sn2 - [Z, z+ CL] , Ny < Ty < ng)
Loy (Xoai1)

I/(X;; +1) ;y/+f(X:l2)+"'+f(Xf)E[Z,Z—l—a],

<E; (w (X7)

ke {ns+ 1, =11 '+ f(X) +- + F (Xiyin) go).

By the Markov property,
By < [0l By (v (X3,) 0/ + £ (X)) +-+ + F(X]) € [z, 2+ ],
Jkef{ns+1,...,ny— 1}, y’+f(X;:2) +...+f(X;2_k+l) g())‘

where 9%, is a function defined on X by the equation (6.2). We note that, on the event
{y’—l— f (X;iz) +- 4+ (X)) €elz = —|—a]} = {z—l— Se, €Y — a,y’]}, we have

{Fefns+1,...om— 1}/ + F(X5) + -+ f(Xpp) <O}
C{ake{ns+1,...,ma—1}, 2= f (X5, ) — - — f(X]) <0}

={77 <ny—ng—1}.
Consequently,
By < cllgll By (24 Sy, € [y —a,y], 72 <= 1),

with ny = ny —ng = |3n] — F%"J > 537" (1 — %) Proceeding in the same way as for the

term El, in (7.23) and using the fact that z is larger than cey/n, we have

c|[Yllo (e, Ce
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Putting together (7.25) and (7.26), for any z > 0, we obtain
¢||Y]l o0 Ce

Inserting this bound in (7.24) and using the point 2 of Proposition 2.2, we conclude that

iy M ey 0) (),

N
n ne

O

Putting together Lemmas 7.6, 7.7 and 7.8, by (7.19), we obtain the following bound for
EQI

Lemma 7.9. Assume Hypotheses M1-M3. For any a > 0 there exists ey € (0,1/4) such
that for any e € (0,e¢), any non-negative function ¥ € €, any y € R and n € N such that
e*n > 3, we have

nE

sup 0B < 6l (1-+ max(y,0) (VE +

¢ (1 4+ max(y,0))

2€X,220 ) ’
where Ey is given as in (7.2) by

Ey=E,(¥(X,);y+S,€lz,2+a],m <7, <n)
and ny =n — |e3n].
7.3. Proof of Theorem 2.4. By (7.1) and (7.2),

E, (Y (X,);y+ Sy €lz,2+al, 7, >n)=E + Es.
Lemma 7.5 estimates F; and Lemma 7.9 bounds F,. Taking into account these two lemmas,
Theorem 2.4 follows.

8. PROOF OF THEOREM 2.5

8.1. Preliminary results.

Lemma 8.1. Assume Hypotheses M1-M3. For any a > 0 and p € N*, there exists ey €
(0,1/4) such that for any e € (0,e9) there exists ng(e) = 1 such that any non-negative
function v € €, anyy' >0, 220, ke€{0,...,p— 1} and n > ny(e), we have

E. < XOV X e+ -+ 8] 7 e > 1
Sup By < %pnz_l(ﬂ (0, ) (@b( ) (lzk ) - )

’WH C6 (1+2)
o
and
2a Y
f B> E: (¢ (X)) V* (X St os ]
T V2rp(ng — Do (m/ﬁ) V(w( DV 2+ 80 5 7, > )

Wlagy ey 2049

ne®

where E;, = E,/ (w (Xn,) ;¥ + Sy, € (zk,zk + %] , Ty > ng), 2 =2+ % and ny = |&3n].
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Proof. Using Lemma 3.2 with m = §,, and

F(Zlfl,..

we have

E, = (w (XD (X5) 50/ + F (X)) 4+ + F(X) € <M + %] ,
Vie{l,...,na}, y'—l—f(X;;) +"“|‘f(X;2—z’+1) > Q) ‘

where 9% is the function defined on X by (6.2).
The upper bound. Note that, on the event {y’ +f (X,*LQ) +---+ (X)) € (zk, 2, + %]} =

{m+2+85, € v,y +2)}, we have
Vie{l,...oma}, v+ f(X5) +-+ (X5, 1) > 0,4/ >0}
C {we{1,...,n2—1}, zk+%—f(X,*L2_i) = f(XT) >0,
o+ % + S5 > o}
(8.1) _ {T;H% > ng}.
So, for any 1’ > 0,

a a
E,. <E; (¢ (X7) ¥ (X;Z) ;2 T ) +5,, € [y/,y/ + 5) : Tz*k_,’_% > n2>

400
< Z ‘/0 w (x//) E:’;,, (¢;/ (X:L2_1) ’ Z// + S:Lg—l (- ly/,y/ _|_% 9 T:H > Mo — 1)

z’eX

a
x P* (Xf = da”, z;ﬁ—};%—Sf e dz", Thets > 1) :
Using Theorem 2.4 for the reverse chain with & = %, we obtain that

/ 2av (IDQZ/) y/ +oo " * "o
b < N 1)po_290+ (7’7@ — 10) x;e:x/o Y (a”) V™ (2", 2")

x P (Xf =, 2+~ + 57 €dY, Typa > 1)
p

n2—1
y (\/;8+Ce(1+mazz2(z_k$§—l—5f,0))) T >1)_
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Note that by (6.2), v (¢%) =1 and ||¢% || < ¢ So,

2a Y a
B, < E! XDV X, ze+—4+ST |, 70 a>1
k /_27r(n2 _ 1)pa2g0+ ( g — 1 10) v (1“ 1) < 17 %k » 1) T+ )

+ WMo @lm (1 n %) (1+2) (54 4 e+?) Z)>

ne

and the upper bound of the lemma is proved.
The lower bound. Similarly as in the proof of the upper bound we note that, on the event

{y/—l-f(X;Q) +--+ f(X7) € (Zk,zk+ %H = {Zk+S;§2 € [y’— %,y’)}, we have
{Vz’ e{1,...,na}, y’+f(X;kL2) +"'+f(Xr*Lz—i+1) > 0}
S{vie{l, -1} a—f(X5,) - — F(X]) >0}
(8.2) = {rjk > ng — 1} D {rjk > ng}.

Let ¢/, := max(y’ — a/p,0) and o’ := min(y’, a/p) € (0,a]. For any n € (0,d’),
/ * * * * * / a / *
Ek = Ell <¢ (Xl) 7\p:c’ (Xng) ; 2kt Sng S |fy - ];7y> » T, > n2>

> > /O+OO¢ (=) B3 (w; (Xig_l) 2+ S € [yjr,yjr +a — n} LT >y — 1)

ZJle}{
XP;'; (Xik :d(L‘”7 Zk"‘Sik edZ”, T;k > 1)
Using Theorem 2.4,
2(a’ = v (¢3) . e
2> z + / YV (2"
" 2r(ny — 1)0? ot Vg —lo :c%x 0 v )
<Py (X} =da”, 2+ Sp e d, 72 > 1)
_cllvillo 19l

7’L2—1

2E ((1 4 max (2 + S7,0))

" <\/€—8+c€(1+max(zk+51,0))> - >1>

(n2 _ 1)58 Zk

2(a’ — 77) yir . o . . .
>
~ V2r(ng — 1)0.230+ (ma E, (ID (X)) V(X 2+ 5Y) , 72 > 1)

—%04-%)(1—&—2) <E4+c€(1+2)>.

e3n ne

Note that, if ¥’ > a/p we have

(0" —n)ps (%) = (

DI
3
N———
S
+
/N
3| <.
[N}
!
—ll=1e
Q
N—————
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and if 0 <y’ < a/p we have

@ = (=) =02 (L= n) gy (=L ) — [l —L—
"\Vns — 1o “\p "\, — 1o Hlloo py/ng — 1o
a y' , a?
> (= - —L ) - R —
<p 77) s <\/n2 — 10) }‘P+ 0o p2y/ng — lo

Moreover, using the points 1 and 2 of Proposition 2.1, we observe that

E; (v (XD V(X], 20+ 87) 75 > 1) <cl[vll (1+2).

Y 2K

Consequently, for any ' > 0,

B} > 26 (o E; (¢ (X7) V" (X{ 2+ S7) . 72, > 1)
\/ﬁ(ng — 1)0’2 V1o — lo v k

Dl Wy (4 2029

ne

Taking the limit as n — 0, the lower bound of the lemma follows. O

Lemma 8.2. Assume Hypotheses M1-M3. For any a > 0 and p € N*, there exists ¢y €
(0,1/4) such that for any € € (0,g0) there exists no(e) > 1 such that any non-negative
function ¢ € €, anyy € R, 2> 0 and n = ng(e), we have

2aV (z, y
supn®?Ey < E, OV XS, 2+ — —l—S* T T e > 1
w€§ 0 S V2103 E Lok D Zk+
¢: (14 z + max(y, 0)))

8

+ pc||¢]| o (1 + 2) (1 +max(y, 0)) <5 +

nE
and
inf n*/?Ey > 2aV(z,y) }jE* (v (XN V*(XT 2+ S) 5 72, > 1)
reX 1/271-0-3 — 1 y g

¢ (1 + 2z + max(y, 0)))

ne®

—pelléll (1 +2) (1 + max(y,0)) ( "

where Ey = E, (¢ (X,,) ; y+ Sn € (2,2 +4a] , 7, >n) and for any k € {0,...,p— 1}, z, =
z+4 ke
p
Proof. Set ny =n — |e3n| and ny = |e3n|. By the Markov property, for any p > 1,
Ey = Z/ E, Xns) 3 Y 4 Sny € (2,2 + 0], 7y > no)

z'eX
X P, (X, =da’, y+ S, €dy’, 7, > )

+oo P~1
—Z/ Y E, xPy(Xn, =de',y+ S, €dy, 7y > 1),
k=0

z'eX
where for any k € {0,...,p— 1},

a
El/s = Ez’ (¢ (an) ; y/ + Sn2 € (Zkazk + 2_9] y Tyt > n2>
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and z, = z + %.
The upper bound. By Lemma 8.1,

2a p—l y_'_Sn
Fos E, | ; 7, > Ji(k
" p(n2—1)\/%02,§] (SDJF (U\/m) Ty nl) 1(k)
p—1 )
+Z%(1+z) <5+M>Px(@>nl),
k=0

where Jy (k) = E? (w XDV (X5 5+ 8+ 81) 5 e > 1) for any & € {0,...,p—1}. By
Lemma 7.4 and the point 2 of Propos1t10n 2.2,

2a B V(x 12 (14 max(y,0))?
n*?Ey < Ji (k) ), 1 Ji( ’ 1+ 0
\/%0_2 ];) ( o D ];) 1 ne tc ( max(y, )) €

tpe bl (1 + 2) <z—: + %) (1 + max(y, 0)).

Note that, using the points 1 and 2 of Proposition 2.1, we have

1274

—ZL <Yl (1 +2).

Therefore
2aV (x, y
3/2
n“E Ji(
0 S p\/27m3 Z_: il

ne®

+ pelly] . (1 + 2) (1 + max(y,0)) <5 4 G (14 2z + max(y, 0)))

and the upper bound of the lemma is proved.
The lower bound. The proof of the lower bound is similar to the proof of the upper bound
and therefore will not be detailed. 0

8.2. Proof of Theorem 2.5. The second point of Theorem 2.5 was proved by Lemma 6.2.
It remains to prove the first point. Let ¢ € €, a > 0, x € X, y € R and z > 0. Suppose first
that z > 0. For any n > 1 and n € (0, min(z, 1)),

(8.3) E, (¢ (X,); y+ S, € [z,2+4a], 7, >n) < Ey(n),

where Eo(n) =E, (¢ (X,) ; y+ Sy € (2 —1n,2+a] , 7, > n). Taking the limit as n — 400
in Lemma 8.2, we have, for any p € N* and € € (0,e0(p)),

lim sup n*/% Ey(n)

n—-4o0o

< \/%po-g ZE <¢ V <X1,Zk17 p _'_ S ) 3 Zk,7]+a+n > 1)

+pelll (1 + z—n) (1 +max(y,0))e,
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with 2, =2 —n+ @ for k € {0,...,p— 1}. Taking the limit as € — 0,

lim sup n*/2Ey(n)

n——+o0o

2(a + " * . . a_|_ . -
< ( ‘/;}77]90'3 ZE < V < 1azk,7]+ D +S> ) n+a+n>1>.

By the point 2 of Proposition 2.1, the function u +— V* (2*,u — f(2*)) L{y—f(a+)>0} is mono-
tonic and so is Riemann integrable. Since X is finite, we have

lim “*"ZE*( Xf)V*(Xf,zkmjL ‘;’US*)- - >1>

Jlim 2 Tl et
SACG / VXD S g0y 42
—/ E; ( DV (XL, 2+ 8)) s > 1)de.
Therefore,

. 2V (z,y)
lims 32p
11—>+gopn o(n) < Vormod Jz—n

Taking the limit as 7 — 0 and using (8.3), we obtain that, for any z > 0,

E,’i (W (X)) V*(XT, 2"+ S57) ;0 > 1)d7.

lim sup n*°E, (¢ (X,,) ; y + Sn € [2,2 +a], Ty >n)

n—-+0o0o

2V
(8.4) \/%U‘Z / Ey (¢ (X)) V' (X], 2+ 57) 5 7 > 1)d7.

If z =0, we have
E, (¢ (Xn) ;y+ S €0,a], 7y >n)=E, (¢ (Xy) ;y+ 5, € (0,a], 7, >n).

Using Lemma 8.2 and the same arguments as before, it is easy to see that (8.4) holds for
z=0.
Since [z, z 4+ a] D (z, z + a] we have obviously
E, (¥ (X,);y+Sn€lz,z+al, 7y,>n) 2E, (¥ (X)) ; y+ S, €(2,24+al, 7, >n).

Using this and Lemma 8.2 we obtain (8.4) with lim inf instead of lim sup, which concludes
the proof of the theorem.

9. PROOF OF THEOREMS 2.7 AND 2.8
9.1. Preliminaries results.

Lemma 9.1. Assume Hypotheses M1-M3. For any x € X, y € R, 2 > 0, a > 0, any non-
negative function : X — Ry and any non-negative and continuous function g: [z, z + a] —
R, we have

lim n%?E, (g (y+ S,) ¢ (X,) ; y+ Sn € [2,2 +a), 7, > n)

n—-+0o0o

2v xvy Zta * * * * / * *
= R [ B (0 (X V(X 4 8) 572> 1)
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Proof. Fixx e X,y € R, 2> 0,a >0, and let ¢: X — R, be a non-negative function and g:
[z, z+a] — Ry be a non-negative and continuous function. For any measurable non-negative
and bounded function ¢: R — R, we define

Io() == n*PEy (¢ (Xa) @ (y + Sn) ; 7y > n).
We first prove that for any 0 < o < 8 we have
2v 'T y * * * *\ .k /
01 Io(lap) — s / B (4 (X7)V* (X5, 2 + ) s 7 > 1) d2.

Since [a, B) C [a, f], the upper limit is a straightforward consequence of Theorem 2.5:

lim sup IO (]l[a,/a’)) < lim sup n3/2Ex W (Xn) Y + Sn € [Oé, 5] y Ty > n)

n—-+4o00o n—-4o0o

2V$y * * * *\ . * /
\/%OS/E DVH(XT, 2+ 87 ;15 >1)de.

and for the lower limit, we write for any n € (0, — a),
lim inf I, (]l[a 5)) > lirginf n’’E, (Y (Xn);y+Sh€lo,B—n], 7 >n)

n—s+00
_ 2V(x,y)
=~ aros

Taking the limit as n — 0, it proves (9.1).
From (9.1), it is clear that by linearity, for any non-negative stepwise function ¢ =

SV 1 Mk Ljag,8y), Where N > 1, v,...,0yw € Ry and 0 < g < 1 = ap < -+ < fBy, we
have

ﬂ_
[ R @D V(LS 80 7> 1)

2V (z,y)
lim 1, —
Jm Do () === 3

Since ¢ is continuous on [z, z + a|, for any € € (0,1) there exists ¢; . and ¢, two stepwise
functions on [z, z 4+ a) such that ¢ —e < 1. < g < Yo < g +¢. Consequently,

B
[ eE (0 (XD V(X724 8)) s 7 > 1) ae
ai

2V(l’,y) #ta / * * * * / *\ . * /
imIo(g) W/ GCNES () (XD V(X5 2+ 1) 75 > 1)de

2V
2Viz,y) / (0 (X3) V(X5 2+ 87) 5w > 1)d2.
V2ro3
Taking the limit as € — 0, concludes the proof of the lemma. O

For any [ > 1 we denote by %" (Xl X R) the set of measurable non-negative functions

g X! x R — R, bounded and such that for any (z1,...,7;) € X!, the function z
g(x1,..., 2y, 2) is continuous.

Lemma 9.2. Assume Hypotheses M1-M3. Foranyr € X,y € R, 2>0,a>0,1>1, any
non-negative functions ¥: X — R, and g € €," (X’ X R), we have

lim n*’E, (g(X1,..., X5,y + S) ¥ (Xs) ;y+ S, € [z,244a), 7, >n)

n—-4o0o
2

z+a
— / .
‘mag/z E, (9(X1, ..., X, 2)V (Xi,y+S) i 7y > 1)

x EX (Y (X7) V(XS 2+ 5)) 5 > 1)d2.
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Proof. We reduce the proof to the previous case using the Markov property. Fix x € X,
YyER 2>0,a>01>1,¢: X >R, and g € %' (X' xR). For any n >+ 1, by the
Markov property,

Iy =1 By (9 (X1, X0,y + 80) ¥ (X0) Y+ S € [2,2+a), 7, > 1)
=B, (n*?Jy (X1, Xy + 8) 7y > 1),
where for any (21,...,7;) € X',/ € Rand k > 1
Je(1, o yxny) =By (g (z1, o2,y + S0 (Xe) 54 + Sk € 2,2 +a), 7y > k).
By the point 2 of Theorem 2.5,
0?2 (Xe, . Xy 4+ S <ellgllo 1] o (14 2) (1 + max (y + S, 0)) .
Consequently, by the Lebesgue dominated convergence theorem (in fact the expectation E,

is a finite sum) and Lemma 9.1,

lim Iy =

! .
n—+oco \/ﬁ / Xl)"'aXlaz)V(Xl,y‘l'S[)7Ty>l)

x B (0 (X)) VH(XT, 2 +8)) ;7 > 1)d2.

Lemma 9.2 can be reformulated for the dual Markov walk as follows:

Lemma 9.3. Assume Hypotheses M1-M3. For any 2’ € X, 2> 0,y >20,a >0, m>1
and any function g € €," (X™ x R), we have

1
X* {E}
li 3/2E* X* X* /_S* { nt+1— S*E I *>
n_lf_{loon g( m) ) 1,'3/ ) l/( n+1) 7Z+ n [y>y+a)’7-z n

2 v'ta

- E(g(X:,.... X5y =y +2) VI (X, 2+ 8) ;2 >m)V (2, y")dy".
o), EOG XLy VXG2S s > m) V() dy

Proof. Fix ' € X, 2 >0,y >20,a >0, m > 1and g € 6, (X™ xR). Let ¢ be the
function defined on X by (6.2) and consider for any n > m + 1,

[0 = 713/2Ez (g (X;,...,Xik,y,— S:)w;’ (X*) ) Z_I—S:, S [y,ay,+a')a 7—; > n)

n

By Lemma 9.2 applied to the dual Markov walk, we have

2 y'+a
— / Ef (g(X:, . . X3y +2—y"YV(XE, 2+ 8) ;70 >m)v(x*
Ay - x%{ y (g( iy vV ) Jv(z")

X El/ (¢;/ (Xl) V (Xl, y// + Sl) 3 Ty// > 1) d’y//,
Moreover, using (6.2) and the fact that v is P-invariant, for any 2/ € X, y” > 0,
E, (¥ (X1) V(X1,9" + 1) 5 7 > 1)
S P2, z1)

v I, //_'_ xr T " vix
z1€X V(x1> ( Ly f( 1>) {y""+f(21)>0} ( 1)

= Em/ (V (Xl, y// + Sl) 3 Ty > 1) .
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By the point 1 of Proposition 2.1, the function V' is harmonic and so

2 y'+a

e E(g(X:,. ... X5y =y +2) V(X ,2+8) ;75 >m

Jm fo= e [T (0 (X Xy ) V(X2 5 7 > m)
x V (2',y") dy".

O

Lemma 9.4. Assume Hypotheses M1-M3. For anyx € X, y € R, 2> 0,a >0, m > 1
and any function g € €, (X™ x R), we have

lim 7*°E, (¢ (Xp_mi1, > Xn, ¥+ Sn) ; ¥+ Sn € (2,2 +4d], 7, >n)

n—-+oo
_ 2V(z,y)
\2mo3

Proof. Fixr € X,y €R, 2 >20,a >0, m > 1and g € 6, (X" xR). For any n > m,
consider

(9.2) L(z,y) =E; (9 (Xp—mt1s-- -, Xns ¥ +5Sn) 5y +Sp € (2,2 +4a], 7, >n).
For any [ > 1 and n > | + m, by the Markov property, we have
(93) 77,3/2In(l', y) = Ex (n3/2In—l (be + Sl) y Ty > Z) .

z+a
[ (K XTI (XG2S 5 > m) de

For any p > 1 and 0 < /fgpwedeﬁnezk::zjL . Forany 2/ € X, ¢y > 0,n > 1+ m and
p = 1, we write

n*2L, (2, y) Zn3/2E Xo—tcmats s X, ¥ 4 Snci) 5

y’ 4+ S € (Zk, Zk+1] y Ty > T — l) .
Using Lemma 3.2, we get

2l y) an/QE*( (X X7y = S5 0 (X00) 50 = 81 € (]

Vie{l,...,n—1}, y,“‘f(X;—l)+"'+f(X;—l—z'+1) >0)>

where 1}, is defined by (6.2).
The upper bound. Using (8.1), we have

2L, (2 ) zn3/2E*( (X0 Xy = S) e (X))

zn+ S, €YY +alp), T >n—l).
By Lemma 9.3,

limsup n®1,,_y(z,y) < 2 pz—:l /y’+a/p Je(y' = y" )V (2, y") dy”
n—-+o0 V 2770'3 k=0 ’ ’

where for any £ > 0 and t € R,
Ti(t) =By (g (X X7t 4 240) VT (X0 201 + S5) 5 75, > m) -

Zk+1
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Note that for any t € [—a/p, 0]

(94) ']k(t) < Ei ( [Sup 9 (X;w s 7Xik7 t+ Zk—l—l) & (er Zk41 Tt Sy ) ) zk+1 > m) :

€[—a/p,0]

::J,Z:

Since y” — V (2/,y") is non-decreasing (see the point 2 of Proposition 2.1), we have

3/2 a2l 2J7 a
lim sup n**1,,_; (2’ 2y + -
) < 55 2V (]

Moreover, by (9.2) and the point 2 of Theorem 2.5,
w2 L (X y + ) < gl e (1 + 2) (1+max(y + 5, 0)).

Consequently, by (9.3) and the Lebesgue dominated convergence theorem (or using just the
fact that X is finite),

3/2 a2 2J1€ ajy .
lim sup n*/*1,(z, y) Z VIX,y+Si+—|) ;7 >1].
p

n—s+00 p =0 \/%03
Using the point 3 of Proposition 2.1, for any ¢ € (0, 1),
. 32 al~ 2J}
lzrgi&pn szo\/%o'?’ (1—|—5)<y+51 p>+05;7y>l>

and again using the point 3 of Proposition 2.1, for any ¢ € (0, 1),

a2l 2JF 1496 a
lim su n3/21 (x, . V(X,y+S)+2—+cs; 1, >1]).
n—>+oop y p];]\/%o’g 1-95 ( LY l) D 9 y

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the limit
as [ — 400,

a?d 2J7 146

lim su ng/zl (x —V T
n—>+oop y p kZO \V 203 1 — ( y>
Taking the limit as 6 — 0,
3/2 a’= 2J7
9.5 lim sup n*/*1,,(x
69) meupn (e, 9) < 03 Ve

For any (z%,...,2}) € X" and u € R, let

QM(U) ':g( ;km' f{au)a
(9.6) Vin(u) == V¥ (xy,u— f(2]) = = f(20,) Lue f@r)>0,.u fe}) = f(a5) >0} -

The function u — ¢y, (u) is uniformly continuous on [z, z + a]. Consequently, for any ¢ > 0,
there exists py > 1 such that for any p > po,

a2 p—1

* a *
= sup Go (t+ 2) Vir(2ra1) < = D2 (9 (241) + ) Vi (2011)-
p k=0 t€[—a/p,0] p k=0
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Moreover, using the point 2 of Proposition 2.1, it is easy to see that the function u — V*(u)
is non-decreasing and so is Riemann-integrable. Therefore, as p — 400, we have

p—1

a z+a
Hmsup =% sup g (t+ 2r41) Vi (2k41) < / (g9m (&) + ) Vi (&) d2'.
p=+oo P p_gtel—a/p,0] z

Thus, when € — 0,

p—1

. a . z+a .
(9.7) limsup— Y sup g (£ + 25t1) Vi (2k41) < / gm () V() dZ.
p—+oo P p_gte[—a/p,0] z
Moreover, since u — V*(u) is non-decreasing,
a2

=D Sup g (t+ 2141) Vi (1) < llglloe Vin(z + a)a.
p k=0 t€[—a/p,0]
Consequently, by the Lebesgue dominated convergence theorem, (9.4), (9.7) and the Fubini
theorem,
p—l o gp
lim sup g k

Vix,
p=too D o V2mo3 (@.9)

_ 2V(z,y)
——="FE; | limsup — sup g(X), ..., X{, t+2
V27103 p—+o0 D ,;)te[ a/p,0] ( ! er1)

XV (X7, 2k + S3) 5 75, > m)

Zk+1

2
Vi) / Ey (g(X:, ..., X7, 2YV(XE, 2+ S8) 5 75 >m)d2.

V2mo3
By (9.5), we obtain that,

lim sup n*/ 21, (x, y)

n——+00

2V (z,y)
V2mo3

The lower bound. Repeating similar arguments as in the upper bound, by (8.2), we have
forany 2’ €e X,y >0,l>1,n=>l+m+1,p>1,

z4+a
< [ B (K XLV (X, 2 4 S0 5 > m) de

W21, (2 ) Zni%/?E*( ( D ST ;_l)w;/( ;i_l);
At S el —afpy). 7 >n—1)
-1
:pZn?’/in(g( XDy d = S U (X))
k=0

2+ Sh o €Wy +d), Tl >n—l),

where vy, = max(y’ — a/p,0) and o’ = min(y’, a/p) € (0,a/p). Using Lemma 9.3,

!

y+a /! /!
/ Li(yy +d —y")V (2, y") dy”,
y

“B
>_.

lim inf n®21,_ (', y') >

n—-+4oo ’ A/ 277-0-3
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where, for any t € R,
Li(t) =By (g (Xp o XSt 2) V(X 2+ S5) 5 72 > m)).

Since y” +— V (2’,y") is non-decreasing (see the point 2 of Proposition 2.1), we have

3/2 /p_1 QLi
lim inf I, 1%
rlz—H{oo n l(x Y ) ];) A /27'('0' (LL’ y+)

where

te[0,a/p)

(9.8) L7 = EZ( inf g(X,,..., X7, t+2) V" (X, +S,) ;7 > m) :

Moreover, by the point 3 of Proposition 2.1, for any § € (0,1),
Vi) > (1-0) (1— 5)< a)a >a1—5v( ) a <a>2
a'V (', a'yl —c; = Yy——)-—Cz VT, Yy)——C— |~ —C.
i i p)p pl+9d p p
Consequently, using (9.3) and the Fatou Lemma,

loork al—=6
lim inf n3/2] (x E,
n—+oo ') Z 0 V2o pl+o

Using the point 1 of Proposition 2.1 and the point 2 of Proposition 2.2 and taking the limit
as | — +o0o and then as § — 0,

V(Xl,y+Sl)—c(5(1+a2) ;Ty>l>.

p—l 2LP
9.9 lim inf n3/2] (x k —V(
( ) %_}ioo y p z;) \/%03 x y)

Using the notation from (9.6) and the fact that u — g, (u) is uniformly continuous on
[z, z + al, for any € > 0,

z+a
lim inf — Z inf g, (t+ 21) Vi (zi) = / (gm (2') — ) VE(2') d2'.

p—+00 Y2 tE[O a/p]

Taking the limit as ¢ — 0,

z+a
lim inf £ Z it g (£ 2) VE(21) = / G () VA () 2.

p——+00 Dy tE[O a/p]

By the Fatou lemma, (9.8) and (9.9), we conclude that

2V (x,y)
lim inf n®/21, > VR | liminf — }j f og(X*. ... X't
%Iiligo " (z.9) V2ro? 11>I—r>li£lo D= ote[lona/p} 9 X X3 1 2)

x V(X o+ Sy) s 72 > m)

2
Wiz,y) / Ey (g (X2, ..., X, 2 )YV (X, 2+ S5 5 75 >m)d2.

V2ma3
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From now on, we consider that the dual Markov chain (X),,., is independent of (Xy,),--
Recall that its transition probability P* is defined by (2.4) and that, for any z > 0, the
associated Markov walk (z 4+ S¥),>¢ and the associated exit time 7} are defined by (2.5)
and (2.6) respectively. Recall also that for any (z,2*) € X2, we denote by P, .« and E,
the probability and the expectation generated by the finite dimensional distributions of the
Markov chains (X,),>0 and (X),>o starting at Xy = x and X = z* respectively.

Lemma 9.5. Assume Hypotheses M1-M3. For any x € X, y € R, 2> 0,a > 0,1 >1
m > 1 and any function g € 6" (X”m X ]R), we have

lim ns/zEm(g(Xl,...,Xl,Xn_mH,...,Xn,y—l—Sn) s y+ S, €(z,24+al, 7, >n)

n—-4o0o

\/%73/ ze:xE” G(X1se o X0 X5 XD )

XV (X, y+ S)V* (X, 2 +S5) 7y > 1, 75 >m)dz'v(z).
Proof. Fixz € X,y e R, 2>0,a>0,1>1, m > 1andg€‘5b+(Xl+m><]R). For any
n = [ 4+ m, by the Markov property,
Iy :=n’/’E, (9(X1, o, Xt, Xo—mt1, - Xy ¥+ S0) 5y + Sn € (2,24 4], 7y > n)
= Z n3/2Eml (g (xlv s 7xl7Xn—l—m+17 s 7Xn—l7 Yi + Sn—l) )

:El,...,.’EZEXl

Y+ S €(zz+al, 7y, >n—0)xP, (Xi=21,.... X =a;,7 > 1),

where y; = x1+ -+ -+ ;. Using the Lebesgue dominated convergence theorem (or simply the
fact that X! is finite) and Lemma 9.4, we conclude that

lim [j = —— Vie,y)Po(Xi=21,...,. X1 =2,1, > 1
Jm b= B Ve (K=o K= > )

z+a
B (g X X V(X 4 S) 7> m) d
O

9.2. Proof of Theorem 2.7. For any [ > 1, denote by (X! x R, ) the set of non-negative
functions ¢: X! x R, — R, satisfying the following properties:

e for any (xy,...,1;) € X!, the function z — g(x1,..., 1, 2) is continuous,
e there exists € > 0 such that max,, _zexsup,-og(21,..., 2, 2)(1 + 2)*™ < 4o0.

FixzeX yeR, =21, m>1landge €t (X”m X ]R) For brevity, denote
gl,m(y + Sn) =g (Xl, e ,Xl, Xn—m—l—la e ,Xn,y + Sn) .
Set
Iy = n3/2Ex (gl,m(y + Sn) s Ty > n)

“+oo
=" 0*E, (gum(y + Sn); y+ Su € (k,k+ 1], 7, > n).
k=0

=t (n)
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Since g € € (X”""” X R), we have

N
I(n) < (1_‘_7%)2%713/2Pm (y+ S, € (k,k+1], 7, >n),
where N(g) = maxy, . 4., exSUP.>0 9(Z1, - . ., Tipm, 2)(1 + 2)**¢ < +o0. By the point 2 of
Theorem 2.5, we have
N 1
i < V@)1 max(y.0)

(k+ 1)1+

Consequently, by the Lebesgue dominated convergence theorem,

lim [, = Z lim n%%E, (Gm(y+Sn);y+Sne(k,k+1], 17, >n).

n——+o0o n—>+oo

By Lemma 9.5,

k+1
lim I, = Z/ 3 Erw (9 (X1 X0 X KT )V (Xey 4 )

XV*(Xr, 2+ S0) 1y > 1, 7 >m)dZ'v(a"),

which establishes Theorem 2.7.

9.3. Proof of Theorem 2.8. Theorem 2.8 will be deduced from Theorem 2.7.
Let v € X, y € R and n > 1. Since X is finite we note that || f||, = sup,ex |f(x)| exists.
This implies

Pw(Ty:n_'_l):Pw(y+5n+f(Xn+1) <0,y+5,€ [OaHfHoo] » Ty >n).
By the Markov property,
Px(Ty:n+1) :Ex(g(Xn>y+Sn)7 Ty >n),

where, for any (2/,7) € X x R,

g(xlu y/) = ]P)m’ (y/ + f(Xl) < O) ]]-{yle[o’”f”oo]} == ]]-{y/e[O,Hf”oo]} ZEXP(']‘J? xl)]l{y’+f(x1)<0}'
1

Since g(z/,-) is a staircase function, for any € > 0 there exist two functions ¢. and 1. on
X xR and N C X x R such that

e for any 2’ € X the functions p. (', -) and 1. (2, -) are continuous and have a compact
support included in [—1, || f|| . + 1],

e for any (2/,y') € (X x R)\ N, it holds . (2, v/

o for any (2/,y') € X x R, it holds 0 < ¢.(2/,y')

e the set N is sufficiently small:

) =g,y
< g, y)

1t
(9.10) / E:(V* (Xy, 2+ 88) ;7> 1, (X1,2) € N)dz < e

-1
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The upper bound. For any £ > 0, using Theorem 2.7, we have

I := limsup n*°P, (ry=n+1)
n——+00
< lim sup n3/2E:c (wa(Xna Y+ Sn) P Ty > n)

n—>+oo

. / > oo (¥ (X7, 2) V(X1,y + S1)

27T03 z*eX
Vi (X7, 24+ 57):m,>1, 7 >1)v(z")dz.

Using the point 1 of Proposition 2.1,

2V(x,y) [Illett i} o . .
I+ /2(71_0_3)/ El/(,lvDE(Xlaz)V (X1>Z+Sl);7-z >1)dZ
2V z,y) [WMle i} o . .
\/2(703)/ E}, (9 (X7, 2) V*(X{, 2+ 57); 70 > 1)dz
=1
2V($,y) I lloe+1 * * * * * *
(5:11) 7,/27?03/0 B, (VA X{, 2+ 57): 7 > 1, (X],2) e N)dz.
=:Is
Since v is P*-invariant, we have
2V (x, y [1£1l o . )
h= V2mo3 ZE:XQ ", 2) Vi@' 2 = f(a) e pan)>opv(a”) dz
2V (x y 1flloo L .
V2108 > Letren<opP @ z)v(@)V (", 2 = f(27)Lam sy 0y d2
r* x1€X
_2V(x,y) (Ml o .
\/%0_3 Z {Z+f(901 <0}P (xb ) ( )V (‘T )& f(!li' ))]l{z—f(m*)>0} dz
r* x1eX
2V (x y 1£1l oo o ) .
/2703 Z {z+f(z1) <0}V($1)EI1 (V (Xl,Z + Sl); T, > 1) dz.
r1€X

Using the point 1 of Proposition 2.1,

W(r,y) (Mo . .
Moreover, by (9.10), we get
2V(x y)
9.13 I, < .
(9.13) ? \/27m3

Putting together (9.11), (9.12) and (9.13) and taking the limit as ¢ — 0, we obtain that

2V (z,y)

9.14 It <
( ) v 2mo3

1l oo
TR (2 812 ) e
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Lower bound. In a similar way, using Theorem 2.7, we write

I~ :=liminf n*?P, (1, =n + 1)

n——+o0o

> lim inf n**E, (pe(X,,y + Sn); 7, > n)

n——+o0o

V2mo3

> 1, — I

B (@ (X7, 2) VA(XT, 2+ 57) 5 70 > 1) dz

2Viny) [V
0 v
Using (9.12) and (9.13) and taking the limit as ¢ — 0, we obtain that

S 2Vizy)
- \2mo3

which together with (9.14) concludes the proof.

1l oo
I- TR V(X 2)5 81 2 2)
0

10. APPENDIX

10.1. The non degeneracy of the Markov walk. In [13], it is proved that the statements
of Propositions 2.1-2.3 hold under more general assumptions (see Hypotheses M1-M5 of [13]).
We will link these assumptions to our Hypotheses M1-M3. The assumptions M1-M3 in [13],
with the Banach space %, are well known consequences of Hypothesis M1 of this paper.
Hypothesis M4 in [13] is also obvious with N = N; = .- = 0. By Hypothesis M2, to obtain
Hypothesis M5 of [13], it remains only to prove that o defined by (2.2) is strictly positive.
First we give a necessary and sufficient condition. Recall that the words path and orbit are
defined in Section 4.

Lemma 10.1. Assume Hypothesis M1. The following statements are equivalent:

1. The Cesdro mean of f on the orbits is constant: there exists m € R such that for any
orbit xg, ..., x, we have

f(zo) + -+ f(zn) = (n+ 1)m.
2. There exist a constant m € R and a function h € € such that for any (x,2") € X2,
P(z,2)f(2) = P(z,2') (h(z) — h(2) + m).

3. The following real 62 is equal to 0
+00
F=v(f)-v()P+2Y [P ) —v ()] =0.
n=1

Proof. The point 1 implies the point 2. Suppose that the point 1 holds. Fix x5 € X and set
h(zg) = 0. For any x € X, we define h(x) in the following way: for any path xg, z1,...,x,, x
in X, we set

W) = =f(x) = f(an) = - = flz2) + (n+ 1)m.

We shall verify that h is well defined. By Hypothesis M1, we can find at least a path to
define h(x). Now we have to check that this definition does not depend on the choice of
the path. Let zo,21,...,2,, 2 and zo, Y1, ..., Yq, © be two paths. By Hypothesis M1, there
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exists a path z, 21, ..., 2,,29 in X between x and zy. Since zg,21,...,2p, 2, 21, ..., 2, and
20, Y1s- -+, Yp, T, 21, - . ., 2y Are two orbits, by the point 1, we have
—f(x) = flay) = = flx) + (p+ Vm = f(zo) + f(21) + -+ f(20) — (n+1)m
= —fx) = flyg) = = fy) + (g + 1)m
and so the function h is well defined on X. Now let (z,2’) € X? such that P(z,2’) >
0. By Hypothesis M1, there exists zg,x1,...,%,,x a path between xy and x. Since
P(zo,z1) - - Pz, 2)P(z,2") > 0, by the definition of h, we have
hMa) = —f(x) = flan) = = flz1) + (n+1)m
ha') = —f(@') = f(x) = f(zn) = = f(21) + (R + 2)m.

In particular
h(z") = —=f(2') + h(z) + m.
The point 2 implies the point 1. Suppose that the point 2 holds and let zg, ..., x, be an
orbit. Using the point 2,

hwo) = h(z,) — f(z) +m = - = h{zo) — f(z0) = f(wa) =+~ fl1) + (n+ Dm,

and the point 1 follows. .
The point 2 implies the point 3. Suppose that the point 2 holds. Denote by f the v-centred
function:

(10.1) flz) = f(x) —v(f), Vo € X,

By the point 2, for any x € X

(10.2) Pf(z) = h(z) — Ph(z) +m — v(f).

Using the fact that v is P-invariant, we obtain that v ( f) =0=m —v(f) and so,
(10.3) m = v(f).

Consequently, by (10.2), P"f = P"'h — P"h for any n > 1 and therefore,

(10.4) S PEf=h-P"h
k=1

Let
O = Z Pk f

k=0
be the solution of the Poisson equation © — PO = f, which by (2.1), is well defined. Taking
the limit as n — +o0 in (10.4) and using (2.1),

PO =0 - f=h—uv(h).
Therefore, for any (z,z') € X2,
O(z') — PO(z) = f(«') + PO(a') — PO(x) = f(2) + h(a') — h(x).

Using the point 2 and (10.3), it follows that
(10.5) O(z') — PO(z) = 0,
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for any (z,2') € X? such that P(x,2’) > 0. Moreover,

( )+22 (7P"f) =v (f(F+2P8)) =v ((6 - PB) (6 +PO)).

7~ v (P (7)) 20 ((P6)") + v (PO))

(10.6) - (6(2') —~ PO(x))” Pz, o' )w(x).

(z,2")eX

By (10.5), we conclude that 2 = 0.
The point 3 implies the point 2. Suppose that the point 3 holds. By (10.6), for any
(x,2") € X such that P(z,2') > 0 we have

O(z') — PO(x) =
Let h = PO. Since O is the solution of the Poisson equation,
f(a") + h(z') — h(z) = 0.
By the definition of f in (10.1), for any (z,2’) € X such that P(z,z’) > 0,
f@@') = h(z) = h(z') + m,
with m = v(f). O
Note that under Hypothesis M2, Lemma 10.1 can be rewritten as follows.

Lemma 10.2. Assume Hypotheses M1 and M2. The following statements are equivalent:
1. The mean of f on the orbits is equal to zero: for any orbit xq, ..., x,, we have

flxo) + -+ f(zn) = 0.
2. There exists a function h € € such that for any (x,2") € X2,
P(z,2) f(2') = P(z,2") (h(z) — h(2')).
3. The real 02 is equal to 0:

o —u(f2)+2z (fP"f) = 0.

Now we prove that the Hypothesis M3 (the "non-lattice" condition), implies that the
Markov walk has non-zero asymptotic variance.

Lemma 10.3. Under Hypotheses M1-M3, we have
ot =v(f )+22 (fP"f) >

Proof. We proceed by reductio ad absurdum. Suppose that 02 = 0. By Lemma 10.2, for any
orbit zg,...,x,, we have

f(@o) + -+ flan) =0,
which implies the negation of Hypothesis M3 with 8 = a = 0. U
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10.2. Strong approximation. Let (B;):>o be the standard Brownian motion on R defined
on the probability space (£2,.%#,P). Consider the exit time

(10.7) 7" =inf{t > 0, y + 0B, < 0},

where o is defined by (2.2). It is proved in Grama, Le Page and Peigné [15] that there is a
version of the Markov walk (S,,),>0 and of the standard Brownian motion (B;):0 living on
the same probability space which are close enough in the following sense:

Proposition 10.4. There exists ¢g > 0 such that, for any € € (0,&0], v € X and n > 1,
without loss of generality (on an extension of the initial probability space) one can reconstruct
the sequence (Sy)n=0 with a continuous time Brownian motion (By)er, , such that

P, <SU-p ’S\_tnj - O-Btn’ > n1/2_€> < &

0<t<1 ne
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