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LIMIT THEOREMS FOR AFFINE MARKOV WALKS
CONDITIONED TO STAY POSITIVE

ION GRAMA, RONAN LAUVERGNAT, AND EMILE LE PAGE

ABSTRACT. Consider the real Markov walk S,, = X; + --- + X,, with increments
(Xn)n>1 defined by a stochastic recursion starting at Xy = z. For a starting point
y > 0 denote by 7, the exit time of the process (y + Sn)n>1 from the positive part
of the real line. We investigate the asymptotic behaviour of the probability of the
event 7, > n and of the conditional law of y 4+ S,, given 7, > n as n — +oc.

1. INTRODUCTION

Assume that the Markov chain (X,,),>¢ is defined by the stochastic recursion
(11) XO =T € R, Xn+1 = an—l—an + bn+17 n z 07

where (a;,b;);i>1 is a sequence of i.i.d. real random pairs satisfying E(|a;|*) = 1 for
some a > 2. Consider the Markov walk S,, = >0, Xj, n > 1. Under a set of
conditions ensuring the existence of the spectral gap of the transition operator of the
Markov chain (X,,),-,, it was established in Guivarc’h and Le Page [17] that there
exist constants p and o > 0 such that, for any ¢t € R,

(1.2) P, <S’;7\/g“ < t> S ® () as n— +oo,
where @ is the standard normal distribution function and P, is the probability mea-
sure generated by (X,,),>o starting at Xy = z. There are easy expressions of yx and
o in terms of law of the pair (a,b): in particular g = {22

For a starting point y > 0, define the first time when the affine Markov walk
(y + Sn)n>1 becomes non-positive by setting

7, =min{k > 1, y+ S, <0}.

In this paper we complete upon the results in [17] by determining the asymptotic
of the probability P, (1, > n) and proving a conditional version of the limit theorem
(1.2) for the sum y + S, given the event {7, > n} in the case when y = 0. The
main challenge in obtaining these asymptotics is to prove the existence of a positive
harmonic function pertaining to the associated Markov chain (X,,y + Sn),5o- A
positive harmonic function, say V, is defined as a positive solution of the equation
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Q.V =V, where Q, is the restriction on R x R of the Markov transition kernel Q
of the chain (X,,,y + Sn),~0-

From the more general results of the paper it follows that, under the same hypothe-
ses that ensure the CLT (see Condition 1 in Section 2), if the pair (a, b) is such that
P((a,b) € (0,1) x (0,C]) > 0 and P((a,b) € (—1,0) x (0,C]) > 0, for some C' > 0,
then

P, (1, > n) 2Vl y)
n—too \/2mno

and

y+ S,
P, <t
<a\/ﬁ

where ®*(t) = 1 — e **/? is the Rayleigh distribution function. In particular, the
above mentioned results hold true if ¢ and b are independent and a is such that
P(a € (0,1)) > 0 and P(a € (—1,0)) > 0. Less restrictive assumptions on the pair
(a,b) are formulated in our Section 2.

The above mentioned results are in line with those already known in the literature
for random walks with independent increments conditioned to stay in limited areas.
We refer the reader to Iglehart [18], Bolthausen [2], Doney [11], Bertoin and Doney [1],
Borovkov [4, 3], Caravenna [5], Eichelsbacher and Koning [12], Garbit [13], Denisov,
Vatutin and Wachtel [7], Denisov and Wachtel [8, 10]. More general walks with incre-
ments forming a Markov chain have been considered by Presman [20, 21], Varapoulos
[22, 23], Dembo [6], Denisov and Wachtel [9] or Grama, Le Page and Peigné [15]. In
[20, 21] the case of sums of lattice random variables defined on finite regular Markov
chains has been considered. Varapoulos [22, 23] studied Markov chains with bounded
increments and obtained lower and upper bounds for the probabilities of the exit time
from cones. Some studies take advantage of additional properties: for instance in [9]
the Markov walk has a special integrated structure; in [15] the moments of X,, are
bounded by some constants not depending on the initial condition. However, to the
best of our knowledge, the asymptotic behaviour of the probability P, (7, > n) in the
case of the stochastic recursion (1.1) has not yet been considered in the literature.

Note that the Wiener-Hopf factorization, which usually is employed in the case
of independent random variables, cannot be applied in a straightforward manner for
Markov chains. Instead, to study the case of the stochastic recursion, we rely upon
the developments in [9], [10] and [15]. The main idea of the paper is given below. The
existence of the positive harmonic function V' is linked to the construction of a martin-
gale approximation for the Markov walk (Sn)@l. While the harmonicity is inherently
related to the martingale properties, the difficulty is to show that the approximating
martingale is integrable at the exit time of the Markov walk (y + S,),-,- In contrast
to [10] and [15], our proof of the existence of V' employs different techniques accord-
ing to positivity or not of the values of E(a;). The constructed harmonic function
allows to deduce the properties of the exit time and the conditional distribution of
the Markov walk from those of the Brownian motion using a strong approximation
result for Markov chains from Grama, Le Page and Peigné [16]. The dependence of

Ty >n> — ®T(1),

n——+o0o
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the constants on the initial state Xy = = of the Markov chain (X,,),>o established
there plays the essential role in our proof.

The technical steps of the proofs are as follows. We first deal with the case when
the starting point of the Markov walk (y + S, )n<o is large: y > n'/27¢, for some
e > 0. When y > 0 is arbitrary, the law of iterated logarithm ensures that the
sequence (|y + Sk|)1<p<ni—= will cross the level n'/?=¢ with high probability. Then,
by the Markov property, we are able to reduce the problem to a Markov walk with a
large starting point ¢y’ = y+.5,, , where v, is the first time when the sequence |y + Sk|
exceeds the level n'/27¢. The major difficulty, compared to [10] and [15], is that, for
the affine model under consideration, the sequence (X,, ), is not bounded in L.
To overcome this we need a control of the moments of X,, in function of the initial
state Xy = x and the lag n.

We end this section by agreeing upon some basic notations. As from now and for
the rest of this paper the symbols ¢, ¢4, ca s, ... denote positive constants depending
only on their indices. All these constants are likely to change their values every
redoccurrence. The indicator of an event A is denoted by 1,4. For any bounded
measurable function f on X = R? d = 1,2, random variable X in X and event A,
the integral [y f(z)P(X € dz, A) means the expectation E (f(X); A) =E (f(X)14).

2. NOTATIONS AND RESULTS

Assume that on the probability space (£2, F,P) we are given a sequence of inde-
pendent real random pairs (a;, b;), i > 1, of the same law as the generic random pair
(a,b). Denote by E the expectation pertaining to P. Consider the Markov chain
(Xn)n>o defined by the affine transformations

Xn+1 = an—l—an + bn—l—la n = 07

where Xy = = € R is a starting point. The partial sum process (Sy),>o defined by
Sp=>r,X; foralln > 1 and Sy = 0 will be called in the sequel affine Markov
walk. Note that (5),)n>0 itself is not a Markov chain, but the pair (X, S, ),>0 forms
a Markov chain.

For any x € R, denote by P(z,-) the transition probability of (X,,),>0. Introduce
the transition operator

Pf(z) = [ f(a')P(x,dr')
which is defined for any real bounded measurable function f on R. Denote by P,
and E, the probability and the corresponding expectation generated by the finite
dimensional distributions of (X,,),>0 starting at Xy = x. Clearly, for any = € R and
n > 1, we have P"f (z) = E, (f (X,))-
We make use of the following condition which ensures that the affine Markov walk
satisfies the central limit theorem (1.2) (c.f. [17]):

Condition 1. The pair (a,b) is such that:

(1) There exists a constant o > 2 such that E (|a|”) <1 and E (]b|") < +o00.
(2) The random variable b is non-zero with positive probability, P(b # 0) > 0, and
centred, E(b) = 0.
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Note that Condition 1 is weaker than the conditions required in [17] in the special
case o > 2. Nevertheless, using the same techniques as in [17] it can be shown that,
under Condition 1, the Markov chain (X,,),>0 has a unique invariant measure m and
its partial sum S, satisfies the central limit theorem (1.2) with

(2.1) = /R:zm(dx) = #I;)(a) =

and

(2.2) o’ = /Rx2m(d:c) + QEAIEx(Xk)m(dx) =7 I_E(IS(Lz) 1 tigg -0

Moreover, it is easy to see that under Condition 1 the Markov chain (X, ),>0 has no
fixed point: P(ax +b=2z) < 1, for any x € R. Below we make use of a slightly
refined result which gives the rate of convergence in the central limit theorem for S,
with an explicit dependence of the constants on the initial value Xy = x stated in
Section 9.3.

For any y € R consider the affine Markov walk (y 4 5,),,-, starting at y and define
its exit time

7, =min{k > 1, y+ S < 0}.
Corollary 9.7 implies the finiteness of the stopping time 7,: under Condition 1, it
holds P, (1, < +00) =1, for any z € R and y € R.

The asymptotic behaviour of the probability P (7, > n) is determined by the har-
monic function which we proceed to introduce. For any (x,y) € R x R, denote by
Q(z,y, ) the transition probability of the Markov chain (X,,,y + S,,)n>0. The restric-
tion of the measure Q(z,y, ) on R x R is defined by

Q+(Zl§', Y, B) = Q(Iv Y, B)
for any measurable set B on R x R% and for any (z,y) € R x R. Let Z be a
measurable set in R x R containing R x R’. For any measurable ¢ : 4 — R set
Q. o(z,y) = Jrxmey o(2',y) Q. (z,y,dx’ x dy’). A positive Q, -harmonic function on
2 is any function V' : 2 — R which satisfies
Q. V(x,y) =V(x,y) >0, forany (x,y)€ 2.

To ensure the existence of a positive harmonic function we need additional assump-
tions:

Condition 2. Forallx € R and y > 0,
P,(r,>1)=P(ax +b>—y) > 0.

Condition 3. For any z € R and y > 0, there exists py € (2,«) such that for any
constant ¢ > 0, there exists ng > 1 such that,
P, ((Xnovy + Sno) < Kpo,cv Ty > nO) >0,

where
Koo = {(a?,y) ERxR,y>c(l+ |x|p0)}‘
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Obviously Condition 2 is equivalent to P, (X; > —y) = P, (7, > 1) > 0 for any
x € R and y > 0, which, in turn is equivalent to the fact that there exists ng > 1
such that P, (1, > ng) > 0, for any € R and y > 0. Therefore Condition 3 implies
Condition 2. As a by-product, under either Condition 2 or Condition 3, the event
{7, > n} is not empty.

The existence of a harmonic function is guaranteed by the following theorem. For
any x € R consider the P,-martingale (M,,, %, ),>0 defined by

E(a)
1 —E(a)

with (%, )n>0 the natural filtration (we refer to Section 3 for details).

(2.3) M, =S, + (Xp—12), mn=0,

Theorem 2.1. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.
(1) For any x € R and y > 0, the random variable M., is integrable,

E, (|M,,|) < +o0

and the function
V(l’,y) =-E, (MTy) , T € ]Ra Yy > O>

is well defined on R x RY..
(2) The function V is positive and Q. -harmonic on R x R : for any v € R and
y >0,
Q. V(z,y) =V(z,y).
(3) Moreover, the function V' has the following properties:
(a) For any x € R, the function V(x,.) is non-decreasing.
(b) Foranyd >0,p€ (2,a), x € R andy > 0,

V(e.y) > max (0, (1 - )y — ey (1+ [2]"))
Viey) < (146 (14 [27)) y+ s (14 [2P).

(c) For any x € R, it holds lim @ =1

Yy——+00

Using the harmonic function from the previous theorem, we obtain the asymptotic
of the tail probability of the exit time 7,,.

Theorem 2.2. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 5.
(1) Foranyp € (2,a), r € R and y > 0,
VP, (1, >n) < ¢, (L+y+ |z])’.
(2) Foranyz € R and y > 0,
2V(z,y)

Px (Ty > n) n—;\-;—oo G .
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Corollary 2.3. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and
3. Foranype€ (2,a), r€R, y >0 and~ € (0,1/2),

E, (7‘;) <y +y+|z|)P and  E, (7';/2) = 400.

Moreover, we prove that the Markov walk (y + Sn)@O conditioned to stay positive
satisfies the following limit theorem.

Theorem 2.4. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.
Foranyz e R, y >0 andt > 0,

Y+ Sp
P, <t
<a\/ﬁ

t2
where ®T(t) =1 — e~z is the Rayleigh distribution function.

T, > n) nd (1),

Theorems 2.1, 2.2, 2.4 can be extended to some non-positive initial points y. Set
27 ={(z,y) eRxR_, P, (1, >1) =P(ax +b> —y) > 0} .
Theorem 2.5. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.

(1) For any (x,y) € 27, the random variable M,, is integrable and the function
V(z,y) = —-E, (MT ), is well defined on 9~ .

(2) The function V is positive and Q-harmonic on 9 = 2~ UR x R%.
(3) (a) For any (z,y) € 9,
VP, (1, >n) <, (1+ |z])P.
(b) For any (x,y) € 9,

2V(z,y)
]P)x (Ty > n) n—}’\—lJ—OO W

(4) For any (z,y) € 2~ and t > 0,
Y+ Sy

P, <t
< O'\/ﬁ

Below we discuss two more restrictive assumptions which, however, are easier to
verify than Conditions 2 and 3, respectively.

Condition 2bis. The law of the pair (a,b) is such that for all C' > 0,
P> Clal) > 0.
Condition 3bis. There exists C' > 0 such that,
P((a,b) € (—1,0) x (0,C]) >0 and P ((a,b) € (0,1) x (0,C]) > 0.

It is straightforward that Condition 2bis implies Condition 2. This follows from
the inequality

7 >n> — DT(2).

n——+o0o

Plaz+b>—y) 2 P(b>Cla)).
with C' = |z|. The fact that Condition 3bis implies Condition 3 is proved in the
Appendix 9.1.
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Under Condition 1, it is easy to see that Condition 3bis is satisfied, for exam-
ple, when random variables a and b are independent and P (a € (—1,0)) > 0 and
P(a€(0,1)) >0.

Note that, while Condition 3 implies Condition 2, there is no link between Con-
ditions 2bis and 3bis. Indeed, if a and b are independent, a is non-negative and the
support of b contains R, , then Condition 2bis holds true whereas Condition 3bis does
not. At the opposite, if a and b are independent b bounded and support of a equal
to {—1/2} U {1/2} then Condition 3bis holds true whereas Condition 2bis does not.

The outline of the paper is as follows. The martingale approximation (M), of the
Markov walk (S),),,-, and some of its properties are given in Section 3. In Section 4 we
prove that the expectation of the killed Markov walk ((y + S5,) 1{z,>n})n>0 is bounded
uniformly in n. This allows us to prove the existence of the harmonic function and
establish some of its properties in Section 5. With the help of the harmonic function
and of a strong approximation result for Markov chains we prove Theorems 2.2, 2.4
and 2.5, in Sections 6, 7 and 8 respectively. Section 9 is an appendix where we collect
some results used in the proofs.

3. MARTINGALE APPROXIMATION

In this section we approximate the Markov walk (S,),-, by a martingale following
Gordin [14]. We precede this construction by a lemma which shows that there is an
exponential decay of the dependence of X, on the initial state x = X, as n grows to
infinity. This simple fact will be used repeatedly in the sequel.

Lemma 3.1. Forallp € [1,a], x € R, and n > 0,

B (1Xal") < ¢ + (Y7 (laf”)" |2] < (1 + |a]):

Proof. Since X,, = Y1, (bk | | S ai) + I a;x, for n > 1, with the conven-
tion [[iL, ., a; = 1, we have by the Minkowski inequality and the independence of
(i, bi)iz1,

Ey/? (IXal?) < 3 (EYP (IbP) BV (Jaf*)"™*) + EP (|af?)" |a].
k=1

The conclusion of the lemma is thus a direct consequence of Condition 1. O

Let Id(z) = z, 2 € R be the identity function on R. The Poisson equation u—Pu =
Id has a unique solution 6, given by,

0(z) = gpk Id(z) = = + gEx (X)) =2 + kz:E(a)kx - %E(a).

Using the function 6, the process (M,,),>o defined in (2.3) can be recast as

n Xk — E(G)Xk_l

My =0, Mn:znje(xk)—Pe(Xk_l): Ea

k=1 k=1

n>1.
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Consider the natural filtration (#,),., with %, the trivial o-algebra and %, the
o-algebra generated by Xi, Xs,..., X,,. The fact that (M, %,)n>0 is indeed a P,-
martingale, for any x € R, is easily verified by the Markov property: E,(6(X,.1)|-%#,) =
PO (X,), for n > 0.

All over the paper we use the abbreviation
_E(a)
1 -E(a)
With this notation, for any # € R and y € R, the Markov walk (y + S,), -, has the
following martingale representation:

(3.1) p

(3.2) Y+ Sp=y+pr+M,—pX, n=0.
Define the sequence (X°),>0, by
(3.3) X =0 and  X)=> b [] @, n>=1,
k=1 i=k+1

with the convention [[},.,a; = 1 for k = n. The sequence (X?),>¢ corresponds
to the stochastic recursion starting at 0. In the same line, we define M{ = 0 and

0_ a 0 . X
MY =37, %, for all n > 1. Tt is easy to see that the process (M, F,),, is

a zero mean P -martingale which is related to the martingale (M,,), ., by the identity

(3.4) M, = M? + Az,
where
n k_—l a;
Ay =0 and An:k;ll_l_iﬁ(a)(ak—ﬂi(a)), n>1.

The following two lemmas will be used to control E,(|M,|").

Lemma 3.2.
(1) The sequence (A,)n>o @s a centred martingale.
(2) Forallp € [1,a) andn > 0,
E'? (|Anf) < .

Proof. The first claim follows from the fact that A, is a difference of two martingales.
Using the Minkowski inequality for 1 < p < «, the independence of (a;);>; and
Condition 1 we obtain the second claim. 0

Let us introduce the martingale differences:

X0~ E(a)X?
0 _ a0 _ p0  — 2k L k>,
gk k k—1 1 — E(a) )

Lemma 3.3. Forallp € [1,a) andn > 0,
B () <e  and BV (|MD)) < v/
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Proof. For the increments £° we simply use Lemma 3.1 with z = 0. For the martingale
(M?),,>0, the upper bound is obtained by Burkholder inequality: for all 2 < p < «

and all n > 1, )
n p/2
2 () < oo ( (£ @) )
1

k=

By the Holder inequality with the exponents u =p/2 > 1 and v = we obtain

p
p—27
1/p

_ n
< c;,,npz_z’2 <Z cp> = c,v/n.
k=1

This proves the claim when 2 < p < a. When 1 < p < 2 the assertion follows
obviously using Jensen inequality. U

p

(i (52)2“) Uk

k=1

£ (asf) < o2

Lemma 3.4. Forallp € [1,a) and n > 0,
Ey/” (| M[?) < ¢ (o] +v/7)

Proof. By the Minkowski inequality and equation (3.4), for all 1 < p < o, z € R and
n>1,
EY? (|M,[") < BV (|A,P) o] + BV (M)

Then, by the claim 2 of Lemma 3.2 and Lemma 3.3, the result follows. O

4. INTEGRABILITY OF THE KILLED MARTINGALE

The goal of this section is to prepare the background to prove the integrability of
the random variable M. , which is crucial for showing the existence of the harmonic
function in Section 5. We use different approaches depending on the sign on E(a):
when E(a) > 0, in Section 4.2 we prove that the expectation of the martingale
(y + pxr + M,)n>o killed at 7, is uniformly bounded in n, while, when E(a) < 0,
in Section 4.3 we prove that the expectation of the same martingale killed at T}, is
uniformly bounded in n, where T}, is the exit time of the martingale (y + px + M,,)

n=>0"
4.1. Preliminary results. We first state a result concerning the first time when
the process (|y 4 Sul),s; (respectively (|ly 4 px + M,l),-;) crosses the level n/2=%.

Introduce the following stopping times: for any n > 1, € (0,1/2),z € Rand y € R,
Un =Vpey = min {k > 1, |y + 5k| > n1/2_a}
and
Un = Uneay = min{k > 1, |y + px + Mk| > n1/2‘€} .
Lemma 4.1. Let p € (2,«). There ezists g > 0 such that for any e € (0,0}, § > 0,
reR, y>0andn >1,

Cped 1-2¢
1—¢ D,E,s —C n p
P, (I/n > on ) < Y + e ped 2|

and

_ Cpe s _ 1—2e
P, (va > 0n' ) < b2t e g P
e
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Proof. With ¢ < min(1/2,¢¢), where ¢y is defined in Corollary 9.6 and b > 0 a
constant to be chosen below, let [ = [b*dn'~%*], K = [n°/b*] and for any m > 1,
x € Rand y € R, with z =y + pz,

_ 1/2—¢
An(a) = { mase |2+ Ml < (142 o

Note that by the martingale representation (3.2), we have for any k > 2, |z + M| =
|y + Sk + p(y + Sk) = p(y + Se1)| < (L+|pl) [y + Skl+|pl [y + Sk-a]. Then, choosing
n large enough to have [ > 2,

P, (Vn > 5711_5) =P, ( max | ly + Skl < n1/2_€>

1<k<[onl—=

N

Px< max |z + M| < (1+2\p|)n1/2_5>

2<k<[on1 <]
Moreover, we have also,

Py (v > 0n'~%) <Py (Ax(2,9)) .

Since (X,,y + Sn)n>o is a Markov chain,

P, (Ax (@) = [ Po (Ai(a3))
(4.1) x Py (Xeiy € do’, y+ Se—ap € Ay, Axa(z,)) -
We use the decomposition (3.4) to write that, with ¢ =1+ 2|p|,
P, (A (2, ) < Py ( 2+ MlO’ <2ent/?E | |A| < cnl/2_5)
+ P, (\Alx'\ > cnlﬂ_a) :

Using (3.2) with # = 0, we have M = S} + pX?. By the Markov inequality,
Py (Ai(2,y)) < Pur (|2 + 8P| < 3ent/*=, ] | XP| < en/279)
E (|A")

+ P, (\p| }Xlo} > cnl/z_e) +cp pyp

2"

Since S? does not depend on 2/, using Lemma 3.1 and the claim 2 of Lemma 3.2, we
obtain

¢ (14 12]")

Py (Ai(a',y') < sup P (fy' + S7) < Ben'/7) + 2=

y'€R
Inserting this bound in (4.1), it follows that
P, (Axc(w,)) < Pe (A 1(,y)) sup P |y’ + 87| < 3en'/2)
y'€R

Cp

+ np/2—p6

(1+Eo ([Xue-n))
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Set r, = 30"1}[275. Denote by B_, ( ) the closed ball centred in _Tyl/ of radius r,.

The rate of convergence in the central limit theorem from Corollary 9.6 (applied with
x = 0) implies that,

Sp ) _.2 du Cpe
supP | —=€B_,(r,) | <sup e 207 ——— +2——.
v €R (\/Z %( ) yeR JB_ s (n) V2o [=
Vi
Moreover,
_u_22 du 27‘n < Cs
su e 20 —.
y'elﬂ)a B_, (ra) Voro  \2mo b

Vi

Let ¢ < 1. With b large enough in the definition of [, we have 2%= < 4, %
thus

/N
N
o
=)

o

S
supP | —eB_,(r,) ]| <g<1.
y’E% (\/Z \}Jf( >> 1

[terating, we get

K—
P, (Ag(z,y)) < ¢"'P, (Ai(z,y)) + np/c;_pa 22 q" (1 +E, (’X(K—l—k)l’p)) :
k=0

Using the fact that ¢ ~'P, (Ai(z,y)) < ¢t = Lo-[n/m/a) o s emma

np/2—pe)

3.1 and the fact that (K —1—k)l > c.sn' "% for all 0 < k < K — 2, we finally obtain

Q

C E,0 _ 1—2¢
P, (Ag(x,y)) < npl/);_pa + e Cpedn |z[”.

O

4.2. Integrability of the killed martingale: the case E(a) > 0. The difficulty in
proving that the expectation E, (y+px+ M, ; 7, > n) is integrable lies in the fact that
whereas the killed Markov walk (y + S,,) 1{7,>n} is non-negative, the random variable
(y + pr + M) 17,5,y may be not. In the case when E(a) > 0 we take advantage of
the properties presented in the next lemma.

Lemma 4.2.

(1) Forallz € R andy > 0,
y+pr+ M, <0, Pi-as
(2) Forallz € R andy > 0,

—_— M., P,-a.s.
1_E()<y+px+ Y a.s

(3) For all x € R and y > 0, the sequence ((y + px + Mn)]l{Ty>n}) 0 is a sub-
martingale with respect to P,. B
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Proof. Claim 1. Let, for brevity, z = y + pz. Since, by the definition of 7,
XTy =Y+ STy - (y + Sry—l) <0,

it follows from (3.2) and the bound E(a) > 0 that z + M, <y + S5, <O0.
Claim 2. Rewrite the martingale representation (3.2) in the form

X
4.2 My =y + Su1 + .
(4.2) Z+ Y ont T E(a)
So, at the exit time 7,
X,
Itﬁ@5:z+”%—(y+&r0<z+”%'

Claim 3. Using the first claim and the fact that (M, ),> is a martingale,
E,(z4+ Mpp1;7y>n+1|%#,) =2+ M, —-E, (2+M7y;7‘y:n+1‘ﬁn)
- Ex (Z + Mn+1 | yn) ]l{Tygn}
P (Z + Mn)]]-{'ry>n}-
O

In the next lemma we obtain a first bound for the expectation of the killed mar-
tingale ((y + px + M,,)L{r,>n})n>0 which is of order n'/2=2, for some ¢ > 0. Using a
recurrent procedure we improve it subsequently to a bound not depending on n.

Lemma 4.3. Let p € (2,a). For any e € (0, %), r€R,y>0andn €N, we have

E, (y+PIL' + Mn7 Ty > n) <y + px +C|ZI§'| + Cpn1/2_2€,
Proof. By the Doob optional stopping theorem and the claim 2 of Lemma 4.2, with

z=y+pz,
XTy

Ty < )

I—E(@) " ”)

Note that X, = [1; a;x + X2, with X0 given by (3.3). Then, with e € (0,1/4),
E, (z+ M, ; 7, > n)

Ex(2+Mn;Ty>n)<z—Em<

n k
<zteY [TE (o] + B (|X3

k=11i=1

) 0 1/2—2¢
; Ty SN, max ’Xk’gn/
1<k<n

0. 0 1/2—2¢
+ cE, <’XTy 7Ty<n,1%3§‘Xk‘>n )
By the Markov inequality, for 2 < p < «,
g e, Xl
E,(z+ M,;7,>n)<z+cd EF(la]) |z| +en'/?7% + cE, kpjfw
k=1 no2

By Lemma 3.1 (with x = 0),
n

Ex(z+Mn;7‘y>n)<z+c|zx|+cnl/2_25+cpT.
n= (1—4e¢)
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Choosing € small enough to have p_;1(1 —4e) > 1/2 + 2¢, concludes the proof. 0J

Now we give an improvement of Lemma 4.3 which establishes a bound of the
expectation of the killed martingale ((y + px + My, )1{7,>n})n>0 depending only on the
starting values x, y.

Lemma 4.4. Forany § >0,p€ (2,a), r € R,y >0 andn >0,
Eo (y + pz + Mys 7 > n) < (1460 (14 [2])"7) y+ ¢ (1+ [2])7
Moreover, with 6 =1, for anyp € (2,a), x € R, y > 0 and n > 0,
E, (y+px+ M,; 7, >n) <c,(1+y+|z) (14 |z)P".
Proof. Let € € (0,¢1], where € = min (50, p4_—p2) and ¢ is defined in Lemma 4.1. Set
z =y + pr. Assume first that y > n'/?7¢. From Lemma 4.3, we deduce that,

E. (y+ pr+ My; 7, >n) <y +pr+clz| +cn'>% < (1+en )y +clzl,

1/2—e —1/6.

which proves the lemma when y > n and n is larger than ¢
Now, we turn to the case 0 < y < n'/>~¢. Introduce the following stopping time:
v, = vp + [n°].
We have the following obvious decomposition:
E, (z+ M, ; 7, > n)
(4.3) =E, (z+Mn; Ty, >n, v, > [nl_‘fD +E, (z+Mn; Ty, >n, Vs < [nl_ED .

=:J1 =:Js

Bound of Jy. Using the Holder inequality for 1 < p < a, Lemma 3.4 and Lemma
4.1, we have

(1+ |z
< —_—.
J1 < cpe/n(1+y + |z) ne-DG-2)
Ase < %}2, denoting Cp-(,y) = ¢y (1 +y + |x]) (1 + |z)P ", for all n > 1,
Cpelz,
(4.4) J; < M_
n€

Bound of Jy. Using the martingale representation (3.2) for the Markov walk (y +
Sp)n>1, by the Markov property,

[nlfs]
b= 2 / Ey (y + px' + My _y; 7 > n — k)
k=1 RXR:
X]Px (nyl Ed[]j‘/7 y—i-Sny Edy/’ Ty > sz? V:;:]{;)
By Lemma 4.3,

J2 < Ex (Z + MV% +c rX,,7L+[ns]

1/2—2¢ . € € 1—¢
+ cpn 77'y>1/n,1/n<[n D
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For the term z + M., we use the fact that ((z + M,)1{;,>n})n>0 is a submartingale
(claim 3 of Lemma 4.2), while for the term ¢ ‘X,,nﬂns}‘ we use the Markov property

at v, and Lemma 3.1. This gives

J, <E, (z + Moy 7y > [nl_a} < [nl—g:D

n

+ By (027 + B ([a]) X, | 5 7y > vy v < [017)).

1/2—¢ 1/2—¢
)

Since 0 < y < n and v, is the first time when (|y + S,|),>1 exceeds n
the jump X,, is necessarily positive on the event {7, > 1v;,}. Therefore, under the
condition E(a) > 0, by the representation (3.2) we have z + M,, > n'/?2~¢. Using the
last bound, we obtain

Jy <E, (z + Moy 7y > {nl—ﬂ < [nl_ED

2+ M,

+ ol < $ Ty > Vn, U < [nl‘ﬂ) + e By (1X,,] 5 vn < [017])

Again, using the fact that ((z + Mn)]l{Ty>n}) is a submartingale and Lemma 3.1,

n=0
we bound Js as follows,

T < (1 + %) E, (24 Myi 7, > [017]) 4+ e 01~ (1 + [a)

C —
(45) —E, ((Z + M[nlfs]) (:ﬂ.{yi>[nls}} + n_i:ﬂ.{yn>[nls}}> ; Ty > [nl 5}) '

=:J3

We bound J3 in a same manner as Ji,

- A+ 12" _ Cpelry)
1l < eI (b Jal) e o < 22

Inserting this bound in (4.5) and using (4.4) and (4.3) we find that

E, (z+M,; 7, >n) < (1 + %) E, (z + M5 7y > [nl_e}) + 701,,5(1',3/)'

n&

Since ((24My) 1z, >n})n=0 is a submartingale, the sequence u, = E, (2 + M, ; 7, > n)
is non-decreasing. By Lemma 9.1 used with o = ¢, = C, (2, y) and v = 0 it follows
that

C C z,
B, (z+ M, ; 7, >n) < <1+nL;>Ex(z+Mnf;Ty>nf)+ p,e% y)
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By Lemma 3.4 and the fact that z = y + px, we have
c
E, (z+ M, ; 7, >n) < <1+nig>y+cp,a\/n_f+cp,e|f|

C _
+ o= (L y +lal) (1+ J])” 1
i

Cpe (14 |5L'|)p_1
< (1 v 2e0L

) Y+ Cpen, (14 [2])".

Choosing ny > §/¢ concludes the proof of the lemma when n > §~%/¢.
Now, when n < 67%¢, a bound of E, (z + M,,; 7, > n) is obtained immediately
from Lemma 3.4: since z = y + pzx, for any y > 0,

E,(z4+ M,; 7, >n) <y+clz|+E. (IM,]) Ly+clz|+evn<y+cs (1+]z]),
and we conclude that the lemma holds true for any n € N.

O

We can now transfer the bound provided by Lemma 4.4 to the Markov walk (y +
Sn)n}O-

Corollary 4.5. For anyp € (2,a), z € R, y >0 andn € N,
E, (y+Su; 7 >n) <o (1+y+[a]) (1+ )7

Proof. Using equation (3.2), the results follows from Lemma 4.4 and Lemma 3.1. [

4.3. Integrability of the killed martingale: the case E(a) < 0. We adapt
the mainstream of the proof for the case E(a) > 0 given in the previous section,
highlighting the details that have to be modified.

In the discussion preceding Lemma 4.2, we noted that (y + pz + M,) 17,5, may
not be positive. In the case E(a) < 0, we overcome this by introducing the exit time
of the martingale (y + px + M,), -, for any y € R,

T, =min{k > 1, y + px + M, < 0}.

By Corollary 9.7 we have P, (T}, < +00) = 1 for any z € R. The main point is to
show the integrability of y 4+ px 4+ Mp,. Under the assumption E(a) < 0 we have
7y < T,, which together with the fact (|y + px + M,|),-, is a submartingale, implies
that y + pr + M, is integrable.

Lemma 4.6.
(1) For allz € R andy > 0,

Ty < Ty, Pg-a.s.

(2) For allz € R and y € R, the sequence ((y + pxr + Mn)]l{Ty>n}) s a sub-

n=0
martingale with respect to P,.
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Proof. Claim 1. We note that when T}, > 1, by (3.2) and (4.2), with z = y + pz,
y+Sr, = z+ Mg, — pXg, < —pX7,,

Xz,
1—E(a)

X,

1= My, —
y+STy 1 z+ Ty 1—E(a)

<

Since p < 0, according to the positivity or non-positivity of X7, , we have respectively
y+ Sy, <0ory+Sp,_1 <0 When T, =1 and y > 0 we have X; < 0 and so
T, =1=T1,.

Claim 2. In a same manner as in the proof of the claim 3 of Lemma 4.2, the claim
2 is a consequence of the fact that z4 My, < 0 and that (M, ),>o is a martingale. [J

The following lemma is similar to Lemma 4.3 but with T}, replacing 7,,.
Lemma 4.7. Let p € (2,«). For any e € (0,%}2), rER, y>—prandn >0, we
have

Em (y+p$+Mn, Ty > n) < y—|—px+c‘x‘ +Cpn1/2_25_

Proof. Note that z = y + pz > 0. Since at the exit time T, we have 0 > z + Mz, >

Xr,~E(a)Xr, 1

{r, = — @ by the Doob optional stopping theorem,

Em(z+Mn;Ty>n)<z+cEm(‘XTy

%—MXE;—1’;7L <§n)-

Since ‘XTQ‘ + ‘XTy_l‘ < 2maxicp<n | Xi| + |2| on {T, < n}, following the proof of
Lemma 4.3,

n k
B4 My > ) < (14 3 TTE o)) o

k=1i=1

L epl/2-2p (max ‘XJS‘ < n1/2—25)

1<k<n

+ cE <max ’X,S

1<k<n

; max ’X,S’ > pl/2-2%
1<k<n

< 24 clz| + epnt/?7E,
O
Lemma 4.8. Let p € (2,«). There exists €1 > 0 such that for any e € (0,e1), z € R,

yeR, n=>0and2<ny<n,

¢ —Cp,en’
Eq (y + pr+ My; Ty > n) < (1 + ﬁf) max(y, 0) + e 2| + cpey/ny + 77" [af”

< ¢ (1 + max(y, 0) + |o]").
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Proof. We proceed as in the proof of Lemma 4.4. Set £; = min (50, %}2), where g is
defined in Lemma 4.1. Let € € (0,&1]. With z = y + px and v, = v, + [n°], we have

E,(z+M,; T, >n) = Ex(z+Mn;Ty>n,va> [nl—eD
=]
(4.6) + E, (z+Mn;Ty>n,va< [nl_a}).

=:Js

Bound of Jy. Let m. = [n'~¢] — [nf]. Since on {v, > m.} it holds 2’ = z + M,,. <
n'/2=¢ by the Markov property we write that

Jy < n'PEP, (v, > me) + /REI/ (IMp— ) P (X, € A2’ v, > ).
By Lemma 3.4 and the Holder inequality,
J < nM?EP, (v, > me) + B, (c (m + \Xms\) DU, > me)
< en'?P, (v, > me) + EYP (| X [P) PY (v, > m,).
By Lemma 3.1 and Lemma 4.1 (since m. > n'=¢/c.),

C _ 1-2e
(47) Ji < n’%%é)—l)e + e Cpem |1’|p

Bound of J,. Repeating the arguments used for bounding the term J; in Lemma
4.4, by the Markov property and Lemma 4.7, we get

Jo < E, (z + My +c ’XU%

+ !PT, > 0n, 0f < [0 7))
Using the claim 2 of Lemma 4.6 and Lemma 3.1,
Ty S By (24 My T, > [0179] 05 < [n' 7))
+ By (en!*7 5 Ty > v, v < [017F]) 4 7R, (1X0, ] 5 vn < [017F))
On the event {T}, > v,}, we have n'/?27¢ < z + M,, . Hence

Jo SBx (2 Mg T, > [0, 0] < [0 7))

M, ¢
+ ¢y <Z+7€” Ty > v, Un < [nl_aD +e =" E, (|Xvn s Uy < [nl_aD :
Coupling this with (4.7) and (4.6) and using again the claim 2 of Lemma 4.6, we
obtain that

E, (2 + M,; T, > n) < (1 + ;—p) By (2 + Myp—sp; T, > [n'7])

TR La—C
n%ﬁl _(p_l)E
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Since ((z + My)1{7,>n})n>0 is a submartingale (claim 2 of Lemma 4.6), the sequence
u, = E(z + M,)L{r,>n} is non-decreasing. By Lemma 9.1 with a = ¢,, 8 = ¢,
v =|z|” and 0 = ¢, ., we write that
c e
E, (z+M,; T, >n) < <1—|—CL:> E, (z—l—Mnf; T, >nf) + 25 4 eT P |ofP
Ty My
Using Lemma 3.4 and the fact that z = y + px, we obtain that

E,(z+ M,; T, >n) < <1 + CL;) max(y, 0) + ¢, || + ¢p /T + e ey |z|? .

f
O
Corollary 4.9. Letp € (2,«). For anyx € R, y >0 andn € N,
Eo (Y +Sns 7y >n) < (L+y+|[zf).
Proof. By (3.2) and the claim 1 of Lemma 4.6, we have
E,(y+Sy;7y>n)=E, (y+pr+M,; T, >71,>n)—E, (pX,,; 7y >n).
The result follows from Lemma 4.8. OJ

5. EXISTENCE OF THE HARMONIC FUNCTION

In this section we prove Theorem 2.1. We split the proof into two parts according
to the values of E(a).

5.1. Existence of the harmonic function: the case E(a) > 0. We start with
the following assertion.

Lemma 5.1. For any v € R and y > 0, the random variable M, is integrable.
Moreover, for any p € (2, ),

e, (v,

) <o +y+lal) 1+ )

Proof. Let z = y + pz. Using the claim 1 of Lemma 4.2 and the Doob optional
stopping theorem, we have

E. (jpr,

(7<) < By (24 My 7y <n)+y +plaf
=E,(z+M,;7,>n)—z+y+plz|.
By second bound in Lemma 4.4, for all n > 0,

E, (|M,] i 7y <n) <oy (Ly+lal) (L4 2P = Cylay).

Since ({7, <n}),., is a non-decreasing sequence of events and P, (1, < +00) = 1
for any x € R (by Corollary 9.7), the result follows by the Lebesgue monotone
convergence theorem. O

Now, the claim 1 of Theorem 2.1 concerning the existence of the function V is a
direct consequence of the previous lemma:
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Corollary 5.2. For any x € R and y > 0, the following function is well defined
V(z,y) = -E, (M,).

The following two propositions prove the claims 2 and 3 of Theorem 2.1 under
Conditions 1, 2 and E(a) > 0.

Proposition 5.3.
(1) Forany z € R and y > 0,

Viz,y) = nl_l)IJ{looEx (y+pr+M,; 1, >n)= ngrwax (y+Sn; 7y >n).

(2) For any z € R, the function V(x,.) is non-decreasing.
(3) Forany § >0,p€ (2,a), r €R andy > 0,

max(0,y + pz) < V(w,y) < (1460 (1+ [2)"1) g+ e (14 [2])P.

(4) For any z € R,
v
tim YY)
y——+00 Yy

Proof. We use the notation z =y + pz.

Claim 1. Since, by Lemma 5.1, M, is integrable, we have by the Lebesgue domi-
nated convergence theorem,

E,(z+M,;7,>n)=2—-E, (z + M, ; 7, < n) njoo —E, (MTy) =V(z,y).

To prove the second equality of the claim 1 we use Lemma 3.1 and the fact that
Ty < +00:

B (X 7y > )| < B2 (1Xal?) /Pe (7, > ) < ca (14 [2]) /Pa (7, > 1) — 0.

n—-+00

Using (3.2), we obtain the claim 1.
Claim 2. 1f y; < yo, then 7,, < 7, and

Ez(yl+sn;7y1 >n)<Ex(y2+Sn;Ty1 >n)<Ex(y2+Sn;7—y2 >n)-

Taking the limit as n — +o0o we get the claim 2.

Claim 3. The upper bound follows from the claim 1 and Lemma 4.4. On the event
{m, > n}, we obviously have y + S,, > 0 and so by claim 1, V(z,y) > 0. Moreover,
since z + M., < 0 (by claim 1 of Lemma 4.2), we have, by claim 1,

V(zy) =z~ lim E, (4 My ;7 <n) >z,

which proves the lower bound.
Claim 4. By the claim 3, for all § > 0, z € R,

% % -
1 < liminf %Y < limgnp L5 ¢ (140 (1 +]a))).
y—o+oo Yy y—too Y

Letting 6 — 0, we obtain the claim 4. O

We now prove that V' is harmonic on R x R?.
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Proposition 5.4.
(1) The function V is Q4-harmonic on R x R% : for any x € R and y > 0,

Q+V(ZI§', y) = V(ZIZ’, y)
(2) The function V is positive on R x R .
Proof. Claim 1. Denote for brevity V,,(z,y) = E, (y+ S,; 7, > n). For all z € R,
y > 0 and n > 1, by the Markov property,
Vori(z,y) = B (Vo(Xy,y +51) 5 7 > 1)

By Corollary 4.5, we see that the quantity V,, (X, y+.51) is dominated by the random
variable ¢, (1+y + Sy 4 |X1|) (1 +|X41])”"" which is integrable with respect to E,.
Consequently, by the Lebesgue dominated convergence theorem and the claim 1 of
Proposition 5.3,
V(LU, y) = Ew (V(X17 ) + Sl) ; Ty > 1) = Q-}-V(xvy)v

where by convention, V(z,y)L{ys0 = 0 if y <0 and z € R.

Claim 2. Fix z € R and y > 0. Using the claim 1 and the fact that V' is non-
negative on R x R* (claim 3 of Lemma 5.3) we write

-y
\%4 > E, | V(X S1); 1, X 7 .
(z,y) ( (X1, y+51); 1 > 1>2(1—|—p)>

By the lower bound of the claim 3 of Lemma 5.3 and (3.2),

—Y Yy -y
Vv > E, 1 Xiy1m>1, X5 > > =P, [ X1 > .
(z,9) <y+( +p) X157y 1 2<1+p)> 5 ( 1 2<1+p)>

By Condition 2, we conclude that, V(z,y) > 0 for any x € R and y > 0. O

5.2. Existence of the harmonic function: the case E(a) < 0. In this section we
prove the harmonicity and the positivity of the function V' in the case E(a) < 0. The
following assertion is the analogue of Lemma 5.1.

Lemma 5.5. The random variables Mz, and M., are integrable.
(1) For any z € R and y € R,

E, (|M,
(2) For anyz € R and y € R,
E, (|M,,

Proof. Claim 1. The proof is similar to that of Lemma 5.1 using Lemma 4.8 instead
of Lemma 4.4 and the fact that by Corollary 9.7 we have P, (T}, < +00) =1, z € R.

Claim 2. By the claim 1 of Lemma 4.6, we have 7, An < T, A n. Since (|M,]),-,
is a submartingale, with z = y + px,

B (|My] i 7 <n) <Ea (|Mona]) < Bo (M) < 2120 + 2B, (

The Lebesgue monotone convergence theorem implies the claim 2. 0

) <o (14 lyl+ |z) .

) <1+ [yl + [2P).

My,

;Tygn).
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As a direct consequence of this corollary we have:

Corollary 5.6. For any x € R and y > 0, the following function is well defined
Vi(r,y) = —E, (M) .

Consider the function
W(z,y) = -E, (MTy) )
which will be used in the proof of the positivity of the function V on R x R} . By
Corollary 5.5, the function W is well defined on R x R.
Proposition 5.7.
(1) For any z € R and y € R,

W(z,y) = nl_iglooEx (y+pr+ M,; T, >n).

(2) For any x € R, the function W (x,.) is non-decreasing.
(3) For any p € (2,a), there exists 1 > 0 such that for any ¢ € (0,&1], ny > 2,
reR andy € R,

C —ep ent
max(0,y + pz) < W (z,y) < (”nT) max(y, 0) + cpe 2] + ¢pey/Tiy + e [zl

(4) For any z € R,

y—+00 Y
(5) For any z € R and y € R,

W(.flf,y) :EIE (W (ley_'_Sl) ; Ty > 1)7

=1.

and (W(Xn,y + Sn)]l{Ty>n}) is a martingale.

n>0

Proof. The proof is very close to that of Proposition 5.3. The upper bound of the
claim 3 is obtained taking the limit as n — 400 in Lemma 4.8. We prove the claim
4 taking the limit as y — 400 and then as ny — +o00 in the inequality of the claim
3. The proof of the claim 5 is the same as that of the claim 1 of Proposition 5.4. [J

Moreover, we have the following proposition.

Proposition 5.8.
(1) Forany z € R and y > 0,

V(z,y) = nl_l)IfooEm (y+px+M,; 1, >n)= n1—1>r—|l:looEx (y+ Sp; 1y >n).
(2) For any z € R, the function V(x,.) is non-decreasing.
(3) Foranyp € (2,a), 6 >0, x € R andy > 0,
0<V(zy) SW(r,y) < (1+0) y+ cps (14 [2]").
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(4) The function V is Q4-harmonic on R x R% : for any x € R and y > 0,
Q+V(I, y) = V(I, y)
and (V(Xn, Y+ S")]l{TP"})@o is a martingale.
Proof. The proofs of the claims 1, 2, 4 and of the lower bound of the claim 3, being
similar to that of the previous proposition and of the Proposition 5.3, is left to the

reader. The upper bound of the claim 3 is a consequence of the fact that 7, < T},
(claim 1 of Lemma 4.6): with z = y + pz,

V(a:,y): lim Ex(z+Mn;7‘y>n)
< hm E, (z + M, ; T, >n) =W(z,y).

n—-4o0o

O

Our next goal is to prove that V(x,y) > max (0,(1—0)y — cps (14 |2[)) from
which we will deduce the positivity of V. For this we make appropriate adjustments
to the proof of Lemmas 4.3 and Lemma 4.4 where the submartingale ((y + pz +
M) 11,50} )n=0 Will be replaced by the supermartingale (W (X, y + Sn) L{r,>n} )n>0-
Instead of upper bounds in Lemmas 4.3 and Lemma 4.4 the following two lemmas
establish lower bounds.

Lemma 5.9. For any p € (2,«), there exists €1 > 0 such that for any ¢ € (0,&1],
reR,y>0andn N,

E, (W(X,,y+ Sn); 7y >n) = W(z,y) — cpﬁnl/Q_Qa — cpe|z]”

Proof. By the claim 1 of Lemma 4.6 and the claim 5 of Lemma 5.7, as in the proof
of Lemma 4.3,

By (W(Xnoy+ 80)5 7y > n) = W(z,y) — By (W(Xr,y+55,): Ty > 7, 7, <)
Using the claim 3 of Proposition 5.7 and the fact that y +.5;, <0
E, (W(XTy,y +87,); Ty >1y, 7 < n) <
E, (cp,€ Xo, |+ Cpey/Iiy + e P ‘XTy ? P Ty < n) )

, the end of the proof is the same as the proof of Lemma 4.3. [

Taking ny = [n'~*]

Lemma 5.10. For any p € (2,«) there exists €1 > 0 such that for any ¢ € (0,&1],
ng=2, xR andy >0,

E, (W (Xn,y+S,) ;7 >n)> y( — %) —cp7€n?p(1+ |lz[?) .

!
Proof. The proof is similar to that of Lemma 4.4. With v = v,, + [n], we have
Jo=E, (W (Xp,y+S,) ; 7y >n) > E, (W(Xn,y—l— Sn) i Ty >1n, v, < [nl_ED :
Using the Markov property, Lemma 5.9 and the fact that n —v5 < n,
Jo = Eo (W (Xus,y+ Siz) — cpen'/* 7 — ¢ [ Xo|”

1—
Ty > Uy, Uy S [n 5])
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By the claim 1 of Lemma 4.6, on {7, > v,} we have z+M,, > n'/?7¢ where z = y+pz.
From this and the fact that (W (Xn,y+Sn) ]l{Ty>n}) is a supermartingale, as in

n>1

the the bound of the the term J of Lemma 4.4, we obtain that
Jo = By (W (Xppi—e, g + Spr—sy) 3 7 > [017])
6 B (W (Xpy + Spa) 17y > [0 0k > [0
— LB, (24 My, i Ty > v, 00 < [017]) — e (L o).

Using the claim 3 of Proposition 5.7 with ny = n and the martingale representation
(3.2), the absolute value of the second term in the r.h.s. of (5.1) does not exceed

ep B (2 + Migi—e) + Vi + | X

p .
Y

T, > {n1_1 , v > [n1_5]) :

+ e e ’X[nlfs}

Since ((z + M,) 1y, >n}) is a submartingale, by claim 2 of Lemma 4.6, the absolute

n=0
value of the third term is less than

%Ex(szMn; T,>n).
These bounds imply
Jo = By (W (Xppi—e, g + Spr—sp) 3 7 > [017])
— peBa (24 My + Vi + [Xju—sg| 17, > [277] L 0 > [0177])
(5.2) — e By ([ X 5 7y > [n'7] 0f > [n'7])
- CnLE (z4 M, : T, > n) — e (1+ |zff).

Using the Markov property with the intermediate time m. = [n'~¢] — [n°], Lemmas
3.4 and 3.1 and the fact that v; = v, + [n°], the absolute value of the second term in
the r.h.s. of (5.2) is bounded by

CpeEu (|z + My | 4+ en®? 4 ¢ | Xon. | + V0 + (1| X ) 7y > e, vy > ma) :
which, in turn, using the fact that z + M,,. < n'/?7¢ on {v,, > m.}, is less than
CpeEu (\/ﬁ%— X | 5 7y > me, vy, > ma) :

The absolute value of the third term in the r.h.s. of (5.2) is bounded using Lemma
3.1 by e=»="" (1 4 |z|”) . The fourth term is bounded by Lemma 4.8. Collecting these
bounds, we obtain

Jo 2 By (W (Xpu-el,y + Spie)) 5 7 > [0'77])

(5.3) — CpeBe (VA + [ X 3 7y > e, v, > me) — CnL (1+y+ ).
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Coupling the Holder inequality with Lemma 3.1 and Lemma 4.1, we find that the
second term in the r.h.s. of (5.3) does not exceed

) < cpe (Vi + 1)

nl—s

Cpe (1 + |$Dp_1
inil_(p_l)e ’

e (VI +EYP (X, ) B ( >

()

Implementing this into (5.3),
. 1—e|) _ % p
Jo =2 E, (W (X[nl—s],y—i—s[nl—s}) ; Ty > {TL }) e (1—|—y—|—|l’| )

Since (W (Xn,y+ Sn) ]l{Ty>n}) . is a supermartingale, Lemma 9.2 implies that

nz

Jo 2 E, (W (an,y+5nf) P Ty >nf) —CnL;(l+y+\x|P).

Using the lower bound of the claim 3 of Proposition 5.7 and Lemma 3.4, we deduce
that

c
E, (W (Xn,y+Sn) ;7 >n) = yP, (1, >nys) — yan — Cper/Tif — Cpe |x|P
f

Now, when y — 400, one can see that P, (1, > ny) — 1: more precisely,

n3 (1+

P, > > P,
(Ty nf) <1\ o ny "

Finally,

EI(W(Xn,y+Sn);Ty>n)>y< —%> —cpﬁn?(lJr\x\p).

13
ny

Under Condition 3 we use Lemma 5.10 to prove that V' is positive on R x R7.

Lemma 5.11.
(1) Forany 6 >0,p € (2,a), r€R, y >0,
Viz,y) 2 (1 =0y —cps (1 + |2]").
(2) For any z € R,
lim Viy)

y—+00 Y
(3) The function V is positive on R x R .

= 1.

Proof. Claim 1. Using the claim 1 of Lemma 4.6 and the claims 3 and 5 of Proposition
5.7, with z = y + pz, we write
E, (z+ M, ; 7, > n)
>E,(z4+M,; T, >n) —E, W(X,,y+S,); T, >n, 7, <n)
=E, (Z‘I'Mn; T, > n) —W(ZE,y)—l—Ex (W(Xn>y+5n)§ Ty > n)
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Using Lemma 5.10, the claim 1 of Proposition 5.7 and the claim 1 of Proposition 5.8,
we obtain

C
Vo) 2o (1= %) < ey (14 o).
f

Taking n; large enough, the claim 1 is proved.
Claim 2. Taking the limit as y — +o00 and as 6 — 0 in the claim 1, we obtain
first that lig}rnﬂ/(a:, y)/y = 1. By the claim 3 of Proposition 5.8, we obtain also that
Y 0o

limsupV (z,y)/y < 1.

y—r—+00
Claim 3. Fix x € R, y > 0 and §y > 0. By Condition 3, or Condition 3bis (see
Section 9.1), there exists py € (2, «) such that for any ¢ > 0 there exists ng > 1 such
that P, ((Xng, ¥ + Sny) € Kpgcs Ty > no) > 0. Thus, using the claim 4 of Proposition
5.8,
Vi(z,y) 2 Eo (V(Xng, ¥ + Sno) s (Xngs ¥ 4 Sno) € Kooy Ty > 10) -

Using the claim 1 with p = py and 6 = 1/2 and choosing the constant ¢ = 2¢,, s + 2o,
there exists ng such that

V(z,y) = 00Ps (Xng, Y + Sng) € Kpyes 7y > o) > 0.

6. ASYMPTOTIC FOR THE EXIT TIME

The aim of this section is to prove Theorem 2.2. The asymptotic for the exit time
of the Markov walk (y + S,)n>0 will be deduced from the asymptotic of the exit
time for the Brownian motion in Corollary 9.4 using the functional approximation in
Proposition 9.5.

6.1. Auxiliary statements. We start by proving an analogue of Corollaries 4.5 and
4.9, where n is replaced by the stopping time v,.

Lemma 6.1. For any p € (2,«), there exists €9 > 0 such that for any € € (0,&0],
reR,y>0andn > 1,

E,=E, (y + Sy, Ty > Vp, Up < [nl_ED <cpe(l+y+|z))(1+ )P
Proof. When 7, > v, > 1, we note that
(6.1) 0< X, <y+59,,.

Therefore, using the martingale representation (3.2), we have y + S,, < z+ M, +
max (0, —p)X,,, with z = y + pzx, and so

0<y+S, <max(1,1—E(a))(z+ M,,)=c(z+M,,).
Consequently,
Ei<c(l4y—+|x|) + cE, (z+M,,n; Ty >V, 1 <y < {nl_e})
<

(6.2) c(l4+y—+|x|) + cE, (z + M, Ty >V, Uy < [nl_e}) :

B
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Now, denoting v, A [n'™¢] = min(v,, [n'7¢]), we write
E} = cE, (z + Myn/\[nlfs]) —cE, (z + My Api-<]; Ty < Un A [n1—5:|)
—cE, (z + My 5 7 > {nl—a} Uy > {nl_eD .

Since (M,), -, is a centred martingale, using Lemma 5.1 when E(a) > 0 and Lemma
5.5 when E(a) < 0, Lemmas 3.4, 4.1 and Holder inequality, we obtain

By < cpe(l+y+|z))(1+ )P
Implementing this into (6.2), it concludes the proof. O

1/2—ce

Now, we can prove an upper bound of order 1/n of the probability of survival

P, (1, > n).

Lemma 6.2. For any p € (2,«), there exists €9 > 0 such that for any ¢ € (0,&0],
reR, y>0andn > 1,

1 1 p=1
B (r 5 m) <, (LEU D+

nl/2—«
Moreover, summing these bounds, we have
[nlfs]
ST Po(ry > k) < cpe(l+y+ o)) (1 + |z])P /2
k=1

Proof. Taking k = [nl_is}, we write

Ce

kl—e
7'Ty>w€,w€<[kl_s})+Pm<Vk> )

Using Lemma 6.1 and Lemma 4.1, the claim follows. 0]

Before to proceed with the proof of Theorem 2.2, we need two additional technical
lemmas. Recall the notation v5/¢ = v, + {ne/ 6]

Lemma 6.3. There exists eg > 0 such that for any ¢ € (0,&0], x € R and y > 0,

Ey,=E, (y + Suf/G; Ty > Vel Vf/ﬁ < [nl_eD — Vi(x,y).

n n——+o0o

Proof. Using the martingale approximation (3.2),

By = —pBo (X057 > 07/, 0/° < [n'])

2% n

=:F2
(6.3) +E, (z + M5 7y > VS el < [nl_e}) :

n

=:Fa9
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Bound of E,. By the Markov property, Lemma 3.1 and the fact that (y +
SVn)/nl/2_E > 17

€/6

|Eo1| < cE, (1 +e X, | Ty > Uy, Uy < [nl_ED
nlfs
C _cns/S
< mEl“'e Z E:c(|Xk|)
k=1

By Lemma 6.1, we obtain

(L+y+ |z + )

(64) ‘Egl‘ < Cpe n1/2—€

Bound of Fay. We proceed in the same way as for bounding £} defined in (6.2):

=B (o4 30,7 <0 1)
B (Mg 7 A ] 2 ).

An n

By the Holder inequality, Lemma 3.4 and Lemma 4.1,

(65) Eap<z—Ey (24 My, 7 < v/ [0 7)) + Cpe( )(

Since /6 > {ne/ 6} — +00 as n — 400 and M, is integrable (according to Lemmas
5.1 and 5.5), by the Lebesgue dominated convergence we deduce that

lim Ey = —E, (M,,) = V(z,y).

n—-4o0o

Coupling this with equations (6.3) and (6.4), we conclude that Fs - Viz,y). O
Lemma 6.4. There exists eg > 0 such that for any ¢ € (0,&0], x € R and y > 0,

Es=E, (y + Sus/(s DY+ SV5/6 > n1/2_5/6, Ty > I/f/G, ve0 < {nl_ED — 0.

n n——+o0o

Proof. The first step of the proof consists in proving that we can replace the time
/6 in the definition of Ej5 by the time v,. More precisely, we shall prove that the
following bound holds true:

Fy < en®/SE, (y—l—Sl,n; y+ S, >n* >, v, < [nl_eD

=:F31
(L+y+ 2@ + =)
ne/6 ’

(6.6) + Cpe
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To this end, we bound FEj as follows:

Es <Es; +E, (’S <6 — Sy, | 3 Y+ Sy, > n1/2—a/2; Ty > Un, Up < [nl_e})

Un

=:F32
+E, (y + S,,n Y+ S,jn < n1/2—e/2 Y+ Sys/ﬁ > n1/2—a/6’
(67) Ty > Up, U < [nl—s})
=:E33
_HEI QSVE/(B o SV” Y + SVn < n1/2_8/2 » Y + S,/S/S > n1/2_8/6 )

Ty > Up, Up < [nl_aD )

=:F34

Bound of E33. By the Markov property and Lemma 3.1,

E3s < / K, <’S[ns/6]
RxR".

)Pm(xynedx',y+synedy’,

y+ 58, > nl/2—e/2

B (LX) 5 502 0 5 < ]

Ty > U,y Up < [nl_ED

If , > v, > 1, by (6.1), we have |X,, | = X,, <y+5,,. Using this bound when
v, > 1 and the Markov inequality when v, = 1,

Ez < E. (Cn€/6 (1+|X1]) s y+ X1 >nl/22 y, = 1) + en/O g

(L+y+ |z + |«])
nl/2—ce

(6.8) <c + en/C By

Bound of E33. By the Markov property,

E33 < / y/]P)m’ (y/ —+ S[nf/ﬁ] > n1/2_€/6> Px (X,,n c d.ﬁ(}/, Yy + S,,n c dy/,
RxR?*

+
y+.9, < nl/?-¢/%. Ty > Vp, Vn < [nl_e}) )
When ' < n'/?7¢/2, by the Markov inequality, we have,

nl/z—e/ﬁ _ C€n€/6 <1+ |$/|)
= nl/2—¢/6

IP)Z" (y, + S[ns/ﬁ] > n1/2_8/6> < IP)ZJ <‘S[n5/6] >

Ce

On the event {y + S,, < n'/27%/2 1, > 1,}, we obviously have 2’ = X,,, < n'/275/2,
From these bounds, using the positivity of X,, for v, > 1, see (6.1), we obtain

c. (1+|X Ce
E33 < Ez <(y + Sl) %; Vp = 1) + 7n€/2_€/3E1.

By Lemma 6.1, we obtain

(I +y+ [z + [P

(69) E33 < Cpe n€/6
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Bound of Es3,. Again, by the Markov property,

Bu< [ B (
RXRi

S[ns/s] Y+ S[NE/G] > n1/2_5/6> P, (X,, € da',

Y+ S, €Ay, y+ Sy, <0 7> w v, < 017

When 3/ < n'/?7¢/2 we have

Ex’ (‘S[ns/(i] ) y, + S[ng/g] > n1/2_€/6) < Ex’

Then, using Lemma 3.1,

[n°] [

nlfs]
Cpe Cpe Cpe
E34 < p,f’ + AL ZEm (‘Xk|p) + % Z Ex (|Xk‘p 3 Ty > ]{7)
n [

5 —cpe n =z e Pt n=z —Cp€ k)41
1—e £
1 p [n ]—[n ] .
< Cpe (71‘*‘ |z|") pfp@ E, (1 e | X, T, > k;)
nT—CpE nT—CpE =1
1—e
Cpe (1+ |z|P . c "]
Q= SR (p_l_c| E| ) +e P (14 |z|") + 741 - > Pu(ry > k).
nz2 "’ noz Pt =

Using the second bound in Lemma 6.2, and taking € > 0 small enough, we obtain

1 1 p=1
(+y+le)O -+l

-2
nt e n—+00

Inserting (6.8), (6.9) and (6.10) in (6.7), we conclude the proof of (6.6).
Bound of cn?/°Es;. Note that, when v, > 1 and y + S,, > n'/?7%/2_ we have

X, =y+S, —y+S,_1>nl/?E2_pl/t== > "l/z;/z Consequently,

€

(610) E34 < Cpﬁ

en®/ By < en®/°E, (y + S,, ; vn < [0°])

=:E35

nl/2—e/2

(6.11) + en®/'E, <y + 5, ; X, > Ty > Uy, 0] <1y < {nl_eD :

Ce

=:F36
Bound of Es;. Using the definition of v,, the Markov inequality and Lemma 3.1,

Es5 < enf/CR, (max ly + Sk| ; max |y + Sk| > n1/2_5>

k<[n®] k<[n?]

2
6 (L+y+ o)
nl/2—cpe ’
Bound of FEss. The idea is based on the observation that, according to the first
bound in Lemma 3.1, the random variables y + S, -] and X, are "almost" inde-
pendent. In this line, summing over the values of v, and bounding the indicators

(6.12) <
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1yy,—ky by 1, we write

[n'=<] nl/2—¢/2
Fs5 <cn®/® Z E, (y + Sk—ppey s Xi > — Ty > k:)

k=[n¢]+1 €

176]

+ent 3
k=[nf]+1

nl/2—¢/2
; X > , Ty > k) .
C

€

E, (\Sk — Sk ]

By the Markov property,

[ =] 1/2—¢/2
Es < en/® / P (X0 >
3 z:} RxRiy <] e

k=[nc]+1

x P, (Xk_[ns] cede’, y+ Sk €edy’, 7y >k — [na])

[ =] nl/2—¢/2
(6.13) + en®/" Z E, <nE max | X Xp > ——, 1, > k:) )
k=[ns]+1 k—[n]<i<k Ce

Recall that, under {Xy = 2’} by (3.3), Xpe = HE’Z] a;x’ + X[(:LE]. Then, since a;’s are
independent and identically distributed, by claim 1 of Condition 1 and Lemma 3.1,

nl/2—¢/2 [n°] nl/2—¢/2 nl/2—¢/2
Py | Xppey > <P > P([XP.| >
(6.14) < e o] + 2,
nz e

Inserting (6.14) into (6.13) and using Cauchy-Schwartz inequality, by Corollaries 4.5
and 4.9,

nlfs

—cpn® 67 -

By < Y ( B (ly+ S B (1G17) + 2 (L y o+ a1+ [l )
j=1

R
+ent 3R, —_[ZL\? — Ty > k=[]
k=[nc]+1

2~ Cp

Using the decomposition (3.2) and Lemmas 3.1 and 3.4

(I+y+ )+ [
p—2
nT—cpa
U
+ p;lip_ca Em (ne (1 + ‘Xk—[ng]
N2 P pepe]+1

Ess < cpe

p) ;Ty>k—[n€]).
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Re-indexing j = k — [nf], after some elementary transformations, we get

nlfs
1+y+|z))(1+|z|)Pt ., 27 4
) N
nz @ nz °° T
¢, 1 .
+ —1_, ZEI (|X]|p) + = Z E, (X51" 5 7y > 7 — [n°])
nozo = " =41

Again using the Markov property, Lemma 3.1 and Lemma 6.2, we have

Aty+lahela)™ | o 5D

E36<Cp,e P—2__ p=1__ Z ]P)m (Ty>j)
n 2 L4 n 2 PE=1
]
e Y B (155 7 > )
Jj=1
(L+y+fz)( + |z
< Cpe P .
nz %

Inserting this bound and (6.12) into (6.11), we obtain

Cpe (1 4+y+ |])”

p—2

Together with (6.6), this bound implies that

cn€/6E31 <

oAty +z)”
n5/6 n—+oo

(6.15) Es

/N

O

6.2. Proof of the claim 2 of theorem 2.2. Introducing the stopping time 1/ =
Vp + {ne/ 6}, we have

(6.16) P, (1, >n)=P, (Ty >n, /% < [nl‘e]) 4P, (Ty >0, v > {nl—e}) '

We bound the second term by Lemma 4.1: for 2 < p < a,

l—e p
c/6 1—e n (1 + |$|) — L
(6.17) P, (Ty >n, ve/% > {n D <P, (Vn > - ) < Cpe ey = © i)

To bound the first term, we introduce more notations. Let (B;);>o be the Brownian

motion from Proposition 9.5, A; be the event A;, = {(1)rI<1?<X1 }S[tk] — aBtk} < k22

where o is defined by (2.2), and Ay be its complement. Using the Markov property,



32 ION GRAMA, RONAN LAUVERGNAT, AND EMILE LE PAGE

we have

P, (Ty>n 1/5/6 [ D Z /RR (Ty/>n—k,zn_k)Pz(Xk€dx',

y+5k€dy',7'y>k:,uf/6:k:)

=:J1

(6.18)

M

/ (ry >n—k, Api) Py (X € da’,
RXR

k=1

y+Sk€dy’,Ty>k,ny/6:k).

— T
Bound of Jy. Taking into account that n—k > 2 for any k < [n1=¢], by Proposition
9.5 with ¢ small enough, we find
P, (Ty/ >n—k, Zn_k) < Py (Zn_k) < (14 |2/|)Pn%.
By the Markov property and the first bound in Lemma 3.1,
5 <E, <e—%"

€/6

C
p DsE | 1—¢
|X,,n| +—n2£,7y>1/n,1/n< {n D

Since yf/;'; > 1, using Lemma 6.1,

Cpe(t+y+ |2)) (1 + [z])"
nl/2+e

—cp enc/6 67
(619) S <em (Lo fal)” 4+ P B <

Bound of Jy. The idea is as follows. When ¢ < 6,4/n, with 6, = n=¢/% we
are going to control the probability P, (1, >n —k, A,_x) in J, by the claim 2 of
Corollary 9.4. When y' > 6,4/n we shall apply Lemma 6.4. Accordingly, we split .J
into two terms as follows:

=
J2: Z /]R]R ]P)x/(’ry/>7’L—k’,An_k)]P)x(XkGd:L'/,y—l—SkEdy,’
k=1 JRXR}
y+5k>n1/2_5/6,7'y>k,I/f/6:k)
=:J3
(6.20) +Z /[M* 1y > =k, Ae) By (X € da’, y+ S, € dy,

y+ S, < nt/2El0 T, >k, vE/® = k:) .
=:J4
Bound of J5. Let 7)™ be the exit time of the Brownian motion defined by (9.10)
and v =y’ + (n — k)1/?7%. Since

(6.21) Py (ry >n—Fk, Ap_i) < Py (T;T >n — k) ,
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using the claim 1 of Corollary 9.4 with 3, > 0, we get

'] Y+ S+ (n— k)22

J3 < E,|c
s kz::l ( vn—k

;y+Sk>nl/2_E/6,7‘y>k, l/f/ﬁzk>.

Since \/T \c/gﬁ and y + Si + (n k)1/2_2€ < 2(y + 5%) on the event {y + S5 >
n!/2=¢/6} using Lemma 6.4, we have

(6.22) I < %Eg, - (%) .

Upper bound of Jy. Since = < n —k < n, we have y, < c.(n — k)'/?27¢/6 when

y' < nt/?27¢/%, Using (6.21), from the claim 2 of Corollary 9.4 with 6, = c.m™/%, we
deduce that

']
2 1/2—2¢ 2
Jy < E,| ——— (y+ S+ (n—k) 1+cb_ ) ;
kz::l ( 27 (n — k)o ( ) ( k)
(6.23) y+Sp<nlPE0 s kS = k:) .

), On—i < 55 and 1 < yf/iw;, we obtain

Taking into account that \/— T (1 + =

nE

2

(6.24) i< = (1 - n€/3> By + 1/2+€E .

Using Lemma 6.1 and Lemma 6.3, we get the following upper bound,

2V (z,y)
\V2Tno

Lower bound of Jy. In the same way as for the upper bound of J;, with ¢y =
1/2—2¢ 1/2—2¢
Yy+5S,e0 — (n — 1/5/6) > 0 on the event {(n — 1/5/6) <Y+ S e/}, we have

(6.25) Ji

N

(14 0(1)).

2
Jy = 7% <1 - %) E, (y'_ ; (n - /{5)1/2_25 <y-+ SVZ/G < n1/2—e/67

(6.26) my > vl0, vl < [0t )
o=

_ /RIP):L" (Zn—k) ]P)x (Xk € dl’,, Ty > k’ VTEL/G - k) ’
k=1
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1/2—2¢ o
Using the fact that —y’ > 0 on {(n — 1/5/6) >y + Sug/s}, we obtain in a same
way as for the upper bound of Jyp,
2 2 1229t Sv 1-¢
a2 V2mno (1 n‘f/G) Ez = \/27maEx (n ni/2—e ’ Ty > Vs Va S {n D
__2 g Cpe(1+y + [z + 2))P
V2mno nl/2+e

2 c c cpe(l+y+|z))(1 + [z])P?
2 rno (1 na/G) By — nl/2+e by - %E?’ - nl/2+e
Consequently, using the results of Lemma 6.3, Lemma 6.1 and Lemma 6.4 we conclude
that

2V (z,y)

(6.27) Jy =
2mno

(1—0(1)).

Coupling the obtained lower bound with the upper bound in (6.25) we obtain J4 ~

i}/iy With the decomposition of J5 in (6.20) and the bound of J3 in (6.22) we get

Jy ~ i}/(iy Finally, the claim 2 of Theorem 2.2 follows from (6.16), (6.17), (6.18)

and (6.19).

6.3. Proof of the claim 1 of Theorem 2.2. All the bounds necessary are obtained
in the proofs of the previous section 6.2. We highlight how to gather it. By (6.16),
(6.17), (6.18) and (6.20), we have,

(1 + |=")

Jy+ I+ Jy.
/n +J1+Jd3+ Js

P, (1, >n) <cpe

Then, by (6.19), (6.22), and (6.24),

(1+y+WDﬂ+Mﬂ”1+CE
Vn N4D
Now, by Lemma 6.1, (6.3) and (6.15),

P, (1, >n) <cpe

1+y+|z))! e
w + (E21 + E22) .

Vi Vm

Finally, using (6.4), (6.5) and Lemmas 5.1 and 5.5 we have,

P, (1, >n) < cpe

c. _ 1+y+ |z’
P, (1, > n) < NG (z —E, (z+MTy; 7, < VIO A [nl 5])) +cp,a—( ?i/ﬁ l2)
Ce (L+y+[z)
S \/E]Ex( n|) + e N
p
<0ﬂ+y+WD'

V(D
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6.4. Proof of Corollary 2.3. By the Fubini theorem, for any 1/2 > p > 0,

B () = [ By > ) per s = 3 By > ) (5 + 17— R).

k=0

Using Theorem 2.2, the sum 7% 25— is finite if and only if 1/2 —p > 0.
g k=1 f1+1/2—p

7. ASYMPTOTIC FOR CONDITIONED MARKOV WALK

In this section we prove Theorem 2.4. We will deduce the asymptotic of the Markov
walk (y + Sy),-, conditioned to stay positive from the corresponding result for the
Brownian motion given by Proposition 9.3. As in Section 6, we will use the functional
approximation of Proposition 9.5. We will refer frequently to Section 6 in order to
shorten the exposition.

Proof of Theorem 2.4. Introducing v5/% = v, + {ns/ 6} and taking into account
Condition 2, we have

P, (y—l—Sn <tyn, 1, >n, /0> [nl_e])

Px(y+5n<t\/ﬁ‘7y>n):

P, (1, > n)
=1
P (y+Su <ty 7y >n, w0 < [n'))
(7.1) +
P, (1, > n)
=:Lo
Bound of Ly. Using Lemma 4.1 and Theorem 2.2,
Py (vn > 2 1+ |z)?
(72> Ll < ( Ce ) < Cpﬁ( + |LL’D —5 0.

B (ry > 1) nE B, (r, > ) noie
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Bound of Ly. As in Section 6, setting Aj, = {max ’S[tk] — aBtk‘ < kY2 25} by the

o<1
Markov property,
P, (1, > n) Lo
[ 1— 5
Z / (Y + Sk <tV Ty > 1=k, D) By (X € da?,
RXR

y+5k€dy',7‘y>k,l/f/6:k)

=Py (1y>n)L3

]
(73) + % /RR By (yf + Suc < 0/, 7y > m— ke, Auy) Py (X € da,
xR}

k=1
y+Sedy, y+ Sp >0 sk v/S = k)

=Pz (1y>n)Ly

[n' ]
Z/RX]R (y + Sk <tVn, Ty >n— k,An_k)Pm(Xkedx”

k=1
y+Sk6dy',y+5k<nl/2_e/6,7y>k:,VfL/sz‘).

=Py (ty>n)Ls
Bound of Ls. Using the bound of J; in (6.19) and Theorem 2.2,
S oty £l [z

7.4 L3 < < .
(7.4) PSP, (1y >n) nl/?+eP, (1, > n) . 0
Bound of Ly. Using the bound of J3 in (6.22) and Theorem 2.2, we have
J3
7.5 Ly < ———— =0(1).
(7.5) 'SP, (1, > n) o(1)

Upper bound of Ls. Define t, =t + =5 and v, =y + (n— k)Y/>7%*. By
Proposition 9.3,

P, (y'+5n_k<t\/ﬁ,7y/>n—k: An—k)
gIP’(er—i-aBnk tiv/n, 7'/ >n—k:)

1 tyvm G y+>2 (s+v/)?
— —/ e_2(n7k:)<72 _e_Z(nfk)oz ds
2r(n — k)o 70
Note that 3/, /\/n < —25 when y < n'/27%/% and that for any k < [n'~%] we have
— 22 < n—k < n. Using these remarks with the fact that |sh(z) — 2| < %3 sh(z),

we obtain after some calculations that

2'3/{,_ Ct,s —i
P, (y + Sk <t/n, 1y >n— k;,An_k)g\/%g <1+n€/3> (1—e 202).
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Consequently, using the same arguments as in the proof of Theorem 2.2 in Section 6
(see the developments from (6.23) to (6.25)), we obtain

+ 2V (z,y)
) ®; (¢ V2mnoP, (1y > n)

(7.6) L (1+ (1+0(1)) = (1) (1 +0(1)) ,

na/3
+2
with @7 (t) =1 —e 2.2,
Lower bound of Ls. In the same way as for the upper bound, with ¢ =4 — (n —
k)22 and t_ =t — W’ we have

Px (Ty > n)L5

[15
Z / y +0B,_ <t_v/n,T >n—k)IP)x(y+Sn_k€dy',

(n—k)Y?7% <y + 5, <nt/>e/5, T, >k, l/f/G = k:)

—Z/IP) (Xkedx T, >k, VE/G—]{?)

Using Lemma 9.3 with 3, which is positive when (n — k)Y/27% < ¢/ < n'/27¢/6 we
obtain after calculation that

2 )
By + 0By <tV T >n—k)>\/;__7w(1—;z’/3)@j(t).

Copying the proof of the bound of J; in (6.19) and using the same arguments as in
the proof of Theorem 2.2 in Section 6 (see the developments from (6.26) to (6.27)),
we get

2V (x,y)
V2rnoP, (1, > n)
Coupling this with (7.6) we obtain that

Ly =®1(t) (1+0(1)).
Inserting this and (7.4) and (7.5) into (7.3), we deduce that Lo e ®F(t). By (7.1)
and (7.2), we finally have

Pm(y+5n<t\/ﬁ‘ry>n) — BI(t).

n—-4o0o

Ly > ®7(t) (1—o(1) = & (t) (1 - o(1)).

Changing t into to, this concludes the proof.

8. THE CASE OF NON-POSITIVE INITIAL POINT

In this section, we prove Theorem 2.5. All over this section we assume either
Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.

Lemma 8.1. For any (x,y) € 2™, the random variable M, is integrable and the
function V(x,y) = —E, (MTy), is well defined on 9.
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Proof. If E(a) > 0, by the Markov inequality, with z = y + pz,

Ex(z+Mn;Ty>n):/ E, (y +px' + My_1; 70 >n—1)
RXR*
xP,(X;edd,y+S1edy,7,>1).
Since y + 51 > 0 on {7, > 1}, by Lemma 4.4,
B, (24 My 7y >n) < 6B, (L+y+ S+ | Xa)) L+ X )P 57, > 1)
< Es (14 1X1])")
(8.1) <o (L+ o))"

Moreover

E, (|M

ST |Z|+Z/ o (Y +p2' + My_q| 57, =k—1)

><IP>x(X16dx',y+51€dy’,7y>1)
E, (|M] ;7 =1).

Since y + 51 > 0 on {7, > 1}, by Lemma 4.2,
E, (

M,,

§Ty<n) <C(1+|y|+‘$‘)—Ew(2+Mw;Tygn)
c(1+ |yl + |z]) + Eu (24 My 7y > n).

Using (8.1), we deduce that E, ( Ty < n) < ¢ (14 |y| + |z|"). Consequently,

by the Lebesgue monotone convergence theorem, the assertion is proved when E(a) >
0. When E(a) < 0, the assertion follows from Lemma 5.5. O

Lemma 8.2. The function V is Q. -harmonic and positive on 2 = 2~ UR x R%.

Proof. Note that by Corollary 9.7, we have P,(7, < +00) = 1, for any z € R and
y € R. Therefore, by the Lebesgue dominated convergence theorem,

V(z,y) = —E, (MTy) =z _nll—>r20Ex (z+MTy Ty < n) = nh_)noloEx (z4+M,; 1, >n),
for any (z,y) € 2. The fact that V is Q,-harmonic on Z can be proved in the
same way as in the proof of Proposition 5.4. Therefore, for any (z,y) € 2,

(82) V(x,y) :E:c (V(X1>y+51); Ty > 1)

By the claim 2 of Proposition 5.4 and the claim 3 of Lemma 5.11, on {7, > 1}, the
random variable V(X;,y + S1) is positive almost surely. Since by the definition of
2, we have P, (1, > 1) > 0, we conclude that V(z,y) > 0 for any (z,y) € 2-. O

Lemma 8.3.
(1) For any (z,y) €

VB, (1, > n) < e (1+ [2])7
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(2) For any (z,y) € 9,

2V(z,y)
]P)x (Ty > n) n—}’\—lJ—OO W

Proof. By the Markov property,

\/ﬁpx(Ty>n): RxR \/E]P)x/(Ty/>7’L—1)]P)J:(X1€d$,>y+51€dy,’Ty>1)'
xRS

By Theorem 2.2, for any y' > 0, we have \/nP, (1, >n —1) < ¢, (1 +y + [2])" and
moreover, for any y < 0,

E,(c, L+y+Si+|Xa])" ;7 >1) <, (1+|z])".

Then, we obtain the claim 1 and by the Lebesgue dominated convergence theorem
and the claim 2 of Theorem 2.2,

2V(X1,y+ S1)
s Ty > 1.
\ 210 Ty

Using (8.2) we conclude the proof. O

lim /nP; (1, > n) = E, <

Lemma 8.4. For any (z,y) € 2~ andt >0,

y+ 5y
P, <t
<a\/ﬁ

Proof. Similarly as in the proof of Lemma 8.3, we write,

y+ Sy
Px< o <t Ty>n>

1 y/+Sn—1
== P (22 <ty >n—1
P, (1, > n) /Rij; <a\/n —1 v )
xP, (X, edd,y+S1€dy, 7, >1)

1 y/_l_Sn—l
= Py|———<t|7y>n—1 P (ry, >n—1
VP, (1, > n) /RxRi; (J\/n—l E )ﬁ (ry >n—1)
xP,(X;edd,y+ S edy, 7, >1).

Since, by Lemma 8.3, v/nPy (1, >n —1) < ¢, (1+ |2'])", applying the Lebesgue
dominated convergence theorem, Theorem 2.2, Theorem 2.4 and Lemma 8.3, we

have
: Y+ Sn
JL%PQE( o/n St Ty>”>
\/27‘(‘0 2 2V($, y/)
T W(ny) 1—e 7 )22 )p (X, edd, y+ S edy, 7, > 1).
2V(x,y)/RxRi< ¢ 2) o (Xpeda',y+S1edy, 7, )

Using (8.2) concludes the proof. O
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9. APPENDIX

9.1. Proof of the fact Condition 3bis implies Condition 3. We suppose that
Condition 3bis holds true. Then, there exists 6 > 0 such that

(9.1) P((a,b) € [-1+4,0] x [0,C]) > 0
and
(9.2) P((a,b) € 10,1 —46] x [4,C]) > 0.

For any = € R, set C, = max (|:c| : %) and

A ={0<X1<C,, 6< X< Cx,, ..., 6< X, < Cx, )

Using (9.1) for x < 0 and (9.2) for z > 0, we obtain that P, (2;) > 0. By the Markov
property, we deduce that P, (,) > 0. Moreover, it is easy to see that, on 7,, we
have y + Sy = y+ ko > 0, for all k£ < n, and |X,,| < C,. Taking n = ny large enough,
we conclude that Condition 3 holds under Condition 3bis.

9.2. Convergence of recursively bounded monotonic sequences. The follow-
ing lemmas give sufficient conditions for a monotonic sequence to be bounded.

Lemma 9.1. Let (u,)n>1 be a non-decreasing sequence of reals such that there exist
e €(0,1) and o, B,7,0 = 0 such that for any n > 2,

3

(9.3) Up < (1 + %) Uppi—] + ﬁe + fye—M )
n n

Then, for any n > 2 and any integer ny € {2,...,n},

<Oé 26282 ) 5 25252 exp <—5Z—£)
Up,

U, L eXp | — = +
SO e ng2e —1 ] oo()
Ca Ca e e
s <1+ :>unf+ﬁ :—0—76 R
"y ny

In particular, choosing ny constant, it follows that (uy,)n>1 s bounded.
Proof. Fix n > 2 and ny € {2,...,n} and consider for all j > 0,
n; = [n(l—a)j] ‘

The sequence (n;);>o starts at ng = n, is non-increasing and converge to 1. So there
exists m = m(n;) € N such that n,, > ns > nyei. Since n1=/2 > n;/2 > 1, for
all j € {0,...,m}, we have

(1-¢)]

2

(9.4) n= >, >n0- 1>
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Using (9.3) and the fact that (u,),>2 is non-decreasing, we write for all j =0,...,m,

u”] = (1_'_ )un3+1+£+76 o5 < <1+ ) (unj+1+§+76_5n§>-
J J

n; J
[terating, we obtain that

tn < A (tn,sy + BBm + va) ,

where A,, ] -0 (1 + %), B, = ;n’ 07 ; and C), ;n=0 e 9 Since N1 < Nf
and since (un)n;Q is non-decreasing,
(9.5) tn < A (tn,, + BBy +7Cn) -
Now, we bound A,, as follows,
(9.6) Ap < ]‘[ =B
Denoting 7; = n_(l_e)j‘e, using (9.4), We have By, < 2737 g n;. Moreover, for all
j < m, we note that 77;711 = n52(1 57 < n} > < 2? <1 and S0
m 1 1

(9.7)

S 57m ) S pe gy S PEEEE

Therefore, B,, is bounded as follows:

26 1\ 1 299
() <

(9.8) B <> |5 52 1
ng = \2° n52=° — 1

Using (9.4) and (9.7), we have

m m ) 5252(m—j)
Z Zexp (—nfT) .

Since for any u > 0 and k € N, we have (1 +u)* > 1+ ku, it follows that

snf
s m __f
e =
(99) g p(=0k (27~ 1)) < PR
reals Putting together (9.6), (9.8) and (9.9) into (9.5), proves the lemma. O

Lemma 9.2. Let (u,)n>1 be a non-increasing sequence of reals such that there exist
e €(0,1) and B = 0 such that for any n > 2,

Uy 2 Upt—e] — ﬁ
n€
Then, for any n > 2 and any integer ny € {2,...,n},
2°2°"
Uy = U —ﬁizu —Ce

Moong2f -1 Y ey
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In particular, choosing ny constant, it follows that (u,)n>1 is bounded.

Proof. For the proof it is enough to use Lemma 9.1 with u,, replaced by —u,,. OJ

9.3. Results on the Brownian case and strong approximation. Consider the
standard Brownian motion (B;),., living on the probability space (£2, F,IP). Define
the exit time

(9.10) " =inf{t >0, y+ 0B, < 0},
where o > 0. The following assertions are due to Levy [19].

Proposition 9.3. Foranyy >0, 0<a<bandn > 1,

2 Yy 52
P(r >n) = / e moZ ds.
( Y ) V2mno Jo

and

1 b (s—y)? (s+v)?
P (Tbm >n,y+oB, €la b]) = / <e_ 2mo? — @ 2no? > ds.
Y ’ ’ V2mno Ja

From this one can deduce easily:
Corollary 9.4.
(1) For anyy > 0,
P (7‘5’” > n) < ci.

vn

(2) For any sequence of real numbers (0,),>0 such that 0, - 0,

sup (M — 1) = 0(62).

2y

To transfer the results from the Brownian motion to the Markov walk, we use a
functional approximation given in Theorem 3.3 from Grama, Le Page and Peigné
[16]. We have to construct an adapted Banach space B and verify the hypotheses
M1 — M5 in [16] which are necessary to apply Theorem 3.3. Fix p € (2,«) and
let €, 0, ¢y and 0 be positive numbers such that ¢o + ¢ < 0 < 2¢) < a — ¢ and
2 <2420 < (242)0 < p. Define the Banach space B = L. . ¢ as the set of
continuous function f from R to C such that || f|| = |f|, + [f]... < +oo, where

£€,C0

i) . /@) - £
Ho=sr iy Voo el =T (L ) (1 )

For example, one can take ¢ < min(f’%, %), co=1,0 =1+2¢ and 2+2 = 1. Using
the techniques from [17] one can verify that, under Condition 1, the Banach space
B and the perturbed operator P, f(z) = [ f(2')e™ P(x,da’), satisfy Hypotheses

M1 — M5 in [16]. The hypothesis M1 is verified straightforwardly. In particular the
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norm of the Dirac measure ¢, is bounded: |[|0,5.,5 < 1+ |z|°, for each z € R. We
refer to Proposition 4 and Corollary 3 of [17] for M2 — M3. For M4, we have

po(x) = supEY > (1X,[2) < o5 (1+ |a]).
k>1

Hypothesis M5 follows from Proposition 1 of [17] and Lemma 3.1.

With these considerations, the C'(z) = C1(1 + ps(z) + ||62]])**% in Theorem 3.3
established in [16] is less than ¢,(1+4|x|)?, where C} is a constant. Therefore Theorem
3.3 can be reformulated in the case of the stochastic recursion as follows.

Proposition 9.5. Assume Condition 1. For any p € (2,a), there exists g > 0
such that for any ¢ € (0,g0], x € R and n > 1, without loss of generality (on an
extension of the initial probability space) one can reconstruct the sequence (Sy)n>o0
with a continuous time Brownian motion (By)cr, , such that

c
P, (sup ’S[m} — aBm‘ > n1/2_5> < %(1 + [z])”,

0<i<1

where o is given by (2.2).

This proposition plays the crucial role in the proof of Theorem 2.2 and Theorem
2.4 (cf. Sections 6 and 7). The following straightforward consequence of Proposition

w2
9.5 is used in the proof of Lemma 4.1 in Section 4. Set ®(t) = \/%—W [t e T du.

Corollary 9.6. Assume Condition 1. For any p € (2,«), there exists eg > 0 such
that for any € € (0,e0], z € R andn > 1,

(<)o)

Proof. Let € € (0,1/2) and A,, = { sup ‘S[m] — aBm‘ > nl/z_a} . For any z € R and

sup

C
< 2= (14 |=))P.
ueR ne

0<t<1
any u € R,

— K < < _

where the last probability does not exceed ®(%) + c¢.n™°. Using Proposition 9.5, we
conclude that there exists 9 > 0 such that for any ¢ € (0,¢0] and z € R,

S, U c
P, =<ul<®(=)+211 P
(Fr<u)<o(t)+ 20

In the same way we obtain a lower bound and the assertion follows. ([

9.4. Finiteness of the exit times.

Corollary 9.7. Assume Condition 1. For any x € R and y € R,
P, (1, < 400) =1 and P, (T, < +o0) =1.
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Proof. Let y > 0and e € (0,1/2). Set A,, = {supogt<1 ‘S[m} — aBtn‘ < nl/z_a} . Using
Proposition 9.5, there exists 9 > 0 such that for any € € (0,0}, x € R and y > 0,

P, (ry > n) < Py (7, > n, Ay) + Py (4,)
C
<P(r™, .. > < (1 P,
(rysame > ) + 22 (14 [a])

Since, by the claim 1 of Corollary 9.4, P (T;Tnl/z,s > n) < cm\;% < (T+y)5,

taking the limit as n — 400 we conclude that P, (7, < +00) = 1.
Let D,, = {maxlgkgn |S) — My| < nl/z_e}. Obviously

P, (T, > n) <Py (T, > n, Ay, Dy) + Py (4,) + Py (D)

m Cy —
<P (Té’ﬂnl/g,g > n) + nL; (1+ |z|)? + P, (1?3§|pXk| > nt/? 5) .

Using the claim 1 of Corollary 9.4, the Markov inequality and Lemma 3.1, for any
e € (0,g0], z € Rand y > 0,

1+ |z|?

p—2
o= —pe

c c

P (T, > 1) < (L+y) + 2 (14 o))" 4+,
Choosing ¢ small enough and taking the limit as n — +o00 we conclude the second
assertion when y > 0.

When y < 0, the results follow since the applications y — 7, and y — T, are
non-decreasing. O
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