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LIMIT THEOREMS FOR AFFINE MARKOV WALKS

CONDITIONED TO STAY POSITIVE

ION GRAMA, RONAN LAUVERGNAT, AND ÉMILE LE PAGE

Abstract. Consider the real Markov walk Sn = X1 + · · · + Xn with increments
(Xn)

n>1
defined by a stochastic recursion starting at X0 = x. For a starting point

y > 0 denote by τy the exit time of the process (y + Sn)
n>1

from the positive part
of the real line. We investigate the asymptotic behaviour of the probability of the
event τy > n and of the conditional law of y + Sn given τy > n as n → +∞.

1. Introduction

Assume that the Markov chain (Xn)n>0 is defined by the stochastic recursion

(1.1) X0 = x ∈ R, Xn+1 = an+1Xn + bn+1, n > 0,

where (ai, bi)i>1 is a sequence of i.i.d. real random pairs satisfying E(|a1|α) = 1 for
some α > 2. Consider the Markov walk Sn =

∑n
k=1 Xk, n > 1. Under a set of

conditions ensuring the existence of the spectral gap of the transition operator of the
Markov chain (Xn)n>0, it was established in Guivarc’h and Le Page [17] that there
exist constants µ and σ > 0 such that, for any t ∈ R,

(1.2) Px

(

Sn − nµ

σ
√

n
6 t

)

→ Φ (t) as n → +∞,

where Φ is the standard normal distribution function and Px is the probability mea-
sure generated by (Xn)n>0 starting at X0 = x. There are easy expressions of µ and
σ in terms of law of the pair (a, b): in particular µ = Eb

1−Ea
.

For a starting point y > 0, define the first time when the affine Markov walk
(y + Sn)n>1 becomes non-positive by setting

τy = min{k > 1, y + Sk 6 0}.

In this paper we complete upon the results in [17] by determining the asymptotic
of the probability Px (τy > n) and proving a conditional version of the limit theorem
(1.2) for the sum y + Sn, given the event {τy > n} in the case when µ = 0. The
main challenge in obtaining these asymptotics is to prove the existence of a positive
harmonic function pertaining to the associated Markov chain (Xn, y + Sn)n>0. A
positive harmonic function, say V , is defined as a positive solution of the equation
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Q+V = V , where Q+ is the restriction on R×R∗
+ of the Markov transition kernel Q

of the chain (Xn, y + Sn)n>0.
From the more general results of the paper it follows that, under the same hypothe-

ses that ensure the CLT (see Condition 1 in Section 2), if the pair (a, b) is such that
P((a, b) ∈ (0, 1) × (0, C]) > 0 and P((a, b) ∈ (−1, 0) × (0, C]) > 0, for some C > 0,
then

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

and

Px

(

y + Sn

σ
√

n
6 t

∣
∣
∣
∣
∣
τy > n

)

−→
n→+∞

Φ+(t),

where Φ+(t) = 1 − e−t2/2 is the Rayleigh distribution function. In particular, the
above mentioned results hold true if a and b are independent and a is such that
P(a ∈ (0, 1)) > 0 and P(a ∈ (−1, 0)) > 0. Less restrictive assumptions on the pair
(a, b) are formulated in our Section 2.

The above mentioned results are in line with those already known in the literature
for random walks with independent increments conditioned to stay in limited areas.
We refer the reader to Iglehart [18], Bolthausen [2], Doney [11], Bertoin and Doney [1],
Borovkov [4, 3], Caravenna [5], Eichelsbacher and Köning [12], Garbit [13], Denisov,
Vatutin and Wachtel [7], Denisov and Wachtel [8, 10]. More general walks with incre-
ments forming a Markov chain have been considered by Presman [20, 21], Varapoulos
[22, 23], Dembo [6], Denisov and Wachtel [9] or Grama, Le Page and Peigné [15]. In
[20, 21] the case of sums of lattice random variables defined on finite regular Markov
chains has been considered. Varapoulos [22, 23] studied Markov chains with bounded
increments and obtained lower and upper bounds for the probabilities of the exit time
from cones. Some studies take advantage of additional properties: for instance in [9]
the Markov walk has a special integrated structure; in [15] the moments of Xn are
bounded by some constants not depending on the initial condition. However, to the
best of our knowledge, the asymptotic behaviour of the probability Px (τy > n) in the
case of the stochastic recursion (1.1) has not yet been considered in the literature.

Note that the Wiener-Hopf factorization, which usually is employed in the case
of independent random variables, cannot be applied in a straightforward manner for
Markov chains. Instead, to study the case of the stochastic recursion, we rely upon
the developments in [9], [10] and [15]. The main idea of the paper is given below. The
existence of the positive harmonic function V is linked to the construction of a martin-
gale approximation for the Markov walk (Sn)n>1. While the harmonicity is inherently
related to the martingale properties, the difficulty is to show that the approximating
martingale is integrable at the exit time of the Markov walk (y + Sn)n>1. In contrast
to [10] and [15], our proof of the existence of V employs different techniques accord-
ing to positivity or not of the values of E(a1). The constructed harmonic function
allows to deduce the properties of the exit time and the conditional distribution of
the Markov walk from those of the Brownian motion using a strong approximation
result for Markov chains from Grama, Le Page and Peigné [16]. The dependence of
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the constants on the initial state X0 = x of the Markov chain (Xn)n>0 established
there plays the essential role in our proof.

The technical steps of the proofs are as follows. We first deal with the case when
the starting point of the Markov walk (y + Sn)n60 is large: y > n1/2−ε, for some
ε > 0. When y > 0 is arbitrary, the law of iterated logarithm ensures that the
sequence (|y + Sk|)16k6n1−ε will cross the level n1/2−ε with high probability. Then,
by the Markov property, we are able to reduce the problem to a Markov walk with a
large starting point y′ = y +Sνn, where νn is the first time when the sequence |y + Sk|
exceeds the level n1/2−ε. The major difficulty, compared to [10] and [15], is that, for
the affine model under consideration, the sequence (Xνn)n>1 is not bounded in L1.
To overcome this we need a control of the moments of Xn in function of the initial
state X0 = x and the lag n.

We end this section by agreeing upon some basic notations. As from now and for
the rest of this paper the symbols c, cα, cα,β, . . . denote positive constants depending
only on their indices. All these constants are likely to change their values every
redoccurrence. The indicator of an event A is denoted by 1A. For any bounded
measurable function f on X = Rd, d = 1, 2, random variable X in X and event A,
the integral

∫

X
f(x)P(X ∈ dx, A) means the expectation E (f(X); A) = E (f(X)1A).

2. Notations and results

Assume that on the probability space (Ω, F ,P) we are given a sequence of inde-
pendent real random pairs (ai, bi), i > 1, of the same law as the generic random pair
(a, b). Denote by E the expectation pertaining to P. Consider the Markov chain
(Xn)n>0 defined by the affine transformations

Xn+1 = an+1Xn + bn+1, n > 0,

where X0 = x ∈ R is a starting point. The partial sum process (Sn)n>0 defined by
Sn =

∑n
i=1 Xi for all n > 1 and S0 = 0 will be called in the sequel affine Markov

walk. Note that (Sn)n>0 itself is not a Markov chain, but the pair (Xn, Sn)n>0 forms
a Markov chain.

For any x ∈ R, denote by P(x, ·) the transition probability of (Xn)n>0. Introduce
the transition operator

Pf(x) =
∫

R

f(x′)P(x, dx′),

which is defined for any real bounded measurable function f on R. Denote by Px

and Ex the probability and the corresponding expectation generated by the finite
dimensional distributions of (Xn)n>0 starting at X0 = x. Clearly, for any x ∈ R and
n > 1, we have Pnf (x) = Ex (f (Xn)).

We make use of the following condition which ensures that the affine Markov walk
satisfies the central limit theorem (1.2) (c.f. [17]):

Condition 1. The pair (a, b) is such that:

(1) There exists a constant α > 2 such that E (|a|α) < 1 and E (|b|α) < +∞.
(2) The random variable b is non-zero with positive probability, P(b 6= 0) > 0, and

centred, E(b) = 0.
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Note that Condition 1 is weaker than the conditions required in [17] in the special
case α > 2. Nevertheless, using the same techniques as in [17] it can be shown that,
under Condition 1, the Markov chain (Xn)n>0 has a unique invariant measure m and
its partial sum Sn satisfies the central limit theorem (1.2) with

(2.1) µ =
∫

R

xm(dx) =
E(b)

1 − E(a)
= 0

and

(2.2) σ2 =
∫

R

x2m(dx) + 2
∞∑

k=1

∫

R

xEx(Xk)m(dx) =
E(b2)

1 − E(a2)

1 + E(a)

1 − E(a)
> 0.

Moreover, it is easy to see that under Condition 1 the Markov chain (Xn)n>0 has no
fixed point: P (ax + b = x) < 1, for any x ∈ R. Below we make use of a slightly
refined result which gives the rate of convergence in the central limit theorem for Sn

with an explicit dependence of the constants on the initial value X0 = x stated in
Section 9.3.

For any y ∈ R consider the affine Markov walk (y + Sn)n>0 starting at y and define
its exit time

τy = min{k > 1, y + Sk 6 0}.

Corollary 9.7 implies the finiteness of the stopping time τy: under Condition 1, it
holds Px (τy < +∞) = 1, for any x ∈ R and y ∈ R.

The asymptotic behaviour of the probability P (τy > n) is determined by the har-
monic function which we proceed to introduce. For any (x, y) ∈ R × R, denote by
Q(x, y, ·) the transition probability of the Markov chain (Xn, y + Sn)n>0. The restric-
tion of the measure Q(x, y, ·) on R × R

∗
+ is defined by

Q+(x, y, B) = Q(x, y, B)

for any measurable set B on R × R∗
+ and for any (x, y) ∈ R × R. Let D be a

measurable set in R × R containing R × R∗
+. For any measurable ϕ : D → R set

Q+ϕ(x, y) =
∫

R×R∗
+

ϕ(x′, y′)Q+(x, y, dx′ × dy′). A positive Q+-harmonic function on

D is any function V : D → R which satisfies

Q+V (x, y) = V (x, y) > 0, for any (x, y) ∈ D .

To ensure the existence of a positive harmonic function we need additional assump-
tions:

Condition 2. For all x ∈ R and y > 0,

Px (τy > 1) = P (ax + b > −y) > 0.

Condition 3. For any x ∈ R and y > 0, there exists p0 ∈ (2, α) such that for any
constant c > 0, there exists n0 > 1 such that,

Px ((Xn0, y + Sn0) ∈ Kp0,c , τy > n0) > 0,

where
Kp0,c =

{

(x, y) ∈ R × R
∗
+, y > c (1 + |x|p0)

}

.
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Obviously Condition 2 is equivalent to Px (X1 > −y) = Px (τy > 1) > 0 for any
x ∈ R and y > 0, which, in turn is equivalent to the fact that there exists n0 > 1
such that Px (τy > n0) > 0, for any x ∈ R and y > 0. Therefore Condition 3 implies
Condition 2. As a by-product, under either Condition 2 or Condition 3, the event
{τy > n} is not empty.

The existence of a harmonic function is guaranteed by the following theorem. For
any x ∈ R consider the Px-martingale (Mn, Fn)n>0 defined by

(2.3) Mn = Sn +
E(a)

1 − E(a)
(Xn − x) , n > 0,

with (Fn)n>0 the natural filtration (we refer to Section 3 for details).

Theorem 2.1. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.

(1) For any x ∈ R and y > 0, the random variable Mτy is integrable,

Ex

(∣
∣
∣Mτy

∣
∣
∣

)

< +∞

and the function

V (x, y) = −Ex

(

Mτy

)

, x ∈ R, y > 0,

is well defined on R × R
∗
+.

(2) The function V is positive and Q+-harmonic on R × R∗
+: for any x ∈ R and

y > 0,

Q+V (x, y) = V (x, y).

(3) Moreover, the function V has the following properties:
(a) For any x ∈ R, the function V (x, .) is non-decreasing.
(b) For any δ > 0, p ∈ (2, α), x ∈ R and y > 0,

V (x, y) > max (0, (1 − δ)y − cp,δ (1 + |x|p)) ,

V (x, y) 6
(

1 + δ
(

1 + |x|p−1
))

y + cp,δ (1 + |x|p) .

(c) For any x ∈ R, it holds lim
y→+∞

V (x,y)
y

= 1.

Using the harmonic function from the previous theorem, we obtain the asymptotic
of the tail probability of the exit time τy.

Theorem 2.2. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.

(1) For any p ∈ (2, α), x ∈ R and y > 0,
√

nPx (τy > n) 6 cp (1 + y + |x|)p .

(2) For any x ∈ R and y > 0,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.
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Corollary 2.3. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and
3. For any p ∈ (2, α), x ∈ R, y > 0 and γ ∈ (0, 1/2),

Ex

(

τγ
y

)

6 cp,γ(1 + y + |x|)p and Ex

(

τ 1/2
y

)

= +∞.

Moreover, we prove that the Markov walk (y + Sn)n>0 conditioned to stay positive
satisfies the following limit theorem.

Theorem 2.4. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.
For any x ∈ R, y > 0 and t > 0,

Px

(

y + Sn

σ
√

n
6 t

∣
∣
∣
∣
∣
τy > n

)

−→
n→+∞

Φ+(t),

where Φ+(t) = 1 − e− t2

2 is the Rayleigh distribution function.

Theorems 2.1, 2.2, 2.4 can be extended to some non-positive initial points y. Set

D
− := {(x, y) ∈ R × R−, Px (τy > 1) = P (ax + b > −y) > 0} .

Theorem 2.5. Assume either Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.

(1) For any (x, y) ∈ D−, the random variable Mτy is integrable and the function

V (x, y) = −Ex

(

Mτy

)

, is well defined on D−.

(2) The function V is positive and Q+-harmonic on D = D− ∪ R × R∗
+.

(3) (a) For any (x, y) ∈ D−,
√

nPx (τy > n) 6 cp (1 + |x|)p .

(b) For any (x, y) ∈ D−,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

(4) For any (x, y) ∈ D− and t > 0,

Px

(

y + Sn

σ
√

n
6 t

∣
∣
∣
∣
∣
τy > n

)

−→
n→+∞

Φ+(t).

Below we discuss two more restrictive assumptions which, however, are easier to
verify than Conditions 2 and 3, respectively.

Condition 2bis. The law of the pair (a, b) is such that for all C > 0,

P (b > C |a|) > 0.

Condition 3bis. There exists C > 0 such that,

P ((a, b) ∈ (−1, 0) × (0, C]) > 0 and P ((a, b) ∈ (0, 1) × (0, C]) > 0.

It is straightforward that Condition 2bis implies Condition 2. This follows from
the inequality

P (ax + b > −y) > P (b > C |a|) ,

with C = |x|. The fact that Condition 3bis implies Condition 3 is proved in the
Appendix 9.1.
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Under Condition 1, it is easy to see that Condition 3bis is satisfied, for exam-
ple, when random variables a and b are independent and P (a ∈ (−1, 0)) > 0 and
P (a ∈ (0, 1)) > 0.

Note that, while Condition 3 implies Condition 2, there is no link between Con-
ditions 2bis and 3bis. Indeed, if a and b are independent, a is non-negative and the
support of b contains R+, then Condition 2bis holds true whereas Condition 3bis does
not. At the opposite, if a and b are independent b bounded and support of a equal
to {−1/2} ∪ {1/2} then Condition 3bis holds true whereas Condition 2bis does not.

The outline of the paper is as follows. The martingale approximation (Mn)n>0 of the
Markov walk (Sn)n>0 and some of its properties are given in Section 3. In Section 4 we
prove that the expectation of the killed Markov walk ((y + Sn)1{τy>n})n>0 is bounded
uniformly in n. This allows us to prove the existence of the harmonic function and
establish some of its properties in Section 5. With the help of the harmonic function
and of a strong approximation result for Markov chains we prove Theorems 2.2, 2.4
and 2.5, in Sections 6, 7 and 8 respectively. Section 9 is an appendix where we collect
some results used in the proofs.

3. Martingale approximation

In this section we approximate the Markov walk (Sn)n>0 by a martingale following
Gordin [14]. We precede this construction by a lemma which shows that there is an
exponential decay of the dependence of Xn on the initial state x = X0 as n grows to
infinity. This simple fact will be used repeatedly in the sequel.

Lemma 3.1. For all p ∈ [1, α], x ∈ R, and n > 0,

E
1/p
x (|Xn|p) 6 cp +

(

E
1/p (|a|p)

)n |x| 6 cp(1 + |x|).

Proof. Since Xn =
∑n

k=1

(

bk
∏n

i=k+1 ai

)

+
∏n

i=1 aix, for n > 1, with the conven-

tion
∏n

i=n+1 ai = 1, we have by the Minkowski inequality and the independence of
(ai, bi)i>1,

E
1/p
x (|Xn|p) 6

n∑

k=1

(

E
1/p (|b|p)E1/p (|a|p)

n−k
)

+ E
1/p (|a|p)

n |x| .

The conclusion of the lemma is thus a direct consequence of Condition 1. �

Let Id(x) = x, x ∈ R be the identity function on R. The Poisson equation u−Pu =
Id has a unique solution θ, given by,

θ(x) =
+∞∑

k=0

Pk Id(x) = x +
+∞∑

k=1

Ex (Xk) = x +
+∞∑

k=1

E(a)kx =
x

1 − E(a)
.

Using the function θ, the process (Mn)n>0 defined in (2.3) can be recast as

M0 = 0, Mn =
n∑

k=1

θ (Xk) − Pθ (Xk−1) =
n∑

k=1

Xk − E(a)Xk−1

1 − E(a)
, n > 1.
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Consider the natural filtration (Fn)n>0 with F0 the trivial σ-algebra and Fn the
σ-algebra generated by X1, X2, . . . , Xn. The fact that (Mn, Fn)n>0 is indeed a Px-
martingale, for any x ∈ R, is easily verified by the Markov property: Ex(θ(Xn+1)|Fn) =
Pθ (Xn) , for n > 0.

All over the paper we use the abbreviation

(3.1) ρ =
E(a)

1 − E(a)
.

With this notation, for any x ∈ R and y ∈ R, the Markov walk (y + Sn)n>0 has the
following martingale representation:

(3.2) y + Sn = y + ρx + Mn − ρXn, n > 0.

Define the sequence (X0
n)n>0, by

(3.3) X0
0 = 0 and X0

n =
n∑

k=1

bk

n∏

i=k+1

ai, n > 1,

with the convention
∏n

i=k+1 ai = 1 for k = n. The sequence (X0
n)n>0 corresponds

to the stochastic recursion starting at 0. In the same line, we define M0
0 = 0 and

M0
n =

∑n
k=1

X0
k

−E(a)X0
k−1

1−E(a)
, for all n > 1. It is easy to see that the process (M0

n, Fn)n>0 is

a zero mean Px-martingale which is related to the martingale (Mn)n>0 by the identity

(3.4) Mn = M0
n + ∆nx,

where

∆0 = 0 and ∆n =
n∑

k=1

∏k−1
i=1 ai

1 − E(a)
(ak − E(a)) , n > 1.

The following two lemmas will be used to control Ex(|Mn|p).

Lemma 3.2.

(1) The sequence (∆n)n>0 is a centred martingale.
(2) For all p ∈ [1, α) and n > 0,

E
1/p (|∆n|p) 6 cp.

Proof. The first claim follows from the fact that ∆n is a difference of two martingales.
Using the Minkowski inequality for 1 6 p < α, the independence of (ai)i>1 and
Condition 1 we obtain the second claim. �

Let us introduce the martingale differences:

ξ0
k = M0

k − M0
k−1 =

X0
k − E(a)X0

k−1

1 − E(a)
, k > 1.

Lemma 3.3. For all p ∈ [1, α) and n > 0,

E
1/p
(∣
∣
∣ξ0

n

∣
∣
∣

p)

6 cp and E
1/p
(∣
∣
∣M0

n

∣
∣
∣

p)

6 cp

√
n.
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Proof. For the increments ξ0
n we simply use Lemma 3.1 with x = 0. For the martingale

(M0
n)n>0, the upper bound is obtained by Burkholder inequality: for all 2 < p < α

and all n > 1,

E
1/p
(∣
∣
∣M0

n

∣
∣
∣

p)

6 cpE
1/p





(
n∑

k=1

(

ξ0
k

)2
)p/2



 .

By the Hölder inequality with the exponents u = p/2 > 1 and v = p
p−2

, we obtain

E
1/p
(∣
∣
∣M0

n

∣
∣
∣

p)

6 cpE
1/p





(
n∑

k=1

(

ξ0
k

)2u
) p

2u

n
p

2v



 6 cpn
p−2
2p

(
n∑

k=1

cp

)1/p

= cp

√
n.

This proves the claim when 2 < p < α. When 1 6 p 6 2 the assertion follows
obviously using Jensen inequality. �

Lemma 3.4. For all p ∈ [1, α) and n > 0,

E
1/p
x (|Mn|p) 6 cp

(

|x| +
√

n
)

.

Proof. By the Minkowski inequality and equation (3.4), for all 1 6 p < α, x ∈ R and
n > 1,

E
1/p
x (|Mn|p) 6 E

1/p (|∆n|p) |x| + E
1/p
(∣
∣
∣M0

n

∣
∣
∣

p)

.

Then, by the claim 2 of Lemma 3.2 and Lemma 3.3, the result follows. �

4. Integrability of the killed martingale

The goal of this section is to prepare the background to prove the integrability of
the random variable Mτy , which is crucial for showing the existence of the harmonic
function in Section 5. We use different approaches depending on the sign on E(a):
when E(a) > 0, in Section 4.2 we prove that the expectation of the martingale
(y + ρx + Mn)n>0 killed at τy is uniformly bounded in n, while, when E(a) < 0,
in Section 4.3 we prove that the expectation of the same martingale killed at Ty is
uniformly bounded in n, where Ty is the exit time of the martingale (y + ρx + Mn)n>0.

4.1. Preliminary results. We first state a result concerning the first time when
the process (|y + Sn|)n>1 (respectively (|y + ρx + Mn|)n>1) crosses the level n1/2−2ε.
Introduce the following stopping times: for any n > 1, ε ∈ (0, 1/2), x ∈ R and y ∈ R,

νn = νn,ε,y = min
{

k > 1, |y + Sk| > n1/2−ε
}

and
vn = vn,ε,x,y = min

{

k > 1, |y + ρx + Mk| > n1/2−ε
}

.

Lemma 4.1. Let p ∈ (2, α). There exists ε0 > 0 such that for any ε ∈ (0, ε0], δ > 0,
x ∈ R, y > 0 and n > 1,

Px

(

νn > δn1−ε
)

6
cp,ε,δ

np/2−pε
+ e−cp,ε,δn1−2ε |x|p

and
Px

(

vn > δn1−ε
)

6
cp,ε,δ

np/2−pε
+ e−cp,ε,δn1−2ε |x|p .
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Proof. With ε < min(1/2, ε0), where ε0 is defined in Corollary 9.6 and b > 0 a
constant to be chosen below, let l = [b2δn1−2ε], K = [nε/b2] and for any m > 1,
x ∈ R and y ∈ R, with z = y + ρx,

Am(x, y) =
{

max
16k6m

|z + Mkl| 6 (1 + 2 |ρ|)n1/2−ε
}

.

Note that by the martingale representation (3.2), we have for any k > 2, |z + Mk| =
|y + Sk + ρ(y + Sk) − ρ(y + Sk−1)| 6 (1+|ρ|) |y + Sk|+|ρ| |y + Sk−1|. Then, choosing
n large enough to have l > 2,

Px

(

νn > δn1−ε
)

= Px

(

max
16k6[δn1−ε]

|y + Sk| 6 n1/2−ε

)

6 Px

(

max
26k6[δn1−ε]

|z + Mk| 6 (1 + 2 |ρ|)n1/2−ε

)

6 Px (AK(x, y)) .

Moreover, we have also,

Px

(

vn > δn1−ε
)

6 Px (AK(x, y)) .

Since (Xn, y + Sn)n>0 is a Markov chain,

Px (AK(x, y)) =
∫

R2
Px′ (A1(x′, y′))

× Px

(

X(K−1)l ∈ dx′ , y + S(K−1)l ∈ dy′ , AK−1(x, y)
)

.(4.1)

We use the decomposition (3.4) to write that, with c = 1 + 2 |ρ|,

Px′ (A1(x′, y′)) 6 Px′

(∣
∣
∣z′ + M0

l

∣
∣
∣ 6 2cn1/2−ε , |∆lx

′| 6 cn1/2−ε
)

+ Px′

(

|∆lx
′| > cn1/2−ε

)

.

Using (3.2) with x = 0, we have M0
n = S0

n + ρX0
n. By the Markov inequality,

Px′ (A1(x
′, y′)) 6 Px′

(∣
∣
∣z′ + S0

l

∣
∣
∣ 6 3cn1/2−ε , |ρ|

∣
∣
∣X0

l

∣
∣
∣ 6 cn1/2−ε

)

+ Px′

(

|ρ|
∣
∣
∣X0

l

∣
∣
∣ > cn1/2−ε

)

+ cp
E (|∆l|p)

np/2−pε
|x′|p .

Since S0
l does not depend on x′, using Lemma 3.1 and the claim 2 of Lemma 3.2, we

obtain

Px′ (A1(x′, y′)) 6 sup
y′∈R

P

(∣
∣
∣y′ + S0

l

∣
∣
∣ 6 3cn1/2−ε

)

+
cp (1 + |x′|p)

np/2−pε
.

Inserting this bound in (4.1), it follows that

Px (AK(x, y)) 6 Px (AK−1(x, y)) sup
y′∈R

P

(∣
∣
∣y′ + S0

l

∣
∣
∣ 6 3cn1/2−ε

)

+
cp

np/2−pε

(

1 + Ex

(∣
∣
∣X(K−1)l

∣
∣
∣

p))

.
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Set rn = 3cn1/2−ε√
l

. Denote by B−y′
√

l

(rn) the closed ball centred in −y′
√

l
of radius rn.

The rate of convergence in the central limit theorem from Corollary 9.6 (applied with
x = 0) implies that,

sup
y′∈R

P

(

S0
l√
l

∈ B−y′
√

l

(rn)

)

6 sup
y′∈R

∫

B−y′
√

l

(rn)
e− u2

2σ2
du√
2πσ

+ 2
cp,ε

lε
.

Moreover,

sup
y′∈R

∫

B−y′
√

l

(rn)
e− u2

2σ2
du√
2πσ

6
2rn√
2πσ

6
cδ

b
.

Let q < 1. With b large enough in the definition of l, we have 2 cp,ε

lε
6

q
2
, cδ

b
6

q
2

and
thus

sup
y′∈R

P

(

S0
l√
l

∈ B−y′
√

l

(rn)

)

6 q < 1.

Iterating, we get

Px (AK(x, y)) 6 qK−1
Px (A1(x, y)) +

cp

np/2−pε

K−2∑

k=0

qk
(

1 + Ex

(∣
∣
∣X(K−1−k)l

∣
∣
∣

p))

.

Using the fact that qK−1Px (A1(x, y)) 6 qK−1 = 1
q

e−[nε/b2] ln(1/q)
6

cp,ε,δ

np/2−pε , Lemma

3.1 and the fact that (K − 1 − k)l > cε,δn
1−2ε for all 0 6 k 6 K − 2, we finally obtain

Px (AK(x, y)) 6
cp,ε,δ

np/2−pε
+ e−cp,ε,δn1−2ε |x|p .

�

4.2. Integrability of the killed martingale: the case E(a) > 0. The difficulty in
proving that the expectation Ex(y+ρx+Mn ; τy > n) is integrable lies in the fact that
whereas the killed Markov walk (y + Sn)1{τy>n} is non-negative, the random variable
(y + ρx + Mn)1{τy>n} may be not. In the case when E(a) > 0 we take advantage of
the properties presented in the next lemma.

Lemma 4.2.

(1) For all x ∈ R and y > 0,

y + ρx + Mτy 6 0, Px-a.s.

(2) For all x ∈ R and y > 0,

Xτy

1 − E(a)
< y + ρx + Mτy , Px-a.s.

(3) For all x ∈ R and y > 0, the sequence
(

(y + ρx + Mn)1{τy>n}
)

n>0
is a sub-

martingale with respect to Px.
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Proof. Claim 1. Let, for brevity, z = y + ρx. Since, by the definition of τy,

Xτy = y + Sτy − (y + Sτy−1) < 0,

it follows from (3.2) and the bound E(a) > 0 that z + Mτy 6 y + Sτy 6 0.
Claim 2. Rewrite the martingale representation (3.2) in the form

(4.2) z + Mn = y + Sn−1 +
Xn

1 − E(a)
.

So, at the exit time τy,

Xτy

1 − E(a)
= z + Mτy −

(

y + Sτy−1

)

< z + Mτy .

Claim 3. Using the first claim and the fact that (Mn)n>0 is a martingale,

Ex (z + Mn+1 ; τy > n + 1 | Fn ) = z + Mn − Ex

(

z + Mτy ; τy = n + 1
∣
∣
∣Fn

)

− Ex (z + Mn+1 | Fn )1{τy6n}

> (z + Mn)1{τy>n}.

�

In the next lemma we obtain a first bound for the expectation of the killed mar-
tingale ((y + ρx + Mn)1{τy>n})n>0 which is of order n1/2−2ε, for some ε > 0. Using a
recurrent procedure we improve it subsequently to a bound not depending on n.

Lemma 4.3. Let p ∈ (2, α). For any ε ∈ (0, p−2
4p

), x ∈ R, y > 0 and n ∈ N, we have

Ex (y + ρx + Mn ; τy > n) 6 y + ρx + c |x| + cpn1/2−2ε.

Proof. By the Doob optional stopping theorem and the claim 2 of Lemma 4.2, with
z = y + ρx,

Ex (z + Mn ; τy > n) 6 z − Ex

(

Xτy

1 − E(a)
; τy 6 n

)

.

Note that Xn =
∏n

i=1 aix + X0
n, with X0

n given by (3.3). Then, with ε ∈ (0, 1/4),

Ex (z + Mn ; τy > n)

6 z + c
n∑

k=1

k∏

i=1

E (|ai|) |x| + cEx

(∣
∣
∣X0

τy

∣
∣
∣ ; τy 6 n , max

16k6n

∣
∣
∣X0

k

∣
∣
∣ 6 n1/2−2ε

)

+ cEx

(∣
∣
∣X0

τy

∣
∣
∣ ; τy 6 n , max

16k6n

∣
∣
∣X0

k

∣
∣
∣ > n1/2−2ε

)

.

By the Markov inequality, for 2 < p < α,

Ex (z + Mn ; τy > n) 6 z + c
n∑

k=1

E
k (|a|) |x| + cn1/2−2ε + cEx






max
16k6n

|X0
k |p

n
p−1

2
(1−4ε)




 .

By Lemma 3.1 (with x = 0),

Ex (z + Mn ; τy > n) 6 z + c |x| + cn1/2−2ε + cp
n

n
p−1

2
(1−4ε)

.
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Choosing ε small enough to have p−1
2

(1 − 4ε) > 1/2 + 2ε, concludes the proof. �

Now we give an improvement of Lemma 4.3 which establishes a bound of the
expectation of the killed martingale ((y +ρx+Mn)1{τy>n})n>0 depending only on the
starting values x, y.

Lemma 4.4. For any δ > 0, p ∈ (2, α), x ∈ R, y > 0 and n > 0,

Ex (y + ρx + Mn ; τy > n) 6
(

1 + cpδ (1 + |x|)p−1
)

y + cp,δ (1 + |x|)p .

Moreover, with δ = 1, for any p ∈ (2, α), x ∈ R, y > 0 and n > 0,

Ex (y + ρx + Mn ; τy > n) 6 cp (1 + y + |x|) (1 + |x|)p−1 .

Proof. Let ε ∈ (0, ε1], where ε1 = min
(

ε0,
p−2
4p

)

and ε0 is defined in Lemma 4.1. Set

z = y + ρx. Assume first that y > n1/2−ε. From Lemma 4.3, we deduce that,

Ex (y + ρx + Mn ; τy > n) 6 y + ρx + c |x| + cpn1/2−2ε 6 (1 + cpn−ε)y + c |x| ,

which proves the lemma when y > n1/2−ε and n is larger than δ−1/ε.
Now, we turn to the case 0 < y 6 n1/2−ε. Introduce the following stopping time:

νε
n = νn + [nε] .

We have the following obvious decomposition:

Ex (z + Mn ; τy > n)

= Ex

(

z + Mn ; τy > n , νε
n >

[

n1−ε
])

︸ ︷︷ ︸

=:J1

+Ex

(

z + Mn ; τy > n , νε
n 6

[

n1−ε
])

︸ ︷︷ ︸

=:J2

.(4.3)

Bound of J1. Using the Hölder inequality for 1 < p < α, Lemma 3.4 and Lemma
4.1, we have

J1 6 cp,ε

√
n (1 + y + |x|) (1 + |x|)p−1

n(p−1)( 1
2

−ε)
.

As ε < p−2
4p

, denoting Cp,ε(x, y) = cp,ε (1 + y + |x|) (1 + |x|)p−1, for all n > 1,

(4.4) J1 6
Cp,ε(x, y)

nε
.

Bound of J2. Using the martingale representation (3.2) for the Markov walk (y +
Sn)n>1, by the Markov property,

J2 =

[n1−ε]
∑

k=1

∫

R×R∗
+

Ex′ (y′ + ρx′ + Mn−k ; τy′ > n − k)

× Px

(

Xνε
n

∈ dx′ , y + Sνε
n

∈ dy′ , τy > νε
n , νε

n = k
)

.

By Lemma 4.3,

J2 6 Ex

(

z + Mνε
n

+ c
∣
∣
∣Xνn+[nε]

∣
∣
∣+ cpn1/2−2ε ; τy > νε

n , νε
n 6

[

n1−ε
])

.
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For the term z + Mνε
n
, we use the fact that ((z + Mn)1{τy>n})n>0 is a submartingale

(claim 3 of Lemma 4.2), while for the term c
∣
∣
∣Xνn+[nε]

∣
∣
∣ we use the Markov property

at νn and Lemma 3.1. This gives

J2 6 Ex

(

z + M[n1−ε] ; τy >
[

n1−ε
]

, νε
n 6

[

n1−ε
])

+ cpEx

(

n1/2−2ε + E
[nε] (|a|) |Xνn | ; τy > νn , νn 6

[

n1−ε
])

.

Since 0 < y 6 n1/2−ε and νn is the first time when (|y + Sn|)n>1 exceeds n1/2−ε,
the jump Xνn is necessarily positive on the event {τy > νn}. Therefore, under the
condition E(a) > 0, by the representation (3.2) we have z + Mνn > n1/2−ε. Using the
last bound, we obtain

J2 6 Ex

(

z + M[n1−ε] ; τy >
[

n1−ε
]

, νε
n 6

[

n1−ε
])

+ cpEx

(
z + Mνn

nε
; τy > νn , νn 6

[

n1−ε
])

+ e−cpnε

Ex

(

|Xνn| ; νn 6
[

n1−ε
])

.

Again, using the fact that
(

(z + Mn)1{τy>n}
)

n>0
is a submartingale and Lemma 3.1,

we bound J2 as follows,

J2 6

(

1 +
cp

nε

)

Ex

(

z + M[n1−ε] ; τy >
[

n1−ε
])

+ e−cp,εnε

n1−ε (1 + |x|)

− Ex

((

z + M[n1−ε]

) (

1{νε
n>[n1−ε]} +

cp

nε
1{νn>[n1−ε]}

)

; τy >
[

n1−ε
])

︸ ︷︷ ︸

=:J3

.(4.5)

We bound J3 in a same manner as J1,

|J3| 6 cp,ε

√

[n1−ε] (1 + y + |x|) cp,ε
(1 + |x|)p−1

n
p−1

2
−(p−1)ε

6
Cp,ε(x, y)

nε
.

Inserting this bound in (4.5) and using (4.4) and (4.3) we find that

Ex (z + Mn ; τy > n) 6
(

1 +
cp

nε

)

Ex

(

z + M[n1−ε] ; τy >
[

n1−ε
])

+
Cp,ε(x, y)

nε
.

Since ((z+Mn)1{τy>n})n>0 is a submartingale, the sequence un = Ex (z + Mn ; τy > n)
is non-decreasing. By Lemma 9.1 used with α = cp, β = Cp,ε(x, y) and γ = 0 it follows
that

Ex (z + Mn ; τy > n) 6

(

1 +
cp,ε

nε
f

)

Ex

(

z + Mnf
; τy > nf

)

+
Cp,ε(x, y)

nε
f

.
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By Lemma 3.4 and the fact that z = y + ρx, we have

Ex (z + Mn ; τy > n) 6

(

1 +
cp,ε

nε
f

)

y + cp,ε
√

nf + cp,ε |x|

+
cp,ε

nε
f

(1 + y + |x|) (1 + |x|)p−1

6

(

1 +
cp,ε (1 + |x|)p−1

nε
f

)

y + cp,ε,nf
(1 + |x|)p .

Choosing nf > δ−1/ε concludes the proof of the lemma when n > δ−1/ε.
Now, when n 6 δ−1/ε, a bound of Ex (z + Mn ; τy > n) is obtained immediately

from Lemma 3.4: since z = y + ρx, for any y > 0,

Ex (z + Mn ; τy > n) 6 y + c |x| + Ex (|Mn|) 6 y + c |x| + c
√

n 6 y + cδ (1 + |x|) ,

and we conclude that the lemma holds true for any n ∈ N.
�

We can now transfer the bound provided by Lemma 4.4 to the Markov walk (y +
Sn)n>0.

Corollary 4.5. For any p ∈ (2, α), x ∈ R, y > 0 and n ∈ N,

Ex (y + Sn ; τy > n) 6 cp (1 + y + |x|) (1 + |x|)p−1 .

Proof. Using equation (3.2), the results follows from Lemma 4.4 and Lemma 3.1. �

4.3. Integrability of the killed martingale: the case E(a) < 0. We adapt
the mainstream of the proof for the case E(a) > 0 given in the previous section,
highlighting the details that have to be modified.

In the discussion preceding Lemma 4.2, we noted that (y + ρx + Mn)1{τy>n} may
not be positive. In the case E(a) < 0, we overcome this by introducing the exit time
of the martingale (y + ρx + Mn)n>0: for any y ∈ R,

Ty = min{k > 1, y + ρx + Mk 6 0}.

By Corollary 9.7 we have Px (Ty < +∞) = 1 for any x ∈ R. The main point is to
show the integrability of y + ρx + MTy . Under the assumption E(a) < 0 we have
τy 6 Ty, which together with the fact (|y + ρx + Mn|)n>0 is a submartingale, implies
that y + ρx + Mτy is integrable.

Lemma 4.6.

(1) For all x ∈ R and y > 0,

τy 6 Ty Px-a.s.

(2) For all x ∈ R and y ∈ R, the sequence
(

(y + ρx + Mn)1{Ty>n}
)

n>0
is a sub-

martingale with respect to Px.
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Proof. Claim 1. We note that when Ty > 1, by (3.2) and (4.2), with z = y + ρx,

y + STy = z + MTy − ρXTy 6 −ρXTy ,

y + STy−1 = z + MTy − XTy

1 − E(a)
6 − XTy

1 − E(a)
.

Since ρ < 0, according to the positivity or non-positivity of XTy , we have respectively
y + STy 6 0 or y + STy−1 6 0. When Ty = 1 and y > 0 we have X1 < 0 and so
τy = 1 = Ty.

Claim 2. In a same manner as in the proof of the claim 3 of Lemma 4.2, the claim
2 is a consequence of the fact that z +MTy 6 0 and that (Mn)n>0 is a martingale. �

The following lemma is similar to Lemma 4.3 but with Ty replacing τy.

Lemma 4.7. Let p ∈ (2, α). For any ε ∈ (0, p−2
4p

), x ∈ R, y > −ρx and n > 0, we

have

Ex (y + ρx + Mn ; Ty > n) 6 y + ρx + c |x| + cpn
1/2−2ε.

Proof. Note that z = y + ρx > 0. Since at the exit time Ty we have 0 > z + MTy >

ξTy =
XTy −E(a)XTy −1

1−E(a)
, by the Doob optional stopping theorem,

Ex (z + Mn ; Ty > n) 6 z + cEx

(∣
∣
∣XTy

∣
∣
∣+

∣
∣
∣XTy−1

∣
∣
∣ ; Ty 6 n

)

.

Since
∣
∣
∣XTy

∣
∣
∣ +

∣
∣
∣XTy−1

∣
∣
∣ 6 2 max16k6n |Xk| + |x| on {Ty 6 n}, following the proof of

Lemma 4.3,

Ex (z + Mn ; Ty > n) 6 z + c

(

1 +
n∑

k=1

k∏

i=1

E (|ai|)
)

|x|

+ cn1/2−2ε
P

(

max
16k6n

∣
∣
∣X0

k

∣
∣
∣ 6 n1/2−2ε

)

+ cE
(

max
16k6n

∣
∣
∣X0

k

∣
∣
∣ ; max

16k6n

∣
∣
∣X0

k

∣
∣
∣ > n1/2−2ε

)

6 z + c |x| + cpn1/2−2ε.

�

Lemma 4.8. Let p ∈ (2, α). There exists ε1 > 0 such that for any ε ∈ (0, ε1), x ∈ R,
y ∈ R, n > 0 and 2 6 nf 6 n,

Ex (y + ρx + Mn ; Ty > n) 6

(

1 +
cp,ε

nε
f

)

max(y, 0) + cp,ε |x| + cp,ε
√

nf + e−cp,εnε
f |x|p

6 cp (1 + max(y, 0) + |x|p) .
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Proof. We proceed as in the proof of Lemma 4.4. Set ε1 = min
(

ε0,
p−2
4p

)

, where ε0 is

defined in Lemma 4.1. Let ε ∈ (0, ε1]. With z = y + ρx and vε
n = vn + [nε], we have

Ex (z + Mn ; Ty > n) = Ex

(

z + Mn ; Ty > n , vε
n >

[

n1−ε
])

︸ ︷︷ ︸

=:J1

+ Ex

(

z + Mn ; Ty > n , vε
n 6

[

n1−ε
])

︸ ︷︷ ︸

=:J2

.(4.6)

Bound of J1. Let mε = [n1−ε] − [nε]. Since on {vn > mε} it holds z′ = z + Mmε 6

n1/2−ε, by the Markov property we write that

J1 6 n1/2−ε
Px (vn > mε) +

∫

R

Ex′ (|Mn−mε |)Px (Xmε ∈ dx′ , vn > mε) .

By Lemma 3.4 and the Hölder inequality,

J1 6 n1/2−ε
Px (vn > mε) + Ex

(

c
(√

n − mε + |Xmε |
)

; vn > mε

)

6 cn1/2
Px (vn > mε) + E

1/p
x (|Xmε |p)P1/q

x (vn > mε) .

By Lemma 3.1 and Lemma 4.1 (since mε > n1−ε/cε),

(4.7) J1 6
cp,ε

n
p−1

2
−(p−1)ε

+ e−cp,εn1−2ε |x|p .

Bound of J2. Repeating the arguments used for bounding the term J2 in Lemma
4.4, by the Markov property and Lemma 4.7, we get

J2 6 Ex

(

z + Mvε
n

+ c
∣
∣
∣Xvε

n

∣
∣
∣+ cpn

1/2−2ε ; Ty > vε
n , vε

n 6
[

n1−ε
])

.

Using the claim 2 of Lemma 4.6 and Lemma 3.1,

J2 6 Ex

(

z + M[n1−ε] ; Ty >
[

n1−ε
]

, vε
n 6

[

n1−ε
])

+ Ex

(

cpn
1/2−2ε ; Ty > vn , vn 6

[

n1−ε
])

+ e−cεnε

Ex

(

|Xvn | ; vn 6
[

n1−ε
])

.

On the event {Ty > vn}, we have n1/2−ε < z + Mvn . Hence

J2 6 Ex

(

z + M[n1−ε] ; Ty >
[

n1−ε
]

, vε
n 6

[

n1−ε
])

+ cpEx

(
z + Mvn

nε
; Ty > vn , vn 6

[

n1−ε
])

+ e−cεnε

Ex

(

|Xvn | ; vn 6
[

n1−ε
])

.

Coupling this with (4.7) and (4.6) and using again the claim 2 of Lemma 4.6, we
obtain that

Ex (z + Mn ; Ty > n) 6
(

1 +
cp

nε

)

Ex

(

z + M[n1−ε] ; Ty >
[

n1−ε
])

+
cp,ε

n
p−1

2
−(p−1)ε

+ e−cp,εnε |x|p .
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Since ((z + Mn)1{Ty>n})n>0 is a submartingale (claim 2 of Lemma 4.6), the sequence
un = E(z + Mn)1{Ty>n} is non-decreasing. By Lemma 9.1 with α = cp, β = cp,ε,
γ = |x|p and δ = cp,ε, we write that

Ex (z + Mn ; Ty > n) 6

(

1 +
cp,ε

nε
f

)

Ex

(

z + Mnf
; Ty > nf

)

+
cp,ε

nε
f

+ e−cp,εnε
f |x|p .

Using Lemma 3.4 and the fact that z = y + ρx, we obtain that

Ex (z + Mn ; Ty > n) 6

(

1 +
cp,ε

nε
f

)

max(y, 0) + cp,ε |x| + cp,ε
√

nf + e−cp,εnε
f |x|p .

�

Corollary 4.9. Let p ∈ (2, α). For any x ∈ R, y > 0 and n ∈ N,

Ex (y + Sn ; τy > n) 6 cp (1 + y + |x|p) .

Proof. By (3.2) and the claim 1 of Lemma 4.6, we have

Ex (y + Sn ; τy > n) = Ex (y + ρx + Mn ; Ty > τy > n) − Ex (ρXn ; τy > n) .

The result follows from Lemma 4.8. �

5. Existence of the harmonic function

In this section we prove Theorem 2.1. We split the proof into two parts according
to the values of E(a).

5.1. Existence of the harmonic function: the case E(a) > 0. We start with
the following assertion.

Lemma 5.1. For any x ∈ R and y > 0, the random variable Mτy is integrable.
Moreover, for any p ∈ (2, α),

Ex

(∣
∣
∣Mτy

∣
∣
∣

)

6 cp (1 + y + |x|) (1 + |x|)p−1 .

Proof. Let z = y + ρx. Using the claim 1 of Lemma 4.2 and the Doob optional
stopping theorem, we have

Ex

(∣
∣
∣Mτy

∣
∣
∣ ; τy 6 n

)

6 −Ex (z + Mn ; τy 6 n) + y + ρ |x|
= Ex (z + Mn ; τy > n) − z + y + ρ |x| .

By second bound in Lemma 4.4, for all n > 0,

Ex

(∣
∣
∣Mτy

∣
∣
∣ ; τy 6 n

)

6 cp (1 + y + |x|) (1 + |x|)p−1 =: Cp(x, y).

Since ({τy 6 n})n>1 is a non-decreasing sequence of events and Px (τy < +∞) = 1
for any x ∈ R (by Corollary 9.7), the result follows by the Lebesgue monotone
convergence theorem. �

Now, the claim 1 of Theorem 2.1 concerning the existence of the function V is a
direct consequence of the previous lemma:
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Corollary 5.2. For any x ∈ R and y > 0, the following function is well defined

V (x, y) = −Ex

(

Mτy

)

.

The following two propositions prove the claims 2 and 3 of Theorem 2.1 under
Conditions 1, 2 and E(a) > 0.

Proposition 5.3.

(1) For any x ∈ R and y > 0,

V (x, y) = lim
n→+∞

Ex (y + ρx + Mn ; τy > n) = lim
n→+∞

Ex (y + Sn ; τy > n) .

(2) For any x ∈ R, the function V (x, .) is non-decreasing.
(3) For any δ > 0, p ∈ (2, α), x ∈ R and y > 0,

max(0, y + ρx) 6 V (x, y) 6
(

1 + cpδ (1 + |x|)p−1
)

y + cp,δ (1 + |x|)p .

(4) For any x ∈ R,

lim
y→+∞

V (x, y)

y
= 1.

Proof. We use the notation z = y + ρx.
Claim 1. Since, by Lemma 5.1, Mτy is integrable, we have by the Lebesgue domi-

nated convergence theorem,

Ex (z + Mn ; τy > n) = z − Ex

(

z + Mτy ; τy 6 n
)

−→
n→+∞

−Ex

(

Mτy

)

= V (x, y).

To prove the second equality of the claim 1 we use Lemma 3.1 and the fact that
τy < +∞:

|Ex (Xn ; τy > n)| 6 E
1/2
x

(

|Xn|2
)√

Px (τy > n) 6 c2 (1 + |x|)
√

Px (τy > n) −→
n→+∞

0.

Using (3.2), we obtain the claim 1.
Claim 2. If y1 6 y2, then τy1 6 τy2 and

Ex (y1 + Sn ; τy1 > n) 6 Ex (y2 + Sn ; τy1 > n) 6 Ex (y2 + Sn ; τy2 > n) .

Taking the limit as n → +∞ we get the claim 2.
Claim 3. The upper bound follows from the claim 1 and Lemma 4.4. On the event

{τy > n}, we obviously have y + Sn > 0 and so by claim 1, V (x, y) > 0. Moreover,
since z + Mτy 6 0 (by claim 1 of Lemma 4.2), we have, by claim 1,

V (x, y) = z − lim
n→+∞

Ex

(

z + Mτy ; τy 6 n
)

> z,

which proves the lower bound.
Claim 4. By the claim 3, for all δ > 0, x ∈ R,

1 6 liminf
y→+∞

V (x, y)

y
6 limsup

y→+∞

V (x, y)

y
6
(

1 + cpδ (1 + |x|)p−1
)

.

Letting δ → 0, we obtain the claim 4. �

We now prove that V is harmonic on R × R∗
+.
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Proposition 5.4.

(1) The function V is Q+-harmonic on R × R∗
+: for any x ∈ R and y > 0,

Q+V (x, y) = V (x, y).

(2) The function V is positive on R × R∗
+.

Proof. Claim 1. Denote for brevity Vn(x, y) = Ex (y + Sn ; τy > n). For all x ∈ R,
y > 0 and n > 1, by the Markov property,

Vn+1(x, y) = Ex (Vn(X1, y + S1) ; τy > 1) .

By Corollary 4.5, we see that the quantity Vn(X1, y+S1) is dominated by the random
variable cp (1 + y + S1 + |X1|) (1 + |X1|)p−1 which is integrable with respect to Ex.
Consequently, by the Lebesgue dominated convergence theorem and the claim 1 of
Proposition 5.3,

V (x, y) = Ex (V (X1, y + S1) ; τy > 1) = Q+V (x, y),

where by convention, V (x, y)1{y>0} = 0 if y 6 0 and x ∈ R.
Claim 2. Fix x ∈ R and y > 0. Using the claim 1 and the fact that V is non-

negative on R × R
∗
+ (claim 3 of Lemma 5.3) we write

V (x, y) > Ex

(

V (X1, y + S1) ; τy > 1 , X1 >
−y

2(1 + ρ)

)

.

By the lower bound of the claim 3 of Lemma 5.3 and (3.2),

V (x, y) > Ex

(

y + (1 + ρ)X1 ; τy > 1 , X1 >
−y

2(1 + ρ)

)

>
y

2
Px

(

X1 >
−y

2(1 + ρ)

)

.

By Condition 2, we conclude that, V (x, y) > 0 for any x ∈ R and y > 0. �

5.2. Existence of the harmonic function: the case E(a) < 0. In this section we
prove the harmonicity and the positivity of the function V in the case E(a) < 0. The
following assertion is the analogue of Lemma 5.1.

Lemma 5.5. The random variables MTy and Mτy are integrable.

(1) For any x ∈ R and y ∈ R,

Ex

(∣
∣
∣MTy

∣
∣
∣

)

6 cp (1 + |y| + |x|p) .

(2) For any x ∈ R and y ∈ R,

Ex

(∣
∣
∣Mτy

∣
∣
∣

)

6 cp (1 + |y| + |x|p) .

Proof. Claim 1. The proof is similar to that of Lemma 5.1 using Lemma 4.8 instead
of Lemma 4.4 and the fact that by Corollary 9.7 we have Px (Ty < +∞) = 1, x ∈ R.

Claim 2. By the claim 1 of Lemma 4.6, we have τy ∧ n 6 Ty ∧ n. Since (|Mn|)n>0

is a submartingale, with z = y + ρx,

Ex

(∣
∣
∣Mτy

∣
∣
∣ ; τy 6 n

)

6 Ex

(∣
∣
∣Mτy∧n

∣
∣
∣

)

6 Ex

(∣
∣
∣MTy∧n

∣
∣
∣

)

6 2 |z| + 2Ex

(∣
∣
∣MTy

∣
∣
∣ ; Ty 6 n

)

.

The Lebesgue monotone convergence theorem implies the claim 2. �
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As a direct consequence of this corollary we have:

Corollary 5.6. For any x ∈ R and y > 0, the following function is well defined

V (x, y) = −Ex

(

Mτy

)

.

Consider the function

W (x, y) = −Ex

(

MTy

)

,

which will be used in the proof of the positivity of the function V on R × R
∗
+. By

Corollary 5.5, the function W is well defined on R × R.

Proposition 5.7.

(1) For any x ∈ R and y ∈ R,

W (x, y) = lim
n→+∞

Ex (y + ρx + Mn ; Ty > n) .

(2) For any x ∈ R, the function W (x, .) is non-decreasing.
(3) For any p ∈ (2, α), there exists ε1 > 0 such that for any ε ∈ (0, ε1], nf > 2,

x ∈ R and y ∈ R,

max(0, y + ρx) 6 W (x, y) 6

(

1 +
cp,ε

nε
f

)

max(y, 0) + cp,ε |x| + cp,ε
√

nf + e−cp,εnε
f |x|p .

(4) For any x ∈ R,

lim
y→+∞

W (x, y)

y
= 1.

(5) For any x ∈ R and y ∈ R,

W (x, y) = Ex (W (X1, y + S1) ; Ty > 1) ,

and
(

W (Xn, y + Sn)1{Ty>n}
)

n>0
is a martingale.

Proof. The proof is very close to that of Proposition 5.3. The upper bound of the
claim 3 is obtained taking the limit as n → +∞ in Lemma 4.8. We prove the claim
4 taking the limit as y → +∞ and then as nf → +∞ in the inequality of the claim
3. The proof of the claim 5 is the same as that of the claim 1 of Proposition 5.4. �

Moreover, we have the following proposition.

Proposition 5.8.

(1) For any x ∈ R and y > 0,

V (x, y) = lim
n→+∞

Ex (y + ρx + Mn ; τy > n) = lim
n→+∞

Ex (y + Sn ; τy > n) .

(2) For any x ∈ R, the function V (x, .) is non-decreasing.
(3) For any p ∈ (2, α), δ > 0, x ∈ R and y > 0,

0 6 V (x, y) 6 W (x, y) 6 (1 + cpδ) y + cp,δ (1 + |x|p) .
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(4) The function V is Q+-harmonic on R × R∗
+: for any x ∈ R and y > 0,

Q+V (x, y) = V (x, y)

and
(

V (Xn, y + Sn)1{τy>n}
)

n>0
is a martingale.

Proof. The proofs of the claims 1, 2, 4 and of the lower bound of the claim 3, being
similar to that of the previous proposition and of the Proposition 5.3, is left to the
reader. The upper bound of the claim 3 is a consequence of the fact that τy 6 Ty

(claim 1 of Lemma 4.6): with z = y + ρx,

V (x, y) = lim
n→+∞

Ex (z + Mn ; τy > n)

6 lim
n→+∞

Ex (z + Mn ; Ty > n) = W (x, y).

�

Our next goal is to prove that V (x, y) > max (0, (1 − δ)y − cp,δ (1 + |x|p)) from
which we will deduce the positivity of V . For this we make appropriate adjustments
to the proof of Lemmas 4.3 and Lemma 4.4 where the submartingale ((y + ρx +
Mn)1{Ty>n})n>0 will be replaced by the supermartingale (W (Xn, y + Sn)1{τy>n})n>0.
Instead of upper bounds in Lemmas 4.3 and Lemma 4.4 the following two lemmas
establish lower bounds.

Lemma 5.9. For any p ∈ (2, α), there exists ε1 > 0 such that for any ε ∈ (0, ε1],
x ∈ R, y > 0 and n ∈ N,

Ex (W (Xn, y + Sn) ; τy > n) > W (x, y) − cp,εn
1/2−2ε − cp,ε |x|p .

Proof. By the claim 1 of Lemma 4.6 and the claim 5 of Lemma 5.7, as in the proof
of Lemma 4.3,

Ex (W (Xn, y + Sn) ; τy > n) = W (x, y) − Ex

(

W (Xτy , y + Sτy ) ; Ty > τy , τy 6 n
)

.

Using the claim 3 of Proposition 5.7 and the fact that y + Sτy 6 0,

Ex

(

W (Xτy , y + Sτy ) ; Ty > τy , τy 6 n
)

6

Ex

(

cp,ε

∣
∣
∣Xτy

∣
∣
∣+ cp,ε

√
nf + e−cp,εnε

f

∣
∣
∣Xτy

∣
∣
∣

p
; τy 6 n

)

.

Taking nf = [n1−4ε], the end of the proof is the same as the proof of Lemma 4.3. �

Lemma 5.10. For any p ∈ (2, α) there exists ε1 > 0 such that for any ε ∈ (0, ε1],
nf > 2, x ∈ R and y > 0,

Ex (W (Xn, y + Sn) ; τy > n) > y

(

1 − cp,ε

nε
f

)

− cp,εn
2
f (1 + |x|p) .

Proof. The proof is similar to that of Lemma 4.4. With vε
n = vn + [nε], we have

J0 = Ex (W (Xn, y + Sn) ; τy > n) > Ex

(

W (Xn, y + Sn) ; τy > n , vε
n 6

[

n1−ε
])

.

Using the Markov property, Lemma 5.9 and the fact that n − vε
n 6 n,

J0 > Ex

(

W
(

Xvε
n
, y + Svε

n

)

− cp,εn
1/2−2ε − cp,ε

∣
∣
∣Xvε

n

∣
∣
∣

p
; τy > vε

n , vε
n 6

[

n1−ε
])

.



CONDITIONED AFFINE MARKOV WALKS 23

By the claim 1 of Lemma 4.6, on {τy > vn} we have z+Mvn > n1/2−ε, where z = y+ρx.

From this and the fact that
(

W (Xn, y + Sn)1{τy>n}
)

n>1
is a supermartingale, as in

the the bound of the the term J2 of Lemma 4.4, we obtain that

J0 > Ex

(

W
(

X[n1−ε], y + S[n1−ε]

)

; τy >
[

n1−ε
])

− Ex

(

W
(

X[n1−ε], y + S[n1−ε]

)

; τy >
[

n1−ε
]

, vε
n >

[

n1−ε
])

(5.1)

− cp,ε

nε
Ex

(

z + Mvn ; Ty > vn , vn 6
[

n1−ε
])

− e−cp,εnε

(1 + |x|p) .

Using the claim 3 of Proposition 5.7 with nf = n and the martingale representation
(3.2), the absolute value of the second term in the r.h.s. of (5.1) does not exceed

cp,εEx

(

z + M[n1−ε] +
√

n +
∣
∣
∣X[n1−ε]

∣
∣
∣+ e−cp,εnε

∣
∣
∣X[n1−ε]

∣
∣
∣

p
;

τy >
[

n1−ε
]

, vε
n >

[

n1−ε
])

.

Since
(

(z + Mn)1{Ty>n}
)

n>0
is a submartingale, by claim 2 of Lemma 4.6, the absolute

value of the third term is less than
cp,ε

nε
Ex (z + Mn ; Ty > n) .

These bounds imply

J0 > Ex

(

W
(

X[n1−ε], y + S[n1−ε]

)

; τy >
[

n1−ε
])

− cp,εEx

(

z + M[n1−ε] +
√

n +
∣
∣
∣X[n1−ε]

∣
∣
∣ ; τy >

[

n1−ε
]

, vε
n >

[

n1−ε
])

− e−cp,εnε

Ex

(∣
∣
∣X[n1−ε]

∣
∣
∣

p
; τy >

[

n1−ε
]

, vε
n >

[

n1−ε
])

(5.2)

− cp,ε

nε
Ex (z + Mn ; Ty > n) − e−cp,εnε

(1 + |x|p) .

Using the Markov property with the intermediate time mε = [n1−ε] − [nε], Lemmas
3.4 and 3.1 and the fact that vε

n = vn + [nε], the absolute value of the second term in
the r.h.s. of (5.2) is bounded by

cp,εEx

(

|z + Mmε | + cnε/2 + c |Xmε | +
√

n + c(1 + |Xmε |) ; τy > mε , vn > mε

)

,

which, in turn, using the fact that z + Mmε 6 n1/2−ε on {vn > mε}, is less than

cp,εEx

(√
n + |Xmε | ; τy > mε , vn > mε

)

.

The absolute value of the third term in the r.h.s. of (5.2) is bounded using Lemma
3.1 by e−cp,εnε

(1 + |x|p) . The fourth term is bounded by Lemma 4.8. Collecting these
bounds, we obtain

J0 > Ex

(

W
(

X[n1−ε], y + S[n1−ε]

)

; τy >
[

n1−ε
])

− cp,εEx

(√
n + |Xmε| ; τy > mε , vn > mε

)

− cp,ε

nε
(1 + y + |x|p) .(5.3)
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Coupling the Hölder inequality with Lemma 3.1 and Lemma 4.1, we find that the
second term in the r.h.s. of (5.3) does not exceed

cp,ε

(√
n + E

1/p
x (|Xmε |p)

)

P
1/q
x

(

vn >
n1−ε

cε

)

6 cp,ε

(√
n + |x|

) cp,ε (1 + |x|)p−1

n
p−1

2
−(p−1)ε

.

Implementing this into (5.3),

J0 > Ex

(

W
(

X[n1−ε], y + S[n1−ε]

)

; τy >
[

n1−ε
])

− cp,ε

nε
(1 + y + |x|p) .

Since
(

W (Xn, y + Sn)1{τy>n}
)

n>1
is a supermartingale, Lemma 9.2 implies that

J0 > Ex

(

W
(

Xnf
, y + Snf

)

; τy > nf

)

− cp,ε

nε
f

(1 + y + |x|p) .

Using the lower bound of the claim 3 of Proposition 5.7 and Lemma 3.4, we deduce
that

Ex (W (Xn, y + Sn) ; τy > n) > yPx (τy > nf ) − y
cp,ε

nε
f

− cp,ε
√

nf − cp,ε |x|p .

Now, when y → +∞, one can see that Px (τy > nf) → 1: more precisely,

Px (τy > nf ) > Px

(

max
16k6nf

|Xk| <
y

nf

)

> 1 − c
n2

f (1 + |x|)
y

.

Finally,

Ex (W (Xn, y + Sn) ; τy > n) > y

(

1 − cp,ε

nε
f

)

− cp,εn
2
f (1 + |x|p) .

�

Under Condition 3 we use Lemma 5.10 to prove that V is positive on R × R∗
+.

Lemma 5.11.

(1) For any δ > 0, p ∈ (2, α), x ∈ R, y > 0,

V (x, y) > (1 − δ)y − cp,δ (1 + |x|p) .

(2) For any x ∈ R,

lim
y→+∞

V (x, y)

y
= 1.

(3) The function V is positive on R × R∗
+.

Proof. Claim 1. Using the claim 1 of Lemma 4.6 and the claims 3 and 5 of Proposition
5.7, with z = y + ρx, we write

Ex (z + Mn ; τy > n)

> Ex (z + Mn ; Ty > n) − Ex (W (Xn, y + Sn) ; Ty > n , τy 6 n)

= Ex (z + Mn ; Ty > n) − W (x, y) + Ex (W (Xn, y + Sn) ; τy > n) .
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Using Lemma 5.10, the claim 1 of Proposition 5.7 and the claim 1 of Proposition 5.8,
we obtain

V (x, y) > y

(

1 − cp,ε

nε
f

)

− cp,εn
2
f (1 + |x|p) .

Taking nf large enough, the claim 1 is proved.
Claim 2. Taking the limit as y → +∞ and as δ → 0 in the claim 1, we obtain

first that liminf
y→+∞

V (x, y)/y > 1. By the claim 3 of Proposition 5.8, we obtain also that

limsup
y→+∞

V (x, y)/y 6 1.

Claim 3. Fix x ∈ R, y > 0 and δ0 > 0. By Condition 3, or Condition 3bis (see
Section 9.1), there exists p0 ∈ (2, α) such that for any c > 0 there exists n0 > 1 such
that Px ((Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) > 0. Thus, using the claim 4 of Proposition
5.8,

V (x, y) > Ex (V (Xn0 , y + Sn0) ; (Xn0 , y + Sn0) ∈ Kp0,c , τy > n0) .

Using the claim 1 with p = p0 and δ = 1/2 and choosing the constant c = 2cp0,δ +2δ0,
there exists n0 such that

V (x, y) > δ0Px ((Xn0, y + Sn0) ∈ Kp0,c , τy > n0) > 0.

�

6. Asymptotic for the exit time

The aim of this section is to prove Theorem 2.2. The asymptotic for the exit time
of the Markov walk (y + Sn)n>0 will be deduced from the asymptotic of the exit
time for the Brownian motion in Corollary 9.4 using the functional approximation in
Proposition 9.5.

6.1. Auxiliary statements. We start by proving an analogue of Corollaries 4.5 and
4.9, where n is replaced by the stopping time νn.

Lemma 6.1. For any p ∈ (2, α), there exists ε0 > 0 such that for any ε ∈ (0, ε0],
x ∈ R, y > 0 and n > 1,

E1 = Ex

(

y + Sνn ; τy > νn , νn 6
[

n1−ε
])

6 cp,ε(1 + y + |x|)(1 + |x|)p−1.

Proof. When τy > νn > 1, we note that

(6.1) 0 < Xνn < y + Sνn.

Therefore, using the martingale representation (3.2), we have y + Sνn 6 z + Mνn +
max(0, −ρ)Xνn, with z = y + ρx, and so

0 < y + Sνn 6 max (1, 1 − E(a)) (z + Mνn) = c (z + Mνn) .

Consequently,

E1 6 c (1 + y + |x|) + cEx

(

z + Mνn ; τy > νn , 1 < νn 6
[

n1−ε
])

6 c (1 + y + |x|) + cEx

(

z + Mνn ; τy > νn , νn 6
[

n1−ε
])

︸ ︷︷ ︸

E′
1

.(6.2)
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Now, denoting νn ∧ [n1−ε] = min(νn, [n1−ε]), we write

E ′
1 = cEx

(

z + Mνn∧[n1−ε]

)

− cEx

(

z + Mνn∧[n1−ε] ; τy 6 νn ∧
[

n1−ε
])

− cEx

(

z + M[n1−ε] ; τy >
[

n1−ε
]

, νn >
[

n1−ε
])

.

Since (Mn)n>0 is a centred martingale, using Lemma 5.1 when E(a) > 0 and Lemma
5.5 when E(a) < 0, Lemmas 3.4, 4.1 and Hölder inequality, we obtain

E ′
1 6 cp,ε(1 + y + |x|)(1 + |x|)p−1.

Implementing this into (6.2), it concludes the proof. �

Now, we can prove an upper bound of order 1/n1/2−cε of the probability of survival
Px (τy > n).

Lemma 6.2. For any p ∈ (2, α), there exists ε0 > 0 such that for any ε ∈ (0, ε0],
x ∈ R, y > 0 and n > 1,

Px (τy > n) 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n1/2−ε
.

Moreover, summing these bounds, we have

[n1−ε]
∑

k=1

Px (τy > k) 6 cp,ε(1 + y + |x|)(1 + |x|)p−1n1/2+ε.

Proof. Taking k =
[

n
1

1−ε

]

, we write

Px (τy > n) 6 Ex

(
y + Sνk

k1/2−ε
; τy > νk , νk 6

[

k1−ε
])

+ Px

(

νk >
k1−ε

cε

)

.

Using Lemma 6.1 and Lemma 4.1, the claim follows. �

Before to proceed with the proof of Theorem 2.2, we need two additional technical

lemmas. Recall the notation νε/6
n = νn +

[

nε/6
]

.

Lemma 6.3. There exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and y > 0,

E2 = Ex

(

y + S
ν

ε/6
n

; τy > νε/6
n , νε/6

n 6
[

n1−ε
])

−→
n→+∞

V (x, y).

Proof. Using the martingale approximation (3.2),

E2 = −ρEx

(

X
ν

ε/6
n

; τy > νε/6
n , νε/6

n 6
[

n1−ε
])

︸ ︷︷ ︸

=:E21

+ Ex

(

z + M
ν

ε/6
n

; τy > νε/6
n , νε/6

n 6
[

n1−ε
])

︸ ︷︷ ︸

=:E22

.(6.3)
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Bound of E21. By the Markov property, Lemma 3.1 and the fact that (y +
Sνn)/n1/2−ε > 1,

|E21| 6 cEx

(

1 + e−cnε/6 |Xνn| ; τy > νn , νn 6
[

n1−ε
])

6
c

n1/2−ε
E1 + e−cnε/6

[n1−ε]
∑

k=1

Ex (|Xk|) .

By Lemma 6.1, we obtain

(6.4) |E21| 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n1/2−ε
.

Bound of E22. We proceed in the same way as for bounding E ′
1 defined in (6.2):

E22 = z−Ex

(

z + Mτy ; τy 6 νε/6
n ∧

[

n1−ε
])

−Ex

(

z + M
ν

ε/6
n ∧[n1−ε]

; τy > νε/6
n ∧

[

n1−ε
]

, νε/6
n >

[

n1−ε
])

.

By the Hölder inequality, Lemma 3.4 and Lemma 4.1,

(6.5) E22 6 z − Ex

(

z + Mτy ; τy 6 νε/6
n ∧

[

n1−ε
])

+ cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2
−cpε

.

Since νε/6
n >

[

nε/6
]

→ +∞ as n → +∞ and Mτy is integrable (according to Lemmas

5.1 and 5.5), by the Lebesgue dominated convergence we deduce that

lim
n→+∞

E22 = −Ex

(

Mτy

)

= V (x, y).

Coupling this with equations (6.3) and (6.4), we conclude that E2 −→
n→+∞

V (x, y). �

Lemma 6.4. There exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and y > 0,

E3 = Ex

(

y + S
ν

ε/6
n

; y + S
ν

ε/6
n

> n1/2−ε/6 , τy > νε/6
n , νε/6

n 6
[

n1−ε
])

−→
n→+∞

0.

Proof. The first step of the proof consists in proving that we can replace the time
νε/6

n in the definition of E3 by the time νn. More precisely, we shall prove that the
following bound holds true:

E3 6 cnε/6
Ex

(

y + Sνn ; y + Sνn > n1/2−ε/2 , τy > νn , νn 6
[

n1−ε
])

︸ ︷︷ ︸

=:E31

+ cp,ε
(1 + y + |x|)(1 + |x|)p−1

nε/6
.(6.6)
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To this end, we bound E3 as follows:

E3 6E31 + Ex

(∣
∣
∣S

ν
ε/6
n

− Sνn

∣
∣
∣ ; y + Sνn > n1/2−ε/2 ; τy > νn , νn 6

[

n1−ε
])

︸ ︷︷ ︸

=:E32

+Ex

(

y + Sνn ; y + Sνn 6 n1/2−ε/2 , y + S
ν

ε/6
n

> n1/2−ε/6 ,

τy > νn , νn 6
[

n1−ε
])

︸ ︷︷ ︸

=:E33

(6.7)

+Ex

(∣
∣
∣S

ν
ε/6
n

− Sνn

∣
∣
∣ ; y + Sνn 6 n1/2−ε/2 , y + S

ν
ε/6
n

> n1/2−ε/6 ,

τy > νn , νn 6
[

n1−ε
])

︸ ︷︷ ︸

=:E34

.

Bound of E32. By the Markov property and Lemma 3.1,

E32 6

∫

R×R∗
+

Ex′

(∣
∣
∣
∣S[nε/6]

∣
∣
∣
∣

)

Px (Xνn ∈ dx′ , y + Sνn ∈ dy′ ,

y + Sνn > n1/2−ε/2 , τy > νn , νn 6
[

n1−ε
])

6 Ex

(

cnε/6 (1 + |Xνn |) ; y + Sνn > n1/2−ε/2 , τy > νn , νn 6
[

n1−ε
])

.

If τy > νn > 1, by (6.1), we have |Xνn| = Xνn < y + Sνn . Using this bound when
νn > 1 and the Markov inequality when νn = 1,

E32 6 Ex

(

cnε/6 (1 + |X1|) ; y + X1 > n1/2−ε/2 , νn = 1
)

+ cnε/6E31

6 c
(1 + y + |x|)(1 + |x|)

n1/2−cε
+ cnε/6E31.(6.8)

Bound of E33. By the Markov property,

E33 6

∫

R×R∗
+

y′
Px′

(

y′ + S[nε/6] > n1/2−ε/6
)

Px (Xνn ∈ dx′ , y + Sνn ∈ dy′ ,

y + Sνn 6 n1/2−ε/2 , τy > νn , νn 6
[

n1−ε
])

.

When y′ 6 n1/2−ε/2, by the Markov inequality, we have,

Px′

(

y′ + S[nε/6] > n1/2−ε/6
)

6 Px′

(∣
∣
∣
∣S[nε/6]

∣
∣
∣
∣ >

n1/2−ε/6

cε

)

6
cεn

ε/6 (1 + |x′|)
n1/2−ε/6

.

On the event {y + Sνn 6 n1/2−ε/2 , τy > νn}, we obviously have x′ = Xνn 6 n1/2−ε/2.
From these bounds, using the positivity of Xνn for νn > 1, see (6.1), we obtain

E33 6 Ex

(

(y + S1)
cε (1 + |X1|)

n1/2−ε/3
; νn = 1

)

+
cε

nε/2−ε/3
E1.

By Lemma 6.1, we obtain

(6.9) E33 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

nε/6
.



CONDITIONED AFFINE MARKOV WALKS 29

Bound of E34. Again, by the Markov property,

E34 6

∫

R×R∗
+

Ex′

(∣
∣
∣
∣S[nε/6]

∣
∣
∣
∣ ; y′ + S[nε/6] > n1/2−ε/6

)

Px (Xνn ∈ dx′ ,

y + Sνn ∈ dy′ , y + Sνn 6 n1/2−ε/2 , τy > νn , νn 6
[

n1−ε
])

.

When y′ 6 n1/2−ε/2, we have

Ex′

(∣
∣
∣
∣S[nε/6]

∣
∣
∣
∣ ; y′ + S[nε/6] > n1/2−ε/6

)

6 Ex′







cp−1
ε

∣
∣
∣
∣S[nε/6]

∣
∣
∣
∣

p

n
p−1

2
−(p−1)ε/6







6 cp,ε
(1 + |x′|)p

n
p−1

2
−cpε

.

Then, using Lemma 3.1,

E34 6
cp,ε

n
p−1

2
−cpε

+
cp,ε

n
p−1

2
−cpε

[nε]
∑

k=1

Ex (|Xk|p) +
cp,ε

n
p−1

2
−cpε

[n1−ε]
∑

k=[nε]+1

Ex (|Xk|p ; τy > k)

6
cp,ε (1 + |x|p)

n
p−1

2
−cpε

+
cp,ε

n
p−1

2
−cpε

[n1−ε]−[nε]
∑

k=1

Ex

(

1 + e−cpnε |Xk|p ; τy > k
)

6
cp,ε (1 + |x|p)

n
p−1

2
−cpε

+ e−cp,εnε

(1 + |x|p) +
cp,ε

n
p−1

2
−cpε

[n1−ε]
∑

k=1

Px (τy > k) .

Using the second bound in Lemma 6.2, and taking ε > 0 small enough, we obtain

(6.10) E34 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2
−cpε

−→
n→+∞

0.

Inserting (6.8), (6.9) and (6.10) in (6.7), we conclude the proof of (6.6).
Bound of cnε/6E31. Note that, when νn > 1 and y + Sνn > n1/2−ε/2, we have

Xνn = y + Sνn − y + Sνn−1 > n1/2−ε/2 − n1/2−ε > n1/2−ε/2

cε
. Consequently,

cnε/6E31 6 cnε/6
Ex (y + Sνn ; νn 6 [nε])

︸ ︷︷ ︸

=:E35

+ cnε/6
Ex

(

y + Sνn ; Xνn >
n1/2−ε/2

cε
, τy > νn , [nε] < νn 6

[

n1−ε
]
)

︸ ︷︷ ︸

=:E36

.(6.11)

Bound of E35. Using the definition of νn, the Markov inequality and Lemma 3.1,

E35 6 cnε/6
Ex

(

max
k6[nε]

|y + Sk| ; max
k6[nε]

|y + Sk| > n1/2−ε

)

6
cp (1 + y + |x|)2

n1/2−cpε
.(6.12)

Bound of E36. The idea is based on the observation that, according to the first
bound in Lemma 3.1, the random variables y + Sνn−[nε] and Xνn are "almost" inde-
pendent. In this line, summing over the values of νn and bounding the indicators
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1{νn=k} by 1, we write

E36 6cnε/6

[n1−ε]
∑

k=[nε]+1

Ex

(

y + Sk−[nε] ; Xk >
n1/2−ε/2

cε
, τy > k

)

+ cnε/6

[n1−ε]
∑

k=[nε]+1

Ex

(
∣
∣
∣Sk − Sk−[nε]

∣
∣
∣ ; Xk >

n1/2−ε/2

cε
, τy > k

)

.

By the Markov property,

E36 6 cnε/6

[n1−ε]
∑

k=[nε]+1

∫

R×R∗
+

y′
Px′

(

X[nε] >
n1/2−ε/2

cε

)

× Px

(

Xk−[nε] ∈ dx′ , y + Sk−[nε] ∈ dy′ , τy > k − [nε]
)

+ cnε/6

[n1−ε]
∑

k=[nε]+1

Ex

(

nε max
k−[nε]6i6k

|Xi| ; Xk >
n1/2−ε/2

cε
, τy > k

)

.(6.13)

Recall that, under {X0 = x′} by (3.3), X[nε] =
∏[nε]

i=1 aix
′ + X0

[nε]. Then, since ai’s are
independent and identically distributed, by claim 1 of Condition 1 and Lemma 3.1,

Px′

(

X[nε] >
n1/2−ε/2

cε

)

6 P





[nε]
∏

i=1

aix
′ >

n1/2−ε/2

2cε



+ P

(
∣
∣
∣X0

[nε]

∣
∣
∣ >

n1/2−ε/2

2cε

)

6 e−cεnε |x′| +
cp,ε

n
p
2

−cpε
.(6.14)

Inserting (6.14) into (6.13) and using Cauchy-Schwartz inequality, by Corollaries 4.5
and 4.9,

E36 6

[n1−ε]
∑

j=1

(

e−cpnε

E
1/2
x

(

|y + Sj|2
)

E
1/2
x

(

|Xj|2
)

+
cp,ε

n
p
2

−cpε
(1 + y + |x|)(1 + |x|)p−1

)

+ cnε+ε/6

[n1−ε]
∑

k=[nε]+1

Ex






max
k−[nε]6i6k

|Xi|p

n
p−1

2
−cpε

; τy > k − [nε]




 .

Using the decomposition (3.2) and Lemmas 3.1 and 3.4

E36 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2
−cpε

+
cp

n
p−1

2
−cpε

[n1−ε]
∑

k=[nε]+1

Ex

(

nε
(

1 +
∣
∣
∣Xk−[nε]

∣
∣
∣

p)

; τy > k − [nε]
)

.



CONDITIONED AFFINE MARKOV WALKS 31

Re-indexing j = k − [nε], after some elementary transformations, we get

E36 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2
−cpε

+
cp

n
p−1

2
−cpε

[n1−ε]
∑

j=1

Px (τy > j)

+
cp

n
p−1

2
−cpε

[nε]
∑

j=1

Ex (|Xj|p) +
cp

n
p−1

2
−cpε

[n1−ε]
∑

j=[nε]+1

Ex (|Xj |p ; τy > j − [nε]) .

Again using the Markov property, Lemma 3.1 and Lemma 6.2, we have

E36 6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2
−cpε

+
cp

n
p−1

2
−cpε

[n1−ε]
∑

j=1

Px (τy > j)

+ e−cpnε
[n1−ε]
∑

j=1

Ex (|Xj|p ; τy > j)

6 cp,ε
(1 + y + |x|)(1 + |x|)p−1

n
p−2

2
−cpε

.

Inserting this bound and (6.12) into (6.11), we obtain

cnε/6E31 6
cp,ε (1 + y + |x|)p

n
p−2

2
−cpε

.

Together with (6.6), this bound implies that

(6.15) E3 6
cp (1 + y + |x|)p

nε/6
−→

n→+∞
0.

�

6.2. Proof of the claim 2 of theorem 2.2. Introducing the stopping time νε/6
n =

νn +
[

nε/6
]

, we have

(6.16) Px (τy > n) = Px

(

τy > n , νε/6
n 6

[

n1−ε
])

+ Px

(

τy > n , νε/6
n >

[

n1−ε
])

.

We bound the second term by Lemma 4.1: for 2 < p < α,

(6.17) Px

(

τy > n , νε/6
n >

[

n1−ε
])

6 Px

(

νn >
n1−ε

cε

)

6 cp,ε
(1 + |x|)p

np/2−cpε
= o

(

1√
n

)

.

To bound the first term, we introduce more notations. Let (Bt)t>0 be the Brownian

motion from Proposition 9.5, Ak be the event Ak = {max
06t61

∣
∣
∣S[tk] − σBtk

∣
∣
∣ 6 k1/2−2ε}

where σ is defined by (2.2), and Ak be its complement. Using the Markov property,
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we have

Px

(

τy > n , νε/6
n 6

[

n1−ε
])

=

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′

(

τy′ > n − k , An−k

)

Px (Xk ∈ dx′ ,

y + Sk ∈ dy′ , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:J1

+

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′ (τy′ > n − k , An−k)Px (Xk ∈ dx′ ,(6.18)

y + Sk ∈ dy′ , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:J2

.

Bound of J1. Taking into account that n−k > n
cε

for any k 6 [n1−ε], by Proposition
9.5 with ε small enough, we find

Px′

(

τy′ > n − k , An−k

)

6 Px′

(

An−k

)

6 cp,ε(1 + |x′|)pn−2ε.

By the Markov property and the first bound in Lemma 3.1,

J1 6 Ex

(

e−cp,εnε/6 |Xνn|p +
cp,ε

n2ε
; τy > νn , νn 6

[

n1−ε
])

.

Since y+Sνn

n1/2−ε > 1, using Lemma 6.1,

(6.19) J1 6 e−cp,εnε/6

(1 + |x|)p +
cp,ε

n1/2−ε+2ε
E1 6

cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε
.

Bound of J2. The idea is as follows. When y′ 6 θn

√
n, with θn = n−ε/6, we

are going to control the probability Px′ (τy′ > n − k , An−k) in J2 by the claim 2 of
Corollary 9.4. When y′ > θn

√
n we shall apply Lemma 6.4. Accordingly, we split J2

into two terms as follows:

J2 =

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′ (τy′ > n − k , An−k)Px (Xk ∈ dx′ , y + Sk ∈ dy′ ,

y + Sk > n1/2−ε/6 , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:J3

+

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′ (τy′ > n − k , An−k)Px (Xk ∈ dx′ , y + Sk ∈ dy′ ,(6.20)

y + Sk 6 n1/2−ε/6 , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:J4

.

Bound of J3. Let τ bm
y be the exit time of the Brownian motion defined by (9.10)

and y′
+ = y′ + (n − k)1/2−2ε. Since

(6.21) Px′ (τy′ > n − k , An−k) 6 Px′

(

τ bm
y′

+
> n − k

)

,
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using the claim 1 of Corollary 9.4 with y′
+ > 0, we get

J3 6

[n1−ε]
∑

k=1

Ex

(

c
y + Sk + (n − k)1/2−2ε

√
n − k

; y + Sk > n1/2−ε/6 , τy > k , νε/6
n = k

)

.

Since c√
n−k

6 cε√
n

and y + Sk + (n − k)1/2−2ε 6 2 (y + Sk) on the event {y + Sk >

n1/2−ε/6}, using Lemma 6.4, we have

(6.22) J3 6
cε√
n

E3 = o

(

1√
n

)

.

Upper bound of J4. Since n
cε

6 n − k 6 n, we have y′
+ 6 cε(n − k)1/2−ε/6 when

y′ 6 n1/2−ε/6. Using (6.21), from the claim 2 of Corollary 9.4 with θm = cεm
−ε/6, we

deduce that

J4 6

[n1−ε]
∑

k=1

Ex




2

√

2π (n − k)σ

(

y + Sk + (n − k)1/2−2ε
) (

1 + cθ2
n−k

)

;

y + Sk 6 n1/2−ε/6 , τy > k , νε/6
n = k



 .(6.23)

Taking into account that 1√
n−k

6 1√
n

(

1 + cε

nε

)

, θn−k 6 cε

nε/6 and 1 < y+Sνn

n1/2−ε , we obtain

(6.24) J4 6
2√

2πnσ

(

1 +
cε

nε/3

)

E2 +
cε

n1/2+ε
E1.

Using Lemma 6.1 and Lemma 6.3, we get the following upper bound,

(6.25) J4 6
2V (x, y)√

2πnσ
(1 + o(1)) .

Lower bound of J4. In the same way as for the upper bound of J4, with y′
− =

y + S
ν

ε/6
n

−
(

n − νε/6
n

)1/2−2ε
> 0 on the event {

(

n − νε/6
n

)1/2−2ε
< y + S

ν
ε/6
n

}, we have

J4 >
2√

2πnσ

(

1 − cε

nε/6

)

Ex

(

y′
− ; (n − k)1/2−2ε < y + S

ν
ε/6
n

6 n1/2−ε/6 ,

τy > νε/6
n , νε/6

n 6
[

n1−ε
])

(6.26)

−
[n1−ε]
∑

k=1

∫

R

Px′

(

An−k

)

Px

(

Xk ∈ dx′ , τy > k , νε/6
n = k

)

.
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Using the fact that −y′
− > 0 on {

(

n − νε/6
n

)1/2−2ε
> y + S

ν
ε/6
n

}, we obtain in a same

way as for the upper bound of J1,

J4 >
2√

2πnσ

(

1 − cε

nε/6

)

E2 − 2√
2πnσ

Ex

(

n1/2−2ε y + Sνn

n1/2−ε
; τy > νn , νn 6

[

n1−ε
])

− 2√
2πnσ

E3 − cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε

>
2√

2πnσ

(

1 − cε

nε/6

)

E2 − c

n1/2+ε
E1 − c√

n
E3 − cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+ε
.

Consequently, using the results of Lemma 6.3, Lemma 6.1 and Lemma 6.4 we conclude
that

(6.27) J4 >
2V (x, y)√

2πnσ
(1 − o(1)) .

Coupling the obtained lower bound with the upper bound in (6.25) we obtain J4 ∼
2V (x,y)√

2πnσ
. With the decomposition of J2 in (6.20) and the bound of J3 in (6.22) we get

J2 ∼ 2V (x,y)√
2πnσ

. Finally, the claim 2 of Theorem 2.2 follows from (6.16), (6.17), (6.18)

and (6.19).

6.3. Proof of the claim 1 of Theorem 2.2. All the bounds necessary are obtained
in the proofs of the previous section 6.2. We highlight how to gather it. By (6.16),
(6.17), (6.18) and (6.20), we have,

Px (τy > n) 6 cp,ε
(1 + |x|p)√

n
+ J1 + J3 + J4.

Then, by (6.19), (6.22), and (6.24),

Px (τy > n) 6 cp,ε
(1 + y + |x|) (1 + |x|)p−1

√
n

+
cε√
n

E3 +
cε√
n

(E2 + E1) .

Now, by Lemma 6.1, (6.3) and (6.15),

Px (τy > n) 6 cp,ε
(1 + y + |x|)p

√
n

+
cε√
n

(E21 + E22) .

Finally, using (6.4), (6.5) and Lemmas 5.1 and 5.5 we have,

Px (τy > n) 6
cε√
n

(

z − Ex

(

z + Mτy ; τy 6 νε/6
n ∧

[

n1−ε
]))

+ cp,ε
(1 + y + |x|)p

√
n

6
cε√
n
Ex

(∣
∣
∣Mτy

∣
∣
∣

)

+ cp,ε
(1 + y + |x|)p

√
n

6 cp
(1 + y + |x|)p

√
n

.
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6.4. Proof of Corollary 2.3. By the Fubini theorem, for any 1/2 > p > 0,

Ex

(

τp
y

)

=
∫ +∞

0
Px (τy > s) psp−1 ds =

+∞∑

k=0

Px (τy > k) ((k + 1)p − kp) .

Using Theorem 2.2, the sum
∑+∞

k=1
1

k1+1/2−p is finite if and only if 1/2 − p > 0.

7. Asymptotic for conditioned Markov walk

In this section we prove Theorem 2.4. We will deduce the asymptotic of the Markov
walk (y + Sn)n>0 conditioned to stay positive from the corresponding result for the
Brownian motion given by Proposition 9.3. As in Section 6, we will use the functional
approximation of Proposition 9.5. We will refer frequently to Section 6 in order to
shorten the exposition.

Proof of Theorem 2.4. Introducing νε/6
n = νn +

[

nε/6
]

and taking into account

Condition 2, we have

Px

(

y + Sn 6 t
√

n
∣
∣
∣ τy > n

)

=
Px

(

y + Sn 6 t
√

n , τy > n , νε/6
n > [n1−ε]

)

Px (τy > n)
︸ ︷︷ ︸

=:L1

+
Px

(

y + Sn 6 t
√

n , τy > n , νε/6
n 6 [n1−ε]

)

Px (τy > n)
︸ ︷︷ ︸

=:L2

.(7.1)

Bound of L1. Using Lemma 4.1 and Theorem 2.2,

(7.2) L1 6
Px

(

νn > n1−ε

cε

)

Px (τy > n)
6

cp,ε (1 + |x|)p

n
p
2

−cpε
Px (τy > n)

−→
n→+∞

0.
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Bound of L2. As in Section 6, setting Ak =
{

max
06t61

∣
∣
∣S[tk] − σBtk

∣
∣
∣ 6 k1/2−2ε

}

, by the

Markov property,

Px (τy > n) L2

=

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′

(

y′ + Sn−k 6 t
√

n , τy′ > n − k , An−k

)

Px (Xk ∈ dx′ ,

y + Sk ∈ dy′ , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:Px(τy>n)L3

+

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′

(

y′ + Sn−k 6 t
√

n , τy′ > n − k , An−k

)

Px (Xk ∈ dx′ ,(7.3)

y + Sk ∈ dy′ , y + Sk > n1/2−ε/6 , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:Px(τy>n)L4

+

[n1−ε]
∑

k=1

∫

R×R∗
+

Px′

(

y′ + Sn−k 6 t
√

n , τy′ > n − k , An−k

)

Px (Xk ∈ dx′ ,

y + Sk ∈ dy′ , y + Sk 6 n1/2−ε/6 , τy > k , νε/6
n = k

)

︸ ︷︷ ︸

=:Px(τy>n)L5

.

Bound of L3. Using the bound of J1 in (6.19) and Theorem 2.2,

(7.4) L3 6
J1

Px (τy > n)
6

cp,ε(1 + y + |x|)(1 + |x|)p−1

n1/2+εPx (τy > n)
−→

n→+∞
0.

Bound of L4. Using the bound of J3 in (6.22) and Theorem 2.2, we have

(7.5) L4 6
J3

Px (τy > n)
= o(1).

Upper bound of L5. Define t+ = t + 2
(n−k)2ε and y′

+ = y′ + (n − k)1/2−2ε. By

Proposition 9.3,

Px′

(

y′ + Sn−k 6 t
√

n , τy′ > n − k , An−k

)

6 P

(

y′
+ + σBn−k 6 t+

√
n , τ bm

y′
+

> n − k
)

=
1

√

2π(n − k)σ

∫ t+
√

n

0
e

−
(s−y′

+
)2

2(n−k)σ2 − e
−

(s+y′
+

)2

2(n−k)σ2 ds.

Note that y′
+/

√
n 6 2

nε/6 when y′ 6 n1/2−ε/6 and that for any k 6 [n1−ε] we have

1 − cε

nε 6 n − k 6 n. Using these remarks with the fact that |sh(x) − x| 6 x3

6
sh(x),

we obtain after some calculations that

Px′

(

y′ + Sn−k 6 t
√

n , τy′ > n − k , An−k

)

6
2y′

+√
2πnσ

(

1 +
ct,ε

nε/3

)(

1 − e− t2

2σ2

)

.
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Consequently, using the same arguments as in the proof of Theorem 2.2 in Section 6
(see the developments from (6.23) to (6.25)), we obtain

(7.6) L5 6

(

1 +
ct,ε

nε/3

)

Φ+
σ (t)

2V (x, y)√
2πnσPx (τy > n)

(1 + o(1)) = Φ+
σ (t) (1 + o(1)) ,

with Φ+
σ (t) = 1 − e− t2

2σ2 .
Lower bound of L5. In the same way as for the upper bound, with y′

− = y′ − (n −
k)1/2−2ε and t− = t − 2

(n−k)2ε , we have

Px (τy > n)L5

>

[n1−ε]
∑

k=1

∫

R∗
+

P

(

y′
− + σBn−k 6 t−

√
n , τ bm

y′
−

> n − k
)

Px (y + Sn−k ∈ dy′ ,

(n − k)1/2−2ε < y + Sk 6 n1/2−ε/6 , τy > k , νε/6
n = k

)

−
[n1−ε]
∑

k=1

∫

R

Px′

(

An−k

)

Px

(

Xk ∈ dx′ , τy > k , νε/6
n = k

)

.

Using Lemma 9.3 with y′
−, which is positive when (n − k)1/2−2ε < y′ 6 n1/2−ε/6, we

obtain after calculation that

P

(

y′
− + σBn−k 6 t−

√
n , τ bm

y′
−

> n − k
)

>
2y′

−√
2πnσ

(

1 − ct,ε

nε/3

)

Φ+
σ (t).

Copying the proof of the bound of J1 in (6.19) and using the same arguments as in
the proof of Theorem 2.2 in Section 6 (see the developments from (6.26) to (6.27)),
we get

L5 > Φ+
σ (t)

2V (x, y)√
2πnσPx (τy > n)

(1 − o(1)) = Φ+
σ (t) (1 − o(1)) .

Coupling this with (7.6) we obtain that

L5 = Φ+
σ (t) (1 + o(1)) .

Inserting this and (7.4) and (7.5) into (7.3), we deduce that L2 ∼
n→+∞

Φ+
σ (t). By (7.1)

and (7.2), we finally have

Px

(

y + Sn 6 t
√

n
∣
∣
∣ τy > n

)

−→
n→+∞

Φ+
σ (t).

Changing t into tσ, this concludes the proof.

8. The case of non-positive initial point

In this section, we prove Theorem 2.5. All over this section we assume either
Conditions 1, 2 and E(a) > 0, or Conditions 1 and 3.

Lemma 8.1. For any (x, y) ∈ D−, the random variable Mτy is integrable and the

function V (x, y) = −Ex

(

Mτy

)

, is well defined on D−.



38 ION GRAMA, RONAN LAUVERGNAT, AND ÉMILE LE PAGE

Proof. If E(a) > 0, by the Markov inequality, with z = y + ρx,

Ex (z + Mn ; τy > n) =
∫

R×R∗
+

Ex′ (y′ + ρx′ + Mn−1 ; τy′ > n − 1)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

Since y + S1 > 0 on {τy > 1}, by Lemma 4.4,

Ex (z + Mn ; τy > n) 6 cpEx

(

(1 + y + S1 + |X1|) (1 + |X1|)p−1 ; τy > 1
)

6 cpEx ((1 + |X1|)p)

6 cp (1 + |x|)p .(8.1)

Moreover

Ex

(∣
∣
∣Mτy

∣
∣
∣ ; τy 6 n

)

6 |z| +
n∑

k=2

∫

R×R∗
+

Ex′ (|y′ + ρx′ + Mk−1| ; τy = k − 1)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1)

+ Ex (|M1| ; τy = 1) .

Since y + S1 > 0 on {τy > 1}, by Lemma 4.2,

Ex

(∣
∣
∣Mτy

∣
∣
∣ ; τy 6 n

)

6 c (1 + |y| + |x|) − Ex

(

z + Mτy ; τy 6 n
)

6 c (1 + |y| + |x|) + Ex (z + Mn ; τy > n) .

Using (8.1), we deduce that Ex

(∣
∣
∣Mτy

∣
∣
∣ ; τy 6 n

)

6 cp (1 + |y| + |x|p). Consequently,

by the Lebesgue monotone convergence theorem, the assertion is proved when E(a) >
0. When E(a) < 0, the assertion follows from Lemma 5.5. �

Lemma 8.2. The function V is Q+-harmonic and positive on D = D− ∪ R × R∗
+.

Proof. Note that by Corollary 9.7, we have Px(τy < +∞) = 1, for any x ∈ R and
y ∈ R. Therefore, by the Lebesgue dominated convergence theorem,

V (x, y) = −Ex

(

Mτy

)

= z − lim
n→∞

Ex

(

z + Mτy ; τy 6 n
)

= lim
n→∞

Ex (z + Mn ; τy > n) ,

for any (x, y) ∈ D−. The fact that V is Q+-harmonic on D can be proved in the
same way as in the proof of Proposition 5.4. Therefore, for any (x, y) ∈ D−,

(8.2) V (x, y) = Ex (V (X1, y + S1) ; τy > 1) .

By the claim 2 of Proposition 5.4 and the claim 3 of Lemma 5.11, on {τy > 1}, the
random variable V (X1, y + S1) is positive almost surely. Since by the definition of
D−, we have Px (τy > 1) > 0, we conclude that V (x, y) > 0 for any (x, y) ∈ D−. �

Lemma 8.3.

(1) For any (x, y) ∈ D−,
√

nPx (τy > n) 6 cp (1 + |x|)p .
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(2) For any (x, y) ∈ D−,

Px (τy > n) ∼
n→+∞

2V (x, y)√
2πnσ

.

Proof. By the Markov property,

√
nPx (τy > n) =

∫

R×R∗
+

√
nPx′ (τy′ > n − 1)Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

By Theorem 2.2, for any y′ > 0, we have
√

nPx′ (τy′ > n − 1) 6 cp (1 + y′ + |x′|)p and
moreover, for any y 6 0,

Ex (cp (1 + y + S1 + |X1|)p ; τy > 1) 6 cp (1 + |x|)p .

Then, we obtain the claim 1 and by the Lebesgue dominated convergence theorem
and the claim 2 of Theorem 2.2,

lim
n→∞

√
nPx (τy > n) = Ex

(

2V (X1, y + S1)√
2πσ

; τy > 1

)

.

Using (8.2) we conclude the proof. �

Lemma 8.4. For any (x, y) ∈ D− and t > 0,

Px

(

y + Sn

σ
√

n
6 t

∣
∣
∣
∣
∣
τy > n

)

−→
n→+∞

1 − e− t2

2 .

Proof. Similarly as in the proof of Lemma 8.3, we write,

Px

(

y + Sn

σ
√

n
6 t

∣
∣
∣
∣
∣
τy > n

)

=
1

Px (τy > n)

∫

R×R∗
+

Px′

(

y′ + Sn−1

σ
√

n − 1
6 t ; τy′ > n − 1

)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1)

=
1√

nPx (τy > n)

∫

R×R∗
+

Px′

(

y′ + Sn−1

σ
√

n − 1
6 t

∣
∣
∣
∣
∣
τy′ > n − 1

)√
nPx′ (τy′ > n − 1)

× Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

Since, by Lemma 8.3,
√

nPx′ (τy′ > n − 1) 6 cp (1 + |x′|)p, applying the Lebesgue
dominated convergence theorem, Theorem 2.2, Theorem 2.4 and Lemma 8.3, we
have

lim
n→∞

Px

(

y + Sn

σ
√

n
6 t

∣
∣
∣
∣
∣
τy > n

)

=

√
2πσ

2V (x, y)

∫

R×R∗
+

(

1 − e− t2

2

)
2V (x′, y′)√

2πσ
Px (X1 ∈ dx′ , y + S1 ∈ dy′ , τy > 1) .

Using (8.2) concludes the proof. �
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9. Appendix

9.1. Proof of the fact Condition 3bis implies Condition 3. We suppose that
Condition 3bis holds true. Then, there exists δ > 0 such that

P ((a, b) ∈ [−1 + δ, 0] × [δ, C]) > 0(9.1)

and

P ((a, b) ∈ [0, 1 − δ] × [δ, C]) > 0.(9.2)

For any x ∈ R, set Cx = max
(

|x| , C
δ

)

and

An =
{

δ 6 X1 6 Cx , δ 6 X2 6 CX1 , . . . , δ 6 Xn 6 CXn−1

}

.

Using (9.1) for x < 0 and (9.2) for x > 0, we obtain that Px (A1) > 0. By the Markov
property, we deduce that Px (An) > 0. Moreover, it is easy to see that, on An, we
have y + Sk > y + kδ > 0, for all k 6 n, and |Xn| 6 Cx. Taking n = n0 large enough,
we conclude that Condition 3 holds under Condition 3bis.

9.2. Convergence of recursively bounded monotonic sequences. The follow-
ing lemmas give sufficient conditions for a monotonic sequence to be bounded.

Lemma 9.1. Let (un)n>1 be a non-decreasing sequence of reals such that there exist
ε ∈ (0, 1) and α, β, γ, δ > 0 such that for any n > 2,

(9.3) un 6

(

1 +
α

nε

)

u[n1−ε] +
β

nε
+ γ e−δnε

.

Then, for any n > 2 and any integer nf ∈ {2, . . . , n},

un 6 exp

(

α

nε
f

2ε2ε2

2ε2 − 1

)







unf
+

β

nε
f

2ε2ε2

2ε2 − 1
+ γ

exp
(

−δ
nε

f

2ε

)

1 − e−δ(2ε2 −1)







6

(

1 +
cα,ε

nε
f

)

unf
+ β

cα,ε

nε
f

+ γ e−cα,δ,εnε
f .

In particular, choosing nf constant, it follows that (un)n>1 is bounded.

Proof. Fix n > 2 and nf ∈ {2, . . . , n} and consider for all j > 0,

nj =
[

n(1−ε)j
]

.

The sequence (nj)j>0 starts at n0 = n, is non-increasing and converge to 1. So there

exists m = m(nf ) ∈ N such that nm > nf > nm+1. Since n(1−ε)j
/2 > nf /2 > 1, for

all j ∈ {0, . . . , m}, we have

(9.4) n(1−ε)j

> nj > n(1−ε)j − 1 >
n(1−ε)j

2
.
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Using (9.3) and the fact that (un)n>2 is non-decreasing, we write for all j = 0, . . . , m,

unj
6

(

1 +
α

nε
j

)

unj+1
+

β

nε
j

+ γ e−δnε
j 6

(

1 +
α

nε
j

)(

unj+1
+

β

nε
j

+ γ e−δnε
j

)

.

Iterating, we obtain that

un 6 Am

(

unm+1 + βBm + γCm

)

,

where Am =
∏m

j=0

(

1 + α
nε

j

)

, Bm =
∑m

j=0
1

nε
j

and Cm =
∑m

j=0 e−δnε
j . Since nm+1 6 nf

and since (un)n>2 is non-decreasing,

(9.5) un 6 Am

(

unnf
+ βBm + γCm

)

.

Now, we bound Am as follows,

(9.6) Am 6

m∏

j=0

e
α

nε
j = eαBm .

Denoting ηj = n−(1−ε)j ε, using (9.4), we have Bm 6 2ε∑m
j=0 ηj . Moreover, for all

j 6 m, we note that
ηj

ηj+1
= 1

nε2(1−ε)j 6 1

nε2
f

6 1

2ε2 < 1 and so

(9.7) ηj 6
ηm

2ε2(m−j)
6

1

nε
m2ε2(m−j)

6
1

nε
f 2ε2(m−j)

.

Therefore, Bm is bounded as follows:

(9.8) Bm 6
2ε

nε
f

m∑

k=0

(
1

2ε2

)k

6
1

nε
f

2ε2ε2

2ε2 − 1
.

Using (9.4) and (9.7), we have

Cm 6

m∑

j=0

e
− δ

2εηj 6

m∑

j=0

exp



−δnε
f 2ε2(m−j)

2ε



 .

Since for any u > 0 and k ∈ N, we have (1 + u)k > 1 + ku, it follows that

(9.9) Cm 6 e−
δnε

f
2ε

m∑

k=0

exp
(

−δk
(

2ε2 − 1
))

6
e−

δnε
f

2ε

1 − e−δ(2ε2 −1)
.

reals Putting together (9.6), (9.8) and (9.9) into (9.5), proves the lemma. �

Lemma 9.2. Let (un)n>1 be a non-increasing sequence of reals such that there exist
ε ∈ (0, 1) and β > 0 such that for any n > 2,

un > u[n1−ε] − β

nε
.

Then, for any n > 2 and any integer nf ∈ {2, . . . , n},

un > unf
− β

nε
f

2ε2ε2

2ε2 − 1
= unf

− cε
β

nε
f

.
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In particular, choosing nf constant, it follows that (un)n>1 is bounded.

Proof. For the proof it is enough to use Lemma 9.1 with un replaced by −un. �

9.3. Results on the Brownian case and strong approximation. Consider the
standard Brownian motion (Bt)t>0 living on the probability space (Ω, F ,PPP). Define
the exit time

(9.10) τ bm
y = inf{t > 0, y + σBt 6 0},

where σ > 0. The following assertions are due to Levy [19].

Proposition 9.3. For any y > 0, 0 6 a 6 b and n > 1,

PPP

(

τ bm
y > n

)

=
2√

2πnσ

∫ y

0
e− s2

2nσ2 ds.

and

PPP

(

τ bm
y > n , y + σBn ∈ [a, b]

)

=
1√

2πnσ

∫ b

a

(

e− (s−y)2

2nσ2 − e− (s+y)2

2nσ2

)

ds.

From this one can deduce easily:

Corollary 9.4.

(1) For any y > 0,

PPP

(

τ bm
y > n

)

6 c
y√
n

.

(2) For any sequence of real numbers (θn)n>0 such that θn −→
n→+∞

0,

sup
y∈[0;θn

√
n]




PPP

(

τ bm
y > n

)

2y√
2πnσ

− 1



 = O(θ2
n).

To transfer the results from the Brownian motion to the Markov walk, we use a
functional approximation given in Theorem 3.3 from Grama, Le Page and Peigné
[16]. We have to construct an adapted Banach space B and verify the hypotheses
M1 − M5 in [16] which are necessary to apply Theorem 3.3. Fix p ∈ (2, α) and
let ε, θ, c0 and δ be positive numbers such that c0 + ε < θ < 2c0 < α − ε and
2 < 2 + 2δ < (2 + 2δ)θ 6 p. Define the Banach space B = Lε,c0,θ as the set of
continuous function f from R to C such that ‖f‖ = |f |θ + [f ]ε,c0

< +∞, where

|f |θ = sup
x∈R

|f(x)|
1 + |x|θ

, [f ]ε,c0
= sup

(x,y)∈R2

x 6=y

|f(x) − f(y)|
|x − y|ε (1 + |x|c0) (1 + |y|c0)

.

For example, one can take ε < min(p−2
4

, 1
2
), c0 = 1, θ = 1+2ε and 2+2δ = p

1+2ε
. Using

the techniques from [17] one can verify that, under Condition 1, the Banach space
B and the perturbed operator Ptf(x) =

∫

R
f(x′)eitx′

P(x, dx′), satisfy Hypotheses
M1 − M5 in [16]. The hypothesis M1 is verified straightforwardly. In particular the
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norm of the Dirac measure δx is bounded: ‖δx‖B→B 6 1 + |x|θ, for each x ∈ R. We
refer to Proposition 4 and Corollary 3 of [17] for M2 − M3. For M4, we have

µδ(x) = sup
k>1

E
1/2+2δ
x

(

|Xn|2+2δ
)

6 cδ (1 + |x|) .

Hypothesis M5 follows from Proposition 1 of [17] and Lemma 3.1.
With these considerations, the C(x) = C1(1 + µδ(x) + ‖δx‖)2+2δ in Theorem 3.3

established in [16] is less than cp(1+ |x|)p, where C1 is a constant. Therefore Theorem
3.3 can be reformulated in the case of the stochastic recursion as follows.

Proposition 9.5. Assume Condition 1. For any p ∈ (2, α), there exists ε0 > 0
such that for any ε ∈ (0, ε0], x ∈ R and n > 1, without loss of generality (on an
extension of the initial probability space) one can reconstruct the sequence (Sn)n>0

with a continuous time Brownian motion (Bt)t∈R+ , such that

Px

(

sup
06t61

∣
∣
∣S[tn] − σBtn

∣
∣
∣ > n1/2−ε

)

6
cp,ε

nε
(1 + |x|)p,

where σ is given by (2.2).

This proposition plays the crucial role in the proof of Theorem 2.2 and Theorem
2.4 (cf. Sections 6 and 7). The following straightforward consequence of Proposition

9.5 is used in the proof of Lemma 4.1 in Section 4. Set Φ(t) = 1√
2π

∫ t
−∞ e− u2

2 du.

Corollary 9.6. Assume Condition 1. For any p ∈ (2, α), there exists ε0 > 0 such
that for any ε ∈ (0, ε0], x ∈ R and n > 1,

sup
u∈R

∣
∣
∣
∣
∣
Px

(

Sn√
n
6 u

)

− Φ

(
u

σ

)
∣
∣
∣
∣
∣
6

cp,ε

nε
(1 + |x|)p .

Proof. Let ε ∈ (0, 1/2) and An =

{

sup
06t61

∣
∣
∣S[tn] − σBtn

∣
∣
∣ > n1/2−ε

}

. For any x ∈ R and

any u ∈ R,

Px

(

Sn√
n
6 u

)

6 Px (An) + Px

(

σBn√
n

6 u +
1

nε

)

,

where the last probability does not exceed Φ(u
σ
) + cεn

−ε. Using Proposition 9.5, we
conclude that there exists ε0 > 0 such that for any ε ∈ (0, ε0] and x ∈ R,

Px

(

Sn√
n
6 u

)

6 Φ

(
u

σ

)

+
cp,ε

nε
(1 + |x|)p .

In the same way we obtain a lower bound and the assertion follows. �

9.4. Finiteness of the exit times.

Corollary 9.7. Assume Condition 1. For any x ∈ R and y ∈ R,

Px (τy < +∞) = 1 and Px (Ty < +∞) = 1.
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Proof. Let y > 0 and ε ∈ (0, 1/2). Set An =
{

sup06t61

∣
∣
∣S[tn] − σBtn

∣
∣
∣ 6 n1/2−ε

}

. Using

Proposition 9.5, there exists ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ R and y > 0,

Px (τy > n) 6 Px (τy > n, An) + Px

(

An

)

6 P

(

τ bm
y+n1/2−ε > n

)

+
cp,ε

nε
(1 + |x|)p .

Since, by the claim 1 of Corollary 9.4, P

(

τ bm
y+n1/2−ε > n

)

6 cy+n1/2−ε
√

n
6 (1 + y) c

nε ,

taking the limit as n → +∞ we conclude that Px (τy < +∞) = 1.

Let Dn =
{

max16k6n |Sk − Mk| 6 n1/2−ε
}

. Obviously

Px (Ty > n) 6 Px (Ty > n, An, Dn) + Px

(

An

)

+ Px

(

Dn

)

6 P

(

τ bm
y+2n1/2−ε > n

)

+
cp,ε

nε
(1 + |x|)p + Px

(

max
16k6n

|ρXk| > n1/2−ε
)

.

Using the claim 1 of Corollary 9.4, the Markov inequality and Lemma 3.1, for any
ε ∈ (0, ε0], x ∈ R and y > 0,

Px (Ty > n) 6 (1 + y)
c

nε
+

cp,ε

nε
(1 + |x|)p + cp

1 + |x|p

n
p−2

2
−pε

.

Choosing ε small enough and taking the limit as n → +∞ we conclude the second
assertion when y > 0.

When y 6 0, the results follow since the applications y 7→ τy and y 7→ Ty are
non-decreasing. �
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