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Correction de l’interrogation 8
d’entrainement

Equations et géométrie complexes

1. Restituer le cours.
1.1 Soit z = r eiθ ∈ C∗, avec (r, θ) ∈ R∗

+ ×R. Alors l’équation ω2 = z d’inconnu ω ∈ C admet exactement deux
solutions données par :

ω1 =
√

r ei θ
2 et ω2 = − ω1 =

√
r ei( θ

2 +π) .

1.2 Soient (a, b, c) ∈ C∗ × C2. Posons ∆ = b2 − 4ac.
• Si ∆ = 0, alors l’équation az2 + bz + c = 0 admet une unique solution z0 = − b

2a .
• Si ∆ ̸= 0, alors l’équation az2 + bz + c = 0 admet exactement deux solutions données par

z1 = −b + δ

2a
et z2 = −b − δ

2a
,

où δ est UNE racine carrée de ∆.
1.3 Soient (a, b, c) ∈ C∗ × C2 et z1 et z2 les deux racines (éventuellement confondues) de az2 + bz + c. Alors,

z1 + z2 = − b

a
et z1z2 = c

a
.

1.4 Soit n ∈ N∗. On a
Un = {z ∈ C | zn = 1} .

De plus, pour tout (z, z′) ∈ Un, on a

zz′ ∈ Un,
1
z

= z ∈ Un.

1.5 Soit n ∈ N∗. On a l’égalité suivante :

Un =
{

ei 2kπ
n

∣∣∣ k ∈ J0; n − 1K
}

.

1.6 On a j = ei 2π
3 . De plus,

j2 = j, j3 = 1 et 1 + j + j2 = 0.

1.7 Soient z ∈ C et n ∈ N∗. On a

z ∈ Un \ {1} ⇔
n−1∑
k=0

zk = 1 + z + · · · + zn−1 = 0.

1.8 Soit z = r eiθ ∈ C∗, avec (r, θ) ∈ R∗
+ × R. Pour tout ω ∈ C, on a

ωn = z ⇔ ∃k ∈ J0; n − 1K, ω = n
√

r ei( θ
n + 2kπ

n ) .

2. Racines carrées d’un complexe.
2.1 Soit z = x + iy ∈ C où (x, y) ∈ R2. On a les équivalences suivantes :

z2 = 16 − 30i ⇔
®

(x + iy)2 = 16 − 30i

|z|2 = |16 − 30i|

⇔


x2 − y2 = 16
2xy = −30
x2 + y2 =

√
256 + 900 =

√
1156 =

√
4 × 289 = 2 × 17 = 34

⇔


x2 = 25
y2 = 9
xy = −15

⇔
®

x = 5
y = −3

OU

®
x = −5
y = 3

car xy ⩽ 0.
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Conclusion, pour tout z ∈ C,

z2 = 16 − 30i ⇔ z = 5 − 3i OU z = −5 + 3i.

2.2 Soit z = x + iy ∈ C où (x, y) ∈ R2. On a les équivalences suivantes :

z2 = 2 + i ⇔
®

(x + iy)2 = 2 + i

|z|2 = |2 + i|

⇔


x2 − y2 = 2
2xy = 1
x2 + y2 =

√
5

⇔


x2 =

√
5+2
2

y2 =
√

5−2
2

2xy = 1

⇔

{
x =
»√

5+2
2

y =
»√

5−2
2

OU

{
x = −

»√
5+2
2

y = −
»√

5−2
2

car xy ⩾ 0.

Conclusion, pour tout z ∈ C,

z2 = 2 + i ⇔ z =

 √
5 + 2
2 + i

 √
5 − 2
2 OU z = −

 √
5 + 2
2 − i

 √
5 − 2
2 .

2.3 Soit z ∈ C. On a les équivalences suivantes,

z2 = 1 + i√
3 − i

⇔ z2 =
√

2
2

√
2

2 + i
√

2
2√

3
2 − i

2

⇔ z2 =
√

2
2

ei π
4

e−i π
6

⇔ z2 =
√

2
2 ei( π

4 + π
6 ) =

√
2

2 ei 5π
12

⇔ z =

 √
2

2 ei 5π
24 OU

 √
2

2 e−i 19π
24

Conclusion, pour tout z ∈ C,

z2 = 1 + i√
3 − i

⇔ z =
√

2
√

2
2 ei 5π

24 OU z =
√

2
√

2
2 e−i 19π

24 .

2.4 Soit z = x + iy ∈ C où (x, y) ∈ R2. On a les équivalences suivantes :

z2 = 3 − i ⇔
®

(x + iy)2 = 3 − i

|z|2 = |3 − i|

⇔


x2 − y2 = 3
2xy = −1
x2 + y2 =

√
10

⇔


x2 =

√
10+3
2

y2 =
√

10−3
2

2xy = −1

⇔

{
x =
»√

10+3
2

y = −
»√

10−3
2

OU

{
x = −

»√
10+3
2

y =
»√

10−3
2

car xy ⩽ 0.
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Conclusion, pour tout z ∈ C,

z2 = 3 − i ⇔ z =

 √
10 + 3

2 − i

 √
10 − 3

2 OU z = −

 √
10 + 3

2 + i

 √
10 − 3

2 .

2.5 Soit z ∈ C. Puisque
2π
9 + 4π

9
2 = 6π

18 = 3π
9 On a les équivalences suivantes :

z2 = ei 2π
9 + ei 4π

9 ⇔ z2 = ei 3π
9
(
e−i π

9 + ei π
9
)

⇔ z2 = ei π
3 2 cos

(π

9

)
⇔ z =

…
2 cos

(π

9

)
ei π

6 OU z =
…

2 cos
(π

9

)
e−i 5π

6 ,

car cos
(

π
9
)

> 0 car π
9 ∈

[
0; π

2
[
. Conclusion, pour tout z ∈ C,

z2 = ei 2π
9 + ei 4π

9 ⇔ z =
…

2 cos
(π

9

)
ei π

6 OU z =
…

2 cos
(π

9

)
e−i 5π

6 .

3. Racines n-ièmes d’un complexe.
3.1 Soit z ∈ C. On a les équivalences suivantes :

z7 + 1 = 0 ⇔ z7 = −1 ⇔ z7 = eiπ

⇔ ∃k ∈ J0; 6K, z = ei( π
7 + 2kπ

7 )

Conclusion, pour tout z ∈ C,

z7 + 1 ⇔ z ∈
{

ei
(2k+1)π

7

∣∣∣ k ∈ J0; 6K
}

.

3.2 Soit z ∈ C. On a les équivalences suivantes :

z3 = 4
√

2 (−1 + i) ⇔ z3 = 8
Ç

−
√

2
2 +

√
2

2 i

å
⇔ z3 = 23 ei 3π

4

⇔ ∃k ∈ J0; 2K, z = 2 ei( π
4 + 2kπ

3 ) .

Conclusion, pour tout z ∈ C,

z3 = 4
√

2 (−1 + i) ⇔ z ∈
{

2 ei( π
4 + 2kπ

3 )
∣∣∣ k ∈ J0; 2K

}
.

3.3 Soit z ∈ C. On a les équivalences suivantes :
z11 = −5i ⇔ z11 = 5 ei 3π

2

⇔ ∃k ∈ J0; 10K, z = 5 1
11 ei( 3π

22 + 2kπ
11 ) .

Conclusion, pour tout z ∈ C,

z11 = −5i ⇔ z ∈
{

5 1
11 ei

(3+4k)π
22

∣∣∣ k ∈ J0; 10K
}

.

3.4 Soit z ∈ C. On a les équivalences suivantes :

(z − i)7 = (z + i)7 ⇔ ∃k ∈ J0; 6K, z − i = (z + i) ei 2kπ
7

⇔ ∃k ∈ J0; 6K, z
Ä
1 − ei 2kπ

7
ä

= i
Ä
1 + ei 2kπ

7
ä

⇔ k = 0 et donc 0 = 2i impossible OU ∃k ∈ J1; 6K, z = i
1 + ei 2kπ

7

1 − ei 2kπ
7

⇔ ∃k ∈ J1; 6K, z = i
ei kπ

7
Ä
e−i kπ

7 + ei kπ
7
ä

ei kπ
7

Ä
e−i kπ

7 − ei kπ
7

ä
⇔ ∃k ∈ J1; 6K, z = i

2 cos
(

kπ
7
)

(−2i) sin
(

kπ
7
)

⇔ ∃k ∈ J1; 6K, z = −
cos

(
kπ
7
)

sin
(

kπ
7
) .
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Conclusion, pour tout z ∈ C,

(z − i)7 = (z + i)7 ⇔ z ∈
®

−
cos

(
kπ
7
)

sin
(

kπ
7
) ∣∣∣∣∣ k ∈ J1; 6K

´
.

3.5 Soit z ∈ C. On a les équivalences suivantes :

(z + i)4 = (z + 1)4 ⇔ ∃k ∈ J0; 3K, z + i = (z + 1) ei 2kπ
4

⇔ ∃k ∈ J0; 3K, z
Ä
1 − ei kπ

2
ä

= ei kπ
2 −i

⇔ k = 0 et donc 0 = 1 − i impossible OU ∃k ∈ J1; 3K, z = ei kπ
2 − ei π

2

1 − ei kπ
2

⇔ ∃k ∈ J1; 3K, z =
ei

(k+1)π
4
Ä
ei

(k−1)π
4 − e−i

(k−1)π
4
ä

ei kπ
4

Ä
e−i kπ

4 − ei kπ
4

ä
⇔ ∃k ∈ J1; 3K, z = ei π

4
2i sin

Ä
(k−1)π

4

ä
(−2i) sin

(
kπ
4
)

⇔ ∃k ∈ J1; 3K, z = − ei π
4

sin
Ä

(k−1)π
4

ä
sin

(
kπ
4
) .

Conclusion, pour tout z ∈ C,

(z − i)7 = (z + i)7 ⇔ z ∈

 sin
Ä

(k−1)π
4

ä
sin

(
kπ
4
) ei 5π

4

∣∣∣∣∣∣ k ∈ J1; 3K

 .

NB : dans ce cas, on peut spécifier les solutions, si k = 1, z = 0, si k = 2, z = − 1+i
2 et si k = 3, z = −1− i.

4. Equations complexes du second degré.
4.1 Considérons l’équation (E) : z2 − 5z + 7 + i = 0 d’inconnu z ∈ C. Soit ∆ le discriminant de (E). On a

∆ = 25 − 28 − 4i = −3 − 4i.

Soit δ = x + iy ∈ C, avec (x, y) ∈ R2. On a les équivalences suivantes :

δ2 = ∆ ⇔
®

(x + iy)2 = −3 − 4i

|δ|2 = |∆| =
√

9 + 16 = 5

⇔


x2 − y2 = −3
2xy = −4
x2 + y2 = 5

⇔


x2 = 1
y2 = 4
2xy = −4

⇔
®

x = 1
y = −2

OU

®
x = −1
y = 2

car xy ⩽ 0.

Fixons désormais δ = 1 − 2i. Les deux solutions de (E) sont alors données par

z1 = 5 − 1 + 2i

2 = 2 + i et z2 = 5 + 1 − 2i

2 = 3 − i.

Conclusion, pour tout z ∈ C,

z2 − 5z + 7 + i = 0 ⇔ z ∈ {2 + i ; 3 − i} .
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4.2 Considérons l’équation (E) : z2 − (1 + 2i) z + i − 1 = 0 d’inconnu z ∈ C. Soit ∆ le discriminant de (E).
On a

∆ = (1 + 2i)2 − 4i + 4 = 1 + 4i − 4 − 4i + 4 = 1.

Par conséquent les deux solutions de (E) sont

z1 = 1 + 2i + 1
2 = 1 + i et z2 = 1 + 2i − 1

2 = i.

Conclusion, pour tout z ∈ C,

z2 − (1 + 2i) z + i − 1 = 0 ⇔ z ∈ {1 + i ; i} .

4.3 Considérons l’équation (E) : z4 + 4z2 + 5 = 0 d’inconnu z ∈ C. Posons ω = z2 et considérons également
l’équation (F ) : ω2 +4 ω +5 = 0. Soit ∆ le discriminant de (F ). On a

∆ = 16 − 20 = −4 = (2i)2

Par conséquent, les deux solutions de (F ) sont données par

ω1 = −4 + 2i

2 = −2 + i et ω2 = −4 − 2i

2 = −2 − i.

Or z est solution de (E) si et seulement si ω = z2 est solution de (F ). Donc les solutions de (E) sont les
racines carrées de ω1 et de ω2.
Cherchons les racines carrées de ω1. Soit z = x + iy ∈ C, (x, y) ∈ R2. On a les équivalences suivantes :

z2 = ω1 ⇔
®

(x + iy)2 = −2 + i

|z|2 = |ω1| =
√

4 + 1 =
√

5

⇔


x2 − y2 = −2
2xy = 1
x2 + y2 =

√
5

⇔


x2 =

√
5−2
2

y2 =
√

5+2
2

2xy = 1

⇔

{
x =
»√

5−2
2

y =
»√

5+2
2

OU

{
x = −

»√
5−2
2

y = −
»√

5+2
2

car xy ⩾ 0

⇔ z =

 √
5 − 2
2 + i

 √
5 + 2
2 OU z = −

 √
5 − 2
2 − i

 √
5 + 2
2 .

Cherchons les racines carrées de ω2. On constate que ω2 = ω1. Donc on a les équivalences suivantes :

z2 = ω2 ⇔ z2 = ω1 ⇔ z2 = ω1 ⇔ z2 = ω1 .

Donc par ce qui précède :

z2 = ω2 ⇔ z =

 √
5 − 2
2 + i

 √
5 + 2
2 OU z = −

 √
5 − 2
2 − i

 √
5 + 2
2

⇔ z =

 √
5 − 2
2 − i

 √
5 + 2
2 OU z = −

 √
5 − 2
2 + i

 √
5 + 2
2 .

Conclusion, en notant a =
»√

5−2
2 et b =

»√
5+2
2 , pour tout z ∈ C,

z4 + 4z2 + 5 = 0 = 0 ⇔ z ∈ {a + ib ; −a − ib ; a − ib ; −a + ib} .
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4.4 Considérons l’équation (E) : z2 − (1 + 3i) z + 4 + 4i = 0 d’inconnu z ∈ C. Soit ∆ le discriminant de (E).
On a

∆ = (1 + 3i)2 − 16 − 16i = 1 + 6i − 9 − 16 − 16i = −24 − 10i = −2 (12 + 5i) .

Soit δ′ = x + iy ∈ C, avec (x, y) ∈ R2. On a les équivalences suivantes :

(δ′)2 = 12 + 5i ⇔
®

(x + iy)2 = 12 + 5i

|δ|2 = |12 + 5i| =
√

144 + 25 =
√

169 = 13

⇔


x2 − y2 = 12
2xy = 5
x2 + y2 = 13

⇔


x2 = 25

2
y2 = 1

2
2xy = 5

⇔

{
x = 5√

2
y = 1√

2

OU

{
x = − 5√

2
y = − 1√

2

car xy ⩾ 0

⇔ δ′ = 5 + i√
2

OU δ′ = −5 + i√
2

Par conséquent pour δ ∈ C,

δ2 = ∆ ⇔ δ =
Ä√

2i
ä 5 + i√

2
= −1 + 5i OU δ = −

Ä√
2i
ä 5 + i√

2
= 1 − 5i.

Fixons désormais δ = −1 + 5i. Les deux solutions de (E) sont alors données par

z1 = 1 + 3i − 1 + 5i

2 = 4i et z2 = 1 + 3i + 1 − 5i

2 = 1 − i.

Conclusion, pour tout z ∈ C,

z2 − (1 + 3i) z + 4 + 4i = 0 ⇔ z ∈ {4i ; 1 − i} .

4.5 Considérons l’équation (E) : z2 − 2 (2 + i) z + 6 + 8i = 0 d’inconnu z ∈ C. Soit ∆ le discriminant de (E).
On a

∆ = 4 (2 + i)2 − 24 − 32i = 4 (4 + 4i − 1 − 6 − 8i) = 4 (−3 − 4i) .

Soit δ′ = x + iy ∈ C, avec (x, y) ∈ R2. On a les équivalences suivantes :

(δ′)2 = −3 − 4i ⇔
®

(x + iy)2 = −3 − 4i

|δ|2 = |−3 − 4i| =
√

9 + 16 = 5

⇔


x2 − y2 = −3
2xy = −4
x2 + y2 = 5

⇔


x2 = 1
y2 = 4
2xy = −4

⇔
®

x = 1
y = −2

OU

®
x = −1
y = 2

car xy ⩽ 0

⇔ δ′ = 1 − 2i OU δ′ = −1 + 2i

Par conséquent pour δ ∈ C,

δ2 = ∆ ⇔ δ = 2 (1 − 2i) = 2 − 4i OU δ = −2 (−1 + 2i) = 2 − 4i.

Fixons désormais δ = 2 − 4i. Les deux solutions de (E) sont alors données par

z1 = 4 + 2i + 2 − 4i

2 = 3 − i et z2 = 4 + 2i − 2 + 4i

2 = 1 + 3i.
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Conclusion, pour tout z ∈ C,

z2 − 2 (2 + i) z + 6 + 8i = 0 ⇔ z ∈ {3 − i ; 1 + 3i} .

5. Applications géométriques.
5.1 Notons zA, zB et zC les affixes de A, B et C respectivement. On remarque que zB − zA = 4 + 3i − 1 − i =

3 + 2i ̸= 0 et

zC − zA

zB − zA
=

5
2 i − 1 − i

3 + 2i
= 5i − 2 − 2i

2 (3 + 2i) = 3i − 2
2 (3 + 2i) = (3i − 2) (3 − 2i)

2 (9 + 4) = 9i + 6 − 6 + 4i

26 = 13i

26 = i

2 .

Par conséquent arg
Ä

zC−zA

zB−zA

ä
= π

2 et donc ABC est rectangle en A.

5.2 Notons zA, zB et zC les affixes de A, B et C respectivement. On remarque que zB − zA = 2
√

3 −
√

3 + i =√
3 + i ̸= 0 et

zC − zA

zB − zA
=

1 +
√

3 − i
(
1 +

√
3
)

−
√

3 + i
√

3 + i
= 1 − i

√
3√

3 + i
=

(
1 − i

√
3
) (√

3 − i
)

3 + 1 =
√

3 − i − 3i −
√

3
4 = −i.

Par conséquent arg
Ä

zC−zA

zB−zA

ä
= 3π

2 et donc ABC est rectangle en A.

5.3 Notons zA, zB et zC les affixes de A, B et C respectivement. On remarque que zB −zA = 1+iz−(1 + i) z =
1 − z ̸= 0 car par hypothèse z ̸= 1. Donc ω = zC−zA

zB−zA
est bien défini. De plus,

ω = z − i − (1 + i) z

1 − z
= −i

1 + z

1 − z
= −i

(1 + z) (1 − z)
|1 − z|2

= −i
1 − z + z − |z|2

|1 − z|2

= −i
1 + 2iIm (z) − 1

|1 − z|2
car z ∈ U

= 2Im (z)
|1 − z|2

Donc ω ∈ R. Conclusion arg
Ä

zC−zA

zB−zA

ä
≡ 0 [π] et donc A, B et C sont alignés.

5.4 Notons zA, zB et zC les affixes de A, B et C respectivement. On remarque que zB −zA = iz −i−(1 + i) z =
−z − i ̸= 0 car par hypothèse z ̸= −i. Donc ω = zC−zA

zB−zA
est bien défini. De plus,

ω = z − 1 − (1 + i) z

− (z + i) = −1 − iz

− (z + i) = iz + 1
z + i

= (iz + 1) (z − i)
|z + i|2

= i |z|2 + z + z − i

|z + i|2

= i + 2Re (z) − i

|z + i|2
car z ∈ U

= 2Re (z)
|z + i|2

.

Donc ω ∈ R. Conclusion arg
Ä

zC−zA

zB−zA

ä
≡ 0 [π] et donc A, B et C sont alignés.

5.5 Soit f : z 7→ z − 1 + 3i. On reconnait alors directement une translation de vecteur d’affixe −1 + 3i .
5.6 Soit f : z 7→ iz + 1 − i. Ici a = i ̸= 1. Donc f est une similitude avec un unique point fixe. Soit ω ∈ C. On a

f (ω) = ω ⇔ ω = i ω +1 − i ⇔ ω (1 − i) = 1 − i ⇔ ω = 1.

En posant ω = 1, on a
∀z ∈ C, f(z) = i (z − ω) + ω = ei π

2 (z − 1) + 1.

On reconnait alors une rotation de centre Ω (1) et d’angle θ = π
2 .
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5.7 Soit f : z 7→ 1−i
2 z + −3+i

2 . Puisque a = 1−i
2 ̸= 1, f est une similitude avec un unique point fixe. Soit ω ∈ C.

On a

f (ω) = ω ⇔ ω = 1 − i

2 ω +−3 + i

2
⇔ ω

1 + i

2 = −3 + i

2

⇔ ω = −3 + i

1 + i
= (−3 + i)(1 − i)

1 + 1 = −3 + 3i + i + 1
2 = −1 + 2i.

Posons ω = −1 + 2i, alors pour tout z ∈ C,

1 − i

2 (z − ω)+ω = 1 − i

2 (z + 1 − 2i)−1+2i = 1 − i

2 z + 1 − 2i − i − 2 − 2 + 4i

2 = 1 − i

2 z + −3 + i

2 = f(z).

Or 1−i
2 = 1√

2

Ä√
2

2 −
√

2
2 i
ä

=
√

2
2 e−i π

4 . Donc

∀z ∈ C, f(z) =
√

2
2 e−i π

4 (z − ω) + ω .

On reconnait alors
une similitude de centre Ω (−1 + 2i), d’angle θ = − π

4 et de coefficient homothétique k =
√

2
2 .

5.8 Soit f : z 7→ 1+
√

3i
2 z + i +

√
3. Comme a = 1+

√
3i

2 ̸= 1, f est une similitude avec un unique point fixe. Soit
ω ∈ C. On a

f (ω) = ω ⇔ ω = 1 +
√

3i

2 ω +i +
√

3

⇔ ω
1 −

√
3i

2 =
√

3 + i

⇔ ω = 2
√

3 + i

1 −
√

3i
= 2

(√
3 + i

) (
1 +

√
3i
)

1 + 3 =
√

3 + 3i + i −
√

3
2 = 2i.

Posons ω = 2i, alors pour tout z ∈ C,

1 +
√

3i

2 (z − ω) + ω = 1 +
√

3i

2 (z − 2i) + 2i = 1 +
√

3i

2 z − i +
√

3 + 2i = 1 +
√

3i

2 z +
√

3 + i = f(z).

Or 1+
√

3i
2 = ei π

3 . Donc
∀z ∈ C, f(z) = ei π

3 (z − ω) + ω .

On reconnait alors une rotation de centre Ω (2i) et d’angle θ = π
3 .

5.9 Soit f : z 7→ (1 + i) z. On a pour tout z ∈ C,

f(z) =
√

2
Ç√

2
2 + i

√
2

2

å
z =

√
2 ei π

4 z.

On reconnait alors
une similitude de centre O, d’angle de rotation θ = π

4 et de coefficient d’homothétie de k =
√

2 .
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