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Correction de l’interrogation 3
d’entrainement

Bijections

1. Restituer le cours.
1.1 Soient U ∈P (R), V ∈P (R), f ∈ F (U, V ), A ⊆ U et B ⊆ V .

• L’image directe de A par f est

f (A) = {y ∈ V | ∃x ∈ A, y = f(x)} .

• L’image réciproque de B par f est

f← (B) = {x ∈ U | f(x) ∈ B } .

1.2 Soient U ∈P (R), V ∈P (R), f ∈ F (U, V ).
• On dit que f est injective sur U si et seulement si

∀ (x, y) ∈ U2, (f(x) = f(y)) ⇒ (x = y) .

• On dit que f est surjective sur V si et seulement si

∀y ∈ V, ∃x ∈ U, y = f(x).

• On dit que f est bijective sur U dans V si et seulement si

∀y ∈ V, ∃!x ∈ U, y = f(x).

1.3 Soit I un intervalle de R et f ∈ F (I,R). Si
• f est continue sur I,
• et strictement monotone sur I,

alors f définit une bijection de I dans J = f (I). De plus sa réciproque f−1 est une bijection de J dans I,
continue et strictement monotone sur J (de même monotonie que f).

1.4 Soient I un intervalle de R, f ∈ F (I,R). Si
• f est dérivable sur I,
• strictement monotone sur I,
• et ∀x ∈ I, f ′(x) ̸= 0,

alors f−1 existe, est dérivable sur J = f (I) et

∀x ∈ J,
(
f−1)′ (x) = 1

f ′ (f−1(x)) .

1.5 Soient a ∈ R, I un voisinage de a, (f, g) ∈ F (I,R)2. On dit que f est négligeable devant g, f(x) ≪
x→a

g(x)
ou encore f(x) =

x→a
o (g(x)) si

lim
x→a

f(x)
g(x) = 0.
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2. Ensemble image, image réciproque, injection, surjection, bijection.

2.1 Soit f :
®
R → R
x 7→ 2x2 + 2x + 1

. La fonction f est définie et dérivable sur R et pour tout x ∈ R, f ′(x) = 4x+2.

Soit x ∈ R, on a f ′(x) ⩾ 0 ⇔ 4x + 2 ⩾ 0 ⇔ x ⩾ − 1
2 . On en déduit donc le tableau de variation suivant

x

f

−∞ − 1
2 +∞

De plus f(−1) = 2− 2 + 1 = 1, f
(
− 1

2
)

= 2 1
4 − 1 + 1 = 1

2 et f(6) = 2× 36 + 12 + 1 = 85. Enfin, pour x ∈ R

f(x) = 1 ⇔ 2x2 + 2x + 1 = 1 ⇔ 2x (x + 1) = 0 ⇔ x = 0 OU x = −1.

On obtient donc le tableau suivant :

x

f

−∞ −1 − 1
2 0 6 +∞

1
2
1
2

1 1
85

On conclut que
f ([−1 ; 6]) =

ï1
2 ; 85

ò
et f← ([−1 ; 1]) = [−1 ; 0] .

La fonction f n’est ni injective (1 admet deux antécédents −1 et 0) ni surjective (−1 n’a aucun anté-
cédent) ni a fortiori bijective.

2.2 Soit f :
®

]−∞ ; 3[ → R
x 7→ ln (3− x) + 4

. La fonction f est bien définie sur I = ]−∞ ; 3[, est dérivable sur I

et pour tout x ∈ I,
f ′(x) = −1

3− x
= 1

x− 3 < 0.

Donc la fonction f est strictement décroissante sur I. De plus f(−7) = ln (10)+4, f
(
− 3

4
)

= ln
(
3 + 3

4
)
+4 =

ln
( 15

4
)

+ 4, lim
x→−∞

f(x) = +∞, lim
x→3
x<3

f(x) = −∞. Enfin pour x ∈ I, on a

f(x) = 5 ⇔ ln (3− x) + 4 = 5 ⇔ ln (3− x) = 1 ⇔ 3− x = e ⇔ x = 3− e

et

f(x) = 11 ⇔ ln (3− x) + 4 = 11 ⇔ ln (3− x) = 7 ⇔ 3− x = e7 ⇔ x = 3− e7 .

On obtient donc le tableau de variation suivant :

x

f

−∞ 3− e7 −7 − 3
4 3− e 3

+∞+∞

−∞−∞

11 ln (10) + 4 ln
( 15

4
)

+ 4 5

On conclut que

f

Åï
−7 ; −3

4

òã
=
ï
ln
Å15

4

ã
+ 4 ; ln (10) + 4

ò
et f← ([5 ; 11]) =

[
3− e7 ; 3− e

]
.

De plus la fonction est continue et strictement décroissante sur ]−∞ ; 3[. Donc par le théorème de la
bijection, f est une bijection de ]−∞ ; 3[ dans

]
limx→3

x<3
f(x) ; limx→−∞ f(x)

[
= R.

La fonction f est donc bijective et donc surjective et injective.
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2.3 Soit f :
®
R → R
x 7→ 2 cos

(
x− π

4
) . La fonction cosinus étant strictement décroissante sur

[
0 ; π

2
]
, on en déduit

que la fonction f est strictement décroissante sur
[

π
4 ; 3π

4
]

et de plus f
(

π
4
)

= 2 cos
(

π
4 −

π
4
)

= 2 et f
( 3π

4
)

=
2 cos

( 3π
4 −

π
4
)

= 2 cos
(

π
2
)

= 0. On a donc

x

f

π
4

3π
4

22

00

Ainsi,

f

Åï
π

4 ; 3π

4

òã
= [0 ; 2] .

Soit x ∈ R, on a

x ∈ f← ([−1 ; 0]) ⇔ f(x) ∈ [−1 ; 0]

⇔ −1 ⩽ 2 cos
(

x− π

4

)
⩽ 0

⇔ −1
2 ⩽ cos

(
x− π

4

)
⩽ 0

⇔
∃k ∈ Z,− 2π

3 + 2kπ ⩽ x− π
4 ⩽ −π

2 + 2kπ
OU

∃k ∈ Z, π
2 + 2kπ ⩽ x− π

4 ⩽ 2π
3 + 2kπ

⇔
∃k ∈ Z,− 5π

12 + 2kπ ⩽ x ⩽ −π
4 + 2kπ

OU
∃k ∈ Z, 3π

4 + 2kπ ⩽ x ⩽ 11π
12 + 2kπ

Ainsi,
f← ([−1 ; 0]) =

⋃
k∈Z

Åï
−5π

12 + 2kπ ; −π

4 + 2kπ

ò
∪
ï3π

4 + 2kπ ; 11π

12 + 2kπ

òã
.

Enfin, la fonction f n’est pas injective (car 2π-périodique f(0) = f (2π)) ni surjective (3 n’a pas
d’antécédent car pour tout x ∈ R, f(x) ⩽ 2) et donc a fortiori, f n’est pas bijective.

2.4 Soit f :
®
R → R
x 7→ 4− 7x2 + 21x

. La fonction f est définie et dérivable sur R en tant que fonction polynomiale

et pour tout x ∈ R, f ′(x) = −14x + 21. Donc pour x ∈ R, f ′(x) ⩾ 0 ⇔ −14x + 21 ⩾ 0 ⇔ 21 ⩾ 14x ⇔
x ⩽ 3

2 . Donc

x

f

−∞ 3
2 +∞

De plus lim
x→−∞

f(x) = lim
x→+∞

f(x) = −∞, f(−2) = 4 − 28 − 42 = −66, f(2) = 4 − 28 + 42 = 18,
f
( 3

2
)

= 4− 63
4 + 63

2 = 4 + 63
4 = 79

4 . Enfin pour x ∈ R,

f(x) = 18 ⇔ 4− 7x2 + 21x = 18 ⇔ 7x2 − 21x + 14 = 0
⇔ x2 − 3x + 2 = 0
⇔ (x− 2) (x− 1) = 0
⇔ x = 2 OU x = 1.
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Ainsi,

x

f

−∞ −2 1 3
2 2 +∞

−∞−∞

79
4

79
4

−∞−∞
−66

18 18

Ainsi,
f ([−2 ; 2]) =

ï
−66 ; 79

4

ò
et f← (]−∞ ; 18]) = ]−∞ ; 1] ∪ [2 ; +∞[

De plus, f n’est pas injective (18 admet deux antécédents) ni surjective (20 = 80
4 > 79

4 n’admet aucun
antécédent) ni a fortiori bijective.

2.5 Soit f :
®
R → R
x 7→ e5x+2−2

. Les fonctions x 7→ 5x + 2, x 7→ ex et x 7→ x − 2 étant strictement croissantes

sur R, on en déduit que f est strictement croissante sur R. De plus lim
x→−∞

f(x) = −2, donc par la stricte
croissance de f , pour tout x ∈ R, f(x) > −2. Donc f← ([−7 ; −2]) = ∅. De plus f(0) = e2−2, f(8) = e42−2
et lim

x→+∞
f(x) = +∞. Ainsi

x

f

−∞ 0 8 +∞

−2−2

+∞+∞

e2−2
e42−2

Conclusion,
f ([0 ; 8]) =

[
e2−2 ; e42−2

]
et f← ([−7 ; −2]) = ∅.

La fonction f est injective sur R (par sa stricte croissance et le théorème de la bijection, elle définit une
bijection de R dans ]−2 ; +∞[) mais n’est pas surjective (−3 n’admet aucun antécédent) ni a fortiori
bijective.

3. Fonction réciproque/Dérivée de la réciproque.
3.1 Soit f : x 7→

(√
2x− 4 + 1

)
ex. Soit x ∈ R. On a

2x− 4 ⩾ 0 ⇔ x ⩾ 2.

La fonction f est donc bien définie et même continue sur [2; +∞[ comme produit de fonctions qui le sont.
De même, pour x ⩾ 2, 2x− 4 > 0 ⇔ x > 2. La fonction f est donc dérivable sur ]2; +∞[ et

∀x ∈ ]2; +∞[ , f ′(x) = 2
2
√

2x− 4
ex +

Ä√
2x− 4 + 1

ä
ex =

Å 1√
2x− 4

+
√

2x− 4 + 1
ã

ex .

Or pour tout x > 2, ex > 0,
√

2x− 4 > 0, 1√
2x−4 > 0. Donc

∀x > 2, f ′(x) > 0.

Ainsi f est strictement croissante sur ]2; +∞[. Puisque f est continue en 2, on en déduit que f est strictement
croissante sur [2; +∞[. Enfin, f(2) =

(√
4− 4 + 1

)
e2 = e2 et

lim
x→+∞

f(x) = lim
x→+∞

Ä√
2x− 4 + 1

ä
ex = +∞.

On a donc
• f est continue sur [2; +∞[,
• f est strictement croissante sur [2; +∞[.
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Donc par le théorème de la bijection,

la fonction f définie une bijection de [2; +∞[ dans J =
ï
f(2); lim

x→+∞
f(x)
ï

=
[
e2; +∞

[
.

Posons J ′ = J \
{

e2} =
]
e2; +∞

[
. Par ce qui précède,

• f est dérivable sur I ′ = ]2; +∞[,
• f est strictement croissante sur I ′,
• ∀x ∈ I ′, f ′(x) ̸= 0.

Donc par le théorème de la dérivée de la réciproque, f−1 est dérivable sur J ′ =
]
e2; +∞

[
et

∀y ∈ J ′,
(
f−1)′ (y) = 1

f ′ (f−1(y)) = 1Å
1√

2f−1(y)−4
+

√
2f−1(y)− 4 + 1

ã
ef−1(y)

.

Conclusion, f−1 est dérivable sur
]
e2; +∞

[
et

∀y ∈
]
e2; +∞

[
,

(
f−1)′ (y) = 1Å

1√
2f−1(y)−4

+
√

2f−1(y)− 4 + 1
ã

ef−1(y)
.

3.2 Soit f : x 7→ x3 (3 ln(x)− 1). La fonction f est définie, continue et même dérivable sur R∗+ comme différence
et produit de fonctions qui le sont. De plus,

∀x ∈ R∗+, f ′(x) = 3x2 (3 ln(x)− 1) + x3
Å 3

x

ã
= x2 (9 ln(x)− 3 + 3) = 9x2 ln(x).

Or pour tout x ∈ ]0; 1[, ln(x) < 0 et 9x2 > 0. Donc

∀x ∈ ]0; 1[ , f ′(x) < 0.

Ainsi f est strictement décroissante sur ]0; 1[. Puisque f est continue en 1, on en déduit que f est strictement
décroissante sur ]0; 1]. Enfin, f(1) = −1 et

lim
x→0
x>0

f(x) = lim
x→0
x>0

x3 (3 ln(x)− 1) = lim
x→0
x>0

3x3 ln(x)− x3 = 0 par croissance comparée.

On a donc
• f est continue sur ]0; 1],
• f est strictement décroissante sur ]0; 1].

Donc par le théorème de la bijection,

la fonction f définie une bijection de ]0; 1] dans J =
[

f(1); lim
x→0
x>0

f(x)
[

= [−1; 0[.

Posons J ′ = J \ {−1} = ]−1; 0[. Par ce qui précède,
• f est dérivable sur I ′ = ]0; 1[,
• f est strictement décroissante sur I ′,
• ∀x ∈ I ′, f ′(x) ̸= 0.

Donc par le théorème de la dérivée de la réciproque, f−1 est dérivable sur J ′ = ]−1; 0[ et

∀y ∈ J ′,
(
f−1)′ (y) = 1

f ′ (f−1(y)) = 1
9f−1(y)2 ln (f−1(y)) .

Conclusion, f−1 est dérivable sur ]−1; 0[ et

∀y ∈ ]−1; 0[ ,
(
f−1)′ (y) = 1

9f−1(y)2 ln (f−1(y)) .
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3.3 Soit f : x 7→ ln (tan(x)). La fonction tangente est bien définie sur
]
0; π

2
[

et pour tout x ∈
]
0; π

2
[
, tan(x) > 0.

Donc la fonction f est bien définie sur
]
0; π

2
[
. De plus f est continue et même dérivable sur

]
0; π

2
[

comme
composée de fonctions qui sont continues et dérivables sur leurs domaines de définition. Puis,

∀x ∈
]
0; π

2

[
, f ′(x) = 1 + tan2(x)

tan(x) .

Pour tout x ∈
]
0; π

2
[
, tan(x) > 0. Donc

∀x ∈
]
0; π

2

[
, f ′(x) > 0.

La fonction f est donc strictement croissante sur
]
0; π

2
[

(on pouvait aussi le voir directement comme
composée de deux fonctions strictement croissantes). Enfin,

lim
x→0
x>0

f(x) = lim
x→0
x>0

ln (tan(x)) = lim
u→0
u>0

ln(u) = −∞

lim
x→π

2
x< π

2

f(x) = lim
x→π

2
x< π

2

ln (tan(x)) = lim
u→+∞

ln(u) = +∞.

On a donc
• f est continue sur

]
0; π

2
[
,

• f est strictement croissante sur
]
0; π

2
[
.

Donc par le théorème de la bijection,

la fonction f définie une bijection de
]
0; π

2

[
dans J =

 lim
x→0
x>0

f(x); lim
x→π

2
x< π

2

f(x)

 = ]−∞; +∞[ = R.

Directement, par ce qui précède,
• f est dérivable sur I =

]
0; π

2
[
,

• f est strictement croissante sur I,
• ∀x ∈ I, f ′(x) ̸= 0.

Donc par le théorème de la dérivée de la réciproque, f−1 est dérivable sur J = R et

∀y ∈ R,
(
f−1)′ (y) = 1

f ′ (f−1(y)) =
1 + tan2 (f−1(y)

)
tan (f−1(y)) .

Conclusion, f−1 est dérivable sur R et

∀y ∈ R,
(
f−1)′ (y) =

1 + tan2 (f−1(y)
)

tan (f−1(y)) .

3.4 Soit f : x 7→ 1√
1−x2 . Soit x ∈ [0; 1[. Alors, x2 < 1 donc 1 − x2 > 0. Donc la fonction f est bien définie et

même dérivable sur [0; 1[. De plus,

∀x ∈ [0; 1[ , f ′(x) =
((

1− x2)−1/2
)′

= −1
2 × (−2x)×

(
1− x2)−3/2 = x

(1− x2)3/2 .

Pour tout x ∈ ]0; 1[, 1− x2 > 0 et x > 0 donc f ′(x) > 0. La fonction f est donc strictement croissante sur
]0; 1[. Puis par continuité de f en 0, on trouve que f est strictement croissante sur [0; 1[. Enfin, f(0) = 1 et

lim
x→1
x<1

f(x) = lim
x→1
x<1

1√
1− x2

= lim
u→0
u>0

1√
u

= +∞.

On a donc
• f est continue sur [0; 1[,
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• f est strictement croissante sur [0; 1[.
Donc par le théorème de la bijection,

f définit une bijection de [0; 1[ dans J =
[

f(0); lim
x→1
x<1

f(x)
[

= [1; +∞[.

Soient x ∈ [0; 1[ et y ∈ [1; +∞[. On a les équivalences suivantes :

y = f(x) ⇔ 1√
1− x2

= y

⇔ 1
1− x2 = y2 car 1− x2 > 0 et y ⩾ 1 > 0← important

⇔ 1− x2 = 1
y2 car 1− x2 ̸= 0 et y2 ̸= 0

⇔ x2 = 1− 1
y2 = y2 − 1

y2

⇔ x =
 

y2 − 1
y2 car x ⩾ 0 et y2 − 1 ⩾ 0 car y ⩾ 1

⇔ x =
√

y2 − 1
y

car y ⩾ 0.

Conclusion,

∀y ∈ [1; +∞[ , f−1(y) =
√

y2 − 1
y

.

3.5 Soit f : x 7→ x+3
2x+5 . Pour tout x ⩾ −1, x > − 5

2 donc 2x + 5 ̸= 0. Donc f est bien définie et même continue
et dérivable sur [−1; +∞[ comme quotient de fonctions qui le sont et dont le dénominateur ne s’annule
pas. De plus,

∀x ⩾ −1, f ′(x) = 2x + 5− 2 (x + 3)
(2x + 5)2 = − 1

(2x + 5)2 .

Donc pour tout x > −1, f ′(x) < 0. La fonction f est donc strictement décroissante sur [−1; +∞[. Enfin,
f (−1) = 2

3 et

lim
x→+∞

f(x) = lim
x→+∞

x + 3
2x + 5 = lim

x→+∞

1 + 3
x

2 + 5
x

= 1
2 .

On a donc
• f est continue sur [−1; +∞[,
• f est strictement décroissante sur [−1; +∞[.

Donc par le théorème de la bijection,

f définit une bijection de [−1; +∞[ dans J =
ï

lim
x→+∞

f(x); f (−1)
ï

=
ò1

2 ; 2
3

ò
.

Soient x ∈ [−1; +∞[ et y ∈
] 1

2 ; 2
3
]
. On a les équivalences suivantes :

y = f(x) ⇔ x + 3
2x + 5 = y

⇔ x + 3 = y (2x + 5) car 2x + 5 ̸= 0← important pour la réciproque
⇔ x (2y − 1) = 3− 5y

⇔ x = 3− 5y

2y − 1 car y ̸= 1
2.

Conclusion,

∀y ∈ [−1; +∞[ , f−1(y) = 3− 5y

2y − 1 .
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3.6 Soit f : x 7→ e2x−2 ex. La fonction f est définie, continue et même dérivable sur R comme différence de
fonctions qui le sont donc notamment sur I = [ln(2); +∞[. De plus,

∀x ∈ I, f ′(x) = 2 e2x−2 ex = 2 ex (ex−1) .

Pour tout x ⩾ ln(2), ex ⩾ 2. Donc ex−1 ⩾ 1 > 0. Ainsi, pour tout x ∈ I, f ′(x) > 0. La fonction f est donc
strictement croissante sur I. Enfin, f (ln(2)) = e2 ln(2)−2 eln(2) = eln(4)−2× 2 = 4− 4 = 0 et

lim
x→+∞

f(x) = lim
x→+∞

e2x−2 ex = lim
x→+∞

ex (ex−2) = +∞.

On a donc
• f est continue sur I = [ln(2); +∞[,
• f est strictement croissante sur I.

Donc par le théorème de la bijection,

f définit une bijection de [ln(2); +∞[ dans J =
ï
f (ln(2)) ; lim

x→+∞
f(x)
ï

= [0; +∞[ = R+.

Soient x ∈ [ln(2); +∞[ et y ∈ R+. On a l’équivalence suivante :

y = f(x) ⇔ e2x−2 ex = y.

Posons X = ex. Dès lors,

y = f(x) ⇔ X2 − 2X = y ⇔ X2 − 2X − y = 0.

Posons ∆ le discriminant associé, on a ∆ = 4 + 4y = 4 (y + 1). Puisque y ⩾ 0, y + 1 > 0 et donc ∆ > 0.
Le polynôme admet donc deux racines 2−

√
4(y+1)
2 = 1−

√
1 + y et 1 +

√
1 + y. Ainsi,

y = f(x) ⇔ X = 1−
√

1 + y OU X = 1 +
√

1 + y.

Or X = ex > 0 et puisque y ⩾ 0, 1 + y ⩾ 1 ⇒
√

1 + y ⩾ 1 ⇒ 1 −
√

1 + y ⩽ 0. Ainsi, X ̸= 1 −
√

1 + y.
Nécessairement,

y = f(x) ⇔ X = 1 +
√

1 + y ⇔ ex = 1 +
√

1 + y ⇔ x = ln
Ä
1 +

√
1 + y

ä
.

Conclusion,
∀y ∈ [ln(2); +∞[ , f−1(y) = ln

Ä
1 +

√
1 + y

ä
.

4. Etude asymptotique.
4.1 Soit f : x 7→ ln

(
x3 + 2x + 1

)
. On note que f est notamment bien définie sur R+. De plus,

lim
x→+∞

f(x) = lim
u→+∞

ln(u) = +∞.

Regardons alors f(x)/x. Pour tout x > 0, on a

f(x)
x

=
ln

(
x3 + 2x + 1

)
x

=
ln

(
x3 (1 + 2

x2 + 1
x3

))
x

=
3 ln(x) + ln

(
1 + 2

x2 + 1
x3

)
x

= 3ln(x)
x

+
ln

(
1 + 2

x2 + 1
x3

)
x

.

Par croissance comparée, on a lim
x→+∞

ln(x)
x

= 0 et on a aussi lim
x→+∞

ln
(
1 + 2

x2 + 1
x3

)
x

= 0. Ainsi,

lim
x→+∞

f(x)
x

= 0.

Conclusion,

le graphe de f admet en +∞ une branche parabolique de direction horizontale (Ox).
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4.2 Soit f : x 7→ 4x3+1
(x+1)2 . On note que la fonction f est bien définie sur ]−1; +∞[ notamment. De plus,

lim
x→+∞

f(x) = lim
x→+∞

4x3

x2
1 + 1

4x3(
1 + 1

x

)2 = lim
x→+∞

4x
1 + 1

x3(
1 + 1

x

)2 = +∞.

Puis,

lim
x→+∞

f(x)
x

= lim
x→+∞

1
x
× 4x

1 + 1
x3(

1 + 1
x

)2 = lim
x→+∞

4×
1 + 1

x3(
1 + 1

x

)2 = 4.

Ensuite, pour tout x > −1,

f(x)− x = 4x3 + 1
(x + 1)2 − 4x

=
4x3 + 1− 4x

(
x2 + 2x + 1

)
(x + 1)2

= −8x2 − 4x + 1
(x + 1)2

= −8x2

x2
1 + 1

2x −
1

8x2(
1 + 1

x

)2

= −8
1 + 1

2x −
1

8x2(
1 + 1

x

)2 .

Par conséquent,
lim

x→+∞
f(x)− 4x = −8.

Conclusion,

Le graphe de f admet une asymptote oblique en +∞ d’équation y = −4x− 8.

4.3 Soit f : x 7→
√

x4 + x2 + 1. La fonction f est bien définie sur R+ notamment et

lim
x→+∞

f(x) = +∞.

Puis, pour tout x > 0,

f(x)
x

=
√

x4 + x2 + 1
x

=
…

x4 + x2 + 1
x2 =

…
x2 + 1 + 1

x2 .

Ainsi,
lim

x→+∞

f(x)
x

= +∞.

Conclusion,

le graphe de f admet une branche parabolique de direction verticale (Oy).

4.4 Soit f : x 7→ x+2 ex

ex +1 . Pour tout x ∈ R, ex +1 > 1 > 0. Donc la fonction f est bien définie sur R. De plus,
lim

x→−∞
ex = 0. Donc

lim
x→−∞

f(x) = lim
x→−∞

x + 2 ex

ex +1 = −∞.

De plus, pour tout x < 0,
f(x)

x
=

1 + 2 ex

x

1 + ex
.

Donc
lim

x→−∞

f(x)
x

= 1.

Puis, pour tout x < 0
f(x)− x = x + 2 ex−x ex−x

ex +1 = −x ex +2 ex

1 + ex
.
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Or par croissance comparée, lim
x→−∞

−x ex = 0. Donc

lim
x→−∞

(f(x)− x) = 0.

Conclusion,

le graphe de f admet une asymptote oblique d’équation y = −x en −∞.

4.5 Soit f : x 7→
√

x2 + 3x. La fonction f est notamment bien définie sur [0; +∞[ et

lim
x→+∞

f(x) = +∞.

De plus, pour tout x > 0,
f(x)

x
=
√

x2 + 3x

x
=
…

1 + 3
x

.

Donc
lim

x→+∞

f(x)
x

= 1.

Puis pour tout x > 0,

f(x)− x =
√

x2 + 3x− x = x

Ç…
1 + 3

x
− 1
å

.

Pour lever « l’indéterminé » multiplions par le conjugué :

f(x)− x = x
1 + 3

x − 1»
1 + 3

x + 1
= 3»

1 + 3
x + 1

.

Donc
lim

x→+∞
(f(x)− x) = 3

2 .

Conclusion,

le graphe de f admet en +∞ une asymptote oblique d’équation y = x + 3
2.

5. Comparaison asymptotique.
5.1 On a les égalités suivantes :

lim
x→+∞

f(x)
g(x) = lim

x→+∞

x2 + 3x + 1√
x3 + 5x2 − 3x + 2

= lim
x→+∞

x2 (1 + 3
x + 1

x2

)
x3/2
»

1 + 5
x −

3
x2 + 2

x3

= lim
x→+∞

√
x

1 + 3
x + 1

x2»
1 + 5

x −
3

x2 + 2
x3

Or
lim

x→+∞
1 + 3

x
+ 1

x2 = 1 et lim
x→+∞

…
1 + 5

x
− 3

x2 + 2
x3 = 1.

Donc par quotient limx→+∞
1+ 3

x + 1
x2»

1+ 5
x−

3
x2 + 2

x3
= 1 puis par produit,

lim
x→+∞

f(x)
g(x) = +∞ et donc lim

x→+∞

g(x)
f(x) = 0.

Conclusion,
g(x) =

x→+∞
o (f(x)) ⇔ g(x) ≪

x→+∞
f(x).

5.2 Posons u = 1
x −→

x→+∞
0. On a alors les égalités suivantes :

lim
x→+∞

f(x)
g(x) = lim

x→+∞

sin
( 3

x

)
1

x2

= lim
u→0
u>0

sin (3u)
u2 = lim

u→0
u>0

sin (3u)
3u

3u

u2 .
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Or d’après le cours, en posant v = 3u −→
u→0

0, lim
u→0
u>0

sin (3u)
3u

= lim
v→0

sin (v)
v

= 1 et lim
u→0
u>0

3u

u2 = lim
u→0
u>0

3
u

= +∞.

Donc par produit,
lim

x→+∞

f(x)
g(x) = +∞ et donc lim

x→+∞

g(x)
f(x) = 0.

Conclusion,
g(x) =

x→+∞
o (f(x)) ⇔ g(x) ≪

x→+∞
f(x).

5.3 Posons u = 1
x2 −→

x→0
+∞. Alors, on a

lim
x→0

f(x)
g(x) = lim

x→0

e−
3

x2

x2 = lim
u→+∞

u e−3u = 0, par croissance comparée.

Conclusion,
f(x) =

x→0
o (g(x)) .

5.4 Posons u = 1√
x
−→
x→0
x>0

+∞. Alors,

lim
x→0
x>0

f(x)
g(x) = lim

x→0
x>0

√
x ln(x) = lim

u→+∞

ln
( 1

u2

)
u

= lim
u→+∞

−2 ln(u)
u

.

Donc par croissance comparée,
lim
x→0
x>0

f(x)
g(x) = 0.

Conclusion,
f(x) =

x→0
o (g(x)) ⇔ f(x) ≪

x→0
g(x).

5.5 Pour tout x ̸= 0, au voisinage de 0, on a les égalités suivantes :

g(x)
f(x) =

sin
(
x2)

3x +
√

x6 + 2x2
=

sin
(
x2)

x2
x2

3x +
√

2 |x|
»

1 + x4

2

=
sin

(
x2)

x2
1

3
x +

√
2|x|
x2

»
1 + 2

x4

.

Or, en posant u = x2 −→
x→0

0, d’après le cours,

lim
x→0

sin
(
x2)

x2 = lim
u→0

sin (u)
u

= 1.

De plus lim
x→0

Ç
3
x

+
√

2 |x|
x2

…
1 + 2

x4

å
= 0. Donc par produit,

lim
x→0

g(x)
f(x) = 0.

Conclusion,
g(x) =

x→0
o (f(x)) ⇔ g(x) ≪

x→0
f(x).
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