Mathématiques PTSI, IntEnt2 Cor 2025-2026

Correction de l’'interrogation 2
d’entrainement
Fonctions réelles

\. J

1. Restituer le cours.
1.1 Soient U € Z (R), f € # (U,R), ACU et BCR.
o L’image directe de A par f est

fA) ={yeR[Izecd y=/[f(x)}.
o L’image réciproque de B par f est
foB)={zeU]|f(x)eB}.

1.2 A partir du graphe de f, on obtient le graphe de
e @1 par une translation de vecteur a?.
e go par une translation de vecteur —ai.
o g3 par une dilatation/contraction verticale de coefficient a.
o g4 par une dilatation/contraction horizontale de coefficient %
1.3 Soient U C R, f € .Z (U,R).
La fonction f est paire si
e Uestcentréen0:VxeU, —x €U,
o VxR, f(—z) = f(x).
Le graphe de f est alors symétrique par rapport a (Oy).
La fonction f est impaire si
e Uestcentréen0:VreU, —z €U,
o Yz eR, f(—x)=—f(x).
Le graphe de f est alors symétrique par rapport a (0, 0).
1.4 Soient I un intervalle de R et f € % (I,R). On dit que f est croissante sur I si

V(g el”, [e<y) = (fl@)<f@).
f est strictement décroissante sur I si
Vizy)e?,  [<y) = (flx)>f@).

1.5 Soient U € & (R) et f € .# (U,R). On a les définitions suivantes :

f est majorée sur U & IMeR VzeU, fle)<M
f est minorée sur U & ImeR, VxeU, m< f(x)
f est bornée sur U & I(m,M)eR* Ve cU, m< flz)<M
& IM eRy, Ve e U, |f(x) <M.
1.6 Soient a € R, I un voisinage de a, f € % (I,R). On a

f continue en a & lim f(z) existe et vaut f(a).
Tr—a

1.7 Soient (a,b) € R?, a <bet f € .F ([a;b],R). Si f est continue sur [a;b] alors,
VA€ [fa); f)], Cou [f(b); f(a)]), e € [a;0],  flc)=A.
1.8 Soient a € R, I un voisinage de a, f € .% (I,R). On a

f est dérivable en a & lim M existe dans R.
it T
En particulier
( f dérivable en a ) = ( f continue en a ).

1/i3



Mathématiques PTSI, IntEnt2 Cor 2025-2026

2. Déterminer I’ensemble de définition et la parité d’une fonction.

2.1 Soit f:xz+— thr;(nT;f) Soient x € R et Z; 'ensemble de définition de f. On a les équivalences suivantes :

2 -5>0
x € Dy & Vke€Z,3x# 5 +kn
tan (3z) #0

z2>5
Vk€Z,3x# 5 +kn
Vk € Z, 3ac7ék7r

{x>\f ou z < —5

Vk € Z, 3¢ # kT

z>b ou x < —/5
VkE€Z, x # kT

Ainsi ’ensemble de définition de f est

Qf:}—oo; —\/E[U}\/gﬁ—oo[\{k%‘keZ}.

(i) On note que %y est centré en 0 : Vo € Z5, —x € Y.
(ii) De plus pour tout x € %y,
2In ((—z)? - 5) _ 2In (2% —5)
tan (3(—x))  —tan(3z)
=—f(@).

f—w) =

car la fonction tangente est impaire.

Conclusion,

‘la fonction f est impaire. ‘

2.2 Soit f : x % Soit A le discriminant de X2+ X +1. On a A = 1 — 4 < 0. Donc pour tout
u € R, u? 4+ u+ 1> 0. Donc pour tout x € R, (en prenant u = z?), on a z* + 22 + 1 > 0. Par conséquent
‘1a fonction f est définie sur R ‘

(i) On note que R est bien centré en 0 : Vo € R, —z € R.

(ii) Cependant on a f(1) = Ijﬁﬂ =32et f(-1) = _11"‘1?:"11 = —1. Donc f(—1) # —f(1) et la fonction f
n’est pas impaire et f(—1) # f(1) donc la fonction f n’est pas paire.

Conclusion,
‘1a fonction f n’est ni paire ni impaire. ‘
. e3’”3+1+e’313+1 . R PP s s
2.3 Soit f : x — e Soient x € R et Z; 'ensemble de définition de f. On a les équivalences
suivantes :

r€P; & sin(20)£0 &  VEkEZ 2wtkr & VkeZ,x;«ékg.

Ainsi, ’ensemble de définition de f est donné par

Qf:R\{kg’kEZ}.

(i) On note que %y est centré en 0 : Vo € Z5, —x € Y.
(ii) De plus pour tout x € %y,
e3(—z)*+1 +673(7:r)3+1 e—3z°+1 Jre3>an3+1 . ) ' .
f(—z) = i (—22) = n (22) car la fonction sinus est impaire
sin (—2z —sin (2z
e32°+1 +e—3z3+1
sin (2z)
= —f(z).
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Conclusion,
la fonction f est impaire. ‘
3
Soit f : xz — %. Soit Z¢ I'ensemble de définition de f. Pour tout x € R, on a les équivalences

suivantes :
™ ™ T
x € YDy & cos (2z) # 0 & vk € Z, 2x7$§—|—/<;7r & VkEZ,x;«éZ—i—kE.

Ainsi, ’ensemble de définition de f est donné par

;=R\ {T 147 |kez).

(i) On note que %y est centré en 0 : Vo € Z5, —x € Y.
(ii) De plus pour tout x € %y,

3 |—z|* + cos (—6x) 3 |z|® + cos (62)
B cos(—2x) B cos(2x)

= (@)

f(=x)

car la fonction cosinus est paire

Conclusion,

‘la fonction f est paire. ‘

Soit f : & +—In(|x + 2| — (z + 3)). Soient € R et Z; I'ensemble de définition de f. On a
T € Dy &= e +2|—(z+3)>0 = |+ 2| >x+3.
Premier cas, x > —2, alors
T € Yy & r+2>x+3 & 2>3 impossible.

Second cas, v < —2, alors
T € Yy & —r—2>x+3 & -5 > 2x & < 2.

Or f% < —2.
Conclusion, I’ensemble de définition de f est donné par

5

On note que P n’est pas centré en 0 (pire ne contient aucun réel positif) il n’y a donc aucune chance que
f soit paire ou impaire. Conclusion,

‘ la fonction f n’est ni paire ni impaire. ‘

3. Enoncer le théoréme des valeurs intermédiaires ou le théoréme de la bijection.

3.1

3.2

Pour tout € [0; %], on pose f(x) = sin (4z) + 5a>.

.
» 2

(i) Siz =0, f(0) =0 < 2ctsiz =712, f(T) =sin(2r)+5% =57 > 53 > 52 =5 > 2 Donc
2 € [f(0); f(5)]-

Donc par le théoreme des valeurs intermédiaires, il existe ¢ € [0; g] tel que f(c) = 2.

(i) La fonction f est continue sur [0 ] en tant que somme de fonctions continues.

Conclusion, 'équation sin (4z) + 522 = 2 admet (au moins) une solution sur [O; g]

2
Pour tout x € [0; 4+o00[, on pose f(x) = (Mﬁ) (bien défini car = > 0 et 5y/x +3 > 3 > 0).
(i) La fonction f est continue sur [0; +oo[ en tant qu’inverse d'une fonction continue ne s’annulant pas.

(i) Siz =0, f(0) =4 > 15 et si z =1 (par exemple), f (1) = & < 5. Donc 15 € [f(1); f(0)].
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3.3

3.4

3.5

1

Donc par le théoreme des valeurs intermédiaires, il existe ¢ € [0; 1] € [0; +o0] tel que f(c) = 5.

2
Conclusion, I’équation <M$+3) = 1—10 admet (au moins) une solution sur [0; +oo.

Pour tout € R\ 7Z =R\ {kr | k € Z}, on pose f(z) = 4tan (£).
(i) La fonction f est continue sur [0; 7[ en tant que composée de fonctions continues.
(if) Siz =0, f(0) =0 < 3000 et si x — 7, lim f(x) = +oo. Donc il existe zo € [0; 7[ tel que pour tout

x<m
x € [zo; 7[, f(z) > 3000, notamment si x = x¢, f(x¢) > 3000 (attention nous n’avons pas montré que

f (xo) = 3000 faites bien la distinction). Ainsi 3000 € [f(0); f (x0)]-
Donc par le théoréme des valeurs intermédiaires, il existe ¢ € [0; xo] C [0; w[ C [0; +oo[ tel que f(c) =
3000.

Conclusion, 'équation 4 tan (%) = 3000 admet (au moins) une solution sur [0; +oo[.

En réalité cette équation va admettre une infinité de solutions sur [0; +oo[ par la w-périodicité de la fonction
tangente mais une seule sur [0; [ en appliquant le théoréme de la bijection.

L’unicité demandée réclame le théoreme de la bijection et non juste le théoréme des valeurs intermédiaires.
Pour tout « € [3; 4-00[, on pose f(x) = —f— qui est bien défini car pour tout x > 3, 22—1 >8> 0. De plus
la fonction f est dérivable sur [3; 400 en tant que quotient de fonctions continues dont le dénominateur
ne s’annule pas et

e’ (22 —1) —e” (22) " (2* -2z —1)

Vx € [3; 4o0l, "(z) = 3 2
eB:itool,  fla) o o

Soit A le discriminant de X2 —2X — 1, A = 44+ 4 = 8 > 0, donc les solutions réelles de 1’équation
22 —2x —1 =0 sont

2-v8 2++/8
Xr1 = € To =
! 2 ? 2
Oraz; <ag < % < 3. Donc pour tout = € [3; +oo[, 22 — 22 — 1 > 0 et par suite,
Va € [3; +ool, f'(z) > 0.
Donc la fonction f est strictement croissante sur [3; +oo[. De plus f(3) = % et lim f(x) = 400 par

T—+0o0
croissance comparée. On en déduit le tableau de variation suivant :

x 3 —+00
+00
f /
es
8

(i) La fonction f est continue sur [3; +o00[ en tant que quotient de fonctions continues dont le dénominateur
ne s’annule pas.

(if) Six =3, f(3) = % < % =27 <4donc4e€ [%; —i—oo[ =[f(3) ; limy 400 f(2)]-
(iii) La fonction f est strictement croissante sur [3; 4+00]

Donc par le théoréme de la bijection, il existe un unique ¢ € [3; +o0o[ tel que f(c) = 4.

. 7’ . T . .
Conclusion, I"équation —s— = 4 admet une unique solution sur [3; +oo[.

Pour tout = > 0, on pose u(z) = x — In (z). La fonction u est bien définie, continue et méme dérivable sur

R . De plus pour tout z € R7, . .
T —
W(x)=1-== )
(2) - .
Donc pour tout z € ]0; 1[, w/(x) < 0 et pour tout = € |1; +oo, v/(z) > 0 et la fonction u est donc

strictement décroissante sur |0; 1[ et strictement croissante sur |1 ; +oo[. De plus lin}) u(z) = 4o, u(l) =1
r—

>0
In(x
et lim w(z)= lim z(1-— ( )) = +o00. Ainsi, on obtient le tableau de variation suivant :
xr——400 T—+00 x
~——
—0
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Ainsi pour tout z € R, u(x) > 1 > 0. Conclusion,

‘V:re]O;—koo[7 m>1n(m).‘

Soit f : 2+ —2&)_ Par ce qui précede, Yz € R, z — In(x) # 0 donc f est bien définie sur J0; +oo| et est

z—In(z)*
méme continue et dérivable sur cet ensemble et pour tout x € ]0; +o0],

_d(z—In(z))—In(x)(1-1) z-In(z)-In()(z-1) z—xln(z)  1—In(z)

fla)= (z —In (z))? B z(z —In(2))* S z(z—In(2)? (z—-In(2x)*

Or pour tout z € [1;¢e[, on a In(z) € [0;1] donc 1 — In(z) > 0 et donc f/(x) > 0. La fonction f est donc

strictement croissante sur [1;e]. De plus, f(1) = 11_111511()1) =0et f(e) = el_nl(sze) = —1-. On a donc

0

Or 2 <e <3 donc0<e—1<2et par stricte décroissance de la fonction inverse sur R , ﬁ > %

On a donc les points suivants :
1 1 1
° f(].) =0< 3 f(e) =1 > 3
o [ est continue sur [1;€],

o f est strictement croissante sur [1;e€].
Donc par le théoréme de la bijection (ou corollaire du théoréeme des valeurs intermédiaires), on en déduit
que

1
Jla € [15¢], f(oz):a
Conclusion,
In(z) 1
| . R S A ——
Az € [1;¢], —In(z) 2

4. Tableau de variations.
4.1 La fonction f est définie et méme dérivable sur R comme produit de fonctions qui le sont. De plus,

Vz € R, fl(x) =2ze” +a?e® =z (x +2)e”.

On obtient alors le tableau suivant :

T —00 —2 0 +00
() + 0 — 0 +
/
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Or,
— = -2 = 1 = 1 2 o =
F-2)=4e  f(0)=0,  lm fl@)= lim a?e" = oo
Et, par croissance comparée, lim z2e® = 0. Conclusion,
r——00
T -0 -2 0 +00

! /\/m

4.2 Soit x € R. On a les équivalences suivantes :

. {x >0 {x >0
existe &

T
In(z) In(z) #0 x # 1.

Donc f est bien définie sur U = ]0; 1{U]1; +00[. De plus f est dérivable sur U comme quotient de fonctions
qui le sont et dont le dénominateur ne s’annule pas. De plus,

veel,  fle)= 1n(xl)112(:j)x - = hlli?(;) -

Des lors, pour z € U,
f(x)>0 = In(z) —1>0 & In(z) > 1 = x>e.

On obtient donc le tableau :

T 0 1 e +00
f'(@) - - 0 +
f
Or lim In(z) = —o0. Donc
z—0
x>0
lim f(z) = lim S
x—0 z—0 IH(ZL')
x>0 x>0
De plus, lim In(z) = 0~ donc
z—1
z<l
gy T
De méme,
limizlx—i—oo:—i—oo.
z—1 ]n(x)
z>1
Puis, f (e) = ln(Ze) = e. Finalement, par croissance comparée,
lim —— =4
im = +00.
T—>+00 ln(a:)
Conclusion,
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S ~.

4.3 La fonction f est définie et méme dérivable sur R en tant que fonction polynomiale. De plus,

Vo € R, flle)y=a’+2°—20 =z (2 +2-2).

Soit A le discriminant de 22 + x — 2. On a A = 1 — 4 x (=2) = 9. Ainsi, les racines associées sont
ry = —*1;3 =letry= —*12*3 = —2. D’ou
Vz € R, f@)y=xz(@—-1)(x+2).

On obtient alors le tableau suivant :

x —00 -2 0 1 +00
x — — 0 + +

v—1 - - - 0 +

z+2 — 0 + + +

() — 0 + 0 - 0 +
f \ /

De plus,
. ooxt ad ot 4 4 20
m flo) = lim Tt - +5:£%z(“g‘ﬁ+ﬁ):+w
De méme,
:c4< 4 4 20)
li = lim —|l+——-—=+— )= .
L—1>r-i{loo f(@) 1—1r—noo 4 * 3r  x2 + 4 oo
Mais aussi,
16 8 8 7
—2)=———-—445=5—-=—
f0)=5
1 1 3+4 14+48 49
1 = — _ — 1 = 4 = = —.
) 4 * 3 5 12 * 12 12
Conclusion,
x —00 -2 0 1 +00

wl
—
[
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4.4 La fonction f est définie et méme dérivable sur R donc notamment sur [O; 5} comme produit de fonctions

2
qui le sont. De plus,

Ve € [o; g} . f'(2) = 3(—sin(z)) cos?(x) sin® () + 3 cos(z) sin?(z) cos® ()
= —3cos’(z)sin*(z) 4 3 cos® (z) sin®(z) = 3 cos?(z) sin’(z) (— sin®(z) + cos?(z))
= 3cos?(z) sin?(z) (cos(z) — sin(z)) (cos(x) + sin(z)).
Or pour tout z € [0; ], cos(z) > 0, sin(z) > 0. Donc pour z € [0; 5],

fl(@)=0 & cos(x) — sin(x) > 0 & cos(x) > sin(x) & x € [0; %} .
Le cosinus étant labscisse et le sinus l'ordonnée, 1’égalité cos(x) = sin(x) se situe sur la droite d’équation
y=u.
Ainsi,

@ 0 1 3
f'(x) + 0 -

; / \

Or f(0) = cos®(0)sin®(0) =1x0=0, f () =0x1=0et f(T) = (%)3 (%)3 = (%)3 = &. Conclusion,

x 0 I 2
f'(x) + 0 -
1
8
0 0

4.5 Soit x € Ry. On a les équivalences suivantes :

2 +3

m existe = .'172 —2x—3 # 0.

Soit A le discriminant de 2% —2z — 3. Ona A =4 — 4 x (=3) = 4 (1 + 3) = 42. Ainsi, les racines associées
sont 2%4 =—1let 2%4 = 3. Donc sur Ry, la fonction f est définie sur

U = [0;3[U]3; +o0]
et
22 +3
(x+1)(z—3)°

La fonction f est dérivable sur son domaine de définition en tant que quotient de fonctions qui le sont et

Ve e U, flz) =
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dont le dénominateur ne s’annule pas. De plus,

2¢ (2? — 20— 3) — (2% + 3) (22 — 2)
(22 — 2z — 3)°

22% — 42? — 62 — 223 + 222 — 62 + 6
(22 — 22 — 3)°

222 — 122+ 6

(22 — 2z — 3)°

2+ 6z —3

(22 — 2z — 3)*

Ve e U, fl(z) =

Soit A le discriminant de 22 +6x —3. Ona A = 36+ 12 = 48 = 4 x 12 = 42 x 3. Les racines associées sont
donc r; = *6%4‘5 =—34+2v3etry = —3—2V3.

(r=2V343) (24+2V3+3)
(22 — 22 — 3)°

Yz e U, fx)=—

On note que 72 < 0 et puisque (2\/5)2 =4x3=12¢€]9;16[, on a 2v/3 € ]3;4[, on a donc r, €]0;1[ C ]0; 3].

D’oul
x 0 2v/3-3 3 +o00
f'(x) + 0 - -
f

(2v3-3)"+3
(2v3-13)° —2(2v/3-3) -3
12—-12v/34+9+3
T 12-12v3+9-4/316-3

F(2v3-3) =

_24-12V3
24163
_12(2-v3)
C8(3-2V3)
~3(2-V3) (3+2v3)
N 2(9-12)
~ 3(6+4v3-3V3-6)
B —6
_.V3
2
Puis,
lim f(x) = 1 2 +3 12
m f(x) = lim = — = —00,
a3 izg(erl)(szS) 4x0
) , 2 +3 12
I f@) = e e — ) T Txor T

>3 >3

ofi3
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Enfin,
: . 2% +3 . 1+ 2
A= e T AR T g
Conclusion,
T 0 2v/3 -3 3 +00
f'(@) + 0 - -
_ V3 +00
2
1 o0 1

5. Dérivée n-iéme.

5.1 La fonction f est dérivable sur R et
. / 1
Vo € R}, fi(z)=—-.
x

On observe alors que f est deux fois dérivable sur R et

1
* 1" _
La fonction f est trois fois dérivable sur R et
Ve € R* () = 2
x s v) =5
La fonction f est quatre fois dérivable sur R7 et
Ve € R* FA( )__E
T T v)=-—7-

Posons pour tout n € N*,

P(n) : « f est n-fois dérivable sur R et Vo € R, ) () = (-1)

On rappelle/donne la notation suivante :

Vn € N*¥, nl=1x2xn et 0l'=1.

Alors pour tout n € N*, &(n) : « f est n-fois dérivable sur RY et Vz € RY, f™(z) = (-=1)" % ».
Procédons par récurrence.
Initialisation. Sin =1, on a f dérivable sur R et

1 (n —1)! I
Vz € RY, (z) = = t S DY 2L S
veRy, =1 e (O pfog
Donc £(1) est vraie.
Hérédité. Soit n € N*. Montrons que &(n) = £ (n+1). Supposons & (n) : f est n-fois dérivable sur R*.
et
* (n) _(_q\ntl (n—1)!
Vl’ € R-}-a f (:L') - ( 1) T .
La fonction f(") est dérivable sur R% puisque son dénominateur ne s’annule pas sur R} . Donc f est
(n + 1)-fois dérivable et

Vr € R* 7 f(nJrl)(ﬂ?) _ (f(")(x))/ _ <(_1)n+1 %) - (_1)n+1 (nxn_Jj)' _ (_1)n+2 x:ill

10/13
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Donc Z(n + 1) est vraie.

Conclusion, pour tout n € N*| Z2(n) est vraie : ‘ [ est n-fois dérivable sur R |et

)n+1 (TL — 1)' )

Ve eRL,  fM(z)= (-1

De plus pour n = 0,

veeR:,  fO) = f(z) = In(z).

Pour tout n € N, la fonction f : x — / est n fois dérivable sur R% et pour tout z € R,

1
/ —
1
1 -
f (.13) - 4$3/2
3
B3) () —
f ( ) - 81’5/2
3 X5
B (p) = _
Posons pour tout n > 2,
1x3x---x(2n—3
P(n) : «VreR:, fM(z) = (=1)"F! alide ::}1 n ) »
A AEE
Procédons par récurrence.
Initialisation. Sin = 2, alors f est deux fois dérivable sur R et
1 1x3x(2n—23) 1x(4-3) 1
* " _ _1\n+1 —(—1)3 = —
VI' € R+a f (Z‘) - 4,’1)3/2 et ( 1) 2”],‘2”271 ( 1) 2233% 4.’173/2.

Donc &(2) est vraie.
Hérédité. Soit n > 2. Montrons que &(n) = Z(n+ 1). Supposons & (n) vraie. Alors

. n Ix3x---x(2n—-3
VeeRy,  fO) = (-1 mn-d)
A A
Deés lors,
. " n / 2n —1 Ix3x---x(2n—-3
veeRL 0@ = (/@) = -2y an=3)
2y 2
nio 1X 3% x (2n—3)(2n—1)

~(-1)

2n+1x 2'n.2—3

Donc & (n + 1) est vraie.

Conclusion, pour tout n > 2, #(n) est vraie : ‘ f est n-fois dérivable sur R | et

nt1 1 X3 X -+ x (2n —3)
n—1 N

2
AL

veeR:,  fM(z)=(-1)

De plus, pour n =1 et n =0,

Vz e RY, fllz) = — et flx) = x.

Pour tout n € N, la fonction f : z + cos?(z) — sin?(z) est n dérivable sur R comme différence et composée
de fonctions qui le sont et pour tout « € R,
f'(x) = —2sin(x) cos(z) — 2 cos(z) sin(x) = —4sin(x) cos(z)
f"(x) = —4cos(z) cos(z) + 4sin(z) sin(z) = —4 (cos?(z) — sin’(z)) = —4f(2)
f"(x) = —4f'(x) = 16sin(z) ¢ b(l‘)
FO (@) = —4f"(x) = ~4 (=4 (z)) = 16/ () = 16 (cos’(z) — sin’()) .

11/13]
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Posons pour tout p € N, #(p) la propriété :
V€ R, [O0)(2) = (—4)" f(z) et FCPD(z) = (—4)" f'(2). »

Procédons par récurrence.
Initialisation. Si p = 0, alors par ce qui précede, f est dérivable et

VeeR, [ =fO=f=(-4)0f=(-4Pf et [ =f=(-2)f =(-4)"f.

Donc £(0) est vraie.
Hérédité. Soit p € N. Montrons que £(p) = Z(p+ 1). Supposons Z(p) vraie :

VeeR,  fOP(z) = (—4) f(x) et PPV (@) = (—4)" [ (2).
Dés lors,
VeeR,  fOI(@) = (1) (@) = (4" /(@) = (4" (~4) f(x)  par ce qui précide.
Donc Vz € R, f2P2)(z) = (—4)"™' f(z). De méme,
veeR, [ () = (FOD) (0) = (—4) (@) = (~4) (—4) ['(2) = (~4" [(@).

Donc & (p + 1) est vraie.

Conclusion, pour tout p € N, & (p) est vraie. Donc ‘ pour tout n € N, f est n fois dérivable sur R‘ et sin
est pair, n =2p, p € N,

Vz € R, FO)(2) = (—4)? (cos*(z) — sin®(z)),

et si m est impair, n =2p+1, p € N,

Vo € R, P () = (—4)PT! cos(a) sin(z).

5.4 La fonction f est n fois dérivable comme produit de fonctions qui le sont. De plus, pour tout =z € R,

f(z) ="

f(z) =2ze” +2% e = (2% 4 22) &”
f'(x) = (2x+2+x2+2x)em:(x2+4x+2)ez
fO(@) = 2z +4+2> +42+2)e” = (2 + 62 +6) &”
F®(z) = (2x+6+x2+6x+6)er:(:172+8:L"+12)e"”
fO(2) = (2z + 8+ 2 + 8z + 12) " = (2% + 10z + 20) &”
On pose pour tout n € N|
P(n) : «Vz eR, f™(z) = (2® +2nz+n(n—1))e" »

Procédons par récurrence.
Initialisation. Si n = 0, alors

Va € R, fO ) = f(z) =2%e® et (sc2+2nx+n(n71))e$:(x2+0)ew:xzew.

Donc Z2(0) est vraie.
Hérédité. Soit n € N. Montrons que £(n) = (n+ 1) est vraie. Supposons & (n) vraie :

Vo € R, FM(z) = (a:2 +2nz +n(n—1))e”

Des lors,

Ve eR,  fOtD(x (f )

((® +2nx+n(n—1)) )/

= (2z +2n)e” —1—(:10 +2nz +n(n—1))e”
= (2" + (2n+2) x+n(2+n—1))
=@*+2(n+1l)z+n(n+1))e
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5.5

Donc Z(n + 1) est vraie.

Conclusion, pour tout n € N, & (n) est vraie. La fonction ‘ f est n fois dérivable sur R | et

Vo € R, fM(z) = (x2 +2nz +n(n—1))e”

Pour tout n € N, la fonction f : x — x cos(x) est n fois dérivable sur R comme produit de fonctions qui le
sont et pour tout x € R,

Posons pour tout p € N,
P(p) « fOP)(z) = (=1)P [(2p) sin(z) + = cos(x)] et fCPTY(z) = (=1)" [(2p + 1) cos(z) — zsin(z)]. »

Procédons par récurrence.

Initialisation. Si p = 0, alors pour tout z € R,
@) (2) = f(x) = x cos(x) et (=1)P[(2p) sin(z) + z cos(z)] = (=1)°[0 x sin(z) + x cos(z)] = z cos(x).
Donc fP)(z) = (—1)P [(2p) sin(z) + = cos(x)]. De méme, par ce qui précede, pour tout = € R,

FEHD () = f'(z) = cos(x) —wsin(z) et (—1)P[(2p + 1) cos(z) — wsin(x)] = cos(x) —  sin(z).

Donc fr+)(z) = (=1)P [(2p + 1) cos(x) —  sin(z)] et Z2(0) est vraie.
Hérédité. Soit p € N. Montrons que #£(p) = Z(p+ 1). Supposons Z(p) :

FE (@) = (~1)” [(2p) sin() + x cos(a)

el {f@pH)(JS) = (=1)"[(2p + 1) cos(x) — zsin(x)] .

Alors, en dérivant, on obtient pour tout z € R,

£ (@) = (FCP) (@) = (~1)” [(2p + 1) cos(x) — wsin(x))
= (=1)? [~ (2p + 1) sin(x) — sin(z) — z cos(x)]
= (=1)?[- (2p + 2) sin(x) — z cos(z)]
= (=)' [(2p + 2) sin(z) + = cos(x)] .

En dérivant une seconde fois,

P (1) = (f(2”+2)), (z) = (=P [(2p + 2) cos(z) + cos(z) — z sin(z)]
(=) [(2p + 3) cos(z) — zsin(z)] .

Ce qui achéve de démontrer Z(p + 1).

Conclusion, pour tout p € N, Z(p) est vraie. Donc pour tout n € N, ‘ f est n fois dérivable sur R ‘ etsin
est pair, n = 2p, p € N,

Vz € R, P () = (=1)P [(2p) sin(z) + 2 cos(z)] .

Sin est impair,n =2p+1, p €N,

vz € R, FEPHY (1) = (=1)P [(2p 4 1) cos(x) — x sin(x)] .
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