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Correction de l’interrogation 2
d’entrainement

Fonctions réelles

1. Restituer le cours.
1.1 Soient U ∈ P (R), f ∈ F (U,R), A ⊆ U et B ⊆ R.

• L’image directe de A par f est

f (A) = {y ∈ R | ∃x ∈ A, y = f(x)} .

• L’image réciproque de B par f est

f← (B) = {x ∈ U | f(x) ∈ B } .

1.2 A partir du graphe de f , on obtient le graphe de
• g1 par une translation de vecteur a

#»
j .

• g2 par une translation de vecteur −a
#»
i .

• g3 par une dilatation/contraction verticale de coefficient a.
• g4 par une dilatation/contraction horizontale de coefficient 1

a .
1.3 Soient U ⊆ R, f ∈ F (U,R).

La fonction f est paire si
• U est centré en 0 : ∀x ∈ U , −x ∈ U ,
• ∀x ∈ R, f(−x) = f(x).

Le graphe de f est alors symétrique par rapport à (Oy).
La fonction f est impaire si

• U est centré en 0 : ∀x ∈ U , −x ∈ U ,
• ∀x ∈ R, f(−x) = −f(x).

Le graphe de f est alors symétrique par rapport à (0, 0).
1.4 Soient I un intervalle de R et f ∈ F (I,R). On dit que f est croissante sur I si

∀ (x, y) ∈ I2, [(x ⩽ y) ⇒ (f(x) ⩽ f(y))] .

f est strictement décroissante sur I si

∀ (x, y) ∈ I2, [(x < y) ⇒ (f(x) > f(y))] .

1.5 Soient U ∈ P (R) et f ∈ F (U,R). On a les définitions suivantes :

f est majorée sur U ⇔ ∃M ∈ R, ∀x ∈ U, f(x) ⩽ M

f est minorée sur U ⇔ ∃m ∈ R, ∀x ∈ U, m ⩽ f(x)
f est bornée sur U ⇔ ∃ (m, M) ∈ R2, ∀x ∈ U, m ⩽ f(x) ⩽ M

⇔ ∃M ∈ R+, ∀x ∈ U, |f(x)| ⩽ M.

1.6 Soient a ∈ R, I un voisinage de a, f ∈ F (I,R). On a

f continue en a ⇔ lim
x→a

f(x) existe et vaut f(a).

1.7 Soient (a, b) ∈ R2, a < b et f ∈ F ([a; b] ,R). Si f est continue sur [a; b] alors,

∀ λ ∈ [f(a); f(b)] , ( ou [f(b); f(a)]) , ∃c ∈ [a; b] , f(c) = λ .

1.8 Soient a ∈ R, I un voisinage de a, f ∈ F (I,R). On a

f est dérivable en a ⇔ lim
x→a
x̸=a

f(x) − f(a)
x − a

existe dans R.

En particulier
( f dérivable en a ) ⇒ ( f continue en a ) .
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2. Déterminer l’ensemble de définition et la parité d’une fonction.

2.1 Soit f : x 7→ 2 ln(x2−5)
tan(3x) . Soient x ∈ R et Df l’ensemble de définition de f . On a les équivalences suivantes :

x ∈ Df ⇔


x2 − 5 > 0
∀k ∈ Z, 3x ̸= π

2 + kπ

tan (3x) ̸= 0

⇔


x2 > 5
∀k ∈ Z, 3x ̸= π

2 + kπ

∀k ∈ Z, 3x ̸= kπ

⇔
®

x >
√

5 OU x < −
√

5
∀k ∈ Z, 3x ̸= k π

2

⇔
®

x >
√

5 OU x < −
√

5
∀k ∈ Z, x ̸= k π

6

Ainsi l’ensemble de définition de f est

Df =
ó
−∞ ; −

√
5
î

∪
ó√

5 ; +∞
î

\
{

k
π

6

∣∣∣ k ∈ Z
}

.

(i) On note que Df est centré en 0 : ∀x ∈ Df , −x ∈ Df .
(ii) De plus pour tout x ∈ Df ,

f(−x) =
2 ln

(
(−x)2 − 5

)
tan (3(−x)) =

2 ln
(
x2 − 5

)
− tan (3x) car la fonction tangente est impaire.

= −f(x).

Conclusion,
la fonction f est impaire.

2.2 Soit f : x 7→ 7x3−3x+1
x4+x2+1 . Soit ∆ le discriminant de X2 + X + 1. On a ∆ = 1 − 4 < 0. Donc pour tout

u ∈ R, u2 + u + 1 > 0. Donc pour tout x ∈ R, (en prenant u = x2), on a x4 + x2 + 1 > 0. Par conséquent
la fonction f est définie sur R .
(i) On note que R est bien centré en 0 : ∀x ∈ R, −x ∈ R.
(ii) Cependant on a f(1) = 7−3+1

1+1+1 = 5
3 et f(−1) = −7+3+1

1+1+1 = −1. Donc f(−1) ̸= −f(1) et la fonction f
n’est pas impaire et f(−1) ̸= f(1) donc la fonction f n’est pas paire.

Conclusion,
la fonction f n’est ni paire ni impaire.

2.3 Soit f : x 7→ e3x3+1 + e−3x3+1

sin(2x) . Soient x ∈ R et Df l’ensemble de définition de f . On a les équivalences
suivantes :

x ∈ Df ⇔ sin (2x) ̸= 0 ⇔ ∀k ∈ Z, 2x ̸= kπ ⇔ ∀k ∈ Z, x ̸= k
π

2 .

Ainsi, l’ensemble de définition de f est donné par

Df = R \
{

k
π

2

∣∣∣ k ∈ Z
}

.

(i) On note que Df est centré en 0 : ∀x ∈ Df , −x ∈ Df .
(ii) De plus pour tout x ∈ Df ,

f(−x) = e3(−x)3+1 + e−3(−x)3+1

sin (−2x) = e−3x3+1 + e3x3+1

− sin (2x) car la fonction sinus est impaire

= −e3x3+1 + e−3x3+1

sin (2x)
= −f(x).
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Conclusion,
la fonction f est impaire.

2.4 Soit f : x 7→ 3|x|3+cos(6x)
cos(2x) . Soit Df l’ensemble de définition de f . Pour tout x ∈ R, on a les équivalences

suivantes :

x ∈ Df ⇔ cos (2x) ̸= 0 ⇔ ∀k ∈ Z, 2x ̸= π

2 + kπ ⇔ ∀k ∈ Z, x ̸= π

4 + k
π

2 .

Ainsi, l’ensemble de définition de f est donné par

Df = R \
{ π

4 + k
π

2

∣∣∣ k ∈ Z
}

.

(i) On note que Df est centré en 0 : ∀x ∈ Df , −x ∈ Df .
(ii) De plus pour tout x ∈ Df ,

f(−x) = 3 |−x|3 + cos (−6x)
cos(−2x) = 3 |x|3 + cos (6x)

cos(2x) car la fonction cosinus est paire

= f(x).

Conclusion,
la fonction f est paire.

2.5 Soit f : x 7→ ln (|x + 2| − (x + 3)). Soient x ∈ R et Df l’ensemble de définition de f . On a

x ∈ Df ⇔ |x + 2| − (x + 3) > 0 ⇔ |x + 2| > x + 3.

Premier cas, x ⩾ −2, alors

x ∈ Df ⇔ x + 2 > x + 3 ⇔ 2 > 3 impossible.

Second cas, x ⩽ −2, alors

x ∈ Df ⇔ −x − 2 > x + 3 ⇔ −5 > 2x ⇔ x < −5
2 .

Or − 5
2 < −2.

Conclusion, l’ensemble de définition de f est donné par

Df =
ò
−∞ ; −5

2

ï
.

On note que Df n’est pas centré en 0 (pire ne contient aucun réel positif) il n’y a donc aucune chance que
f soit paire ou impaire. Conclusion,

la fonction f n’est ni paire ni impaire.

3. Enoncer le théorème des valeurs intermédiaires ou le théorème de la bijection.
3.1 Pour tout x ∈

[
0 ; π

2
]
, on pose f(x) = sin (4x) + 5x2.

(i) La fonction f est continue sur
[
0 ; π

2
]

en tant que somme de fonctions continues.

(ii) Si x = 0, f(0) = 0 < 2 et si x = π
2 , f

(
π
2
)

= sin (2π) + 5 π2

4 = 5 π2

4 > 5 32

4 > 5 22

4 = 5 > 2. Donc
2 ∈

[
f(0) ; f

(
π
2
)]

.
Donc par le théorème des valeurs intermédiaires, il existe c ∈

[
0 ; π

2
]

tel que f(c) = 2.

Conclusion, l’équation sin (4x) + 5x2 = 2 admet (au moins) une solution sur
[
0 ; π

2
]
.

3.2 Pour tout x ∈ [0 ; +∞[, on pose f(x) =
Ä

1
5
√

x+3

ä2
(bien défini car x ⩾ 0 et 5

√
x + 3 ⩾ 3 > 0).

(i) La fonction f est continue sur [0 ; +∞[ en tant qu’inverse d’une fonction continue ne s’annulant pas.
(ii) Si x = 0, f(0) = 1

9 > 1
10 et si x = 1 (par exemple), f (1) = 1

64 < 1
10 . Donc 1

10 ∈ [f(1) ; f (0)].
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Donc par le théorème des valeurs intermédiaires, il existe c ∈ [0 ; 1] ⊆ [0 ; +∞[ tel que f(c) = 1
10 .

Conclusion, l’équation
Ä

1
5
√

x+3

ä2
= 1

10 admet (au moins) une solution sur [0 ; +∞[.

3.3 Pour tout x ∈ R \ πZ = R \ {kπ | k ∈ Z}, on pose f(x) = 4 tan
(

x
2
)
.

(i) La fonction f est continue sur [0 ; π[ en tant que composée de fonctions continues.
(ii) Si x = 0, f(0) = 0 < 3000 et si x → π, lim

x→π
x<π

f (x) = +∞. Donc il existe x0 ∈ [0 ; π[ tel que pour tout

x ∈ [x0 ; π[, f(x) ⩾ 3000, notamment si x = x0, f (x0) ⩾ 3000 (attention nous n’avons pas montré que
f (x0) = 3000 faites bien la distinction). Ainsi 3000 ∈ [f(0) ; f (x0)].

Donc par le théorème des valeurs intermédiaires, il existe c ∈ [0 ; x0] ⊆ [0 ; π[ ⊆ [0 ; +∞[ tel que f(c) =
3000.
Conclusion, l’équation 4 tan

(
x
2
)

= 3000 admet (au moins) une solution sur [0 ; +∞[.
En réalité cette équation va admettre une infinité de solutions sur [0 ; +∞[ par la π-périodicité de la fonction
tangente mais une seule sur [0 ; π[ en appliquant le théorème de la bijection.

3.4 L’unicité demandée réclame le théorème de la bijection et non juste le théorème des valeurs intermédiaires.
Pour tout x ∈ [3 ; +∞[, on pose f(x) = ex

x2−1 qui est bien défini car pour tout x ⩾ 3, x2 −1 ⩾ 8 > 0. De plus
la fonction f est dérivable sur [3 ; +∞[ en tant que quotient de fonctions continues dont le dénominateur
ne s’annule pas et

∀x ∈ [3 ; +∞[ , f ′(x) =
ex

(
x2 − 1

)
− ex (2x)

(x2 − 1)2 =
ex

(
x2 − 2x − 1

)
(x2 − 1)2

Soit ∆ le discriminant de X2 − 2X − 1, ∆ = 4 + 4 = 8 > 0, donc les solutions réelles de l’équation
x2 − 2x − 1 = 0 sont

x1 = 2 −
√

8
2 et x2 = 2 +

√
8

2
Or x1 < x2 < 2+3

2 < 3. Donc pour tout x ∈ [3 ; +∞[, x2 − 2x − 1 > 0 et par suite,

∀x ∈ [3 ; +∞[ , f ′(x) > 0.

Donc la fonction f est strictement croissante sur [3 ; +∞[. De plus f(3) = e3

8 et lim
x→+∞

f(x) = +∞ par
croissance comparée. On en déduit le tableau de variation suivant :

x

f

3 +∞

e3

8
e3

8

+∞+∞

(i) La fonction f est continue sur [3 ; +∞[ en tant que quotient de fonctions continues dont le dénominateur
ne s’annule pas.

(ii) Si x = 3, f(3) = e3

8 < 33

8 = 27
8 < 4 donc 4 ∈

î
e3

8 ; +∞
î

= [f (3) ; limx→+∞ f(x)[.
(iii) La fonction f est strictement croissante sur [3 ; +∞[
Donc par le théorème de la bijection, il existe un unique c ∈ [3 ; +∞[ tel que f(c) = 4.
Conclusion, l’équation ex

x2−1 = 4 admet une unique solution sur [3 ; +∞[.

3.5 Pour tout x > 0, on pose u(x) = x − ln (x). La fonction u est bien définie, continue et même dérivable sur
R∗+. De plus pour tout x ∈ R∗+,

u′(x) = 1 − 1
x

= x − 1
x

.

Donc pour tout x ∈ ]0 ; 1[, u′(x) < 0 et pour tout x ∈ ]1 ; +∞[, u′(x) > 0 et la fonction u est donc
strictement décroissante sur ]0 ; 1[ et strictement croissante sur ]1 ; +∞[. De plus lim

x→0
x>0

u(x) = +∞, u(1) = 1

et lim
x→+∞

u(x) = lim
x→+∞

x(1 − ln(x)
x︸ ︷︷ ︸
→0

) = +∞. Ainsi, on obtient le tableau de variation suivant :
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x

u

0 1 +∞

+∞+∞

11

+∞+∞

Ainsi pour tout x ∈ R∗+, u(x) ⩾ 1 > 0. Conclusion,

∀x ∈ ]0 ; +∞[ , x > ln(x).

Soit f : x 7→ ln(x)
x−ln(x) . Par ce qui précède, ∀x ∈ R∗+, x − ln(x) ̸= 0 donc f est bien définie sur ]0 ; +∞[ et est

même continue et dérivable sur cet ensemble et pour tout x ∈ ]0 ; +∞[,

f ′(x) =
1
x (x − ln(x)) − ln (x)

(
1 − 1

x

)
(x − ln (x))2 = x − ln(x) − ln(x) (x − 1)

x (x − ln (x))2 = x − x ln(x)
x (x − ln (x))2 = 1 − ln(x)

(x − ln (x))2 .

Or pour tout x ∈ [1; e[, on a ln(x) ∈ [0; 1[ donc 1 − ln(x) > 0 et donc f ′(x) > 0. La fonction f est donc
strictement croissante sur [1; e]. De plus, f(1) = ln(1)

1−ln(1) = 0 et f (e) = ln(e)
e− ln(e) = 1

e−1 . On a donc

x

f

1 e

00

1
e−1

1
e−1

Or 2 < e < 3 donc 0 < e −1 < 2 et par stricte décroissance de la fonction inverse sur R∗+, 1
e−1 > 1

2 .
On a donc les points suivants :

• f (1) = 0 < 1
2 , f (e) = 1

e−1 > 1
2 ,

• f est continue sur [1; e],
• f est strictement croissante sur [1; e].

Donc par le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), on en déduit
que

∃!α ∈ [1; e] , f (α) = 1
2 .

Conclusion,

∃!x ∈ [1; e] ,
ln(x)

1 − ln(x) = 1
2 .

4. Tableau de variations.
4.1 La fonction f est définie et même dérivable sur R comme produit de fonctions qui le sont. De plus,

∀x ∈ R, f ′(x) = 2x ex +x2 ex = x (x + 2) ex .

On obtient alors le tableau suivant :

x

f ′(x)

f

−∞ −2 0 +∞

+ 0 − 0 +
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Or,
f (−2) = 4 e−2, f(0) = 0, lim

x→+∞
f(x) = lim

x→+∞
x2 ex = +∞.

Et, par croissance comparée, lim
x→−∞

x2 ex = 0. Conclusion,

x

f

−∞ −2 0 +∞

00

4 e−24 e−2

00

+∞+∞

4.2 Soit x ∈ R. On a les équivalences suivantes :

x

ln(x) existe ⇔
®

x > 0
ln(x) ̸= 0

⇔
®

x > 0
x ̸= 1.

Donc f est bien définie sur U = ]0; 1[ ∪ ]1; +∞[. De plus f est dérivable sur U comme quotient de fonctions
qui le sont et dont le dénominateur ne s’annule pas. De plus,

∀x ∈ U, f ′(x) =
ln(x) − x × 1

x

ln2(x)
= ln(x) − 1

ln2(x)
.

Dès lors, pour x ∈ U ,

f ′(x) > 0 ⇔ ln(x) − 1 > 0 ⇔ ln(x) > 1 ⇔ x > e .

On obtient donc le tableau :

x

f ′(x)

f

0 1 e +∞

− − 0 +

Or lim
x→0
x>0

ln(x) = −∞. Donc

lim
x→0
x>0

f(x) = lim
x→0
x>0

x

ln(x) = 0.

De plus, lim
x→1
x<1

ln(x) = 0− donc

lim
x→1
x<1

x

ln(x) = 1 × −∞ = −∞.

De même,
lim
x→1
x>1

x

ln(x) = 1 × +∞ = +∞.

Puis, f (e) = e
ln(e) = e. Finalement, par croissance comparée,

lim
x→+∞

x

ln(x) = +∞.

Conclusion,
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x

f

0 1 e +∞

00

−∞

+∞

ee

+∞+∞

4.3 La fonction f est définie et même dérivable sur R en tant que fonction polynomiale. De plus,

∀x ∈ R, f ′(x) = x3 + x2 − 2x = x
(
x2 + x − 2

)
.

Soit ∆ le discriminant de x2 + x − 2. On a ∆ = 1 − 4 × (−2) = 9. Ainsi, les racines associées sont
r1 = −1+3

2 = 1 et r2 = −1−3
2 = −2. D’où

∀x ∈ R, f ′(x) = x (x − 1) (x + 2) .

On obtient alors le tableau suivant :

x

x

x − 1

x + 2

f ′(x)

f

−∞ −2 0 1 +∞

− − 0 + +

− − − 0 +

− 0 + + +

− 0 + 0 − 0 +

De plus,

lim
x→−∞

f(x) = lim
x→−∞

x4

4 + x3

3 − x2 + 5 = lim
x→−∞

x4

4

Å
1 + 4

3x
− 4

x2 + 20
x4

ã
= +∞.

De même,

lim
x→+∞

f(x) = lim
x→−∞

x4

4

Å
1 + 4

3x
− 4

x2 + 20
x4

ã
= +∞.

Mais aussi,

f (−2) = 16
4 − 8

3 − 4 + 5 = 5 − 8
3 = 7

3
f(0) = 5

f(1) = 1
4 + 1

3 − 1 + 5 = 3 + 4
12 + 4 = 1 + 48

12 = 49
12 .

Conclusion,

x

f

−∞ −2 0 1 +∞

+∞+∞

7
3
7
3

55

49
12
49
12

+∞+∞
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4.4 La fonction f est définie et même dérivable sur R donc notamment sur
[
0; π

2
]

comme produit de fonctions
qui le sont. De plus,

∀x ∈
[
0; π

2

]
, f ′(x) = 3 (− sin(x)) cos2(x) sin3(x) + 3 cos(x) sin2(x) cos3(x)

= −3 cos2(x) sin4(x) + 3 cos4(x) sin2(x) = 3 cos2(x) sin2(x)
(
− sin2(x) + cos2(x)

)
= 3 cos2(x) sin2(x) (cos(x) − sin(x)) (cos(x) + sin(x)) .

Or pour tout x ∈
[
0; π

2
]
, cos(x) ⩾ 0, sin(x) ⩾ 0. Donc pour x ∈

[
0; π

2
]
,

f ′(x) ⩾ 0 ⇔ cos(x) − sin(x) ⩾ 0 ⇔ cos(x) ⩾ sin(x) ⇔ x ∈
[
0; π

4

]
.

Le cosinus étant l’abscisse et le sinus l’ordonnée, l’égalité cos(x) = sin(x) se situe sur la droite d’équation
y = x.
Ainsi,

x

f ′(x)

f

0 π
4

π
2

+ 0 −

Or f(0) = cos3(0) sin3(0) = 1 × 0 = 0, f
(

π
2
)

= 0 × 1 = 0 et f
(

π
4
)

=
Ä√

2
2

ä3 Ä√2
2

ä3
=

( 2
4
)3 = 1

8 . Conclusion,

x

f ′(x)

f

0 π
4

π
2

+ 0 −

00

1
8
1
8

00

4.5 Soit x ∈ R+. On a les équivalences suivantes :

x2 + 3
x2 − 2x − 3 existe ⇔ x2 − 2x − 3 ̸= 0.

Soit ∆ le discriminant de x2 − 2x − 3. On a ∆ = 4 − 4 × (−3) = 4 (1 + 3) = 42. Ainsi, les racines associées
sont 2−4

2 = −1 et 2+4
2 = 3. Donc sur R+, la fonction f est définie sur

U = [0; 3[ ∪ ]3; +∞[

et
∀x ∈ U, f(x) = x2 + 3

(x + 1) (x − 3) .

La fonction f est dérivable sur son domaine de définition en tant que quotient de fonctions qui le sont et
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dont le dénominateur ne s’annule pas. De plus,

∀x ∈ U, f ′(x) =
2x

(
x2 − 2x − 3

)
−

(
x2 + 3

)
(2x − 2)

(x2 − 2x − 3)2

= 2x3 − 4x2 − 6x − 2x3 + 2x2 − 6x + 6
(x2 − 2x − 3)2

= −2x2 − 12x + 6
(x2 − 2x − 3)2

= −2 x2 + 6x − 3
(x2 − 2x − 3)2 .

Soit ∆ le discriminant de x2 + 6x − 3. On a ∆ = 36 + 12 = 48 = 4 × 12 = 42 × 3. Les racines associées sont
donc r1 = −6+4

√
3

2 = −3 + 2
√

3 et r2 = −3 − 2
√

3.

∀x ∈ U, f ′(x) = −2
(
x − 2

√
3 + 3

) (
x + 2

√
3 + 3

)
(x2 − 2x − 3)2

On note que r2 < 0 et puisque
(
2
√

3
)2 = 4×3 = 12 ∈ ]9; 16[, on a 2

√
3 ∈ ]3; 4[, on a donc r1 ∈ ]0; 1[ ⊆ ]0; 3[.

D’où

x

f ′(x)

f

0 2
√

3 − 3 3 +∞

+ 0 − −

Or f(0) = 3
−3 = −1,

f
Ä
2
√

3 − 3
ä

=
(
2
√

3 − 3
)2 + 3(

2
√

3 − 3
)2 − 2

(
2
√

3 − 3
)

− 3

= 12 − 12
√

3 + 9 + 3
12 − 12

√
3 + 9 − 4

√
3 + 6 − 3

= 24 − 12
√

3
24 − 16

√
3

=
12

(
2 −

√
3
)

8
(
3 − 2

√
3
)

=
3
(
2 −

√
3
) (

3 + 2
√

3
)

2 (9 − 12)

=
3
(
6 + 4

√
3 − 3

√
3 − 6

)
−6

= −
√

3
2 .

Puis,

lim
x→3
x<3

f(x) = lim
x→3
x<3

x2 + 3
(x + 1) (x − 3) = 12

4 × 0− = −∞,

lim
x→3
x>3

f(x) = lim
x→3
x>3

x2 + 3
(x + 1) (x − 3) = 12

4 × 0+ = +∞.
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Enfin,

lim
x→+∞

f(x) = lim
x→+∞

x2 + 3
x2 − 2x − 3 = lim

x→+∞

1 + 3
x2

1 − 2
x − 3

x2

= 1.

Conclusion,

x

f ′(x)

f

0 2
√

3 − 3 3 +∞

+ 0 − −

−1−1

−
√

3
2−
√

3
2

−∞

+∞

11

5. Dérivée n-ième.
5.1 La fonction f est dérivable sur R∗+ et

∀x ∈ R∗+, f ′(x) = 1
x

.

On observe alors que f est deux fois dérivable sur R∗+ et

∀x ∈ R∗+, f ′′(x) = − 1
x2 .

La fonction f est trois fois dérivable sur R∗+ et

∀x ∈ R∗+, f (3)(x) = 2
x3 .

La fonction f est quatre fois dérivable sur R∗+ et

∀x ∈ R∗+, f (4)(x) = − 6
x4 .

Posons pour tout n ∈ N∗,

P(n) : « f est n-fois dérivable sur R∗+ et ∀x ∈ R∗+, f (n)(x) = (−1)n+1 1 × 2 × · · · × (n − 1)
xn

».

On rappelle/donne la notation suivante :

∀n ∈ N∗, n! = 1 × 2 × n et 0! = 1.

Alors pour tout n ∈ N∗, P(n) : « f est n-fois dérivable sur R∗+ et ∀x ∈ R∗+, f (n)(x) = (−1)n+1 (n−1)!
xn ».

Procédons par récurrence.
Initialisation. Si n = 1, on a f dérivable sur R∗+ et

∀x ∈ R∗+, f ′(x) = 1
x

et (−1)n+1 (n − 1)!
xn

= (−1)2 0!
x

= 1
x

.

Donc P(1) est vraie.
Hérédité. Soit n ∈ N∗. Montrons que P(n) ⇒ P(n + 1). Supposons P(n) : f est n-fois dérivable sur R∗+
et

∀x ∈ R∗+, f (n)(x) = (−1)n+1 (n − 1)!
xn

.

La fonction f (n) est dérivable sur R∗+ puisque son dénominateur ne s’annule pas sur R∗+. Donc f est
(n + 1)-fois dérivable et

∀x ∈ R∗+, f (n+1)(x) =
Ä
f (n)(x)

ä′
=
Å

(−1)n+1 (n − 1)!
xn

ã′
= −n (−1)n+1 (n − 1)!

xn+1 = (−1)n+2 n!
xn+1 .
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Donc P(n + 1) est vraie.
Conclusion, pour tout n ∈ N∗, P(n) est vraie : f est n-fois dérivable sur R∗+ et

∀x ∈ R∗+, f (n)(x) = (−1)n+1 (n − 1)!
xn

.

De plus pour n = 0,
∀x ∈ R∗+, f (0)(x) = f(x) = ln(x).

5.2 Pour tout n ∈ N, la fonction f : x 7→
√

x est n fois dérivable sur R∗+ et pour tout x ∈ R∗+,

f ′(x) = 1
2
√

x

f ′′(x) = − 1
4x3/2

f (3)(x) = 3
8x5/2

f (4)(x) = − 3 × 5
16x7/2 .

Posons pour tout n ⩾ 2,

P(n) : « ∀x ∈ R∗+, f (n)(x) = (−1)n+1 1 × 3 × · · · × (2n − 3)
2nx

2n−1
2

. »

Procédons par récurrence.
Initialisation. Si n = 2, alors f est deux fois dérivable sur R∗+ et

∀x ∈ R∗+, f ′′(x) = − 1
4x3/2 et (−1)n+1 1 × 3 × (2n − 3)

2nx
2n−1

2
= (−1)3 1 × (4 − 3)

22x
4−1

2
= − 1

4x3/2 .

Donc P(2) est vraie.
Hérédité. Soit n ⩾ 2. Montrons que P(n) ⇒ P(n + 1). Supposons P(n) vraie. Alors

∀x ∈ R∗+, f (n)(x) = (−1)n+1 1 × 3 × · · · × (2n − 3)
2nx

2n−1
2

.

Dès lors,

∀x ∈ R∗+, f (n+1)(x) =
Ä
f (n)(x)

ä′
= −2n − 1

2 × (−1)n+1 1 × 3 × · · · × (2n − 3)
2nx

2n−1
2 −1

= (−1)n+2 1 × 3 × · · · × (2n − 3) (2n − 1)
2n+1x

2n−3
2

.

Donc P (n + 1) est vraie.
Conclusion, pour tout n ⩾ 2, P(n) est vraie : f est n-fois dérivable sur R∗+ et

∀x ∈ R∗+, f (n)(x) = (−1)n+1 1 × 3 × · · · × (2n − 3)
2nx

2n−1
2

.

De plus, pour n = 1 et n = 0,

∀x ∈ R∗+, f ′(x) = 1
2
√

x
et f(x) =

√
x.

5.3 Pour tout n ∈ N, la fonction f : x 7→ cos2(x) − sin2(x) est n dérivable sur R comme différence et composée
de fonctions qui le sont et pour tout x ∈ R,

f ′(x) = −2 sin(x) cos(x) − 2 cos(x) sin(x) = −4 sin(x) cos(x)
f ′′(x) = −4 cos(x) cos(x) + 4 sin(x) sin(x) = −4

(
cos2(x) − sin2(x)

)
= −4f(x)

f ′′′(x) = −4f ′(x) = 16 sin(x) cos(x)
f (4)(x) = −4f ′′(x) = −4 (−4f(x)) = 16f(x) = 16

(
cos2(x) − sin2(x)

)
.
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Posons pour tout p ∈ N, P(p) la propriété :

« ∀x ∈ R, f (2p)(x) = (−4)p
f(x) et f (2p+1)(x) = (−4)p

f ′(x). »

Procédons par récurrence.
Initialisation. Si p = 0, alors par ce qui précède, f est dérivable et

∀x ∈ R, f (2p) = f (0) = f = (−4)0
f = (−4)p

f et f (2p+1) = f ′ = (−4)0
f ′ = (−4)p

f ′.

Donc P(0) est vraie.
Hérédité. Soit p ∈ N. Montrons que P(p) ⇒ P(p + 1). Supposons P(p) vraie :

∀x ∈ R, f (2p)(x) = (−4)p
f(x) et f (2p+1)(x) = (−4)p

f ′(x).

Dès lors,

∀x ∈ R, f (2p+2)(x) =
Ä
f (2p)

ä′′
(x) = (−4)p

f ′′(x) = (−4)p (−4) f(x) par ce qui précède.

Donc ∀x ∈ R, f (2p+2)(x) = (−4)p+1
f(x). De même,

∀x ∈ R, f (2p+3)(x) =
Ä
f (2p+1)

ä′′
(x) = (−4)p

f ′′′(x) = (−4)p (−4) f ′(x) = (−4)p+1
f ′(x).

Donc P(p + 1) est vraie.
Conclusion, pour tout p ∈ N, P(p) est vraie. Donc pour tout n ∈ N, f est n fois dérivable sur R et si n

est pair, n = 2p, p ∈ N,

∀x ∈ R, f (2p)(x) = (−4)p (cos2(x) − sin2(x)
)

,

et si n est impair, n = 2p + 1, p ∈ N,

∀x ∈ R, f (2p+1)(x) = (−4)p+1 cos(x) sin(x).

5.4 La fonction f est n fois dérivable comme produit de fonctions qui le sont. De plus, pour tout x ∈ R,

f(x) = x2 ex

f ′(x) = 2x ex +x2 ex =
(
x2 + 2x

)
ex

f ′′(x) =
(
2x + 2 + x2 + 2x

)
ex =

(
x2 + 4x + 2

)
ex

f (3)(x) =
(
2x + 4 + x2 + 4x + 2

)
ex =

(
x2 + 6x + 6

)
ex

f (4)(x) =
(
2x + 6 + x2 + 6x + 6

)
ex =

(
x2 + 8x + 12

)
ex

f (5)(x) =
(
2x + 8 + x2 + 8x + 12

)
ex =

(
x2 + 10x + 20

)
ex .

On pose pour tout n ∈ N,

P(n) : « ∀x ∈ R, f (n)(x) =
(
x2 + 2nx + n (n − 1)

)
ex. »

Procédons par récurrence.
Initialisation. Si n = 0, alors

∀x ∈ R, f (0)(x) = f(x) = x2 ex et
(
x2 + 2nx + n (n − 1)

)
ex =

(
x2 + 0

)
ex = x2 ex .

Donc P(0) est vraie.
Hérédité. Soit n ∈ N. Montrons que P(n) ⇒ P(n + 1) est vraie. Supposons P(n) vraie :

∀x ∈ R, f (n)(x) =
(
x2 + 2nx + n (n − 1)

)
ex .

Dès lors,

∀x ∈ R, f (n+1)(x) =
Ä
f (n)
ä′

(x)

=
((

x2 + 2nx + n (n − 1)
)

ex
)′

= (2x + 2n) ex +
(
x2 + 2nx + n (n − 1)

)
ex

=
(
x2 + (2n + 2) x + n (2 + n − 1)

)
ex

=
(
x2 + 2 (n + 1) x + n (n + 1)

)
ex .
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Donc P(n + 1) est vraie.
Conclusion, pour tout n ∈ N, P(n) est vraie. La fonction f est n fois dérivable sur R et

∀x ∈ R, f (n)(x) =
(
x2 + 2nx + n (n − 1)

)
ex .

5.5 Pour tout n ∈ N, la fonction f : x 7→ x cos(x) est n fois dérivable sur R comme produit de fonctions qui le
sont et pour tout x ∈ R,

f ′(x) = cos(x) − x sin(x)
f ′′(x) = − sin(x) − sin(x) − x cos(x) = −2 sin(x) − x cos(x)

f (3)(x) = −2 cos(x) − cos(x) + x sin(x) = −3 cos(x) + x sin(x)
f (4)(x) = 3 sin(x) + sin(x) + x cos(x) = 4 sin(x) + x cos(x).

Posons pour tout p ∈ N,

P(p) : « f (2p)(x) = (−1)p [(2p) sin(x) + x cos(x)] et f (2p+1)(x) = (−1)p [(2p + 1) cos(x) − x sin(x)]. »

Procédons par récurrence.
Initialisation. Si p = 0, alors pour tout x ∈ R,

f (2p)(x) = f(x) = x cos(x) et (−1)p [(2p) sin(x) + x cos(x)] = (−1)0 [0 × sin(x) + x cos(x)] = x cos(x).

Donc f (2p)(x) = (−1)p [(2p) sin(x) + x cos(x)]. De même, par ce qui précède, pour tout x ∈ R,

f (2p+1)(x) = f ′(x) = cos(x) − x sin(x) et (−1)p [(2p + 1) cos(x) − x sin(x)] = cos(x) − x sin(x).

Donc f (2p+1)(x) = (−1)p [(2p + 1) cos(x) − x sin(x)] et P(0) est vraie.
Hérédité. Soit p ∈ N. Montrons que P(p) ⇒ P(p + 1). Supposons P(p) :

∀x ∈ R,

®
f (2p)(x) = (−1)p [(2p) sin(x) + x cos(x)]
f (2p+1)(x) = (−1)p [(2p + 1) cos(x) − x sin(x)] .

Alors, en dérivant, on obtient pour tout x ∈ R,

f (2p+2)(x) =
Ä
f (2p+1)

ä′
(x) = (−1)p [(2p + 1) cos(x) − x sin(x)]′

= (−1)p [− (2p + 1) sin(x) − sin(x) − x cos(x)]
= (−1)p [− (2p + 2) sin(x) − x cos(x)]
= (−1)p+1 [(2p + 2) sin(x) + x cos(x)] .

En dérivant une seconde fois,

f (2p+3)(x) =
Ä
f (2p+2)

ä′
(x) = (−1)p+1 [(2p + 2) cos(x) + cos(x) − x sin(x)]

= (−1)p+1 [(2p + 3) cos(x) − x sin(x)] .

Ce qui achève de démontrer P(p + 1).
Conclusion, pour tout p ∈ N, P(p) est vraie. Donc pour tout n ∈ N, f est n fois dérivable sur R et si n

est pair, n = 2p, p ∈ N,

∀x ∈ R, f (2p)(x) = (−1)p [(2p) sin(x) + x cos(x)] .

Si n est impair, n = 2p + 1, p ∈ N,

∀x ∈ R, f (2p+1)(x) = (−1)p [(2p + 1) cos(x) − x sin(x)] .
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