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Correction de l’interrogation 13
d’entrainement
Matrices

\. J

1. Restituer le cours.

1.1 Soient (n,r,p) € (N*)*, A € My, (K), B € M,, (K). Alors (AB)" = BT AT,

1.2 Soient n € N* et M € 4, (K).
o La matrice M est symétrique M € .7, (K) si et seulement si MT = M.
o La matrice M est antisymétrique M € o7, (K) si et seulement si M7 = —M.

1.3 Soit n € N*. Pour tout (i,) € [1;n]?, i # j, les trois opérations élémentaires pour les lignes sont
o La permutation de deux lignes : L; <+ L;.
o La dilatation d’une ligne : pour tout A € K*, non nul, L; < A L;.
e La transvection : pour tout A € K, L; <~ L; + A L;.

1.4 Soient n € N* et A € A, (K). On a

A € GL, (K) & A~1T, & A

1.5 Soient a € R, I un voisinage de a, f et g € .# (I,K). Alors

f@) ~ glx) < [

Tr—a T—ra

1.6 Soient a € R, I un voisinage de a, f et g € % (I,K).
i. Si f(z) ~ g(x) alors f et g ont le méme comportement en a : si f converge, g aussi et si f diverge,
r—a
g aussi. De plus dans tous les cas f et g ont le méme signe au voisinage de a.

ii. Soit £ € R*. On a
lim f(x) =4 & flx) ~ ¢

r—a Tr—a
1.7 Sur les équivalents, il est possible de
o multiplier,
o d’élever a la puissance (éventuellement négative et donc de passer a l'inverse),
e de passer a la valeur absolue,
e de faire un changement de variable.
Il est cependant interdit
e de sommer des équivalents,
e de composer des équivalents par une fonction,
e d’écrire équivalent a 0.
2. Savoir utiliser la formule du produit matriciel.
2.1 On a pour tout (4,j) € [1; n],

n

3 , ~ nn+1)©2n+1)
Cij = ;ai,kbk,j = szQ = z;kQ =i G )

k=1

Conclusion,

VY (i,7) € [1; n]?, cij = Z.n(n+ 1)6(2n+ 1)'
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2.2 On a pour tout (4,7) € [1; n],

n

cij = aipbig =Y (3i+2k) (ke?)
k=1

k=1
=3iel (Zk) +2¢ Y K
k=1 k=1
:3iejn(n+1) jn(n—|—1)(2n+1).

2
+2Ze 5

Conclusion,

V(/L7])e[[17n]]27 cij:

n(n+1)(4n+2+ 9i)e

6
2.3 On a pour tout (4,7) € [1; n],
Cij = Zai,kbk,j = Z (i +k)(k+7)
k=1 k=1
=> (K + (i +4)k+1j)

k=1

1) (2 1 1

_nn+ )6( n + )+(i+j)n(n2—|- )

Conclusion,

v(l7])€[[17n]]21 Cij:

n[(n+1)2n+1)+3(+7) (n+ 1)+ 6ij]

6

2.4 Notons AB = (u;;) . Alors pour tout (i, ) € [1; n]?,

n
Uiy = g @ik b
k=1

1<i,j<n

Par suite, pour tout (i, ) € [1; n]?,

n n n
dij = E ULy = E airbr | ¢ = E airbricy;.
=1 =1

=1 1<k,I<n

Conclusion

V(i,5) € [1;n]?, diy = Z aikbricry.

1<k, I1<n

2.5 On a pour tout (7,7) € [1; n],
- b - gi-+kgh—j 2 ¢ 6k
Cij—;ai,k k,j—; —37’; .
On reconnait une somme géométrique de raison 6 # 1. Donc

21' 6" —1 _ 2i+1 (6” _ 1)

%7361 5x3-15
Conclusion,
2t (6" — 1)
- . . 2 _
V(i,j) €[1;n]°, ciy= w3l

3. Savoir calculer les puissances d’une matrice.

2/
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3.1 Soit # € R. Calculons :

2 (cos(f) sin(h) cos (0)  sin(6)
A0)" = <sin (0) —cos (0)) x (sin (0) —cos (9))
_ < cos? (#) + sin? () cos (0) sin (0) — sin (0) cos (0))
cos () sin (A) — sin () cos (9) sin? (0) + cos? ()
= Is.

Alors pour tout p € N. Si p est pair, il existe k € N tel que p = 2k. Dans ce cas,

A7 =A@ = (40))" = I} = L.

Si p est impair, il existe k € N tel que p = 2k + 1 donc
A =A0) A(0) =1L,AWB)=A(0).

Conclusion,

I sipest pair

A sip est impair.

3.2 Calculons :

Puis,
0 0 = 0 —2 0 1 0
AB=1i 0 0flx|l0 0 —-1|=(01
0 -1 0 — 0 0 0 0
Notamment A est inversible et A~1 = A?. Alors, pour tout k € N,
A% = (A = 1F = I,

Puis,
A3k+1 _ ASkA —A et A3k:+2 _ ASkAQ _ A2.

Conclusion,

I; sip=0 [3
VpeN, AP=<A sip=1 [3]
A2 sip=2 [3].

O R SRR

Alors A3 = —Ih, x A= —Aet A*=A3A=-AA = —A%? = —(—1;) = I,. Ainsi, pour tout k € N,

3.3 Calculons :

A% = (A =1y
A4k+1 _ A4k:A — A
A4k+2 _ A4kA2 _ AZ =—1I
A4k+3 _ A4kA3 _ AB — _A.

Conclusion,

Vpe N AP (=1)2I,  si p est pair
p ) = p=1
(=1) = A sip est impair.

3/
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3.4 On pose pour tout k € N*,
P(k): « B¥ =B ».
Effectuons une récurrence.
Initialisation. Si k = 1, alors B! = B et donc £(1) est vraie.

Hérédité. Soit k € N*. Montrons que & (k) = £ (k+ 1). Supposons Z(k) vraie. Montrons que Z(k+1)
l'est également. On a B**' = BB* = BB par hypothése de récurrence. Donc B**! = B? = B par
hypotheése sur B. Donc & (k + 1) est vraie.

Conclusion, pour tout k € N*, B¥ = B.
De plus B commute avec I,,. Donc par la formule du binéme de Newton, on a pour tout p € N*,

AP = (21, — B)’ = f: (Z) (-B)* (21,,)" "

k=0
=~ (p
Z(k>( ) B¥ (21,)
k=0
z p
=2, + Z (k) (—l)k 2rkp par ce qui précede
k=1
~(p
— 9P p—k P
n+<§:@>(1)2 2)3
k=0
= 2T, +((2— 1)’ —27)B
=27, +(1-2")B

On note que cette formule reste vraie si p = 0. Conclusion,

\vpeN, AP=2P1n+(1—2P)B.\

3.5 Calculons,

1 0 1 1 0 1 2 0 2
A2=(0 1 0)x[0 1 0])]=([0 10
1 0 1 1 0 1 2 2
Puis,
2 0 2 1 0 1 4 0 4
A*=A*A=[0 1 0|x[0 1 0)=(0 10
2 0 2 1 0 1 4 0 4
On pose alors pour tout p € N*,
or—t o 2r7t
Pp) :« AP = 0 1 0 |.»
or—t o 27!
Procédons par récurrence.
2r=1 o 2r-t 1 01
Initialisation. Si p = 1, alors 0 1 0 =[0 1 0] =Aetdonc £(1) est vraie.
or—1 o 2r-! 1 0 1

Hérédité. Soit p € N*. Montrons que & (p) = £ (p+ 1). Supposons & (p) vraie. Montrons que Z(p+ 1)
lest également. On a

-1

1 0 1
AP —Aa4P =0 1 0 par hypothese de récurrence.
1 0 1

2p O 2p
oD 0 2p
Donc & (p + 1) est vraie.
Conclusion,

—1 0 2p1

Vp € N*| et A% = I3

1 0 2p1

4/
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4. Calculer l’inverse d’une matrice.

4.1 En appliquant l'algorithme de Gauss-Jordan, on a les calculs suivants :

1 1 -1 1 0 0
P=(2 0 1 I3=({0 1 0
2 1 -1 0 0 1
1 1 -1 Ly < Ly— 2L, 1 0 0
~[0 -2 3 I Ia—9] ~1 -2 1 0
“\o0 -1 1 38 ! “\-2 0 1
1 1 -1 1 0 0
~[0 -1 1 Lo <> L ~1 -2 0 1
“\o0 -2 3 “\-2 1 0
1 1 -1 1 0 O
~10 -1 1 L3+ L3 —2Ly ~1 -2 0 1
“\0 0 1 “\2 1 -2
Ainsi,
1 1 0 Ly Ly + Ls 3 1 -2
P~|0 -1 0 Lo ILo—1 Iz~ -4 -1 3
Z\o0 0 1 2 2 3 Zz\ 9 1 _9
1 0 -1 0 1
~ 0 -1 0 L1 — L1 + LQ ~ —4 -1 3
“\o 0 1 “\2 1 -2
1 0 0 -1 0 1
~ 0 1 0 Lo+ —1s ~ 4 1 -3
“\o 0 1 “\2 1 -2
Puisque P > I3, on en déduit que | P est inversible | De plus,
-1 0 1
Pl=|4 1 -3
2 1 =2
On vérifie toujours son résultat en calculant PP~ ou P™1P :
1 1 -1 -1 0 1
PPt=1[12 0 1 4 1 =3|=1I OK!
2 1 -1 2 1 -2
4.2 En appliquant 'algorithme de Gauss-Jordan, on a les calculs suivants :
0 1 1 -1 -1 0
P=|-1 0 1]~|-1 0 1 Ly < L
-1 -1 0/%\0 1 1
-1 -1 0
~ 0 1 1 Lo+ Lo— 1L
“\o0 1 1
af; 8 é L3y L3 — Lo

La derniére matrice est échelonnée avec deux pivots seulement. Donc | P n’est pas inversible |
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4.3 En appliquant 'algorithme de Gauss-Jordan, on a les calculs suivants :

P=

A\

A\

A\

A\

K2

<z

P =

2

&2

2

~
<z

1
1

(
(
(
(
(
(

SO OO OO0OHFHEH OO+, OO, OOK

2

OO OO OO NNHFH HIN

-2

O, O ONO ONO ONO ONN NOND

W~

O, O OF N OFN kTt N ot

2 1 1 00
2 -1 I3=(0 1 0
-2 1 0 01
_12 L2 — LQ — L1 _11 (1) 8
1 L3 — L3 + 2L1 £ 9 0 1
1 1 00
9 “\-11 0
0 -1 0 -1
1 Li+ Ly — Lo ~ 2 0 1
—2 “\-1 1
0 -1 0 -1
1 Ly —1Ls ~[ 2 0 1
£ 1 1
0 -1 0 -1
Ly« Ly— L N - |
(1) 2 < Lo 3 P % 21 0
2 T2
0 1 -4 0 -4
0 Ly« 3Ly ~=-1 3 1 2
1 Z4\ 2 2 0
Puisque P > I3, on en déduit que | P est inversible | De plus,
1 -4 0 -4
P = 03 12
2 -2 0
On vérifie toujours son résultat en calculant PP~ ou P71P :
1 2 1 -4 0 -4
pPt=(1 2 1)1 3 1 2 |=1I OK!
-2 -2 -1 2 -2 0
4.4 En appliquant 'algorithme de Gauss-Jordan, on a les calculs suivants :
1 1 00
1 I3=(0 1 0
1 0 0 1
1 0 0 1
1 L1+ Lg ~ 0 1 0
1 “\1 0 0
1 L2 < L2 — 2L1 00 1
-1 L3 + Ly —2L P2 B
~1 8 ! “\1 0 -2
0 Ly Ly + Ls 1 0 -1
0 I Io—L ~ -1 1 0
~1 22T “\1 0 -2
0 Ly« Ly — 2L, 3. -2 1
0 I I ~1 -1 1 0
1 2 3 “\-1 0 2

NN N N7 N

Puisque P > I3, on en déduit que | P est inversible | De plus,

3
-1
-1

—2
1
0

-1
0
2

Pt =

6/
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On vérifie toujours son résultat en calculant PP~ ou P7'P :
3 -2 -1

2 4 1
PPt=(2 5 1 -1 1 0 |=1I; OK!
1 21 -1 0 2

4.5 En appliquant l'algorithme de Gauss-Jordan, on a les calculs suivants :

1 0 —1 10 0
P=(-2 3 4 L=[0 10
0 1 1 00 1
10 -1 10 0
“\o 1 1 Z\0 0 1
10 -1 100
“\o 3 2 Z\2 1 0
10 -1 10 0
7011 Lg(—L3—3L2 ~10 0 1
“Z\o 0 -1 Z\2 1 -3
10 0 Ly L+ Le 1 -1 3
~[(0o 1 o0 CorT ~[2 1 -2
Z\0 0 -1 1 1~ 43 Z\2 1 -3
10 0 1 -1 3
~|10 10 Ly + —Ls ~ 2 1 -2
Z\0 0 1 Z\-2 -1 3

Puisque P > I3, on en déduit que | P est inversible | De plus,

-1 -1 3
Pl=(2 1 =2
-2 -1 3

On vérifie toujours son résultat en calculant PP~ ou P71P :

1 0 -1 -1 -1 3
PP l=|-2 3 14 2 1 —-2|=1I;0K!
0 1 1 -2 -1 3

5. Calculer un équivalent. Notez bien les détails de la rédaction et les justifications données.

5.1 Pour tout n > 1, on a In (n? + 1) =In (n?) + In (1 + ;). Posons u = -z — 0. On sait que

n—-+4oo

In(l4+u) = u+o(u).

u—0

Donc

n—+oo

1 1
In(n®*+1) = 21n(n)+$+o<ﬁ>.

Oro() < & < 2In(n). Ainsi,

n——+oo n n——+oo

In (n2 + 1) ~ 2In(n).

n—-+4o0o

D’autre part, n+1 ~ n. Donc par quotient d’équivalents,
n—-+o0o

2In(n)
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5.2 Pour tout n € N*, on a

U = \/111(”:1) = \/1n(1+i>.

OrIn(1+wu) ~o U Donc en posant u = = — 0, on a
u

1 1
Inll+— ~ =,
n/ n—=+oco n

Donc par élévation a la puissance 1/2,

Uy ~ —=

1
n—-+oo \/ﬁ

5.3 Pour tout n € N*, on a

Up, e
Or 5 6
lm —+4+—=0
n—+o00 \/ﬁ n?
Donc
. £ 4.6 0
lim eve ™2 =¢’=1+#0
n—-+o0o
Ainsi
L_i_i
e vn n?2 ~ 1
n—-+4oo
Donc par produit,
U ~ en2+3n
n—-4oo
5.4 Pour tout n € N*, on a
" en ln(1+%)
n

Or

Donc enposantuz%—)O, on a
1 1 1
In{1+— = —+4ol|l—].
n/ n—+oo n n

U = enlmte(R)) = eltod)  _ glge(l)
n—-+oo n——+oo n——+oo

Ainsi,

Or, on sait que eV ~ 1. Donc en posant v = 0(1) — 0, on a e~ 1. Conclusion,
v—0 n—-+o0o

~ e.
n—-+oo

5.5 Pour tout x € }—%; %[, on a

1 1 1 1 1 1 32\ /2 32\ /2
= = v NN :ﬁ(<1+2> ‘(1‘7) )

Or on sait que (1 + u)” =, 1+ au+ o(u). Donc en prenant o = —1/2 et u =22 — 0, on a
u—

32\ /2 ( 1) 3z <3x> 3z
(+5) s (5) T +e(F) - T,

_ 3z

5, on a également

32\ /2 3z
(1+%) " s+ o,

8/

De méme en prenant u =
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@) 50 75 (1-F+o@-1-F +ow) zio—%“(@ mio—gﬁ%“(@

Autrement dit,




