
Mathématiques PTSI, IntEnt13 Cor 2025-2026

Correction de l’interrogation 13
d’entrainement

Matrices

1. Restituer le cours.
1.1 Soient (n, r, p) ∈ (N∗)3, A ∈Mn,r (K), B ∈Mr,p (K). Alors (AB)T = BT AT .
1.2 Soient n ∈ N∗ et M ∈Mn (K).

• La matrice M est symétrique M ∈ Sn (K) si et seulement si MT = M .
• La matrice M est antisymétrique M ∈ An (K) si et seulement si MT = −M .

1.3 Soit n ∈ N∗. Pour tout (i, j) ∈ J1; nK2, i ̸= j, les trois opérations élémentaires pour les lignes sont
• La permutation de deux lignes : Li ↔ Lj .
• La dilatation d’une ligne : pour tout λ ∈ K∗, non nul, Li ← λ Li.
• La transvection : pour tout λ ∈ K, Li ← Li + λ Lj .

1.4 Soient n ∈ N∗ et A ∈Mn (K). On a

A ∈ GLn (K) ⇔ A ∼
L

In ⇔ A ∼
C

In.

1.5 Soient a ∈ R, I un voisinage de a, f et g ∈ F (I,K). Alors

f(x) ∼
x→a

g(x) ⇔ f(x) =
x→a

g(x) + o (g(x)) .

1.6 Soient a ∈ R, I un voisinage de a, f et g ∈ F (I,K).
i. Si f(x) ∼

x→a
g(x) alors f et g ont le même comportement en a : si f converge, g aussi et si f diverge,

g aussi. De plus dans tous les cas f et g ont le même signe au voisinage de a.
ii. Soit ℓ ∈ R∗. On a

lim
x→a

f(x) = ℓ ⇔ f(x) ∼
x→a

ℓ.

1.7 Sur les équivalents, il est possible de
• multiplier,
• d’élever à la puissance (éventuellement négative et donc de passer à l’inverse),
• de passer à la valeur absolue,
• de faire un changement de variable.

Il est cependant interdit
• de sommer des équivalents,
• de composer des équivalents par une fonction,
• d’écrire équivalent à 0.

2. Savoir utiliser la formule du produit matriciel.
2.1 On a pour tout (i, j) ∈ J1 ; nK,

cij =
n∑

k=1
ai,kbk,j =

n∑
k=1

ik2 = i

n∑
k=1

k2 = i
n (n + 1) (2n + 1)

6 .

Conclusion,

∀ (i, j) ∈ J1 ; nK2, cij = i
n (n + 1) (2n + 1)

6 .
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2.2 On a pour tout (i, j) ∈ J1 ; nK,

cij =
n∑

k=1
ai,kbk,j =

n∑
k=1

(3i + 2k)
(
k ej

)
= 3i ej

(
n∑

k=1
k

)
+ 2 ej

n∑
k=1

k2

= 3i ej n (n + 1)
2 + 2 ej n (n + 1) (2n + 1)

6 .

Conclusion,

∀ (i, j) ∈ J1 ; nK2, cij = n (n + 1) (4n + 2 + 9i) ej

6 .

2.3 On a pour tout (i, j) ∈ J1 ; nK,

cij =
n∑

k=1
ai,kbk,j =

n∑
k=1

(i + k) (k + j)

=
n∑

k=1

(
k2 + (i + j) k + ij

)
= n (n + 1) (2n + 1)

6 + (i + j) n (n + 1)
2 + nij.

Conclusion,

∀ (i, j) ∈ J1 ; nK2, cij = n [(n + 1) (2n + 1) + 3 (i + j) (n + 1) + 6ij]
6 .

2.4 Notons AB = (uij)1⩽i,j⩽n. Alors pour tout (i, j) ∈ J1 ; nK2,

uij =
n∑

k=1
aikbkj .

Par suite, pour tout (i, j) ∈ J1 ; nK2,

dij =
n∑

l=1
uilclj =

n∑
l=1

(
n∑

k=1
aikbkl

)
clj =

∑
1⩽k,l⩽n

aikbklclj .

Conclusion
∀ (i, j) ∈ J1 ; nK2, dij =

∑
1⩽k,l⩽n

aikbklclj .

2.5 On a pour tout (i, j) ∈ J1 ; nK,

cij =
n∑

k=1
ai,kbk,j =

n∑
k=1

2i+k3k−j = 2i

3j

n∑
k=1

6k.

On reconnait une somme géométrique de raison 6 ̸= 1. Donc

cij = 2i

3j
66n − 1

6− 1 = 2i+1 (6n − 1)
5× 3j−15 .

Conclusion,

∀ (i, j) ∈ J1 ; nK2, cij = 2i+1 (6n − 1)
5× 3j−1 .

3. Savoir calculer les puissances d’une matrice.

2/9



Mathématiques PTSI, IntEnt13 Cor 2025-2026

3.1 Soit θ ∈ R. Calculons :

A (θ)2 =
Å

cos (θ) sin (θ)
sin (θ) − cos (θ)

ã
×
Å

cos (θ) sin (θ)
sin (θ) − cos (θ)

ã
=
Å

cos2 (θ) + sin2 (θ) cos (θ) sin (θ)− sin (θ) cos (θ)
cos (θ) sin (θ)− sin (θ) cos (θ) sin2 (θ) + cos2 (θ)

ã
= I2.

Alors pour tout p ∈ N. Si p est pair, il existe k ∈ N tel que p = 2k. Dans ce cas,

A (θ)p = A (θ)2k =
Ä
A (θ)2äk

= Ik
2 = I2.

Si p est impair, il existe k ∈ N tel que p = 2k + 1 donc

A (θ)p = A (θ)2k
A (θ) = I2A (θ) = A (θ) .

Conclusion,

∀p ∈ N, A (θ)p =
®

I2 si p est pair
A si p est impair.

3.2 Calculons :

A2 =

Ñ
0 0 i
i 0 0
0 −1 0

é
×

Ñ
0 0 i
i 0 0
0 −1 0

é
=

Ñ
0 −i 0
0 0 −1
−i 0 0

é
.

Puis,

A3 =

Ñ
0 0 i
i 0 0
0 −1 0

é
×

Ñ
0 −i 0
0 0 −1
−i 0 0

é
=

Ñ
1 0 0
0 1 0
0 0 1

é
= I3.

Notamment A est inversible et A−1 = A2. Alors, pour tout k ∈ N,

A3k =
(
A3)k = Ik

3 = I3.

Puis,
A3k+1 = A3kA = A et A3k+2 = A3kA2 = A2.

Conclusion,

∀p ∈ N, Ap =


I3 si p ≡ 0 [3]
A si p ≡ 1 [3]
A2 si p ≡ 2 [3] .

3.3 Calculons :
A2 =

Å
0 −1
1 0

ã
×
Å

0 −1
1 0

ã
=
Å
−1 0
0 −1

ã
= −I2.

Alors A3 = −I2 ×A = −A et A4 = A3A = −AA = −A2 = −(−I2) = I2. Ainsi, pour tout k ∈ N,

A4k =
(
A4)k = I2

A4k+1 = A4kA = A

A4k+2 = A4kA2 = A2 = −I2

A4k+3 = A4kA3 = A3 = −A.

Conclusion,

∀p ∈ N, Ap =
{

(−1)p/2
I2 si p est pair

(−1)
p−1

2 A si p est impair.
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3.4 On pose pour tout k ∈ N∗,
P(k) : « Bk = B ».

Effectuons une récurrence.
Initialisation. Si k = 1, alors B1 = B et donc P(1) est vraie.
Hérédité. Soit k ∈ N∗. Montrons que P (k) ⇒ P (k + 1). Supposons P(k) vraie. Montrons que P(k + 1)
l’est également. On a Bk+1 = BBk = BB par hypothèse de récurrence. Donc Bk+1 = B2 = B par
hypothèse sur B. Donc P (k + 1) est vraie.
Conclusion, pour tout k ∈ N∗, Bk = B.
De plus B commute avec In. Donc par la formule du binôme de Newton, on a pour tout p ∈ N∗,

Ap = (2In −B)p =
p∑

k=0

Ç
p

k

å
(−B)k (2In)p−k

=
p∑

k=0

Ç
p

k

å
(−1)k

Bk (2In)p−k

= 2pIn +
p∑

k=1

Ç
p

k

å
(−1)k 2p−kB par ce qui précède

= 2pIn +
(

p∑
k=0

Ç
p

k

å
(−1)k 2p−k − 2p

)
B

= 2pIn + ((2− 1)p − 2p) B

= 2pIn + (1− 2p) B.

On note que cette formule reste vraie si p = 0. Conclusion,

∀p ∈ N, Ap = 2pIn + (1− 2p) B.

3.5 Calculons,

A2 =

Ñ
1 0 1
0 1 0
1 0 1

é
×

Ñ
1 0 1
0 1 0
1 0 1

é
=

Ñ
2 0 2
0 1 0
2 0 2

é
.

Puis,

A3 = A2A =

Ñ
2 0 2
0 1 0
2 0 2

é
×

Ñ
1 0 1
0 1 0
1 0 1

é
=

Ñ
4 0 4
0 1 0
4 0 4

é
.

On pose alors pour tout p ∈ N∗,

P(p) : « Ap =

Ñ
2p−1 0 2p−1

0 1 0
2p−1 0 2p−1

é
. »

Procédons par récurrence.

Initialisation. Si p = 1, alors

Ñ
2p−1 0 2p−1

0 1 0
2p−1 0 2p−1

é
=

Ñ
1 0 1
0 1 0
1 0 1

é
= A et donc P(1) est vraie.

Hérédité. Soit p ∈ N∗. Montrons que P (p) ⇒ P (p + 1). Supposons P(p) vraie. Montrons que P(p + 1)
l’est également. On a

Ap+1 = AAp =

Ñ
1 0 1
0 1 0
1 0 1

éÑ
2p−1 0 2p−1

0 1 0
2p−1 0 2p−1

é
par hypothèse de récurrence.

=

Ñ
2p 0 2p

0 1 0
2p 0 2p

é
Donc P (p + 1) est vraie.
Conclusion,

∀p ∈ N∗, Ap =

Ñ
2p−1 0 2p−1

0 1 0
2p−1 0 2p−1

é
et A0 = I3.
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4. Calculer l’inverse d’une matrice.
4.1 En appliquant l’algorithme de Gauss-Jordan, on a les calculs suivants :

P =

Ñ
1 1 −1
2 0 1
2 1 −1

é
I3 =

Ñ
1 0 0
0 1 0
0 0 1

é
∼
L

Ñ
1 1 −1
0 −2 3
0 −1 1

é
L2 ← L2 − 2L1
L3 ← L3 − 2L1

∼
L

Ñ
1 0 0
−2 1 0
−2 0 1

é
∼
L

Ñ
1 1 −1
0 −1 1
0 −2 3

é
L2 ↔ L3 ∼

L

Ñ
1 0 0
−2 0 1
−2 1 0

é
∼
L

Ñ
1 1 −1
0 −1 1
0 0 1

é
L3 ← L3 − 2L2 ∼

L

Ñ
1 0 0
−2 0 1
2 1 −2

é
Ainsi,

P ∼
L

Ñ
1 1 0
0 −1 0
0 0 1

é
L1 ← L1 + L3
L2 ← L2 − L3

I3 ∼
L

Ñ
3 1 −2
−4 −1 3
2 1 −2

é
∼
L

Ñ
1 0 0
0 −1 0
0 0 1

é
L1 ← L1 + L2 ∼

L

Ñ
−1 0 1
−4 −1 3
2 1 −2

é
∼
L

Ñ
1 0 0
0 1 0
0 0 1

é
L2 ← −L2 ∼

L

Ñ
−1 0 1
4 1 −3
2 1 −2

é
.

Puisque P ∼
L

I3, on en déduit que P est inversible . De plus,

P −1 =

Ñ
−1 0 1
4 1 −3
2 1 −2

é
.

On vérifie toujours son résultat en calculant PP −1 ou P −1P :

PP −1 =

Ñ
1 1 −1
2 0 1
2 1 −1

éÑ
−1 0 1
4 1 −3
2 1 −2

é
= I3 OK !

4.2 En appliquant l’algorithme de Gauss-Jordan, on a les calculs suivants :

P =

Ñ
0 1 1
−1 0 1
−1 −1 0

é
∼
L

Ñ
−1 −1 0
−1 0 1
0 1 1

é
L1 ↔ L3

∼
L

Ñ
−1 −1 0
0 1 1
0 1 1

é
L2 ← L2 − L1

∼
L

Ñ
−1 −1 0
0 1 1
0 0 0

é
L3 ← L3 − L2

La dernière matrice est échelonnée avec deux pivots seulement. Donc P n’est pas inversible .
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4.3 En appliquant l’algorithme de Gauss-Jordan, on a les calculs suivants :

P =

Ñ
1 2 1
1 2 −1
−2 −2 −1

é
I3 =

Ñ
1 0 0
0 1 0
0 0 1

é
∼
L

Ñ
1 2 1
0 0 −2
0 2 1

é
L2 ← L2 − L1
L3 ← L3 + 2L1

∼
L

Ñ
1 0 0
−1 1 0
2 0 1

é
∼
L

Ñ
1 2 1
0 2 1
0 0 −2

é
L2 ↔ L3 ∼

L

Ñ
1 0 0
2 0 1
−1 1 0

é
∼
L

Ñ
1 0 0
0 2 1
0 0 −2

é
L1 ← L1 − L2 ∼

L

Ñ
−1 0 −1
2 0 1
−1 1 0

é
∼
L

Ñ
1 0 0
0 2 1
0 0 1

é
L3 ← − 1

2 L3 ∼
L

Ñ
−1 0 −1
2 0 1
1
2 − 1

2 0

é
∼
L

Ñ
1 0 0
0 2 0
0 0 1

é
L2 ← L2 − L3 ∼

L

Ñ
−1 0 −1

3
2

1
2 1

1
2 − 1

2 0

é
∼
L

Ñ
1 0 0
0 1 0
0 0 1

é
L2 ← 1

2 L2 ∼
L

1
4

Ñ
−4 0 −4
3 1 2
2 −2 0

é
.

Puisque P ∼
L

I3, on en déduit que P est inversible . De plus,

P −1 = 1
4

Ñ
−4 0 −4
3 1 2
2 −2 0

é
.

On vérifie toujours son résultat en calculant PP −1 ou P −1P :

PP −1 =

Ñ
1 2 1
1 2 −1
−2 −2 −1

é
1
4

Ñ
−4 0 −4
3 1 2
2 −2 0

é
= I3 OK !

4.4 En appliquant l’algorithme de Gauss-Jordan, on a les calculs suivants :

P =

Ñ
2 4 1
2 5 1
1 2 1

é
I3 =

Ñ
1 0 0
0 1 0
0 0 1

é
∼
L

Ñ
1 2 1
2 5 1
2 4 1

é
L1 ↔ L3 ∼

L

Ñ
0 0 1
0 1 0
1 0 0

é
∼
L

Ñ
1 2 1
0 1 −1
0 0 −1

é
L2 ← L2 − 2L1
L3 ← L3 − 2L1

∼
L

Ñ
0 0 1
0 1 −2
1 0 −2

é
∼
L

Ñ
1 2 0
0 1 0
0 0 −1

é
L1 ← L1 + L3
L2 ← L2 − L3

∼
L

Ñ
1 0 −1
−1 1 0
1 0 −2

é
∼
L

Ñ
1 0 0
0 1 0
0 0 1

é
L1 ← L1 − 2L2
L2 ← −L3

∼
L

Ñ
3 −2 −1
−1 1 0
−1 0 2

é
Puisque P ∼

L
I3, on en déduit que P est inversible . De plus,

P −1 =

Ñ
3 −2 −1
−1 1 0
−1 0 2

é
.
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On vérifie toujours son résultat en calculant PP −1 ou P −1P :

PP −1 =

Ñ
2 4 1
2 5 1
1 2 1

éÑ
3 −2 −1
−1 1 0
−1 0 2

é
= I3 OK !

4.5 En appliquant l’algorithme de Gauss-Jordan, on a les calculs suivants :

P =

Ñ
1 0 −1
−2 3 4
0 1 1

é
I3 =

Ñ
1 0 0
0 1 0
0 0 1

é
∼
L

Ñ
1 0 −1
0 3 2
0 1 1

é
L2 ← L2 + 2L1 ∼

L

Ñ
1 0 0
2 1 0
0 0 1

é
∼
L

Ñ
1 0 −1
0 1 1
0 3 2

é
L2 ↔ L3 ∼

L

Ñ
1 0 0
0 0 1
2 1 0

é
∼
L

Ñ
1 0 −1
0 1 1
0 0 −1

é
L3 ← L3 − 3L2 ∼

L

Ñ
1 0 0
0 0 1
2 1 −3

é
∼
L

Ñ
1 0 0
0 1 0
0 0 −1

é
L2 ← L2 + L3
L1 ← L1 − L3

∼
L

Ñ
−1 −1 3
2 1 −2
2 1 −3

é
∼
L

Ñ
1 0 0
0 1 0
0 0 1

é
L3 ← −L3 ∼

L

Ñ
−1 −1 3
2 1 −2
−2 −1 3

é
Puisque P ∼

L
I3, on en déduit que P est inversible . De plus,

P −1 =

Ñ
−1 −1 3
2 1 −2
−2 −1 3

é
.

On vérifie toujours son résultat en calculant PP −1 ou P −1P :

PP −1 =

Ñ
1 0 −1
−2 3 4
0 1 1

éÑ
−1 −1 3
2 1 −2
−2 −1 3

é
= I3 OK !

5. Calculer un équivalent. Notez bien les détails de la rédaction et les justifications données.
5.1 Pour tout n ⩾ 1, on a ln

(
n2 + 1

)
= ln

(
n2)+ ln

(
1 + 1

n2

)
. Posons u = 1

n2 −→
n→+∞

0. On sait que

ln (1 + u) =
u→0

u + o (u) .

Donc
ln
(
n2 + 1

)
=

n→+∞
2 ln (n) + 1

n2 + o

Å 1
n2

ã
.

Or o
( 1

n2

)
≪

n→+∞
1

n2 ≪
n→+∞

2 ln (n). Ainsi,

ln
(
n2 + 1

)
∼

n→+∞
2 ln (n) .

D’autre part, n + 1 ∼
n→+∞

n. Donc par quotient d’équivalents,

un ∼
n→+∞

2 ln (n)
n

.
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5.2 Pour tout n ∈ N∗, on a

un =
 

ln
Å

n + 1
n

ã
=
 

ln
Å

1 + 1
n

ã
.

Or ln (1 + u) ∼
u→0

u. Donc en posant u = 1
n → 0, on a

ln
Å

1 + 1
n

ã
∼

n→+∞

1
n

.

Donc par élévation à la puissance 1/2,

un ∼
n→+∞

1√
n

.

5.3 Pour tout n ∈ N∗, on a
un = en2+3n+ 5√

n
+ 6

n
2

= en2+3n e
5√
n

+ 6
n2 .

Or
lim

n→+∞

5√
n

+ 6
n2 = 0.

Donc
lim

n→+∞
e

5√
n

+ 6
n2 = e0 = 1 ̸= 0.

Ainsi
e

5√
n

+ 6
n2 ∼

n→+∞
1.

Donc par produit,
un ∼

n→+∞
en2+3n .

5.4 Pour tout n ∈ N∗, on a
un = en ln(1+ 1

n )

Or
ln (1 + u) =

u→0
u + o (u) .

Donc en posant u = 1
n → 0, on a

ln
Å

1 + 1
n

ã
=

n→+∞

1
n

+ o

Å 1
n

ã
.

Ainsi,
un =

n→+∞
en( 1

n +o( 1
n )) =

n→+∞
e1+o(1) =

n→+∞
e1 eo(1) .

Or, on sait que ev ∼
v→0

1. Donc en posant v = o (1)→ 0, on a eo(1) ∼
n→+∞

1. Conclusion,

un ∼
n→+∞

e .

5.5 Pour tout x ∈
]
− 2

3 ; 2
3
[
, on a

f(x) = 1√
2 + 3x

− 1√
2− 3x

= 1√
2

Ñ
1»

1 + 3x
2

− 1»
1− 3x

2

é
= 1√

2

ÇÅ
1 + 3x

2

ã−1/2
−
Å

1− 3x

2

ã−1/2å
.

Or on sait que (1 + u)α =
u→0

1 + αu + o (u). Donc en prenant α = −1/2 et u = 3x
2 → 0, on aÅ

1 + 3x

2

ã−1/2
=

x→0
1 +
Å
−1

2

ã 3x

2 + o

Å3x

2

ã
=

x→0
1− 3x

4 + o (x) .

De même en prenant u = − 3x
2 , on a égalementÅ

1 + 3x

2

ã−1/2
=

x→0
1 + 3x

4 + o (x) .
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Par conséquent,

f(x) =
x→0

1√
2

Å
1− 3x

4 + o (x)− 1− 3x

4 + o (x)
ã

=
x→0
− 3x

2
√

2
+ o (x) =

x→0
−3
√

2x

4 + o (x)

Autrement dit,

f(x) ∼
x→0
−3
√

2x

4 .
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