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Correction de l’interrogation 13.5
d’entrainement

Systèmes linéaires
Négligeabilité - Equivalents

1. Savoir appliquer l’algorithme de Gauss-Jordan sur un système.
1.1 Soit (x, y, z) ∈ R3. On a les équivalences suivantes :

(S)


2x −y +3z = 1
−4x +2y +z = 3
−2x +y +4z = 4
10x −5y −6z = −10

⇔


2x −y +3z = 1

7z = 5 L2 ← L2 + 2L1
7z = 5 L3 ← L3 + L1
−21z = −15 L4 ← L4 − 5L1

⇔

{
x = 1+y−3z

2 = 1−3 5
7

2 + y
2 = − 8

14 + y
2 = − 4

7 + y
2

z = 5
7 ,

Conclusion l’ensemble des solutions de (S) est :

S =
ßÅ
−4

7 + y

2 , y,
5
7

ã
∈ R3

∣∣∣∣ y ∈ R
™

=
Å
−4

7 , 0,
5
7

ã
+ VectR

ÅÅ1
2 , 1, 0

ãã
.

1.2 Soit (x, y, z) ∈ R3. On a les équivalences suivantes :

(S)

 2x +y −4z = 8
3x +3y −5z = 14
4x +5y −2z = 16

⇔

 2x +y −4z = 8
3y +2z = 4 L2 ← 2L2 − 3L1
3y +6z = 0 L3 ← L3 − 2L1

⇔

 2x +y −4z = 8
3y +2z = 4

4z = −4 L3 ← L3 − L2

⇔


x = 4− y

2 + 2z = 4− 1− 2 = 1
y = 4−2z

3 = 4+2
3 = 2

z = −1.

Conclusion l’ensemble des solutions de (S) est :

S = {(1, 2, −1)} .

1.3 Soit (x, y, z) ∈ R3. On a les équivalences suivantes :

(S)

 x +2y +3z = 1
2x +3y −z = 0
3x +y +2z = 0

⇔

 x +2y +3z = 1
−y −7z = −2 L2 ← L2 − 2L1
−5y −7z = −3 L3 ← L3 − 3L1

⇔

 x +2y +3z = 1
−y −7z = −2

28z = 7 L3 ← L3 − 5L1

⇔


x = 1− 2y − 3z = 4−2−3

4 = − 1
4

y = 2− 7z = 8−7
4 = 1

4
z = 1

4 .

Conclusion l’ensemble des solutions de (S) est :

S =
ßÅ
−1

4 ,
1
4 ,

1
4

ã™
.
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1.4 Soit (x, y, z) ∈ R3. On a les équivalences suivantes :

(S)


2x +y +z = 3
3x −y −2z = 0
x +y −z = −2
x +2y +z = 1

⇔


x +y −z = −2
3x −y −2z = 0
2x +y +z = 3 L1 ↔ L3
x +2y +z = 1

⇔


x +y −z = −2
−4y +z = 6 L2 ← L2 − 3L1
−y +3z = 7 L3 ← L3 − 2L1
+y +2z = 3

⇔


x +y −z = −2

y +2z = 3 L2 ↔ L4
−y +3z = 7
−4y +z = 6

⇔


x +y −z = −2

y +2z = 3
+5z = 10 L3 ← L3 + L2
+9z = 18 L4 ← L4 + 4L2

⇔


x +y −z = −2

y +2z = 3 L2 ↔ L4
−y +3z = 7
−4y +z = 6

⇔


x +y −z = −2

y +2z = 3
+5z = 10 L3 ← L3 + L2
+9z = 18 L4 ← L4 + 4L2

⇔

 x +y −z = −2
y +2z = 3

5z = 10 car L3 = 9
5 L2

⇔


x = −2− y + z = −2 + 1 + 2 = 1
y = 3− 2z = 3− 4 = −1
z = 2.

Conclusion l’ensemble des solutions de (S) est :

S = {(1, −1, 2)} .

1.5 Héhéhé... Gloups ! Vous voulez vraiment une solution ? Allez, c’est parti ! Soient (x, y, z, t, u) ∈ R6. On a
les équivalences suivantes :

(S10)


3x +6y +5z +6t +4u = 14
5x +9y +7z +8t +6u = 18
6x +12y +13z +9t +7u = 32
4x +6y +6z +5t +4u = 16
2x +5y +4z +5t +3u = 11

⇔


x +y +z +t +u = 3 L1 ← L1 − L5
5x +9y +7z +8t +6u = 18
6x +12y +13z +9t +7u = 32
4x +6y +6z +5t +4u = 16
2x +5y +4z +5t +3u = 11
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(S10) ⇔


x +y +z +t +u = 3

+4y +2z +3t +u = 3 L2 ← L2 − 5L1
+6y +7z +3t +u = 14 L3 ← L3 − 6L1
+2y +2z +t = 4 L4 ← L1 − 4L1
+3y +2z +3t +u = 5 L5 ← L5 − 2L1

⇔


x +y +z +t +u = 3

y = −2 L2 ← L2 − L5
6y +7z +3t +u = 14
2y +2z +t = 4
3y +2z +3t +u = 5

⇔


x +z +t +u = 3− y = 3 + 2 = 5

y = −2
7z +3t +u = 14− 6y = 14 + 12 = 26
2z +t = 4− 2y = 4 + 4 = 8
2z +3t +u = 5− 3y = 5 + 6 = 11

⇔


x +z +t +u = 5

y = −2
z +u = 2 L3 ← L3 − 3L4
2z +t = 8
2z +3t +u = 11

⇔


x +z +t +u = 5

y = −2
z +u = 2

+t −2u = 4 L4 ← L4 − 2L3
+3t −u = 7 L5 ← L5 − 2L3

⇔


x +z +t +u = 5

y = −2
z +u = 2 L3 ← L3 − 3L4
2z +t = 8
2z +3t +u = 11

⇔


x +z +t +u = 5

y = −2
z +u = 2

t −2u = 4
5u = −5 L5 ← L5 − 3L4

⇔


x = 5− z − t− u = 5− 3− 2 + 1 = 1
y = −2
z = 2− u = 2 + 1 = 3
t = 4 + 2u = 4− 2 = 2
u = −1

Conclusion le système (S10) admet une unique solution. Son ensemble solution est un singleton :

S = {(1, −2, 3, 2, −1)} .

2. Savoir appliquer l’algorithme de Gauss-Jordan sur une matrice.
4.1 On a les calculs suivants :

A =

Ü
1 0 0 1
1 0 1 1
1 1 0 1
0 0 0 1

ê
∼
L

Ü
1 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1

ê
L2 ← L2 − L1
L3 ← L3 − L1

∼
L

á
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

ë
L2 ↔ L3
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Conclusion,

A ∼
L

Ü
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

ê
.

4.2 On a les calculs suivants :

A =

Ü
1 1 1 1
1 0 1 0
1 1 1 0
0 0 0 1

ê
∼
L

Ü
1 1 1 1
0 −1 0 −1
0 0 0 −1
0 0 0 1

ê
L2 ← L2 − L1
L3 ← L3 − L1

∼
L

á
1 1 1 1
0 −1 0 −1
0 0 0 −1
0 0 0 0

ë
L4 ← L4 + L3

Conclusion,

A ∼
L

Ü
1 1 1 1
0 −1 0 −1
0 0 0 −1
0 0 0 0

ê
.

4.3 On a les calculs suivants :

A =

Ü
1 7 2 5
−2 1 1 5
−1 2 1 4
1 4 1 2

ê
∼
L

Ü
1 7 2 5
0 15 5 15
0 9 3 9
0 −3 −1 −3

ê
L2 ← L2 + 2L1
L3 ← L3 + L1
L4 ← L4 − L1

∼
L

Ü
1 7 2 5
0 3 1 3
0 3 1 3
0 3 1 3

ê
L2 ← 1

5 L2

L3 ← 1
3 L3

L4 ← −L4

∼
L

Ü
1 7 2 5
0 3 1 3
0 0 0 0
0 0 0 0

ê
L3 ← L3 − L2
L4 ← L4 − L2

Conclusion,

A ∼
L

Ü
1 7 2 5
0 3 1 3
0 0 0 0
0 0 0 0

ê
.

4.4 On a les calculs suivants :

A =

Ñ
1 4 −1
2 0 −3
−2 3 2

é
∼
L

Ñ
1 4 −1
0 −8 −1
0 11 0

é
L2 ← L2 − 2L1
L3 ← L3 + 2L1

∼
L

Ñ
1 4 −1
0 11 0
0 −8 −1

é
L2 ↔ L3

∼
L

Ñ
1 4 −1
0 1 0
0 −8 −1

é
L2 ← 1

11 L2

∼
L

Ö
1 4 −1
0 1 0
0 0 −1

è
L3 ← L3 + 8L2
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Conclusion,

A ∼
L

Ñ
1 4 −1
0 1 0
0 0 −1

é
.

4.5 On a les calculs suivants :

A =

Ü
0 −1 2
−7 −7 2
0 4 −6
2 −2 0

ê
∼
L

Ü
2 −2 0
−7 −7 2
0 4 −6
0 −1 2

ê
L1 ↔ L4

∼
L

Ü
1 −1 0
−7 −7 2
0 4 −6
0 −1 2

ê
L1 ← 1

2 L4

∼
L

Ü
1 −1 0
0 −14 2
0 4 −6
0 −1 2

ê
L2 ← L2 + 7L1

∼
L

Ü
1 −1 0
0 −1 2
0 4 −6
0 −14 2

ê
L2 ↔ L4

∼
L

Ü
1 −1 0
0 −1 2
0 0 2
0 0 −26

ê
L3 ← L3 + 4L2
L4 ← L4 − 14L2

∼
L

Ü
1 −1 0
0 −1 2
0 0 2
0 0 0

ê
L4 ← L4 + 13L3

Conclusion,

A ∼
L

Ü
1 −1 0
0 −1 2
0 0 2
0 0 0

ê
.

4.6 On a les calculs suivants :

A =

Ñ
3 −2 −1
−1 2 −3
1 2 1

é
∼
L

Ñ
1 2 1
−1 2 −3
3 −2 −1

é
L1 ↔ L3

∼
L

Ñ
1 2 1
0 4 −2
0 −8 −4

é
L2 ← L2 + L1
L3 ← L3 − 3L1

∼
L

Ö
1 2 1
0 4 −2
0 0 −8

è
L3 ← L3 + 2L2

Conclusion,

A ∼
L

Ñ
1 2 1
0 4 −2
0 0 −8

é
.
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3. Simplifier un petit o.
Pour aider à la compréhension du résultat, je vous ajoute des explications en rouge.
2.1 o

(
x5 + x2)︸ ︷︷ ︸
=o(x5)

+ xo (3)︸ ︷︷ ︸
=o(x)

+
(
o
(
x2))3︸ ︷︷ ︸

=o(x2)o(x2)o(x2)=o(x6)

=
x→+∞

o
(
x6)

2.2 o(7
√

x + sin(x)︸ ︷︷ ︸
∼x=o(√

x)

− x2 ln(x)︸ ︷︷ ︸
=o(√

x)

) =
x→0

o (
√

x)

2.3 1
x5︸︷︷︸

=o( 1
x2 )

+ o
( 1

x2

)
+ sin(x)o

Å 1
x3

ã
︸ ︷︷ ︸
=o( 1

x3 )=o( 1
x2 )

+ o

Å 1
x4 ln(x)

ã
︸ ︷︷ ︸

=o( 1
x2 )

=
x→+∞

o
( 1

x2

)

2.4 o (xx) + 2xo (3x)︸ ︷︷ ︸
=o(6x)=o(xx)

− 1010o

Å
x3

ln(x)

ã
︸ ︷︷ ︸

=o(x3)=o(xx)

=
x→+∞

o (xx)

2.5 9x︸︷︷︸
=o(x3)

+ o
(
x3) + 2019

√
x︸ ︷︷ ︸

=o(x3)

+ o
(
ln5(x)

)︸ ︷︷ ︸
=o(x3)

=
x→+∞

o
(
x3)

2.6 o( arcsin
(
x2)︸ ︷︷ ︸

→ π
2

+ 3 ln(x)︸ ︷︷ ︸
=o(1)

+ o (1) x︸ ︷︷ ︸
=o(x)=o(1)︸ ︷︷ ︸

∼ π
2

) =
x→1

o (1)

2.7 o( ln

Ñ
1 + o (x)︸︷︷︸

=u→0

é
︸ ︷︷ ︸

=u+o(u)=o(x)+o(o(x))=o(x)

+ x2 )

︸ ︷︷ ︸
=o(x)

+ o( (|sin (x)|)3/2︸ ︷︷ ︸
∼|x|3/2

)

︸ ︷︷ ︸
=o(x)

=
x→0

o (x)

2.8 o (1) o
(
x3)︸ ︷︷ ︸

o(x3)

+ o
Ä
x1/3
ä

o
(√

x
)︸ ︷︷ ︸

=o(x5/6)

+ o (x ln(x))︸ ︷︷ ︸
=o(x5/6)

=
x→0

o
(
x5/6)

2.9 o( arcsin( x− x2

3 + o
(
x2)︸ ︷︷ ︸

=u=x+o(x)

)

︸ ︷︷ ︸
=u+o(u)=x+o(x)+o(x+o(x))=x+o(x)

)

︸ ︷︷ ︸
=o(x)

o( cos(x)︸ ︷︷ ︸
∼1

)

︸ ︷︷ ︸
=o(1)

=
x→0

o (x)

2.10 o
Ä∑n

k=1 xk lnn−k(x)
ä

=
x→+∞

o (xn)

2.11 o( exp( o

Å 1
x4

ã
+
Å

o

Å 1
x

ãã2

︸ ︷︷ ︸
=o( 1

x2 )

o
(
ln3(x)

)
︸ ︷︷ ︸

=o
(

ln3(x)
x2

)
→0

)

︸ ︷︷ ︸
→e0=1

) =
x→+∞

o (1)

Détails : On a Å
o

Å 1
x

ãã2
o
(
ln3(x)

)
=

x→+∞
o

Å 1
x

ã
o

Å 1
x

ã
o
(
ln3(x)

)
=

x→+∞
o

Ç
ln3(x)

x2

å
.

Or 1
x4 ≪

x→+∞
1

x2 ≪
x→+∞

ln3(x)
x2 . Donc

o

Å 1
x4

ã
+
Å

o

Å 1
x

ãã2
o
(
ln3(x)

)
=

x→+∞
o

Å 1
x4

ã
+ o

Ç
ln3(x)

x2

å
=

x→+∞
o

Ç
ln3(x)

x2

å
.
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Par croissance comparée, on sait que ln3(x)
x2 −→

x→+∞
0 i.e. ln3(x)

x2 =
x→+∞

o (1) (attention la lecture de droite à
gauche est fausse). Donc

o

Ç
ln3(x)

x2

å
=

x→+∞
o (1) −→

x→+∞
0.

Notez qu’ici on perd de l’information, mais en prenant un terme prépondérant plus grossier ( ln3(x)
x2 est

une vitesse plus rapide que 1) mais il est ici inutile de garder plus d’information car en composant par
l’exponentiel il est juste nécessaire de savoir que le terme tend vers 0.
Or eu =

u→0
1 + o (1). Donc en posant u = o

(
ln3(x)

x2

)
→

x→+∞
0, on a

exp
Ç

o

Å 1
x4

ã
+
Å

o

Å 1
x

ãã2
o
(
ln3(x)

)å
=

x→+∞
exp
Ç

o

Ç
ln3(x)

x2

åå
=

x→+∞
eu =

x→+∞
1 + o (1) .

Autrement dit,

exp
Ç

o

Å 1
x4

ã
+
Å

o

Å 1
x

ãã2
o
(
ln3(x)

)å
∼

x→+∞
1

ou encore (puisque 1 ∈ R∗)

exp
Ç

o

Å 1
x4

ã
+
Å

o

Å 1
x

ãã2
o
(
ln3(x)

)å
−→

x→+∞
1.

Conclusion,

o

Ç
exp
Ç

o

Å 1
x4

ã
+
Å

o

Å 1
x

ãã2
o
(
ln3(x)

)åå
=

x→+∞
o (1) .

2.12 o

Ç
1

x ln3(x)
+ 1

x
o

Å 1
ln (x3)

ãå
︸ ︷︷ ︸

=o
Ä

1
x ln(x)

ä +
Å

o

Å 1
x

ãã3
ln(x)︸ ︷︷ ︸

=o
Ä ln(x)

x3

ä =
x→+∞

o
Ä

1
x ln(x)

ä
2.13 o[ ln

Å
1 + 1

n2

ã
n︸ ︷︷ ︸

∼ 1
n2 n= 1

n

+ o( tan
Å 1√

n

ã
︸ ︷︷ ︸

∼ 1√
n

)o( 3

…
1

n6 + 2︸ ︷︷ ︸
∼( 1

n6 )1/3= 1
n2

) ] =
n→+∞

o
Ä

1√
n

ä
2.14 o( 3 sin2(x)︸ ︷︷ ︸

∼3x2

) + cos(x)︸ ︷︷ ︸
∼1

o
(
x3) + o( ln (x + 1)︸ ︷︷ ︸

∼x

) + o( ln (1− x)︸ ︷︷ ︸
∼−x

) =
x→0

o (x)

2.15 o(
(
e5n

)2︸ ︷︷ ︸
=e10n=o( n!

n3 )

+ n!
n3 + n2 ln5(n)︸ ︷︷ ︸

=o( n!
n3 )

) + o (sh(n)) o (ch(n))︸ ︷︷ ︸
=o(e2n)=o( n!

n3 )

=
n→+∞

o
(

n!
n3

)

2.16 o( sin
Å 1

n2

ã
︸ ︷︷ ︸

∼ 1
n2

)

︸ ︷︷ ︸
=o( 1

n2 )

− sin2
Å

o

Å 1
n

ãã
︸ ︷︷ ︸

∼(o( 1
n ))2=o( 1

n2 )

+ sin
ÇÅ

o

Å 1
n

ãã2å
︸ ︷︷ ︸
=sin(o( 1

n2 ))∼o( 1
n2 )

=
n→+∞

o
( 1

n2

)

2.17 o (ln(x)) o( 1
arcsin

( 1
x

)︸ ︷︷ ︸
∼ 1

1
x

=x

)− 5o
(
x2) o

Ç
1

ln3(x)

å
︸ ︷︷ ︸

=o
(

x2
ln3(x)

)
+ (o( arctan

(√
x
)︸ ︷︷ ︸

→ π
2

))4

︸ ︷︷ ︸
=o(1)

=
x→+∞

o
Ä

x2

ln3(x)

ä
2.18 o(

√
n! + 3n + nn︸ ︷︷ ︸

∼nn/2

)o( arcsin
Å 1

n2

ã
︸ ︷︷ ︸

∼ 1
n2 =o(− ln(n))

+ ln
Å 1

n

ã
)

︸ ︷︷ ︸
=o(ln(n))

=
n→+∞

o
(
nn/2)

2.19 o(o[ o
(
ln3(x)

)
x2︸ ︷︷ ︸

=o(x2 ln3(x))

+ tan
(
3x2)︸ ︷︷ ︸

∼3x2

+ o (x) o
(√

x
)︸ ︷︷ ︸

=o(x3/2)

]) =
x→0

o
(
x3/2)
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2.20 o
Ä
(x− 2)2ä »

o (sh (x− 2))︸ ︷︷ ︸
=
√

o(x−2)=o(√
x−2)

+
√

x− 2ex−2︸︷︷︸
∼1

o (4)︸ ︷︷ ︸
=o(√

x−2)

=
x→2

o
(√

x− 2
)
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4. Déterminer un équivalent. Attention à ne pas faire, des compositions d’équivalents ni des sommes
d’équivalents ! Même si les calculs parfois y ressemblent ce n’est jamais le cas.
2.1 cos(x)−

√
1+x2

x2 ∼
x→0
−1.

Explication : On a

cos (x)−
√

1 + x2

x2 =
x→0

1− x2

2 + o
(
x2)− Ä1 + x2

2 + o
(
x2)ä

x2 =
x→0

−x2 + o
(
x2)

x2 ∼
x→0

−x2

x2 = −1.

2.2 x3 arctan(x)−x4

cos(x2)−1 ∼
x→0

2x2

3

Explication : On a

x3 arctan(x)− x4

cos (x2)− 1 =
x→0

x3
Ä
x− x3

3 + o
(
x3)ä− x4

1− x4

2 + o (x4)− 1
=

x→0

−x6

3 + o
(
x6)

−x4

2 + o (x4)
∼

x→0

−x6

3
−x4

2
= 2x2

3 .

2.3 sin(x)−ln(1+x)
x tan(x) ∼

x→0
1
2

Explication : On a

sin (x)− ln (1 + x)
x tan(x) =

x→0

x + o
(
x2)− Äx− x2

2 + o
(
x2)ä

x tan(x) =
x→0

x2

2 + o
(
x2)

x tan(x) ∼
x→0

x2

2
x2 = 1

2 .

2.4 5x − 1 ∼
x→0

x ln (5)

Explication : En posant u(x) = x ln (5) →
x→0

0, on a

5x − 1 = ex ln(5)−1 =
x→0

1 + u(x) + o (u(x))− 1 =
x→0

x ln (5) + o (x ln (5)) ∼
x→0

x ln (5) .

2.5 arctan(x)−sin(x)
sh(x) ∼

x→0
−x2

6

Explication : On a

arctan(x)− sin(x)
sh(x) =

x→0

x− x3

3 + o
(
x3)− Äx− x3

6 + o
(
x3)ä

sh(x) =
x→0

−x3

6 + o
(
x3)

sh(x) ∼
x→0

−x3

6
x

= −x2

6 .

2.6 ecos(x) ∼
x→0

e

Explication : On sait que cos(x) →
x→0

1. Donc ecos(x) →
x→0

e1 ̸= 0 i.e. ecos(x) ∼
x→0

e.

Attention à ne pas dire cos(x) ∼
x→0

1 ⇒ ecos(x) ∼
x→0

e. On peut composer les limites mais pas les équivalents.

2.7 (sin(x) + x)3 ∼
x→0

8x3

Explication : On a sin (x) + x =
x→0

x + o (x) + x =
x→0

2x + o (x) ∼
x→0

2x. Donc par élévation à la puissance,

(sin(x) + x)3 ∼
x→0

8x3.

2.8 arcsin(x)
√

1 + x− ex ln
(
1 + x2) ∼

x→0
x

Explication : On a arcsin(x)
√

1 + x ∼
x→0

x×1 = x et − ex ln
(
1 + x2) ∼

x→0
−1×x2 = −x2. On constate donc

que − ex ln
(
1 + x2) ≪

x→0
arcsin(x)

√
1 + x. Ainsi, arcsin(x)

√
1 + x−ex ln

(
1 + x2) ∼

x→0
arcsin(x)

√
1 + x ∼

x→0
x.
Attention à ne pas dire « arcsin(x)

√
1 + x ∼

x→0
= x et − ex ln

(
1 + x2) ∼

x→0
−x2 implique arcsin(x)

√
1 + x−

ex ln
(
1 + x2) ∼

x→0
x− x2 », ce qui serait faire une somme d’équivalents !
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2.9
√

1+2x−cos(x)
x ∼

x→0
1

Explication : On a
√

1 + 2x− cos (x)
x

=
x→0

1 + 2x
2 + o (x)− (1 + o (x))

x
=

x→0

x + o (x)
x

∼
x→0

x

x
= 1.

2.10 ch(x)− (1 + 3x)5 ∼
x→0
−15x

Explication : On a

ch(x)− (1 + 3x)5 =
x→0

1 + o (x)− (1 + 5× 3x + o (x)) =
x→0
−15x + o (x) ∼

x→0
−15x.

2.11 sh
(
e3x

)
∼

x→0
sh (1)

Explication : Puisque e3x →
x→0

1, on en déduit que sh
(
e3x

)
→

x→0
sh (1) car sh est continue en 1. Or sh (1) ̸= 0.

Donc sh
(
e3x

)
→

x→0
sh (1) ⇔ sh

(
e3x

)
∼

x→0
sh (1).

Encore une fois, on fait une composition de limites et non d’équivalents.

2.12 arctan (sh(x)) ∼
x→0

x

Explication : Posons u(x) = sh(x). On a u(x) →
x→0

0 et arctan (u) ∼
u→0

u. Donc on a

arctan (sh(x)) =
x→0

arctan (u(x)) ∼
x→0

u(x) =
x→0

sh(x) ∼
x→0

x.

Attention ! Notez bien le sens du raisonnement. Nous avons fait un changement de variable et non une
composition. Il serait absolument FAUX d’affirmer sh (x) ∼

x→0
x ⇒ arctan (sh(x)) ∼

x→0
arctan(x) ∼

x→0
x,

même si la conclusion est la même !

2.13 arctan (ch(x)) ∼
x→0

π
4

Explication : On a ch(x) →
x→0

1. Donc arctan (ch(x)) →
x→0

arctan(1) = π
4 ̸= 0 i.e. arctan (ch(x)) ∼

x→0
π
4 .

Attention c’est une composition de limites et non d’équivalents.

2.14 ln(cos(2x))
ln(cos(3x)) ∼x→0

4
9 .

Explication : En posant u(x) = −2x2 + o
(
x2) →

x→0
0 et v(x) = − 9x2

2 + o
(
x2) →

x→0
0, on a

ln (cos (2x))
ln (cos(3x)) =

x→0

ln
Ä
1− 4x2

2 + o
(
x2)ä

ln
Ä
1− 9x2

2 + o (x2)
ä

=
x→0

ln (1 + u(x))
ln (1 + v(x))

=
x→0

u(x) + o (u(x))
v(x) + o (v(x))

=
x→0

−2x2 + o
(
x2) + o

(
x2)

− 9x2

2 + o (x2) + o (x2)

∼
x→0

−2x2

− 9x2

2

∼
x→0

4
9 .

2.15 (ln (1 + x)− x)2 ∼
x→0

x4

4 .
Explication : On a

ln (1 + x)− x =
x→0

x− x2

2 + o
(
x2)− x =

x→0
−x2

2 + o
(
x2) ∼

x→0
−x2

2 .
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Donc par élévation au carré : (ln (1 + x)− x)2 ∼
x→0

x4

4 .

2.16 ch(x)−cos(x)
1+x arctan(x2)−

√
1+x3 ∼

x→0
2
x .

Explication : On a

ch(x)− cos(x)
1 + x arctan (x2)−

√
1 + x3

=
x→0

1 + x2

2 + o
(
x2)− Ä1− x2

2 + o
(
x2)ä

1 + x (x2 + o (x2))−
Ä
1 + x3

2 + o (x3)
ä =

x→0

x2 + o
(
x2)

x3

2 + o (x3)
∼

x→0

x2

x3

2
∼

x→0

2
x

.

2.17
√

1−
√

1− x2 ∼
x→0

x√
2

Explication : On a

1−
√

1− x2 =
x→0

1−
Å

1− 1
2x2 + o

(
x2)ã =

x→0

x2

2 + o
(
x2) ∼

x→0

x2

2 .

Donc par passage à la puissante 1/2,
√

1−
√

1− x2 ∼
x→0

x√
2 .

2.18 ex −1−x
ln(1+x) ∼x→0

x
2

Explication : On a

ex−1− x

ln (1 + x) =
x→0

1 + x + x2

2 + o
(
x2)− 1− x

ln (1 + x) =
x→0

x2

2 + o
(
x2)

ln (1 + x) ∼
x→0

x2

2
x

= x

2 .

2.19 ln
(
1 + x2)− arctan

(
x2) ∼

x→0
−x4

2

Explication : On a

ln
(
1 + x2)− arctan

(
x2) =

x→0
x2 − x4

2 + o
(
x4)− Åx2 − x6

3 + o
(
x6)ã =

x→0
−x4

2 + o
(
x4) ∼

x→0
−x4

2 .

2.20 ln (1 + sin(x)) ∼
x→0

Explication : On pose u(x) = x + o (x) →
x→0

0. Alors

ln (1 + sin(x)) =
x→0

ln (1 + x + o (x)) =
x→0

ln (1 + u(x)) =
x→0

u(x) + o (u(x)) =
x→0

x + o (x) + o (x) ∼
x→0

x.

Attention à nouveau à ne pas faire de composition c’est-à-dire à écrire ici que

sin(x) ∼
x→0

x implique ln (1 + sin(x)) ∼
x→0

x,

ce qui est un raisonnement faux.
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