Mathématiques PTSI, IntEnt13.5 Cor 2025-2026
Correction de ’'interrogation 13.5
d’entrainement
Systémes linéaires
Négligeabilité - Equivalents
1. Savoir appliquer 1’algorithme de Gauss-Jordan sur un systéme.
1.1 Soit (x,y,2) € R3. On a les équivalences suivantes :
2x -y 43z = 1 20 —y +3z = 1
(S) —4dx 2y +z = 3 N Tz = 5 Lo+ Lo+ 214
10z -5y —62z = -—10 —21z = —-15 Ly Ly—514
_35
I it R DR P TR
2= 4,
Conclusion ’ensemble des solutions de (S) est :
4 y 5 4 5 1
&= {<_, v, ,) c R3 GR} _ (_7,0, 7> Vect (<7,1,0>).
7Ty YT Y 7 g ) T3
1.2 Soit (z,%,2) € R3. On a les équivalences suivantes :
2z 4y -4z = 8 2v +y -4z = 8
(8)¢ 3z +3y -5z = 14 & 3y +2z = 4 Lo < 2Ly — 3L,
2z +y —4z = 8
& 3y +2z = 4
4z = —4 L3z« L3 — Ly
r=4-Y42:=4-1-2=1
= Yy = 4=22 = % =92
z=—1.
Conclusion 'ensemble des solutions de (S) est :
[ =102 -1} |
1.3 Soit (x,7,2) € R%. On a les équivalences suivantes :
r 42y 43z = 1 z 2y +3z = 1
(S) 2x +3y —Z = 0 =4 -y —Tz = =2 Lo« Ly —214
3x +y +2z = 0 -5y —7z = -3 Ly <+ L3 —3L;
z 2y +3z = 1
< -y =7z = =2
282 = 7 L3« L3 —5L
4-2-3 1
r=1-2y—3z=—"2=—73
& y=2-Tz=57=

1

zZ= 7.

Conclusion 'ensemble des solutions de (S) est :
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1.4 Soit (x,y,z) € R%. On a les équivalences suivantes :

2r +y +z = 3 r 4y -z = =2
3r —y -2z = 0 3r —y -2z = 0
(S) r 4ty —z = =2 < 2 +y +z = 3 Ly < Ls
r 42y +z = 1 r 42y +z = 1
z +y -z = =2
o 74y +z = 6 L2 «— L2 — 3L1
) +3z = 7 L3 — L3 — 214
+y +2z = 3
T 4y —z = =2
Y +2z = 3 Lo <> Ly
< -y +3z =
—4dy +z = 6
r +y —z = -2
o y +2z = 3
+5z = 10 L3+ L3+ Lo
+9z = 18 L4 — L4 + 4L2
r 4y -z = =2
Yy +2z = 3 L2 — L4
< -y +3z = 7
-4y 4z = 6
z +y —z = =2
N y +2z = 3
+5z = 10 L3y <+ L3+ Lo
+9z = 18 L4 < L4 + 4L2
r +y —z = =2
& y +2z = 3
52z = 10 car L3 = %LQ
r=-2—-—y+z=-24+14+2=1
< y=3—-2z=3-4=-1
z=2.

Conclusion 'ensemble des solutions de (S) est :

|7 ={(1,-1,2)}.|

1.5 Héhéhé... Gloups! Vous voulez vraiment une solution ? Allez, c’est parti! Soient (x,y,z,t,u) € R®. On a
les équivalences suivantes :

3z 46y +bz 46t +4u = 14
5c +9y +7z 48 +6u = 18
(S10) 6r +12y +13z +9t +7u = 32
4dr +6y 46z 45t +4u = 16
2¢  +4+by +4z 45t +3u = 11
x +y +z +t +u = 3 Ll(—Ll—L5
5z 49y 47z +8 +6u = 18
& 6z +12y +13z 49t +7u = 32
4r 46y 46z 45t +4u = 16
2¢ 45y 44z +5t +3u = 11
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T  +y
+4y
+6y
+2y
+3y

r +y

(S10)

Gy
2y
3y

Tz
2z
2z

2z
2z

)
S +F e 8

Conclusion le systéme (S70) admet une unique solution. Son ensemble solution est un singleton :

+z 4+t 4+u = 3
+2z 43t 4u = 3 L2 < L2 — 5L1
+7z +3t +u = 14 L3 < L3 — 6L1
+2z +t = 4 Ly <+ Ly —414
+2z 43t 4u = 5 L5 < L5 — 2L1
+z 4+t +u = 3
= -2 L2 < L2 — L5
+7: 43t 4u = 14
+2z 4t = 4
+2z +3t 4u = 5
+t 4u = B3-y =3+2 =5
y = -2
13t 4u = 14-6y =14+12 =26
+ = 4-2 =444 =38
+3t 4+u = 5—-3y =546 =11
+t +u = 5
y = -2
+u = 2 L3 — Lg —3L4
+t = 8
+3t +u = 11
+t +u = 5
y = -2
+u = 2
+t —2u = 4 Ly Ly—2L3
+3t -u = 7 Ls <+ Ls—2L3
+ 4+u = 5
y = -2
+u = 2 L3 <+ L3 —3L4
+t = 8
+3t 4+u = 11
+t +u = 5
Y = =2
+u 2
t —2u = 4
ou = =5 Ly <+ Ly —3L4
S—z—t—u = b5-3-24+41 =1
-2
2—u = 2+1 = 3
4+ 2u = 4-2 = 2
-1

\5/: {(1, -2, 3, 2, —1)}.\

2. Savoir appliquer ’algorithme de Gauss-Jordan sur une matrice.

4.1 On a les calculs suivants :

A:

O = = =
o= oo
SO = O
i

100 1
0010
210100
000 1
(1] o o
0 [1] o
2\ 0o o [1]
0 0 0

3/

L2<—L2_L1
Lg(—Lg—Ll
1
0
Ly < L
0 2 3
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Conclusion,
1 0 0 1
01 0 0
Azl o010
0 0 0 1
4.2 On a les calculs suivants :
1 1 1 1 1 1 1 1
A= 1 0 1 0 -~ 0 -1 0 -1 LQ%LQ*Ll
{111 0)Je{0 0 0 -1 L3+ L3 — 14
0 0 0 1 0o 0 0 1
1 1 1
~° - Ly Ly+ L3
z\ 0 0 0
0 0 0 0
Conclusion,
1 1 1 1
0 -1 0 -1
A1 0 0 0o -1 )
0 0 0 O
4.3 On a les calculs suivants :
1 7 2 5 1 7 2 5 Ly < Lo+ 2L,
A -2 1 1 5 0 15 5 15 Lot Lot L
“l-1214)2{0 9 3 9 O
1 4 1 2 0 -3 -1 -3 4T
1725 Ly« Ly
03 1 3 L
1o 313 L3 = 3L
0 3 1 3 L4(——L4
7 25
o 13 L34 L3 — Ly
Z 0O 0 0O Ly<+ Ly — Ly
0O 0 0O
Conclusion,
1 7 2 5
0 3 1 3
42100 0 0
0 0 0O
4.4 On a les calculs suivants :
1 4 -1 1 4 -1 Ly L, — 9Ly
A= 2 0 -3]~[0 -8 -1 Lo« L.+ 2L
23 2/%\0 11 o0 3 bs !
1 4 -1
; 0 11 0 L2<—)L3
0 -8 -1
1 4 -1
(0 1 0 Ly+ L Ly
0 -8 -1
4 -1
2|0 0 L3+ Ly + 8Ly
0

'y
I=
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Conclusion,

4.5 On a les calculs suivants :

Conclusion,

A:

0
-7

0

2

4.6 On a les calculs suivants :

Conclusion,

A:

3

-1
-7
4
-2

-2
2
2

2

2
—6

0

-1
-3
1

1 4 —1
A~|0 1 0
“\o 0 -1
2 -2 0
-7 -7 2
g/; 0 4 _6 L1<—>L4
0 -1
1 -1 0
-7 -7 2 .
21 0 4 -6 Ly 3la
0 -1 2
1 -1 0
0 —14 2
:(; 0 4 6 LQ%L2+7L1
0 -1 2
1 -1 0
0 -1 2
210 4 -6 Lo Ly
0 —14 2
1 -1 0
0 -1 2 L3+ L3+4L,
<z 0 0 2 Ly« Ly—14L,
0 0 -2
-1 0
~ |0 2 La < Ly +13L3
2\ 0 0
0 0 0
1 -1 0
0 -1 2
A o o 2]
0 0 0
1 2 1
“\ 3 -2
1 2 1 Lo+ Lo+ Ly
A L3+ L3 — 3L
“\0 -8 —4 3ok
2 1
|0 —2 L3 + Ly + 2Ly
0 0
12 1
A~|0 4 -2
“\o 0 -8
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3. Simplifier un petit o.
Pour aider a la compréhension du résultat, je vous ajoute des explications en rouge.
2.1 o (2®+2%) +z0(3) + (o (xQ))3 = o(29
N———— N—— —— T—>+00

e —o(z)  =o(22)o(a2)o(z?)=o(z0)

2.2 o(T/x + sin(z) —2%In(z)) = o(y/2)
—— ~—— z—0
~imo(vE)  —o(vE)

2.3 % +o (%) + Sln(x)o (mig) + (1,4 hll(x)> IH:JFOO 0 (ac%)
<~
=o(3%) =o(Jr)=o0(%) =o(3x)
3
24 0(z%) + 2%0(3%) —10'% (mx(:c)) = ol

=0(67)=o0(x®)
=o(z3)=o0(x™)

3 5 _ 3
2.5 \9;_:) + 0 (2*) +2019v/z + o (In°(z)) L0 (2*)
=0z =o(z3) =o(x3)

2.6 o( arcsin (:1:2) +3In(z)+ o)z ) = o(1)
—_———  Y—— —— T—

-z =o(1) =o(x)=o0(1)
~3
2.7 of In{ 1+ o0(x) +22 )+ of (|sin(m)\)3/2 ) = o(w)
N ————— z—0
=u—0 Nm-‘iﬂ
— ———
=u+o(u)=o(x)+o(o(z))=0(x) —o(z)
=o(x)
3 1/3
28 o(1)o(z’) +o (a: / )o (Vx) + o (xn(x)) =00 (z5/9)
o(z?) :O(ws/o) :o(x"’/")
290 awin( 7= T to(?) ) ol cosla) ) = 0
.J o arcsin X 3 o\T (] COoSs(x z:() o\
—_— N
=u=x+o(x) %,1_/
=o(1)
=u+o(u)=z+o(z)+o(z+o(z))=z+o0(x)
=o(x)
n k1..n—k _ n
2.10 o(zkzlx In (gc)) 1_}—+000(:r )
1 1\
3
2.11 o exp( o <F> + (0 <;)) o(In’(z)) ) )J[H:+oo o(1)
—_———
=o(3x)
:(,(7]“ié"’))_>0
—el=1
Détails : On a
1\ . s 1 1 5 In®(z)
(o(2)) ot = o(3)o(3)otuien 5 o™
orL <« L « 0 popc
r—+o0 r——+00

() D) ot o) oo (02) o2,
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2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

. ; . In®(z .
Par croissance comparee, on sait que ni(zl) — 0Oi.e.
z T—+00

1 3
o(n(f)) = o(l) — 0.
xX x—-+00 T —r—+00

In®(z)
)

Tr—+00
gauche est fausse). Donc

Notez qu’ici on perd de l’information, mais en premant un terme prépondérant plus grossier

= o(1) (attention la lecture de droite &

(lnigx) eSt

une vitesse plus rapide que 1) mais il est ici inutile de garder plus d’information car en composant par

Uexponentiel il est juste nécessaire de savoir que le terme tend vers 0.

Ore* = 1+ 0(1). Donc en posant v = o (“‘X“) — 0,ona
u—0 *

xr——+00

oo o2+ () ) 2o o(22)) e

Autrement dit,

ou encore (puisque 1 € R¥)

Conclusion,

(et o)) () w0 o k)

~olemw) =o(=5?)

1 1 N )
o[ In (1—|—ﬁ>n+o( tan (ﬁ) Yo( Y ) ] n_iooo(ﬁ)
T (39) /7=
W2 ~n nG T nZ
o( 3sin®(z) )+ cos(x)o (*) +o( In(x+1) )+o( In(l—=z) )
~3x? ~1 ~a ~—zx
o (esm)? + 25+ n2In’(n) ) +o(sh(n))o(ch(n)) oo © (%)
———

1 1
on@)el Ty )Tl <1ns<x>> + (o arctan (V&) )"
%,_/ - >z
N;:JI :o(lng(m)) =o(1)
o( Vnl+3"+n" )o( arcsin (i> +In (l) ) = o(n"/?)
—_— n2 n n—+00
~onn/? —_—
Nn%:o(f In(n))
=o(In(n))
o(o] o (ln3(:v)) 22 + tan (3302) +o(x)o(Vz) ]) = o (m3/2)
——— —— N—— z

—0

=o(x21n3(x)) ~3z2 :o(m3/2)

7]

r——+00

1+o0(1).
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2.20 0((36—2)2) o(sh(z—2)) +\/x—2§jo(4) ZQO(M)

—_— ~1 T
:\/0(11:—2):0(\/1‘?2) \—(/)—’
=o(vVr—2



Mathématiques PTSI, IntEnt13.5 Cor 2025-2026

4. Déterminer un équivalent. Attention a ne pas faire, des compositions d’équivalents ni des sommes
d’équivalents ! Méme si les calculs parfois y ressemblent ce n’est jamais le cas.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

cos(z)—v1+422 ~ —1

2

z—0
Ezplication : On a
2 2
cos(z) —vVI+a2  1-— 5 to(a?) - (1+%+0(m2)) _ 2’ +o(a?) —? 1
:172 9330 1’2 z:O £C2 x—0 1’2 o '
z® arctan(z)—z* o 227
cos(z?)—1 0 3
Ezxplication : On a
. 3 5
a?arctan(z) —z* ® (x -5 +o (x3)> —at _ *% +o0(z°) 7% _ 227
cos(z?) =1 a=0 12 po(zl) 1  a=0 —ZL 4 o(zt) om0 2 3
sin(z)—In(14x) ~ 1
z tan(z) 2—0
Explication : On a
2
sin(z) —In(1+z) x40 (2?) — <x7 %Jro(xQ)) B §+o(z2) % 1
x tan(x) 20 x tan(x) @0 xtan(r) z—-0 22 2’
57 —1 ~ xln(5)
z—0
Ezplication : En posant u(z) = z1n (5) _e 0, on a
z—
r _ 1 — ozln(d) _ _ _ — ~
5" —1=e 1 o 1+u(x)+o(u(x)) —1 o zIn(5)+o(zln (b)) adty In(5).
arctan(z)—sin(z) 22
sh(z) 20 6
Ezplication : On a
3 3 23 3 3 3 3
arctan(x) —sin(x) 33—?-5-0(96)—(96—?—1—0(36)) —Z 4 o(2?) - g2
sh(z) 20 sh(z) 20 sh(z) a0 6
ecos(z) ~ e
z—0
Eaplication : On sait que cos(z) — 1. Donc e(®) — el £0ie. e®) ~ e.
x—0 x—0 z—0

Attention d ne pas dire cos(x) ~ 1 = eoos@) ~ & On peut composer les limites mais pas les équivalents.
r—r T—r

. 3 ~ 3
(sin(z) 4+ x) ot 8z
Ezplication : On asin(z) +2 = x+o(x)+2x = 2x+o0(x) ~ 2x. Donc par élévation a la puissance,
3 z—0 x—0 z—0
i ~ 823
(sin(z) 4+ x) ot

arcsin(z)y/1+ 2 —e®In (1 + 2?) ~o
z—
Ezplication : On a arcsin(x)y/1 + x o TX l=xet —e®In (1 + m2) ~o —1x 2% = —22%. On constate donc
xT—r T—r
que —e” In (1 + 2?) < arcsin(z)y/1 + 2. Ainsi, arcsin(z)y/1 + 2 —e® In (1 4 2?) ~, arcsin(z)v1+x ~
T— r—r x

—0
xX.

Attention d ne pas dire « arcsin(x)v/1 + x ~T et —e”In (1 + 2?) ~ —a? implique arcsin(z)y/1+ x —
T T—

e’ In (1 + m2) ~o T 2% », ce qui serait faire une somme d’équivalents!
r—r

o]
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2.9

2.10

2.12

2.13

2.14

2.15

142z —cos(x) ~ 1
z z—0
Explication : On a

V1+2x—cos(z) 1+ 2 +o(z)— (1+o(z)) x+o(x)

xT z—0 €T x—0 xT x—0

ch(z) — (1 + 3z)° ~ —15z

Ezxplication : On a

ch(z) — (1+32)° = 14o0(x)—(1+5%x3zx+o0(x)) = —1bz+o(zx) ~ —1bz.
0 z—0 z—0
3x ~
sh (e*7) ot sh (1)
Explication : Puisque e3* —e 1, on en déduit que sh (83‘”) = sh (1) car sh est continue en 1. Or sh (1) # 0.
T—r r—
3z 3z ~
Donc sh (37) et sh(1) < sh(e3) o~ sh (1).

Encore une fois, on fait une composition de limites et non d’équivalents.

arctan (sh(z)) ~o L
T—r
Ezplication : Posons u(z) = sh(x). On a u(x) — 0 et arctan (u) ~ wu. Donc on a
z—0 u—0
arctan (sh(z)) =, Arctan (u(x)) o u(x) o sh(z) are2

Attention ! Notez bien le sens du raisonnement. Nous avons fait un changement de variable et non une
composition. Il serait absolument FAUX d’affirmer sh (x) ~0 T = arctan (sh(z)) ~ arctan(z) o T
T T— x—

méme si la conclusion est la méme !

arctan (ch(x)) ~ T
T—

Ezplication : On a ch(z) —e 1. Donc arctan (ch(z)) _e arctan(1l) = 7 # 0 i.e. arctan (ch(x))
r—r r—

IS

~Y
z—0
Attention c’est une composition de limites et non d’équivalents.

In(cos(2z)) 4
In(cos(3z)) ,_ 0 9°
. . . - _ 9g2
Ezplication : En posant u(z) = —22% 4 o0 (2?) el 0 et v(z) = =2 + 0 (2?) el 0, on a
2
In (cos (2z)) In (1 45 +o (ac2))
In (cos(32)) +0 T (1 %% o(a?))
 In(1 +wu(x))
2—0 In (14 v(x))
_ u(x) +o(u(x))
70 v(z) + o0 (v(z))
B 2x2+0(12)+0 z?
x=0 922 4 5 (22) 4 0 (a2)
—2z2
x—0 _%
4
z—0 9
2 ot
(In(1+2)—2) T
Explication : On a
2 ) 2 ) 72
ln(l—l—x)—a:z: :v—?—i—o(x ) —r = —?—i—o(ﬂc ) o Tg
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Donc par élévation au carré : (In (1 + ) — ) ~ %.
x—0
ch(z)—cos(x) ~ 2
2.16 1+z arctan(z2)—v1+z3 440 T°
Ezplication : On a
1422 2) _ (122 2 2 2 2
ch(z) — cos(z) _ + 5 +o0(2?) ( 7 to( )) 2® +o(2?) z

= ~ — o~

1+ zarctan (z2) — 1+ 23 20 1+ 2 (22 + o (22)) — <1+L; —|—0(5r33)> 20 %34_0(;33) z—0 L; z=0 I

— 2 ~ X
217 V1—-+V1—-2x Ve

Explication : On a

1 x2 z?
- — 2 1 _[(1_1L2 2 _ 2y ., T
1—-+vV1—2x m_>01 (1 230 —|—0(:1c )) o 2 -|—0(£E )z—>o 5
Donc par passage & la puissante 1/2, /1 —v1— 22 ~ Z.
x—0 V2
e’ —1—=z T
2.18 In(1+x) x:OE
Explication : On a
e —1—x 1+x+””—22+o(;v2)—1—x B %—l—o(gﬂ) %,m
In(1+z) =0 In(1+2) e»0 In(l+2) 2=0 z 2
2\ 2y . _z*
2.19 In (1 4 2?) — arctan (%) ot
Explication : On a
4 6 4 4
2\ 2y _ .2 T a (.2 T 6 _ T A
ln(l—i—m) arctan(x)xzox 2+0(:1c) (CE S—i—o(m ))3:—>0 2—|—0(:E)$_>0 5
2.20 In (1 + sin(x)) o
Ezxplication : On pose u(z) = x + o () = 0. Alors
r—r

In (1 + sin(z)) = In(l+z+o0(x)) zoln(1+u(x)) zou(aj)+o(u($)) = z+4o(x)+o(x) ~ =

z— r— r— x—0 z—0

Attention d nouveau d ne pas faire de composition c¢’est-a-dire a écrire ici que
sin(x) ~ x tmplique In (1 +sin(x)) ~ =
(x) ~ a implig ( (@) ~

ce qui est un raisonnement fau.
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