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Correction du Devoir Maison 4
Equations complexes, calcul d’intégrales,

équations différentielles d’ordre 1

Du mardi 02 décembre

Problème I - Equations complexes
Soient A, B, C, I, O les points d’affixe respectivement zA = 1−i, zB =

√
2i, zC = 1+

(√
2− 1

)
i, zI = zA+zB

2
et ZO = 0. Soit f la fonction définie sur C \

{√
2i
}

par

∀z ∈ C \
¶√

2i
©

, f(z) = z − 1 + i

z −
√

2i
.

1. On a les égalités entre les complexes suivantes :

zA = 1− i =
√

2
Ç√

2
2 − i

√
2

2

å
=
√

2 e−i π
4 .

Et,
zB =

√
2i =

√
2 ei π

2 .

Conclusion,
zA =

√
2 e−i π

4 et zB =
√

2 ei π
2 .

2. Soit ∆ le discriminant de z2 − (1 + i) z + 2 + 2i. On a

∆ = (1 + i)2 − 4 (2 + 2i) = 1 + 2i− 1− 8− 8i = −8− 6i.

Soit (x, y) ∈ R2 et δ = x + iy. On a les équivalences suivantes :

δ2 = ∆ ⇔ x2 − y2 + 2ixy = −8− 6i

⇔


x2 − y2 = −8
2xy = −6
|δ|2 = |∆|

par unicité de la forme algébrique

⇔


x2 − y2 = −8
2xy = −6
x2 + y2 =

√
64 + 36 =

√
100 = 10

⇔


x2 = 1
2xy = −6
y2 = 9

L1 ← L1+L3
2

L3 ← L3−L1
2

⇔
®

x = 1
y = −3

OU

®
x = −1
y = 3

car xy ⩽ 0

⇔ δ = 1− 3i OU δ = −1 + 3i.

Fixons δ = 1− 3i, alors les solutions de l’équation sont

z1 = 1 + i + 1− 3i

2 = 1− i et z2 = 1 + i− 1 + 3i

2 = 2i.

Conclusion, l’ensemble des solutions est donné par

S = {1− i; 2i} .
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3. Soit (E) : z10 − (1 + i) z5 + 2 + 2i. Soit z ∈ C. Posons ω = z5. On a

(E) ⇔ ω2− (1 + i) ω +2i = 0.

Par la question précédente, on a

(E) ⇔ ω = 1− i =
√

2 e−i π
4 OU ω = 2i = 2 ei π

2

⇔ z5 =
√

2 e−i π
4 OU z5 = 2 ei π

2

⇔ ∃k ∈ J0; 4K, z =
Ä
21/2
ä1/5

e−i π
20 ei 2kπ

5 OU z = 21/5 ei π
10 ei 2kπ

5

⇔ ∃k ∈ J0; 4K, z = 21/10 ei
(8k−1)π

20 OU z = 21/5 ei
(4k+1)π

10

Conclusion,

S =
{

21/10 ei
(8k−1)π

20 ; 21/5 ei
(4k+1)π

10

∣∣∣ k ∈ J0; 4K
}

.

4. Soit θ ∈ R. On a les équivalences suivantes :

zA = ei θ (zB − zC) + zC ⇔ 1− i = ei θ
Ä√

2i− 1−
Ä√

2− 1
ä

i
ä

+ 1 +
Ä√

2− 1
ä

i

⇔ 1− i− 1− i
√

2 + i = ei θ (−1 + i)

⇔ −i
√

2 = ei θ
√

2
Ç
−
√

2
2 + i

√
2

2

å
⇔ −i = ei θ ei 3π

4

⇔ e−i π
2 = ei θ ei 3π

4

⇔ −π

2 ≡ θ +3π

4 [2π]

⇔ θ ≡ −π

2 −
3π

4 [2π]

⇔ θ ≡ −5π

4 ≡
3π

4 [2π] .

Conclusion, on obtient bien un angle solution et donc :

A est l’image de B par la rotation de centre C et d’angle 3π

4 .

5. (a) Soit z ∈ C \
{√

2i
}

. On a les équivalences entre complexes suivantes :

z ∈ f← (U) ⇔ f(z) ∈ U
⇔ f(z)f(z) = 1

⇔ z − 1 + i

z −
√

2i

z − 1− i

z +
√

2i
= 1

⇔ |z|2 − z − iz − z + iz + 1 + i− i + 1 = |z|2 +
√

2iz −
√

2iz + 2
car z ̸=

√
2i

⇔ − (z + z)− i (z − z) =
√

2i (z − z)
⇔ −2Re (z) + 2Im(z) = −2

√
2Im(z)

⇔
Ä√

2 + 1
ä

Im(z) = Re(z).

Posons x = Re(z) et y = Im(z). Dès lors,

z ∈ f← (U) ⇔ x =
Ä√

2 + 1
ä

y ⇔ z =
Ä√

2 + 1
ä

y + iy =
Ä√

2 + 1 + i
ä

y.
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On note que si z =
√

2i, on a x = 0 et y =
√

2 et 0 ̸=
(√

2 + 1
)√

2. Donc
√

2i ne fait pas partie
de l’ensemble solution. Conclusion,

f← (U) =
{Ä√

2 + 1 + i
ä

y ∈ C
∣∣∣ y ∈ R

}
.

(b) On note D l’ensemble des points dont l’affixe est dans f← (U). Si y = 0, on a

0 =
Ä√

2 + 1 + i
ä

y ∈ f← (U) ⇒ O ∈ D.

De plus,

zI = zA + zB

2 = 1− i +
√

2i

2 = 1
2 + i

√
2− 1
2

Si on prend y =
√

2−1
2 , on aÄ√

2 + 1 + i
ä

y =
Ä√

2 + 1 + i
ä √2− 1

2 =
2− 1 + i

(√
2− 1

)
2 =

1 + i
(√

2− 1
)

2 = zI .

Donc par la question précédente, zI ∈ f← (U) et donc I ∈ D.
Enfin, si y =

√
2− 1, on aÄ√

2 + 1 + i
ä

y =
Ä√

2 + 1 + i
ä Ä√

2− 1
ä

= 2− 1 + i
Ä√

2− 1
ä

= 1 + i
Ä√

2− 1
ä

= zC .

Donc zC ∈ f← (U) et donc C ∈ D. Conclusion,

Les points O, I et C appartiennent à D.

(c) Soit z ∈ C \
{√

2i
}

. On observe que

z ∈ f← (U) ⇔ f(z) ∈ U
⇔ |f(z)| = 1

⇔ |z − 1 + i|∣∣∣z −√2i
∣∣∣ = 1

⇔ |z − 1 + i| =
∣∣∣z −√2i

∣∣∣ car z ̸=
√

2i car M ̸= C

⇔ |z − zA| = |z − zB| .

Conclusion, on a bien

z ∈ f← (U) ⇔ |z − zA| = |z − zB| .

(d) Par la question précédente, pour M(z) un point du plan complexe différent de B, on a

M ∈ D ⇔ z ∈ f← (U)
⇔ |z − zA| = |z − zB|
⇔ AM = BM

⇔ M est sur la médiatrice de [AB] .

Répétons que zB /∈ f← (U) et donc B /∈ D. Donc

L’ensemble D est la médiatrice de [AB].
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6. Méthode 1, par les diagonales. On a vu que O ∈ D, C ∈ D. Or C ̸= O, donc D = (OC). Donc
par la question précédente, (OC) est la médiatrice de [AB]. Donc les diagonales [AB] et [OC] sont
perpendiculaires. De plus, zI = zA+zB

2 donc zI est le milieu de [AB]. Calculons I ′ (zI′) le milieu de
[OC] :

zI′ = zC + zO

2 =
1 +

(√
2− 1

)
i

2 = zI comme vu à la question 5.b

Donc I ′ = I et donc les diagonales se coupent en leur milieu et sont perpendiculaires. Conclusion,

ACBO est un losange.

Méthode 2, par les côtés. On a vu que O ∈ D, C ∈ D et que D est la médiatrice de [AB] donc
OA = OB et AC = CB. Montrons que OA = AC. On a

OA = |zA − z0| = |1− i| =
√

2

et
AC = |zC − zA| =

∣∣∣1 +
Ä√

2− 1
ä

i− 1 + i
∣∣∣ =

∣∣∣√2i
∣∣∣ =
√

2.

Donc on a bien OA = AC et donc OB = OA = AC = CB et ACBO a ses quatre côtés égaux.
Conclusion,

ACBO est un losange.

7. Soit θ ∈ R. On a les égalités entre complexes suivantes :

−
√

2i ei θ +1− i =
√

2 e−i π
2 ei θ +

√
2 e−i π

4

=
√

2
(

ei(θ−π
2 ) + e−i π

4

)
=
√

2 ei
θ − π

2 − π
4

2

Å
ei

θ − π
2 + π

4
2 + e−i

θ − π
2 + π

4
2

ã
par factorisation par l’angle moitié

=
√

2 ei( θ
2−

3π
8 )

(
ei( θ

2−
π
8 ) + e−i( θ

2−
π
8 )
)

=
√

2 ei( θ
2−

3π
8 ) 2 cos

Å
θ

2 −
π

8

ã
.

Conclusion, on a bien

∀ θ ∈ R, −
√

2i ei θ +1− i = 2
√

2 cos
Å

θ

2 −
π

8

ã
ei( θ

2−
3π
8 ) .

8. Soit n ∈ N, n ⩾ 2. Soit z ∈ C \
{√

2i
}

. On a les équivalences suivantes :

z ∈ f← (Un) ⇔ f(z) ∈ Un

⇔ ∃k ∈ J0; n− 1K, f(z) = ei 2kπ
n

⇔ ∃k ∈ J0; n− 1K,
z − 1 + i

z −
√

2i
= ei 2kπ

n

⇔ ∃k ∈ J0; n− 1K, z − 1 + i = ei 2kπ
n

Ä
z −
√

2i
ä

car z −
√

2i ̸= 0

⇔ ∃k ∈ J0; n− 1K, z
Ä
1− ei 2kπ

n

ä
= −
√

2i ei 2kπ
n +1− i.

A l’aide de la question précédente, avec θ = 2kπ
n , on obtient que

z ∈ f← (Un) ⇔ ∃k ∈ J0; n− 1K, z
Ä
1− ei 2kπ

n

ä
= 2
√

2 cos
Å

kπ

n
− π

8

ã
ei( kπ

n
− 3π

8 ) .
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De plus, si k = 0, on obtient

z
Ä
1− ei 2kπ

n

ä
= 0 = 2

√
2 cos

(
−π

8

)
e−i 3π

8 ce qui est faux.

Donc k = 0 et 1− ei 2kπ
n ̸= 0. Par suite, z ∈ f← (Un) si et seulement s’il existe k ∈ J1; n− 1K tel que

z =
2
√

2 cos
(

kπ
n −

π
8
)

ei( kπ
n
− 3π

8 )

1− ei 2kπ
n

=
2
√

2 cos
(

kπ
n −

π
8
)

ei( kπ
n
− 3π

8 )

ei kπ
n

Ä
e−i kπ

n − ei kπ
n

ä par factorisation par l’angle moitié

=
2
√

2 cos
(

kπ
n −

π
8
)

e−i 3π
8

e−i kπ
n − ei kπ

n

=
2
√

2 cos
(

kπ
n −

π
8
)

e−i 3π
8

−2i sin
(

kπ
n

)
=
√

2i
cos

(
kπ
n −

π
8
)

sin
(

kπ
n

) e−i 3π
8

=
√

2
cos

(
kπ
n −

π
8
)

sin
(

kπ
n

) ei π
8

Conclusion,

f← (Un) =
®
√

2
cos

(
kπ
n −

π
8
)

sin
(

kπ
n

) ei π
8

∣∣∣∣∣ k ∈ J1; n− 1K
´

.

Problème II - Calcul d’intégrales

On fixe dans tout ce problème I = ]0; +∞[ et on pose pour tout n ∈ N,

∀x ∈ I, Fn(x) =
∫ x

1

tn−1

1 + t2 dt.

Partie 1 : Fiez-vous aux Fi, n’en faîtes pas fi

1. Soit n ∈ N. Pour tout t ∈ I, 1 + t2 > 1 > 0 et t > 0 donc la fonction f : t 7→ tn−1

1+t2 est continue sur I

(y compris si n = 0 et donc tn−1 = 1
t !). De plus 1 ∈ I. Donc

par le théorème fondamental de l’analyse, la fonction Fn est bien définie sur I

et est même une fonction C 1 sur I en tant qu’unique primitive de f s’annulant en 1.

2. Soit x ∈ I. On a
F1(x) =

∫ x

1

1
1 + t2 dt.

On reconnaît la dérivée de la fonction arctan :

F1(x) = [arctan(t)]t=x
t=1 = arctan(x)− arctan(1).

Conclusion,
∀x ∈ I, F1(x) = arctan(x)− π

4 .
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3. Soit x ∈ I. On a
F2(x) =

∫ x

1

t

1 + t2 dt.

On reconnaît du u′

2u :

F2(x) = 1
2
î
ln
Ä∣∣∣1 + t2

∣∣∣äót=x

t=1
=

ln
(
1 + x2)− ln (2)

2 .

Conclusion,

∀x ∈ I, F2(x) =
ln

(
1 + x2)− ln (2)

2 .

Vérification : F ′(x) = 1
2

2x
1+x2 = x

1+x2 OK !

4. Soit x ∈ I. On a
F3(x) =

∫ x

1

t2

1 + t2 dt.

On extrait la partie entière :

F3(x) =
∫ x

1

t2 + 1− 1
1 + t2 dt

=
∫ x

1
1− 1

1 + t2 dt

= x− 1− [arctan(t)]t=x
t=1

= x− 1− arctan(x) + arctan(1).

Conclusion,
∀x ∈ I, F3(x) = x− arctan(x) + π

4 − 1.

Vérification : F ′3(x) = 1− 1
1+x2 = 1+x2−1

1+x2 = x2

1+x2 OK !

5. Soit (a, b, c) ∈ R3, pour tout t ∈ I, on a

1
t (1 + t2) = a

t
+ bt + c

1 + t2 ⇔ 1
t (1 + t2) =

a
(
1 + t2) + (bt + c) t

t (1 + t2)

⇔ 1
t (1 + t2) = at2 + a + bt2 + ct

t (1 + t2)

⇔ 1
t (1 + t2) = (a + b) t2 + ct + a

t (1 + t2) .

On note alors qu’il suffit de prendre
a + b = 0
c = 0
a = 1

⇔


b = −a = −1
c = 0
a = 1

.

Conclusion, pour a = 1, b = −1 et c = 0, on a

∀t ∈ I,
1

t (1 + t2) = 1
t
− t

1 + t2 .

Vérification : 1
t −

t
1+t2 = 1+t2−t2

t(1+t2) = 1
t(1+t2) OK !
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6. Soit x ∈ I. Pour n = 0, on a

F0(x) =
∫ x

1

t−1

1 + t2 dt =
∫ x

1

1
t (1 + t2) dt.

Donc d’après la question précédente,

F0(x) =
∫ x

1

1
t
− t

1 + t2 dt

=
ï
ln (|t|)− 1

2 ln
Ä∣∣∣1 + t2

∣∣∣äòt=x

t=1

= ln(x)− 1
2 ln

(
1 + x2)− 0 + 1

2 ln(2) car x > 0.

Conclusion,

∀x ∈ I, F0(x) = ln(x)− 1
2 ln

(
1 + x2) + 1

2 ln(2).

Vérification : F ′0(x) = 1
x −

1
2

2x
1+x2 = 1

x −
x

1+x2 OK !

7. Soit n ∈ N et x ∈ I. On a

Fn(x) + Fn+2(x) =
∫ x

1

tn−1

1 + t2 dt +
∫ x

1

tn+1

1 + t2 dt

=
∫ x

1

tn−1 + tn+1

1 + t2 dt par linéarité de l’intégrale

=
∫ x

1
tn−1 1 + t2

1 + t2 dt

=
∫ x

1
tn−1 dt.

Premier cas, si n ̸= 0, alors,

Fn(x) + Fn+2(x) =
ï

tn

n

òt=x

t=1
= xn

n
− 1

n
.

Second cas, si n = 0, alors

F0(x) + F2(x) =
∫ x

1

1
t

dt = [ln(t)]t=x
t=1 = ln(x).

On remarque que cela est cohérent avec les questions 3. et 6. car nous avions

F0(x) + F2(x) = ln(x)− 1
2 ln

(
1 + x2) + 1

2 ln(2) +
ln

(
1 + x2)− ln (2)

2 = ln(x).

Conclusion,

∀x ∈ I, ∀n ∈ N, Fn(x) + Fn+2(x) =
®

xn

n −
1
n si n ̸= 0

ln(x) si n = 0.

En particulier, pour n = 2,

∀x ∈ I, F2(x) + F4(x) = x2

2 −
1
2 ⇔ F4(x) = x2

2 − 1− F2(x).

Donc par la question 3.,

∀x ∈ I, F4(x) = x2

2 −
1
2 −

ln
(
1 + x2)− ln(2)

2 =
x2 − ln

(
1 + x2) + ln(2)− 1

2 .
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Partie 2 : Voici A, B, C. Jamais d’eux sans 3...

On admet que pour tout x ∈ R,
F3(x) = x− arctan(x) + π

4 − 1.

8. On note que la fonction t 7→ t arctan(t) est continue sur R donc sur
[
1;
√

3
]

et donc A existe . Posons

∀t ∈
î
1;
√

3
ó

,

®
u(t) = t2

2
v(t) = arctan(t).

Les fonctions u et v sont C 1 sur
[
1;
√

3
]

et

∀t ∈
î
1;
√

3
ó

,

®
u′(t) = t

v(t) = 1
1+t2 .

Donc par intégration par parties,

A =
∫ √3

1
t arctan(t) dt

=
ï

t2

2 arctan(t)
òt=√3

t=1
−

∫ √3

1

t2

2
1

1 + t2 dt

= 3
2 arctan

Ä√
3
ä
− 1

2 arctan(1)− 1
2F3
Ä√

3
ä

.

Donc par la question 4.,

A = 3
2 ×

π

3 −
1
2 ×

π

4 −
1
2

(√
3− arctan

Ä√
3
ä

+ π

4 − 1
)

= π

2 −
π

8 −
√

3
2 + π

6 −
π

8 + 1
2

= 5π

12 + 1−
√

3
2 .

Conclusion,

A = 5π

12 + 1−
√

3
2 .

9. On note que pour tout t ∈ R, 1 + e2t ⩾ 1 > 0. Donc la fonction t 7→ e3t

1+e2t est continue sur R donc
notamment sur [0; 1], donc B existe . Posons pour tout t ∈ [0; 1], s = et ⇔ t = ln(s). Si t = 0, s = 1.
Si t = 1, s = e. Enfin, la fonction ln est C 1 sur [1; e] et dt = ds

s . Ainsi,

B =
∫ 1

0

e3t

1 + e2t
dt =

∫ e

1

s3

1 + s2
ds

s
=

∫ e

1

s2

1 + s2 ds = F3 (e) .

Conclusion, par la question 4.,
B = e− arctan (e) + π

4 − 1.

10. Pour tout t ∈ [0; 1], 1 + t ⩾ 1 > 0 donc t 7→
√

t
1+t est continue sur [0; 1] donc

C existe.
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Posons s =
√

t. Si t = 0, s = 0 et si t = 3, s =
√

3. De plus t = s2. La fonction s 7→ s2 est C 1 sur[
0;
√

3
]

et dt = 2s ds. Donc par changement de variable,

C =
∫ 3

0

√
t

1 + t
dt

=
∫ √2

0

s

1 + s2 2s ds

= 2
∫ √3

0

s2

1 + s2 ds

= 2
Ä
F3
Ä√

3
ä
− F (0)

ä
.

Toujours par la question 4.

C = 2
(√

3− arctan
Ä√

3
ä

+ π

4 − 1− 0 + 0− π

4 + 1
)

= 2
√

3− 2π

3 .

Conclusion,

C = 2
√

3− 2π

3 .

Problème III - Equations différentielles d’ordre 1
Prérequis : On admet que la fonction exponentielle admet un développement limité à tout ordre au
voisinage de 0, autrement dit on admet que pour tout n ∈ N, il existe εn : R → R vérifiant lim

n→0
εn(0) = 0

et telle que

(⋆) ∀x ∈ R, ex =
n∑

k=0

xk

k! + xn εn(x),

On considère l’équation (E) d’inconnue une fonction y de R dans R dérivable telle que

(E) ∀x ∈ R, |x| y′(x)− (x + 1)y(x) = x2.

On définit également les équations suivantes :

∀x ∈ R∗+, |x| y′(x)− (x + 1)y(x) = x2,(E+)
∀x ∈ R∗+, |x| y′(x)− (x + 1)y(x) = 0,(E+

0 )
∀x ∈ R∗−, |x| y′(x)− (x + 1)y(x) = x2,(E−)
∀x ∈ R∗−, |x| y′(x)− (x + 1)y(x) = 0.(E−0 )

et on note respectivement S , S +, S +
0 , S − et S −

0 les solutions de (E), (E+), (E+
0 ), (E−) et (E−0 ).

Partie 1 : Qui positive, peut le +. Et qui peut le +...

1. Pour tout x ∈ R∗+, |x| = x > 0. Donc

(E+
0 ) ⇔ ∀x ∈ R∗+, y′(x)− x + 1

x
y(x) = 0.

La fonction x 7→ x+1
x = 1+ 1

x est continue sur R∗+ donc admet des primitives sur ]0; +∞[ en particulier
la fonction x 7→ x + ln(x) est une primitive de x 7→ x+1

x = 1 + 1
x sur R∗+. Donc y0 est une solution de

(E+
0 ), si et seulement s’il existe C ∈ R telle que

∀x ∈ R∗+, y0(x) = C ex+ln(x) = Cx ex .

En d’autres termes,

S +
0 =

ß
y0 : R∗+ → R

x 7→ Cx ex

∣∣∣∣ C ∈ R
™

= Vect
Å

R∗+ → R
x 7→ x ex

ã
.
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2. Soient y : R∗+ → R, y0 : R∗+ → R
x 7→ x ex et z : x 7→ y(x)

x ex . La fonction y est dérivable sur R∗+ si et

seulement si la fonction z est dérivable sur R∗+ et de plus pour tout x > 0,

y′(x) = z′(x)y0(x) + z(x)y′0(x).

Par conséquent,

y solution de (E+) ⇔ ∀x ∈ R∗+, y′(x)− x + 1
x

y(x) = x

⇔ ∀x ∈ R∗+, z′(x)y0(x) + z(x)y′0(x)− x + 1
x

z(x)y0(x)︸ ︷︷ ︸
=0 car y0 ∈ S +

0

= x

⇔ ∀x ∈ R∗+, z′(x) = x

y0(x) = x

x ex
= e−x car ∀x > 0, y0(x) ̸= 0.

Donc

y solution de (E+) ⇔ ∃C ∈ R, ∀x ∈ R∗+, z(x) = C − e−x

⇔ ∃C ∈ R, ∀x ∈ R∗+, y(x) =
(
C − e−x

)
x ex = Cx ex−x.

On a donc bien

S + =
ß

R∗+ → R
x 7→ −x + Cx ex

∣∣∣∣ C ∈ R
™

.

Partie 2 : ...peut le − (enfin plus ou moins).

3. Soit x ∈ R. On pose I(x) =
∫ x

0
t2 et dt, puis pour tout t ∈ R,

®
u(t) = et

v(t) = t2 . Les fonctions u et v sont

C 1 sur R et pour tout t ∈ R,
®

u′(t) = et

v′(t) = 2t
. Alors par intégration par parties,

I(x) =
[
t2 et

]x

t=0 −
∫ x

0
2t et dt = x2 ex−

∫ x

0
2t et dt.

On repose alors pour tout t ∈ R,
®

u(t) = et

v(t) = 2t
. Les fonctions u et v sont C 1 sur R et pour tout t ∈ R,®

u′(t) = et

v′(t) = 2
. Par une seconde intégration par partie, on obtient

I(x) = x2 ex−
[
2t et

]x

t=0 +
∫ x

0
2 et dt

= x2 ex−2x ex +
[
2 et

]t=x

t=0∫ x

0
t2 et dt =

(
x2 − 2x + 2

)
ex−2.

4. On a
(E−0 ) ⇔ ∀x ∈ R∗−, y′(x) + x + 1

x
y(x) = 0.

La fonction x 7→ −x+1
x = −1− 1

x est continue sur R∗− et admet donc des primitives sur R∗−, notamment
la fonction x 7→ −x− ln (|x|). Donc y est une solution de (E−0 ) si et seulement si

∃C ∈ R, ∀x ∈ R, y(x) = C e−x−ln(|x|) = C

|x|
e−x = C̃

x
e−x,
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avec C̃ = −C. En d’autres termes,

S −
0 =

ß
y0 : R∗− → R

x 7→ C
x e−x

∣∣∣∣ C ∈ R
™

= Vect
Ç

R∗− → R
x 7→ e−x

x

å
.

5. Soient y : R∗− → R, y0 : R∗− → R
x 7→ e−x

x

et z : x 7→ y(x)x ex. La fonction y est dérivable sur R∗− si et

seulement si la fonction z est dérivable sur R∗− et de plus pour tout x < 0,

y′(x) = z′(x)y0(x) + z(x)y′0(x).

Par suite,

y solution de (E−) ⇔ ∀x ∈ R∗−, −xy′(x)− x + 1
x

y(x) = x2

⇔ ∀x ∈ R∗−, y′(x) + x + 1
x

y(x) = −x

⇔ ∀x ∈ R∗−, z′(x)y0(x) + z(x)y′0(x) + x + 1
x

z(x)y0(x)︸ ︷︷ ︸
=0 car y0 ∈ S −

0

= −x

⇔ ∀x ∈ R∗−, z′(x) = −x

y0(x) = −x2 ex car ∀x < 0, y0(x) ̸= 0.

Or d’après la question (3.), on sait que x 7→ −
(
x2 − 2x + 2

)
ex est une primitive de x 7→ −x2 ex sur

R. Donc

y solution de (E−) ⇔ ∃C ∈ R, ∀x ∈ R∗−, z(x) = −
(
x2 − 2x + 2

)
ex +C

⇔ ∃C ∈ R, ∀x ∈ R∗−, y(x) =
−
(
x2 − 2x + 2

)
ex +C

x ex

⇔ ∃C ∈ R, ∀x ∈ R∗−, y(x) = −x + 2 + C e−x−2
x

.

Finalement, on a bien

S − =
®

R∗− → R
x 7→ −x + 2 + C e−x−2

x

∣∣∣∣∣ C ∈ R
´

.

Partie 3 : Lorsque les connexions se font, la solution apparaît

Soit y ∈ S .

6. Puisque pour tout x ∈ R, |x| y′(x) − (x + 1)y(x) = x2, on a notamment pour x = 0, −y(0) = 0 et
donc y(0) = 0 .

7. Si y est une solution de (E) sur R, alors y est une solution de (E+) sur R∗+ et de (E−) sur R∗− i.e.
y ∈ S + ∩S −. D’après la Partie A, il existe A ∈ R telle que pour tout x > 0,

y(x) = −x + Ax ex .

D’autre part, d’après la Partie C, il existe B ∈ R (attention de bien prendre un nouveau nom pour
cette nouvelle constante) telle que pour tout x < 0,

y(x) = −x + 2 + B e−x−2
x

.
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En couplant ces expressions avec la question précédente, on a

∀x ∈ R, y(x) =


−x + Ax ex si x > 0
y(0) = 0 si x = 0
−x + 2 + B e−x−2

x si x < 0.

8. Soit C ∈ R. Premier cas : supposons que C > 2. Alors, lim
x→0
x<0

C e−x−2 = C − 2 > 0 et lim
x→0
x<0

1
x

= −∞.

Donc, par quotient,

lim
x→0
x<0

C e−x−2
x

= −∞.

Deuxième cas, si C < 2, alors lim
x→0
x<0

C e−x−2 = C − 2 < 0 et donc,

lim
x→0
x<0

C e−x−2
x

= +∞.

Troisième cas, C = 2, on obtient alors une forme indéterminée mais l’on reconnait la limite du taux
d’accroissement de la fonction f : x 7→ e−x qui est bien dérivable en 0. Donc

lim
x→0
x<0

2 e−x−2
x

= 2 lim
x→0
x<0

e−x−1
x

= 2f ′(0) = −2 e−0 = −2.

Conclusion,

lim
x→0
x<0

2 e−x−2
x

=


−∞ si C > 2
−2 si C = 2
+∞ si C < 2.

9. Puisque la fonction y considérée est une solution de (E), par définition elle est nécessairement dérivable
sur R et donc notamment, y est continue en 0. Par suite, on a lim

x→0
x<0

y(x) = y(0) = 0. Puisque −x+2 −→
x→0

2, on déduit de la question précédente que y admet une limite finie à gauche en 0 si et seulement si
B = 2 et alors on a bien

lim
x→0
x<0

y(x) = −0 + 2− 2 = 0.

Donc il faut que B = 2 et alors y est continue à gauche en 0.

10. D’après la relation (⋆), pour n = 3, on sait qu’il existe une fonction ε̃3 : R → R telle que pour tout
x ∈ R,

ex = 1 + x + x2

2 + x3

6 + x3ε̃3(x)

ou encore pour tout x ∈ R∗−,

ex = 1− x + x2

2 −
x3

6 − x3ε̃3(−x).
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En particulier,

∀x ∈ R∗−, y(x) = −x + 2 + B e−x−2
x

= −x + 2 + 2 e−x−2
x

= −x + 2 +
2− 2x + x2 − x3

3 − 2x3ε̃3 (−x)− 2
x

= −x + 2− 2 + x− x2

3 − 2x2ε̃3 (−x)

= −x2

3 − 2x2ε̃3 (−x) .

On pose alors ε3 : R∗− → R définie pour tout x ∈ R∗− par ε3(x) = −ε̃3 (−x) et on a bien ε3(x) −→
x→0

0.
On obtient donc que

∀x ∈ R∗−, y(x) = −x2

3 + x2 ε3(x).

11. On a donc par passage à la limite dans l’égalité précédente quand x → 0, x < 0, sachant que
ε3(x) −→

x→0
0,

lim
x→0
x<0

y(x) = 0.

D’autre part, ∀A ∈ R,
lim
x→0
x>0

y(x) = lim
x→0
x>0
−x + Ax ex = 0.

Enfin, y(0) = 0, conclusion
lim
x→0

y(x) = 0 = y(0).

Donc la fonction y est continue en 0. La fonction y étant continue sur R∗+ et sur R∗− comme composée
de fonctions continues, on en déduit que la fonction y est continue sur R.

12. Pour que la fonction y soit dérivable sur R, il faut qu’elle soit dérivable en 0 et donc par définition que
la limite de son taux d’accroissement existe. Notamment la limite à droite de son taux d’accroissement
doit exister (pente à droite de la fonction). Or pour tout x ∈ R∗+,

y(x)− y(0)
x

= −x + Ax ex

x
= −1 + A ex .

La limite quand x→ 0, x > 0 de ce taux d’accroissement existe bien et vaut :

lim
x→0
x>0

y(x)− y(0)
x

= −1 + A.

Mais il faut de surcroit que cette limite coïncide avec la limite à gauche de son taux d’accroissement.
On a, d’après la question 10., pour tout x ∈ R∗−,

y(x)− y(0)
x

=
−x2

3 + x2 ε3(x)
x

= −x

3 + x ε3(x).

Et puisque ε3(x) −→
x→0

0, on en déduit que

lim
x→0
x<0

y(x)− y(0)
x

= 0.
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Donc pour que y soit dérivable en 0, il faut que les deux limites soient égales et donc que −1 + A = 0
i.e. A = 1. Dans ce cas, on a bien

lim
x→0
x ̸=0

y(x)− y(0)
x

= 0.

Conclusion, si A = 1, alors y est dérivable en 0 et y′(0) = 0.

13. Si n = 1, d’après (⋆), on sait qu’il existe ε1 : R→ R telle que ε1(x) −→
x→0

0 telle que

∀x ∈ R, ex = 1 + x + x ε1(x).

Par conséquent, puisque A = 1,

∀x ∈ R∗+, y(x) = −x + x ex = −x + x + x2 + x2 ε1(x) = x2 + x2 ε1(x).
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