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Correction du Devoir Maison 3
Calcul algébrique et fonctions usuelles

Du jeudi 13 novembre

Probleme I - Calcul algébrique

Pour tout n € N, (ax)yefo.ng €t (br)gefo;n> 0D POSE

Sn = Z akbn,k.
k=0

Partie 1 : Ce n’est pas toujours mauvais de bien connaitre ses ex(emples)

1. Soit a € R. On suppose que pour tout n € N, a, = a” et b, = 3. Soit n € N. On a alors les égalités

suivantes :
n n
k
Sn = Zakbn—k = Z3a .
k=0 k=0

On reconnait alors une somme géométrique de raison a. Conclusion,

5 — {S(n—f—l) sia=1

1—gnt1 . .
355, sia#1

2. Soit (a,b) € R, a # b. On suppose que pour tout n € N, a, = a" et b, = b". Soit n € N. On écrit que

B ek i1k 1 M o1k
S, = a"b" "t = P/ A L A — A akprti—1i= car a # b.
> > a0 g

On reconnailt alors la formule de Bernoulli & I'indice n + 1 € N*. Donc

1
S’n _ n+l bn+1 )
a—>b (a )
Conclusion,
n+l _ pn+l
Vn €N, Sp = u
a—>b

3. Soit n € N. On pose pour tout k € [0;n], ap = (Z) et b, = 2. On a les égalités entre réels suivantes :

5= (Z) k=3 <Z) 1hont,

k=0 k=0

On reconnailt un bindme de Newton. Ainsi,
Sp=(1+4+2)"=23"

Conclusion,
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4. On suppose que pour tout n € N, a, =n+ 1 et b, = n?. Soit n € N. On a

S, = Zn:akbn_k = zn: (k+1)(n— k)

k=0 k

Eo
o

> (n

k
:n221+(n2—2n)2k+(1—2n)2k2+2k3
k=0 k=0 k=0 k=0

Ces sommes étant usuelles, on obtient,

—2nk® + k® + n® — 2nk + k7)

=0
(k+1) (n* — 2nk + k?)
(n*k

=0

n(n+1)

nn+1)2n+1) n2(n+1)>°
6 + 4

(I2n+6n(n—2)+2(1—2n)2n+1)+3n(n+1))

Sp,=n?>(n+1)+n(n—2) + (1 —2n)

~n(n+1)
12
n(n+1) 2 2 2
:T(12n+6n —12n+2(1—4n)+3n —|—3n)
nn+1), ,
nn+1)(n+1)(n+2)

12 ’

Conclusion,

2
Vn €N, Sn:n(n+11)2(n+2).

5. Soient x € R*. On suppose que pour tout n € N, a,, = b,, = ch (nx).

(a) Soit (n,k) € N2. Par définition, on a
ekz + e—kz o(n—k)z + e—(n—k)z

2 2
ekz+(n—Fk)z +ekm—(n—k)ac _|_e—kac+(n—k)a: +e—k:v—(n—k)a;

4
ene +e—(n—2k)z _|_e(n—2k)a: e
4
ch (nz) + ch ((n — 2k)x)
5 .

ch (kz)ch ((n — k)x) =

Conclusion,

ch (nz) +ch ((n — 2k)a:)

V(n,k) €N?  ch(kx)ch((n—k)z)= 5

(b) Soit n € N. Par définition puis la question précédente,
Sp =Y ch(kz)ch((n—k)z)
k=0
Zn: ch (nx) 4+ ch ((n — 2k)x)
2

=0
%Zch(na:) + % S ch ((n — 2k)z).

k=0 k=0

2/i3
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La premiere somme est celle d'une constante car ch (nx) ne dépend pas du compteur k. Re-
développons sous forme d’exponentielle la seconde :

g (n+ 1) ch (nx) 1 i (n=2k)a 4 g=(n—2k)z
S N il e B
2 Ta 2
— (’I’L + 1)2Ch TLSL’ % zn: nx 72km _’_% zn: e T er::v
k=0 k=0
(n+1)ch(nz) " & o2 e_”x SN
- 2 TZ N L )

k=0
On reconnait alors deux sommes géométriques de raison e 2 # 1 et e # 1 car x # 0 :

g (TL + 1) ch (nx> N e | — o—2(ntl)z N e~ 2(ntl)z _q
" 2 4 1—e 2 4 e2r _1

Par factorisation par ’angle moitié,

(n + 1) ch (nx) ene ef(nJrl)x e(nJrl)x _ ef(n+1)x e nT e(nJrl):t e(nJrl)x _ ef(nJrl)z

Sn = 2 * 4 e® et —e " 4 e’ ef —e™ 7
_ (n+1)ch(nz)  12sh((n+1)z)  12sh((n+1)x)
N 2 4 2sh(x) 4 2sh(x)
_ (n+1)ch(nz) sh((n+1)x)
2 2sh (x)

Conclusion,

(n+ 1) ch (nx) n sh((n+1)z)

R* n =
Ve € R*, Vn € N, S, 5 25h (2)

n

6. Soit n € N. On pose pour tout k € [0;n], ax = Z

. et by = 1. Par définition, on a
! +1

n—zakbn k_ZZerl

k=0i=k

On est donc en présence d’'une somme double triangulaire :

n )
1
S - - .
' 0<l§<nz+ ;:)z:: Ji+1

indépendant de k
i

2!

k

n

Z

0
n

x (14 1)

n

Z

n+ 1.

Conclusion,
S, =n+1.
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Partie 2 : Parfois on reste méme en relation de fagcon récurrente

On suppose dans cette partie que pour tout n € N,

b 1 2n
a, = = .
" " n+1\n

On obtient alors 'expression suivante de S, et on pose également T,, par, pour tout n € N,

n n
Sn = Z ApCp— et T, = Z kapa,—p.
k=0 k=0

7. On a les calculs suivants :

1/0 1/2
_14_14!_2 _16_16!_5><6_5
“2=3\2) T 3211~ “=y\3) T a3 T 2x3
1/(8 1 8! 8XT7Tx6
“ 5(4> FA4l  Ax3x2
Par suite,
S():ag:l
ST =apa1 +ajap=1+1=2
So = apas +aja; +asag=2+1+2=5
S3 = apas + ajas +asa; +asag =5+2+2+5=14.
Conclusion,

a0:a1:1 a2:2 a3:5 CL4:14 S():l 51:2 S2:5 53:14.

On constate que pour tout n € [0;3], S, = an+1, on conjecture donc que

’VneN, Sn = Gnt1-

8. Calculons. Soit n € N. On a les équivalences suivantes :

1 2n+2 1 2n
2 =2(2 1 2) —— =2(2 1
(n+2)ana =20+ an & (n+ >n+2(n+1) (2n+ >n+1<n)
(2n +2)! 2n+1(2n)!
& =2
(n+1)!(n+1)! n+1 nln!
(2n+2) (2n+1) (2n)! 22n +1(2n)!
(n+ 1) (n)! (n)! n+1 nln!
2 2
& (n:_l) =2 car tous les termes sont strictement positifs
n
& 2=2.

La derniere assertion étant naturellement vraie, on en conclut que

Vn € N, (n+2)an+1:2(2n+1)an.‘

4/3
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9. Soit n € N. Par définition, on a

n+1 n+1
Thy1+ Spp1 = Z kapany1—k + Z akOn41—k
k=0 k=0
n+1
=Y (k+1)apani1-k
k=0
n+1
=(0+1)apant+1 + Z (k4 1) agant1—x
k=1

Par le glissement d’indice k =k —1ie. k=k+1,onasik=1,k=0etsik=n+1,k=mn.On
obtient donc

n
Tht1+ Spt1 = Gnt1 + Z (k + 2) Ay 11 1 car ag = 1
k=0
n
= Qp+1 + Z (k+2)ags10n—k car lindice est muet.
k=0
Conclusion,

n
Vn €N, Thy1+ Spt1 = apyr + Z (k +2) apy10n—p-
k=0

10. Soit n € N. Par la question précédente, on a
n
Try1+ Spy1 = apyr + Z (k =+ 2) apy10n—-
k=0
Or par la question [8.) pour tout k € [0;n], (k + 2) ag+1 = 2 (2k + 1) ag. Ainsi,

n
Trni1 + Sng1 = Gpg1 + Z 22k +1) aran—p
k=0

n
=apy1 + Z (4kagan— + 2aan—r)
k=0

n n
=ap4+1 +4 Z kagan_p + 2 Z Gy
k=0 k=0

= Qpy1 + 4T, + 25,.

Conclusion, on a bien montré que

Vn €N, Tov1 + Sny1 = ang1 + 4T, + 25,

11. (a) Soit n € N. Par 'inversion d’indice k =n — kie. k=n—k,sik =0,k
On écrit

netsik=n,k=0.

n

n
T, = Z kapan—p = Z (n — l%) a, _ipaj
k=0 k=0

L’indice de sommation étant muet, on obtient bien que

Vn € N, T, = Z(n—k‘)akan_k.
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(b) Soit n € N. Par la question précédente, on a T, = >y _o (n — k) aga,—. Donc,

n n
T,=n Z ApQp—k — Z kapan,_, = nSy, — T,
k=0 k=0

Autrement dit
2T, = nS,.

Conclusion,

VneN, T, = gsn.

12. Soit n € N. Par la question [10.] on a
Thi1 + SnJrl = ap41 + 4T, + 25,.

Or d’apres la question précédente, T, 11 = "T‘HSHH et T, = §.Sy,. Ainsi,
n+3
2

n—+1

n
SnJrl + SnJrl = ap4+1 + 4§Sn + 25, < Sn+1 = Qp41 + (2n + 2) Sh.

Conclusion,

n+3

Vn €N, Sn+1 = anty1 +2(n+1)S,.

13. Pour tout n € N, posons #(n) : « S, = ap4+1 ». Procédons par récurrence.
Initialisation. Si n = 0. Alors, on a déja vu que Sy = 1 = a;. Donc £(1) est vraie.

Hérédité. Soit n € N. Montrons que #(n) = Z(n+1). Supposons & (n) vraie i.e. S;, = an41. Alors,
par la question précédente,

2 2
Sn+1:man+1+m2(n+l)5n carn+3>0

2 4(n+1)

a —a ar hypothése de récurrence
n+3 n+3 par hyp

Or par la question |8 /au rang n+ 1, ona (n+3)apr2 =22n+ 2+ 1) apy1 = 2(2n + 3) ap41. Ainsi,

dn+6 n+3
n+322n+3

Spt1 = )an+2 = Qn+2-

Donc & (n + 1) est alors aussi vraie.
Conclusion, pour tout n € N, Z(n) est vraie.

Conclusion,

\VneN, S, =an.|

14. On procede par récurrence forte. Posons pour tout n € N, Z(n) : « a, € N. »
Initialisation. Par la question [7.|ap = 1 € N. Donc £2(0) est vraie.

Hérédité. Soit n € N. Montrons que (Vk € [0;n], £ (k) vraie) = Z(n + 1) vraie. Supposons que
pour tout k € [0;n], £ (k) est vraie :

Vk € [0;n], ar € N.

JE
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Montrons que &(n + 1) est vraie. Par la question précédente,
n
ant1 = Sp = Z apGp—k-
k=0

Or pour tout k € [0;n], ar € N. De méme si k € [0;n], alors n — k € [0; k], donc a,,_x € N. Ainsi,
pour tout k € [0;n], aga,—r € N. Donc en sommant,

n
ap4+1 = Z apan—p €N
k=0
et Z(n+ 1) est vraie.

Conclusion, pour tout n € N, Z(n) est vraie :

VneN,  a,€N.|

Probléme II - Fonctions usuelles

On considere les fonctions définies lorsque c’est possible par

. (T B x
f(x) = arcsin (5 - 1> et g(z) = 2arctan ( . a:) .
On souhaite montrer 1’égalité suivante :
7r
vee 04, g(@) = flz) + 5. ()
Partie 1 : Méme si g a du pi en plus, il n’est pas vache

1. Soit Dy le domaine de définition de f. Soit € R. On a les équivalences suivantes :

reD; —1<g—1<1 o 0<g<2 & 0<z<A
Conclusion,
P =[0;4].
2. On a
f(0) = arcsin(—1) = —g
2
f(2) = arcsin <2 = 1> = arcsin(0) =0
342 3
f (\/3—1— 2) = arcsin (\[; — 1) = arcsin ({) = %
Conclusion,

NB : on observe bien que 0 € [0;4], 2 € [0;4] et 0 < /3 +2<2+2=
3. Soit Dy le domaine de dérivabilité de f. Soit x € R. On a
reDp  «  —l<z-1<1
x
& 0<—-<2
< 5 <
= 0<z <4

Conclusion,

/i3
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4. Soit x € Df/,
1/2
fla)= ——L2
1-(3-1)
B 1
2/1-Z +2—1
B 1
B 2
2¢\/x —
_ 1
Var — x?
1
 Jz(4—)
Conclusion,
1
Vz € |0;4], "(z) =
04l @)= s
5. Soit I le domaine de définition de g. Soit x € R. On a les équivalences suivantes :
€T .
rel & 1/ existe
4—x
4 — 0
o { s
1220
x>0 x<0
= ou
4—x>0 4—x<0
z =0 z<0 :
ou impossible
4>z 4<x
0<x <4,
Conclusion,
I =10;4].
6. On a
2 T m
g(0) = 2arctan(0) =0 et g(2) = 2arctan 3]~ 2arctan (1) = 21 =35

Conclusion,

On note bien que 0 € I et2 € I.

7. Soit x € I. On a les équivalences suivantes :

g(x) = g

& arctan <

-

8

& 2arcta ( w > T
rctan = —
4—x 3

x ) T acta<1>
= — = arctan | —
4 —x 6 V3

par injectivité de la fonction arctan.
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Attention d ne pas composer par la fonction tangente qui n’est pas injective elle !

(2) s - T 1 >0
r)=— =- car >
g 3 i-z 3 i-z
& 3r=4—=x card —x #0
= 4x =
= r=1.
Conclusion,
g(x):g & r =1

Vérification, si x =1, g(1) = Qarctan( 4711) = 2arctan (%) =2 =73 OK!

8. Soit I’ le domaine de dérivabilité de g. Soit = € I (sinon g(z) n’est méme pas définie). On a

T
rel & yRie Ocar u + +/u n’est pas dérivable en 0
-
x>0
s {4 0 carx >0carx el
- >

= 0<z<4.

Conclusion,

I' =10;4].

9. Soit € I'. On a les égalités entre réels suivantes :

") = 2———
g () 1+( ﬁ)Q

o 1 ( x)/ 1
79 = -/ 1+ 75

4—z4—x+zx 1
v (4-x)? 1455

_ JA—x A4 4—x
V2 4—2)d-z+ta

Conclusion,
1
Vz € ]0;4], "(z) =
0L g) = s
10. Par les questions [4] et [9]
Ve e]od[,  f(x) =4'(2).
Puisque |0; 4] est un intervalle, on en déduit que
AC e R, Vx €]0;4], f(x) =g(z)+C.

YE
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En évaluant en 2, par les questions 2] et

fQ) =92 +C & 0=g+c & cz—g.
Ainsi,
Veelodl,  f@)=g@)-5 & @)+ =g

2
Or par passage a la limite quand = — 0, par continuité de la fonction f en 0 de la fonction g en 0,

Conclusion,

v e 04,  g(x) = f(a)+ =

Partie 2 : La trigo fait aussi trivialement le tri
On fixe x € [0;4].

11. Soit u € |-3; 5[

(a) La fonction tan est dérivable sur |—%; %[ donc en u et

tan’(u) = 1 + tan?(u).

(b) D’autre part, on sait également que

1
cos?(u)’

tan’(u)

)

(c) Soit t € R. Posons u = arctan(t). Alors u € |—%; 5 [. Donc par les deux questions précédentes,

2
1+ tan?(u) = cos;(u) = cos® (u) = Htalm?(u) ' {(1:0—7- t(gr)ﬂiu()) >0
o cos? (arctan(t)) = 1+ tan? (1arctan(t))
VRN cos? (arctan(t)) = 1 —itz
Conclusion,
1
Vt € R, cos? (arctan(t)) = el

10//13]



12.

13.

14.

On sait que pour tout a € R, cos (2a) = 2cos?(a) — 1. Donc,

cos (g(x)) = cos <2 arctan (\/Z))
= 2 cos? (arctan( 4fx>) -1

1 T
=2——1 par la question précédente avec t = 1
—x

1+ ( ﬁ)Q

Conclusion,

cos (g(z) = 1 -

On a les égalités entre réels suivantes :
77

cos (f(a?) + 5) = —sin (f(z))

o i (3 1)
= — S {arcsin | — —
2

Conclusion,

Par les deux questions précédentes,

cos(g(xz))=1— g = cos (f(a;) + —) .
Donc il existe k € Z tel que
g(x) = f(z) + g + 2km ou g(x) =—f(x) — T 4+ k.
Or pour tout u € [—1;1], arcsin(u) € [-5; 5]. Donc
f@el-53] & f@+F e,
D’autre part, pour tout u € R, arctan(u) € [0; o [ Donc pour u = \/g € Ry,
g(x) = 2arctan(u) € [0;7].

Nécessairement, k = 0 et

T
o(@) = f(x) + 0.
Ceci est vrai pour z € [0;4[ quelconque. Conclusion,
T
vee 0l gle) = fla)+ o (%)

Mathématiques PTSI, DM3 Cor 2025-2026



c
1T D
C -

Partie 3 : Dire que l’on finit en beauté n’est certainement pas une hyperbole
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15. Soit y € R. On a les équivalences suivantes :

Y ey
ch(y) = V2 & % =2 & eV +e ¥ =22

Posons X = eY. Des lors,

1

ch(y) =vV2 & X+Y:2\@
& X2 4+1=2V2X car X =€ #0
o X2 -2V2X +1=0.

Soit A le discriminant associé. On a A = 8 — 4 = 4. Ainsi,

2v2 42
ch(y) = V2 & X:\/;—F:\/i—i—l oU X =+v2-1

& ey =v2+1 0U &/ =v2-1
& yzln(ﬂ%—l) ou yzln(\/ﬁ—l) car vV24+1>0et v2—1>0.

Conclusion, ’ensemble des solutions de I’équation est donné par

7 ={n(v2+1);mn(vV2-1)}.

16. Soit A= {y € R|2ch?(y) € [0;4[}. Soit y € R. On a les équivalences suivantes :

ye A & 2ch?(y) € [0;4]
& 0<2ch?(y) < 4
& 0<ch?(y) <2
& —V2 < ch(y) < V2
& ch(y) < V2 car ch(y) > 1.

Or par le graphe de la fonction ch et la question précédente, on obtient

T —00 In (ﬂ - 1) 0 In (\/§+ 1) +00

ch \ /

Conclusion,

A=]n(v2-1);ln(vV2+1)[.

12/13
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h2
& 2arctan 2 = arcsin ( ch2( )—1) +
2 — ch*(
9 s
= 2arctan | ———=— | = arcsin (ch’(y) — 1) + — car ch(y) >0
V2 - ch2(y) 2
h
& 2 arctan _chly) ) = arcsin (sh*(y)) + z car ch?(y) — 1 = sh?(y).
\/2 — ch?(y) 2
Conclusion,
ch(y)

Yy € A, 2arctan = arcsin (shQ(y)) + g

2 — ch?(y)
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