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Correction du Devoir Maison 3
Calcul algébrique et fonctions usuelles

Du jeudi 13 novembre

Problème I - Calcul algébrique

Pour tout n ∈ N, (ak)k∈J0;nK et (bk)k∈J0;nK, on pose

Sn =
n∑

k=0
akbn−k.

Partie 1 : Ce n’est pas toujours mauvais de bien connaitre ses ex(emples)

1. Soit a ∈ R. On suppose que pour tout n ∈ N, an = an et bn = 3. Soit n ∈ N. On a alors les égalités
suivantes :

Sn =
n∑

k=0
akbn−k =

n∑
k=0

3ak.

On reconnaît alors une somme géométrique de raison a. Conclusion,

Sn =
®

3 (n + 1) si a = 1
31−an+1

1−a si a ̸= 1
.

2. Soit (a, b) ∈ R, a ̸= b. On suppose que pour tout n ∈ N, an = an et bn = bn. Soit n ∈ N. On écrit que

Sn =
n∑

k=0
akbn−k =

n+1−1∑
k=0

akbn+1−1−k = 1
a − b

(a − b)
n+1−1∑

k=0
akbn+1−1−k car a ̸= b.

On reconnaît alors la formule de Bernoulli à l’indice n + 1 ∈ N∗. Donc

Sn = 1
a − b

(
an+1 − bn+1) .

Conclusion,

∀n ∈ N, Sn = an+1 − bn+1

a − b
.

3. Soit n ∈ N. On pose pour tout k ∈ J0; nK, ak =
(n

k

)
et bk = 2k. On a les égalités entre réels suivantes :

Sn =
n∑

k=0

Ç
n

k

å
2n−k =

n∑
k=0

Ç
n

k

å
1k2n−k.

On reconnaît un binôme de Newton. Ainsi,

Sn = (1 + 2)n = 3n.

Conclusion,
Sn = 3n.
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4. On suppose que pour tout n ∈ N, an = n + 1 et bn = n2. Soit n ∈ N. On a

Sn =
n∑

k=0
akbn−k =

n∑
k=0

(k + 1) (n − k)2

=
n∑

k=0
(k + 1)

(
n2 − 2nk + k2)

=
n∑

k=0

(
n2k − 2nk2 + k3 + n2 − 2nk + k2)

= n2
n∑

k=0
1 +

(
n2 − 2n

) n∑
k=0

k + (1 − 2n)
n∑

k=0
k2 +

n∑
k=0

k3

Ces sommes étant usuelles, on obtient,

Sn = n2 (n + 1) + n (n − 2) n (n + 1)
2 + (1 − 2n) n (n + 1) (2n + 1)

6 + n2 (n + 1)2

4

= n (n + 1)
12 (12n + 6n (n − 2) + 2 (1 − 2n) (2n + 1) + 3n (n + 1))

= n (n + 1)
12

(
12n + 6n2 − 12n + 2

(
1 − 4n2)+ 3n2 + 3n

)
= n (n + 1)

12
(
n2 + 3n + 2

)
= n (n + 1) (n + 1) (n + 2)

12 .

Conclusion,

∀n ∈ N, Sn = n (n + 1)2 (n + 2)
12 .

5. Soient x ∈ R∗. On suppose que pour tout n ∈ N, an = bn = ch (nx).

(a) Soit (n, k) ∈ N2. Par définition, on a

ch (kx) ch ((n − k)x) = ekx + e−kx

2
e(n−k)x + e−(n−k)x

2

= ekx+(n−k)x + ekx−(n−k)x + e−kx+(n−k)x + e−kx−(n−k)x

4

= enx + e−(n−2k)x + e(n−2k)x + e−nx

4

= ch (nx) + ch ((n − 2k)x)
2 .

Conclusion,

∀ (n, k) ∈ N2, ch (kx) ch ((n − k)x) = ch (nx) + ch ((n − 2k)x)
2 .

(b) Soit n ∈ N. Par définition puis la question précédente,

Sn =
n∑

k=0
ch (kx) ch ((n − k)x)

=
n∑

k=0

ch (nx) + ch ((n − 2k)x)
2

= 1
2

n∑
k=0

ch (nx) + 1
2

n∑
k=0

ch ((n − 2k)x) .
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La première somme est celle d’une constante car ch (nx) ne dépend pas du compteur k. Re-
développons sous forme d’exponentielle la seconde :

Sn = (n + 1) ch (nx)
2 + 1

2

n∑
k=0

e(n−2k)x + e−(n−2k)x

2

= (n + 1) ch (nx)
2 + 1

4

n∑
k=0

enx e−2kx +1
4

n∑
k=0

e−nx e2kx

= (n + 1) ch (nx)
2 + enx

4

n∑
k=0

(
e−2x

)k + e−nx

4

n∑
k=0

(
e2x
)k

.

On reconnait alors deux sommes géométriques de raison e−2x ̸= 1 et e2x ̸= 1 car x ̸= 0 :

Sn = (n + 1) ch (nx)
2 + enx

4
1 − e−2(n+1)x

1 − e−2x
+ e−nx

4
e2(n+1)x −1

e2x −1 .

Par factorisation par l’angle moitié,

Sn = (n + 1) ch (nx)
2 + enx

4
e−(n+1)x

e−x

e(n+1)x − e−(n+1)x

ex − e−x
+ e−nx

4
e(n+1)x

ex

e(n+1)x − e−(n+1)x

ex − e−x

= (n + 1) ch (nx)
2 + 1

4
2 sh ((n + 1)x)

2 sh (x) + 1
4

2 sh ((n + 1)x)
2 sh (x)

= (n + 1) ch (nx)
2 + sh ((n + 1)x)

2 sh (x) .

Conclusion,

∀x ∈ R∗, ∀n ∈ N, Sn = (n + 1) ch (nx)
2 + sh ((n + 1)x)

2 sh (x) .

6. Soit n ∈ N. On pose pour tout k ∈ J0; nK, ak =
n∑

i=k

1
i + 1 et bk = 1. Par définition, on a

Sn =
n∑

k=0
akbn−k =

n∑
k=0

n∑
i=k

1
i + 1 .

On est donc en présence d’une somme double triangulaire :

Sn =
∑

0⩽k⩽i⩽n

1
i + 1 =

n∑
i=0

i∑
k=0

1
i + 1︸ ︷︷ ︸

indépendant de k

=
n∑

i=0

1
i + 1

i∑
k=0

1

=
n∑

i=0

1
i + 1 × (i + 1)

=
n∑

i=0
1

= n + 1.

Conclusion,
Sn = n + 1.
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Partie 2 : Parfois on reste même en relation de façon récurrente

On suppose dans cette partie que pour tout n ∈ N,

an = bn = 1
n + 1

Ç
2n

n

å
.

On obtient alors l’expression suivante de Sn et on pose également Tn par, pour tout n ∈ N,

Sn =
n∑

k=0
akan−k et Tn =

n∑
k=0

kakan−k.

7. On a les calculs suivants :

a0 = 1
1

Ç
0
0

å
= 1 a1 = 1

2

Ç
2
1

å
= 1

a2 = 1
3

Ç
4
2

å
= 1

3
4!

2!2! = 2 a3 = 1
4

Ç
6
3

å
= 1

4
6!

3!3! = 5 × 6
2 × 3 = 5

a4 = 1
5

Ç
8
4

å
= 1

5
8!

4!4! = 8 × 7 × 6
4 × 3 × 2 = 2 × 7 = 14.

Par suite,

S0 = a0 = 1
S1 = a0a1 + a1a0 = 1 + 1 = 2
S2 = a0a2 + a1a1 + a2a0 = 2 + 1 + 2 = 5
S3 = a0a3 + a1a2 + a2a1 + a3a0 = 5 + 2 + 2 + 5 = 14.

Conclusion,

a0 = a1 = 1 a2 = 2 a3 = 5 a4 = 14 S0 = 1 S1 = 2 S2 = 5 S3 = 14.

On constate que pour tout n ∈ J0; 3K, Sn = an+1, on conjecture donc que

∀n ∈ N, Sn = an+1.

8. Calculons. Soit n ∈ N. On a les équivalences suivantes :

(n + 2) an+1 = 2 (2n + 1) an ⇔ (n + 2) 1
n + 2

Ç
2n + 2
n + 1

å
= 2 (2n + 1) 1

n + 1

Ç
2n

n

å
⇔ (2n + 2)!

(n + 1)! (n + 1)! = 22n + 1
n + 1

(2n)!
n!n!

⇔ (2n + 2) (2n + 1) (2n)!
(n + 1)2 (n)! (n)!

= 22n + 1
n + 1

(2n)!
n!n!

⇔ (2n + 2)
n + 1 = 2 car tous les termes sont strictement positifs

⇔ 2 = 2.

La dernière assertion étant naturellement vraie, on en conclut que

∀n ∈ N, (n + 2) an+1 = 2 (2n + 1) an.
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9. Soit n ∈ N. Par définition, on a

Tn+1 + Sn+1 =
n+1∑
k=0

kakan+1−k +
n+1∑
k=0

akan+1−k

=
n+1∑
k=0

(k + 1) akan+1−k

= (0 + 1) a0an+1 +
n+1∑
k=1

(k + 1) akan+1−k

Par le glissement d’indice k̃ = k − 1 i.e. k = k̃ + 1, on a si k = 1, k̃ = 0 et si k = n + 1, k̃ = n. On
obtient donc

Tn+1 + Sn+1 = an+1 +
n∑

k̃=0

(
k̃ + 2

)
ak̃+1an+1−k̃−1 car a0 = 1

= an+1 +
n∑

k=0
(k + 2) ak+1an−k car l’indice est muet.

Conclusion,

∀n ∈ N, Tn+1 + Sn+1 = an+1 +
n∑

k=0
(k + 2) ak+1an−k.

10. Soit n ∈ N. Par la question précédente, on a

Tn+1 + Sn+1 = an+1 +
n∑

k=0
(k + 2) ak+1an−k.

Or par la question 8., pour tout k ∈ J0; nK, (k + 2) ak+1 = 2 (2k + 1) ak. Ainsi,

Tn+1 + Sn+1 = an+1 +
n∑

k=0
2 (2k + 1) akan−k

= an+1 +
n∑

k=0
(4kakan−k + 2akan−k)

= an+1 + 4
n∑

k=0
kakan−k + 2

n∑
k=0

akan−k

= an+1 + 4Tn + 2Sn.

Conclusion, on a bien montré que

∀n ∈ N, Tn+1 + Sn+1 = an+1 + 4Tn + 2Sn.

11. (a) Soit n ∈ N. Par l’inversion d’indice k̃ = n − k i.e. k = n − k̃, si k = 0, k̃ = n et si k = n, k̃ = 0.
On écrit

Tn =
n∑

k=0
kakan−k =

n∑
k̃=0

(
n − k̃

)
an−k̃ak̃

L’indice de sommation étant muet, on obtient bien que

∀n ∈ N, Tn =
n∑

k=0
(n − k) akan−k.
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(b) Soit n ∈ N. Par la question précédente, on a Tn =
∑n

k=0 (n − k) akan−k. Donc,

Tn = n
n∑

k=0
akan−k −

n∑
k=0

kakan−k = nSn − Tn.

Autrement dit
2Tn = nSn.

Conclusion,
∀n ∈ N, Tn = n

2 Sn.

12. Soit n ∈ N. Par la question 10., on a

Tn+1 + Sn+1 = an+1 + 4Tn + 2Sn.

Or d’après la question précédente, Tn+1 = n+1
2 Sn+1 et Tn = n

2 Sn. Ainsi,

n + 1
2 Sn+1 + Sn+1 = an+1 + 4n

2 Sn + 2Sn ⇔ n + 3
2 Sn+1 = an+1 + (2n + 2) Sn.

Conclusion,

∀n ∈ N,
n + 3

2 Sn+1 = an+1 + 2 (n + 1) Sn.

13. Pour tout n ∈ N, posons P(n) : « Sn = an+1 ». Procédons par récurrence.
Initialisation. Si n = 0. Alors, on a déjà vu que S0 = 1 = a1. Donc P(1) est vraie.
Hérédité. Soit n ∈ N. Montrons que P(n) ⇒ P(n+1). Supposons P(n) vraie i.e. Sn = an+1. Alors,
par la question précédente,

Sn+1 = 2
n + 3an+1 + 2

n + 32 (n + 1) Sn car n + 3 > 0

= 2
n + 3an+1 + 4 (n + 1)

n + 3 an+1 par hypothèse de récurrence

= 4n + 6
n + 3 an+1.

Or par la question 8. au rang n + 1, on a (n + 3) an+2 = 2 (2n + 2 + 1) an+1 = 2 (2n + 3) an+1. Ainsi,

Sn+1 = 4n + 6
n + 3

n + 3
2 (2n + 3)an+2 = an+2.

Donc P(n + 1) est alors aussi vraie.
Conclusion, pour tout n ∈ N, P(n) est vraie.
Conclusion,

∀n ∈ N, Sn = an+1.

14. On procède par récurrence forte. Posons pour tout n ∈ N, P(n) : « an ∈ N. »
Initialisation. Par la question 7. a0 = 1 ∈ N. Donc P(0) est vraie.
Hérédité. Soit n ∈ N. Montrons que (∀k ∈ J0; nK, P(k) vraie) ⇒ P(n + 1) vraie. Supposons que
pour tout k ∈ J0; nK, P(k) est vraie :

∀k ∈ J0; nK, ak ∈ N.
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Montrons que P(n + 1) est vraie. Par la question précédente,

an+1 = Sn =
n∑

k=0
akan−k.

Or pour tout k ∈ J0; nK, ak ∈ N. De même si k ∈ J0; nK, alors n − k ∈ J0; kK, donc an−k ∈ N. Ainsi,
pour tout k ∈ J0; nK, akan−k ∈ N. Donc en sommant,

an+1 =
n∑

k=0
akan−k ∈ N

et P(n + 1) est vraie.
Conclusion, pour tout n ∈ N, P(n) est vraie :

∀n ∈ N, an ∈ N.

Problème II - Fonctions usuelles
On considère les fonctions définies lorsque c’est possible par

f(x) = arcsin
(x

2 − 1
)

et g(x) = 2 arctan
Å…

x

4 − x

ã
.

On souhaite montrer l’égalité suivante :

∀x ∈ [0; 4[ , g(x) = f(x) + π

2 . (⋆)

Partie 1 : Même si g a du pi en plus, il n’est pas vache

1. Soit Df le domaine de définition de f . Soit x ∈ R. On a les équivalences suivantes :

x ∈ Df ⇔ −1 ⩽
x

2 − 1 ⩽ 1 ⇔ 0 ⩽
x

2 ⩽ 2 ⇔ 0 ⩽ x ⩽ 4.

Conclusion,
Df = [0; 4] .

2. On a

f(0) = arcsin(−1) = −π

2

f(2) = arcsin
Å2

2 − 1
ã

= arcsin(0) = 0

f
Ä√

3 + 2
ä

= arcsin
Ç√

3 + 2
2 − 1

å
= arcsin

Ç√
3

2

å
= π

3 .

Conclusion,
f(0) = −π

2 , f(2) = 0, f
Ä√

3 + 2
ä

= π

3 .

NB : on observe bien que 0 ∈ [0; 4], 2 ∈ [0; 4] et 0 <
√

3 + 2 ⩽ 2 + 2 = 4.

3. Soit Df ′ le domaine de dérivabilité de f . Soit x ∈ R. On a

x ∈ Df ′ ⇐ −1 <
x

2 − 1 < 1

⇔ 0 <
x

2 < 2

⇔ 0 < x < 4.

Conclusion,
Df ′ = ]0; 4[ .
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4. Soit x ∈ Df ′ ,

f ′(x) = 1/2»
1 −

(
x
2 − 1

)2

= 1
2
»

1 − x2

4 + x − 1

= 1
2
»

x − x2

4

= 1√
4x − x2

= 1√
x (4 − x)

.

Conclusion,

∀x ∈ ]0; 4[ , f ′(x) = 1√
x (4 − x)

.

5. Soit I le domaine de définition de g. Soit x ∈ R. On a les équivalences suivantes :

x ∈ I ⇔
…

x

4 − x
existe

⇔
®

4 − x ̸= 0
x

4−x ⩾ 0

⇔
®

x ⩾ 0
4 − x > 0

OU

®
x ⩽ 0
4 − x < 0

⇔
®

x ⩾ 0
4 > x

OU

®
x ⩽ 0
4 < x

impossible

⇔ 0 ⩽ x < 4.

Conclusion,
I = [0; 4[ .

6. On a

g(0) = 2 arctan(0) = 0 et g(2) = 2 arctan
Ç…

2
4 − 2

å
= 2 arctan (1) = 2π

4 = π

2 .

Conclusion,
g(0) = 0 et g(2) = π

2 .

On note bien que 0 ∈ I et 2 ∈ I.

7. Soit x ∈ I. On a les équivalences suivantes :

g(x) = π

3 ⇔ 2 arctan
Å…

x

4 − x

ã
= π

3

⇔ arctan
Å…

x

4 − x

ã
= π

6 = arctan
Å 1√

3

ã
⇔

…
x

4 − x
= 1√

3
par injectivité de la fonction arctan.
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Attention à ne pas composer par la fonction tangente qui n’est pas injective elle !

g(x) = π

3 ⇔ x

4 − x
= 1

3 car x

4 − x
⩾ 0

⇔ 3x = 4 − x car 4 − x ̸= 0
⇔ 4x = 4
⇔ x = 1.

Conclusion,
g(x) = π

3 ⇔ x = 1.

Vérification, si x = 1, g(1) = 2 arctan
Ä»

1
4−1

ä
= 2 arctan

Ä
1√
3

ä
= 2π

6 = π
3 OK !

8. Soit I ′ le domaine de dérivabilité de g. Soit x ∈ I (sinon g(x) n’est même pas définie). On a

x ∈ I ′ ⇔ x

4 − x
> 0car u 7→

√
u n’est pas dérivable en 0

⇔
®

x > 0
4 − x > 0

car x ⩾ 0 car x ∈ I

⇔ 0 < x < 4.

Conclusion,
I ′ = ]0; 4[ .

9. Soit x ∈ I ′. On a les égalités entre réels suivantes :

g′(x) = 2

Ä»
x

4−x

ä′

1 +
Ä»

x
4−x

ä2

= 2 1
2
»

x
4−x

Å
x

4 − x

ã′ 1
1 + x

4−x

=
…

4 − x

x

4 − x + x

(4 − x)2
1

1 + x
4−x

=
…

4 − x

x

4
(4 − x)2

4 − x

4 − x + x

=
√

4 − x√
x

1
4 − x

= 1√
x

1√
4 − x

Conclusion,

∀x ∈ ]0; 4[ , g′(x) = 1√
x (4 − x)

.

10. Par les questions 4. et 9.
∀x ∈ ]0; 4[ , f ′(x) = g′(x).

Puisque ]0; 4[ est un intervalle, on en déduit que

∃C ∈ R, ∀x ∈ ]0; 4[ , f(x) = g(x) + C.
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En évaluant en 2, par les questions 2. et 6.

f(2) = g(2) + C ⇔ 0 = π

2 + C ⇔ C = −π

2 .

Ainsi,
∀x ∈ ]0; 4[ , f(x) = g(x) − π

2 ⇔ f(x) + π

2 = g(x).

Or par passage à la limite quand x → 0, par continuité de la fonction f en 0 de la fonction g en 0,

f(0) + π

2 = g(0).

Conclusion,
∀x ∈ [0; 4[ , g(x) = f(x) + π

2 . (⋆)

Partie 2 : La trigo fait aussi trivialement le tri

On fixe x ∈ [0; 4[.

11. Soit u ∈
]
−π

2 ; π
2
[
.

(a) La fonction tan est dérivable sur
]
−π

2 ; π
2
[

donc en u et

tan′(u) = 1 + tan2(u).

(b) D’autre part, on sait également que

tan′(u) = 1
cos2(u) .

(c) Soit t ∈ R. Posons u = arctan(t). Alors u ∈
]
−π

2 ; π
2
[
. Donc par les deux questions précédentes,

1 + tan2(u) = 1
cos2(u) ⇔ cos2 (u) = 1

1 + tan2(u)
car
®

cos2(u) > 0
1 + tan2(u) > 0

⇔ cos2 (arctan(t)) = 1
1 + tan2 (arctan(t))

⇔ cos2 (arctan(t)) = 1
1 + t2

Conclusion,

∀t ∈ R, cos2 (arctan(t)) = 1
1 + t2 .
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12. On sait que pour tout a ∈ R, cos (2a) = 2 cos2(a) − 1. Donc,

cos (g(x)) = cos
Å

2 arctan
Å…

x

4 − x

ãã
= 2 cos2

Å
arctan

Å…
x

4 − x

ãã
− 1

= 2 1

1 +
Ä»

x
4−x

ä2 − 1 par la question précédente avec t =
…

x

4 − x

= 2 1
1 + x

4−x

− 1

= 2 4 − x

4 − x + x
− 1

= 4 − x

2 − 1

= 2 − x

2 .

Conclusion,
cos (g(x)) = 1 − x

2 .

13. On a les égalités entre réels suivantes :

cos
(

f(x) + π

2

)
= − sin (f(x))

= − sin
(

arcsin
(x

2 − 1
))

= −
(x

2 − 1
)

= 1 − x

2 .

Conclusion,

cos
(

f(x) + π

2

)
= 1 − x

2 .

14. Par les deux questions précédentes,

cos (g(x)) = 1 − x

2 = cos
(

f(x) + π

2

)
.

Donc il existe k ∈ Z tel que

g(x) = f(x) + π

2 + 2kπ OU g(x) = −f(x) − π

2 + 2kπ.

Or pour tout u ∈ [−1; 1], arcsin(u) ∈
[
−π

2 ; π
2
]
. Donc

f(x) ∈
[
−π

2 ; π

2

]
⇔ f(x) + π

2 ∈ [0; π] .

D’autre part, pour tout u ∈ R+, arctan(u) ∈
[
0; π

2
[
. Donc pour u =

»
x

4−x ∈ R+,

g(x) = 2 arctan(u) ∈ [0; π[ .

Nécessairement, k = 0 et
g(x) = f(x) + π

2 .

Ceci est vrai pour x ∈ [0; 4[ quelconque. Conclusion,

∀x ∈ [0; 4[ , g(x) = f(x) + π

2 . (⋆)
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Partie 3 : Dire que l’on finit en beauté n’est certainement pas une hyperbole

15. Soit y ∈ R. On a les équivalences suivantes :

ch(y) =
√

2 ⇔ ey + e−y

2 =
√

2 ⇔ ey + e−y = 2
√

2.

Posons X = ey. Dès lors,

ch(y) =
√

2 ⇔ X + 1
X

= 2
√

2

⇔ X2 + 1 = 2
√

2X car X = ey ̸= 0
⇔ X2 − 2

√
2X + 1 = 0.

Soit ∆ le discriminant associé. On a ∆ = 8 − 4 = 4. Ainsi,

ch(y) =
√

2 ⇔ X = 2
√

2 + 2
2 =

√
2 + 1 OU X =

√
2 − 1

⇔ ey =
√

2 + 1 OU ey =
√

2 − 1

⇔ y = ln
Ä√

2 + 1
ä

OU y = ln
Ä√

2 − 1
ä

car
√

2 + 1 > 0 et
√

2 − 1 > 0.

Conclusion, l’ensemble des solutions de l’équation est donné par

S =
¶

ln
Ä√

2 + 1
ä

; ln
Ä√

2 − 1
ä©

.

16. Soit A =
{

y ∈ R
∣∣ 2 ch2(y) ∈ [0; 4[

}
. Soit y ∈ R. On a les équivalences suivantes :

y ∈ A ⇔ 2 ch2(y) ∈ [0; 4[
⇔ 0 ⩽ 2ch2 (y) < 4
⇔ 0 ⩽ ch2 (y) < 2
⇔ −

√
2 < ch(y) <

√
2

⇔ ch(y) <
√

2 car ch(y) ⩾ 1.

Or par le graphe de la fonction ch et la question précédente, on obtient

x

ch

−∞ ln
(√

2 − 1
)

0 ln
(√

2 + 1
)

+∞

+∞+∞

11

+∞+∞
√

2
√

2

Conclusion,
A =

ó
ln
Ä√

2 − 1
ä

; ln
Ä√

2 + 1
äî

.
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17. Soit y ∈ A. Posons x = 2 ch2(y). Par définition de A, x ∈ [0; 4[. Donc par (⋆),

g(x) = f(x) + π

2

⇔ 2 arctan
Å…

x

4 − x

ã
= arcsin

(x

2 − 1
)

+ π

2

⇔ 2 arctan
(√

2 ch2(y)
4 − 2 ch2(y)

)
= arcsin

Ç
2 ch2(y)

2 − 1
å

+ π

2

⇔ 2 arctan
(√

ch2(y)
2 − ch2(y)

)
= arcsin

(
ch2(y) − 1

)
+ π

2

⇔ 2 arctan

Ñ
ch(y)»

2 − ch2(y)

é
= arcsin

(
ch2(y) − 1

)
+ π

2 car ch(y) > 0

⇔ 2 arctan

Ñ
ch(y)»

2 − ch2(y)

é
= arcsin

(
sh2(y)

)
+ π

2 car ch2(y) − 1 = sh2(y).

Conclusion,

∀y ∈ A, 2 arctan

Ñ
ch(y)»

2 − ch2(y)

é
= arcsin

(
sh2(y)

)
+ π

2 .
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