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Programme de colles 04
Fonctions usuelles et équations complexes

Quinzaine du 10 au 21 novembre

Fonctions usuelles

1. Le logarithme népérien (comme étant la fonction x 7→
∫ x

1

1
t

dt). Continuité, dérivation, monotonie. Propriétés

algébriques. Limite aux bornes, graphe, ln (1 + x) ⩽ x et lim
x→0

ln(1 + x)
x

.

2. La fonction exponentielle (comme réciproque de la fonction logarithme). Continuité, dérivation, propriétés al-
gébriques, graphes, limites aux bornes, ex ⩾ 1 + x et lim

x→0

ex −1
x

.

3. Les fonctions exponentielle et logarithme en base a.
4. Les fonctions puissances, dérivation, propriétés algébriques.

5. Croissances comparées : lim
x→+∞

xa lnb(x), lim
x→+∞

ebx

xa
, lim

x→0,x>0
xa |ln(x)|b, lim

x→−∞
|x|a e−x.

6. Les fonctions hyperboliques, définition, dérivée, parité, monotonie, tangente en 0, graphe, ch2(x) − sh2(x) = 1.

Limites aux bornes, lim
x→+∞

ch(x)
x

, lim
x→+∞

sh(x)
x

, lim
x→0

ch(x) − 1
x2 , lim

x→0

sh(x)
x

.

7. Les fonctions circulaires réciproques : arcsinus, arccosinus, arctan, définition, parité (ou non), dérivation, limites
aux bornes, asymptotes, tangentes en 0, graphes.

Equations et géométrie complexes
8. Exponentielle complexe, propriétés.
9. Racines carrées d’un complexe, existence d’exactement deux racines pour tout complexe non nul. Détermination

directe par la forme polaire et/ou par le calcul sous la forme algébrique.
10. Equations complexes du second degré. Discriminant complexe et expression des racines. Relations racines-

coefficients : s = z1 + z2 = −b/a et p = z1z2 = c/a.
11. Racines n-ièmes de l’unité. Stabilité par produit et inverse/conjugué. Expression des racines n-ièmes. Somme

des racines et factorisation de zn − 1.
12. Racines n-ièmes d’un complexe z. Expression à partir de la forme polaire de z. Détermination des racines n-ièmes

de z à partir d’une.
13. Caractérisation par les affixes de la colinéarité/alignement, de l’orthogonalité.
14. Translation, rotation, homothétie. Définitions géométriques et applications complexes associées.

Questions de cours
1. Tracer le graphe de la fonction exponentielle / logarithme / cosinus hyperbolique / sinus hyperbolique /arccosi-

nus / arcsinus / arctan, y faire apparaitre les valeurs remarquables, les tangentes remarquables, les asymptotes
remarquables.

2. Enoncer la croissance comparée du logarithme en +∞/en 0, de l’exponentielle en −∞/en +∞.
3. Donner le domaine de dérivabilité et la dérivée de la fonction exponentielle / logarithme / cosinus hyperbolique

/ sinus hyperbolique / arccosinus / arcsinus / arctan.
4. Enoncer la formule reliant les carrés des fonctions hyperboliques et celle sur arctan.
5. Enoncer la proposition retournant les racines carrées d’un complexe.
6. Donner les racines d’un trinôme. On veillera à bien définir toutes les quantités.
7. Enoncer la proposition reliant les coefficients d’un trinôme à ses racines.
8. Définir l’ensemble des racines n-ièmes de l’unité. Que dire du produit de deux racines n-ième de l’unité ? de

l’inverse d’une racine n-ième de l’unité ? de son conjugué ?
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9. Caractériser l’ensemble des racines n-ièmes de l’unité.
10. Définir j. Que vaut j2 ? j3 ? 1 + j + j2 ?
11. Caractériser les racines n-ièmes de l’unité par une somme.
12. Enoncer la propriété donnant les racines n-ièmes d’un complexe quelconque.

Démonstrations de cours
1. Justifier la dérivabilité de la fonction arcsin et calculer sa dérivée.
2. Enoncer et démontrer la relation entre arctan(x) et arctan

( 1
x

)
sur R∗

+.
3. Démonstration de l’écriture polaire des racines n-ièmes de l’unité.
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Les réponses de cours
1. Les fonctions logarithme et exponentielle :

1 2 3 4 5 6

−2

−1

1

2 ln

y
=

x
−

1

e

−4 −3 −2 −1 1 2

1

2

3

4

exp
y

=
x

+ 1

e

Les fonctions hyperboliques :

−2 −1 1 2

1

2

3

4

5

6

y = 1

ch

−2 −1 1 2

−3

−2

−1

1

2

3

y
=

x

sh

Les fonctions circulaires réciproques :

−1
1

− π
2

π
2

arcsin

y
=

x

−1 1

π
2

π

arccos
y =

π
2 −

x
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−4 −3 −2 −1 1 2 3 4

− π
2

π
2

y
=

x

arctan

2. • Soient a > 0 et b > 0. On a

lim
x→0
x>0

xb |ln (x)|a = 0 et lim
x→+∞

lna(x)
xb

= 0.

• Soient a > 0 et b > 0. On a

lim
x→−∞

|x|b eax = 0 et lim
x→+∞

eax

xb
= +∞.

3. • La fonction exponentielle est dérivable sur R et pour tout x ∈ R, exp′(x) = exp(x).
• La fonction logarithme est dérivable sur R∗

+ et pour tout x ∈ R∗
+, ln′(x) = 1

x .
• La fonction cosinus hyperbolique est dérivable sur R et pour tout x ∈ R, ch′(x) = sh(x).
• La fonction sinus hyperbolique est dérivable sur R et pour tout x ∈ R, sh′(x) = ch(x).
• La fonction arccosinus est dérivable sur ]−1; 1[ et pour tout x ∈ ]−1; 1[, arccos′(x) = −1√

1−x2 .

• La fonction arcsinus est dérivable sur ]−1; 1[ et pour tout x ∈ ]−1; 1[, arcsin′(x) = 1√
1−x2 .

• La fonction arctangente est dérivable sur R et pour tout x ∈ R, arctan′(x) = 1
1+x2 .

4. On a les relations suivantes :
• ∀x ∈ R, ch2(x) − sh2(x) = 1
• ∀x ∈ R∗

+, arctan(x) + arctan
( 1

x

)
= π

2
• ∀x ∈ R∗

−, arctan(x) + arctan
( 1

x

)
= − π

2
5. Soit z = r eiθ ∈ C∗, avec (r, θ) ∈ R∗

+ × R. Alors l’équation ω2 = z d’inconnu ω ∈ C admet exactement deux
solutions données par :

ω1 =
√

r ei θ
2 et ω2 = − ω1 =

√
r ei( θ

2 +π) .

6. Soient (a, b, c) ∈ C∗ × C2. Posons ∆ = b2 − 4ac.
• Si ∆ = 0, alors l’équation az2 + bz + c = 0 admet une unique solution z0 = − b

2a .
• Si ∆ ̸= 0, alors l’équation az2 + bz + c = 0 admet exactement deux solutions données par

z1 = −b + δ

2a
et z2 = −b − δ

2a
,

où δ est UNE racine carrée de ∆.
7. Soient (a, b, c) ∈ C∗ × C2 et z1 et z2 les deux racines (éventuellement confondues) de az2 + bz + c. Alors,

z1 + z2 = − b

a
et z1z2 = c

a
.

8. Soit n ∈ N∗. On a
Un = {z ∈ C | zn = 1} .

De plus, pour tout (z, z′) ∈ Un, on a
zz′ ∈ Un,

1
z

= z ∈ Un.

9. Soit n ∈ N∗. On a l’égalité suivante :

Un =
{

ei 2kπ
n

∣∣∣ k ∈ J0; n − 1K
}

.
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10. On a j = ei 2π
3 . De plus,

j2 = j, j3 = 1 et 1 + j + j2 = 0.

11. Soient z ∈ C et n ∈ N∗. On a

z ∈ Un \ {1} ⇔
n−1∑
k=0

zk = 1 + z + · · · + zn−1 = 0.

12. Soit z = r eiθ ∈ C∗, avec (r, θ) ∈ R∗
+ × R. Pour tout ω ∈ C, on a

ωn = z ⇔ ∃k ∈ J0; n − 1K, ω = n
√

r ei( θ
n + 2kπ

n ) .

Démonstrations de cours

La fonction arcsin est dérivable sur ]−1; 1[ et

∀x ∈ ]−1; 1[ , arcsin′(x) = 1√
1 − x2

.

Proposition (démo 1)

Démonstration. Soit f :
]
− π

2 ; π
2
[

→ ]−1; 1[
x 7→ sin(x) la restriction de la fonction sinus sur

]
− π

2 ; π
2
[

dans ]−1; 1[. La

fonction f est bien définie car la fonction sinus est bien définie sur
]
− π

2 ; π
2
[

et sin
(]

− π
2 ; π

2
[)

= ]−1; 1[. On observe
alors les points suivants :

• La fonction f est strictement croissante sur
]
− π

2 ; π
2
[

car la fonction sinus l’est.
• La fonction f est dérivable sur

]
− π

2 ; π
2
[

car la fonction sinus l’est.
• Pour tout x ∈

]
− π

2 ; π
2
[
,

f ′(x) = sin′(x) = cos(x) ̸= 0.

Donc par le théorème de la dérivabilité de la réciproque, la fonction arcsin est dérivable sur ]−1; 1[. Soit x ∈ ]−1; 1[,
on a

arcsin′(x) = 1
f ′ ◦ arcsin(x) = 1

cos (arcsin(x)) .

Or,
cos2 (arcsin(x)) = 1 − sin2 (arcsin(x)) = 1 − x2.

Et puisque arcsin(x) ∈
]
− π

2 ; π
2
[
, cos (arcsin(x)) > 0. Ainsi,

cos (arcsin(x)) = +
√

1 − x2.

Conclusion,

la fonction arcsin est dérivable sur ]−1; 1[ et pour tout x ∈ ]−1; 1[, arcsin′(x) = 1√
1 − x2

.

□

Pour tout x ∈ R∗
+,

arctan(x) + arctan
Å 1

x

ã
= π

2 .

Proposition (démo 2)

Démonstration. Posons g : R∗
+ → R
x 7→ arctan (x) + arctan

( 1
x

) . La fonction x 7→ 1
x est bien définie et même

dérivable sur R∗
+ et la fonction arctangente l’est sur R donc la fonction g est bien définie et même dérivable sur R∗

+.
De plus, pour tout x ∈ R∗

+, on a

g′(x) = 1
1 + x2 +

Å 1
x

ã′
× 1

1 +
( 1

x

)2 = 1
1 + x2 + −1

x2 × 1
1 + 1

x2

= 1
1 + x2 − 1

x2 + 1 = 0.

5



Mathématiques PTSI 2025-2026

Dès lors, puisque R∗
+ est un intervalle,

∃C ∈ R, ∀x ∈ R∗
+, g(x) = C.

En particulier,
g(1) = arctan(1) + arctan

Å1
1

ã
= π

4 + π

4 = π

2 = C.

Conclusion,

∀x ∈ R∗
+, arctan(x) + arctan

Å 1
x

ã
= π

2 .

Rappel, par imparité, on a aussi :

∀x ∈ R∗
−, arctan(x) + arctan

Å 1
x

ã
= −π

2 .

□

Soit n ∈ N∗, l’ensemble des racines n-ièmes de l’unité est donné par :

Un =
{

ei 2kπ
n

∣∣∣ k ∈ J0; n − 1K
}

.

Proposition (démo 3)

Démonstration. Soit n ∈ N∗ et ω ∈ C. Observons que 0n = 0 ̸= 1 donc 0 /∈ Un. Fixons donc ω ∈ C∗. Alors, il existe
(r, θ) ∈ R∗

+ × [0; 2π[ tel que ω = r ei θ. On a les équivalences suivantes :

ω ∈ Un ⇔ ωn =
(
r ei θ

)n = 1
⇔ rn ein θ = 1 = 1 × ei0

⇔
®

rn = 1
∃k ∈ Z, n θ = 2kπ

par la pseudo-unicité de la forme trigonométrique

⇔
®

r = 1
∃k ∈ Z, θ = 2kπ

n .
car l’équation xn = 1 n’admet qu’une seule solution dans R+

Or, par construction, θ ∈ [0; 2π[ et de plus pour k ∈ Z, on a

0 ⩽
2kπ

n
< 2π ⇔ 0 ⩽ k < n ⇔ 0 ⩽ k ⩽ n − 1 car (k, n) ∈ Z2.

Ainsi,

ω ∈ Un ⇔
®

r = 1
∃k ∈ J0; n − 1K, θ = 2kπ

n

⇔ ∃k ∈ J0; n − 1K, ω = ei 2kπ
n .

Conclusion,

Un =
{

ei 2kπ
n

∣∣∣ k ∈ J0; n − 1K
}

.

□
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