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Chapitre III : Trigonométrie

I Définition

Dans le plan munit d’un repeére orthonormé direct (0; 7, 7) on considere le cercle de centre O et de rayon 1, appelé
le cercle unité ou le cercle trigonométrique et noté U.
On oriente le cercle U dans le sens trigonométrique qui est le sens contraire de celui des aiguilles d’une montre.

Soient @ et v deux vecteurs du plan. On note M, respectivement N, le point d’intersection du cercle unité U avec
la droite passant par O et de vecteur directeur u, respectivement de vecteur directeur ¥. La mesure de I’angle
(%, V) en radian est égale a la longueur de I'arc de cercle MN compté positivement dans le sens trigonométrique
et négativement sinon.

A
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Remarque 1 :
1. La valeur d'un angle n’est défini qu’a 27-pres. Par exemple un quart de cercle vaut 5 = 57” = 97” = _73” =....

2. Par enroulement de la droite des réels sur le cercle unité, pour tout § € R correspond un point sur le cercle
trigonométrique et un angle associé.

— )

Pour tout 6 € R, on considere le point M € U du cercle unité tel que (77 oM ) = 6. On définit alors le cosinus

de 0, noté cos(f), respectivement le sinus de 6, noté sin(f), comme étant ’abscisse, respectivement I'ordonnée, du
point M.

.
— )

o La fonction cosinus, notée cos est la fonction qui a tout réel 8 associe son cosinus, cos(f).

o La fonction sinus, notée sin est la fonction qui a tout réel 8 associe son sinus, sin(6).

\ J

Remarque 2 : Les fonctions cosinus et sinus sont définies sur R tout entier.
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Remarque 3 : Lien avec la trigonométrie du triangle rectangle. Soit ABC un triangle rectangle en B. On

désigne par 6 'angle B/E’ . Par translation (transformation du plan conservant les angles et les distances), on déplace

le triangle pour amener le point A a lorigine. Par rotation (transformation du plan conservant les angles et les

distances), du triangle autour du point O il est possible de faire coincider la droite (OB) avec I’axe des abscisses tel

que OB et i soient de méme sens. On note C’ le point d’intersection de (OC) avec le cercle unité U. Les coordonnées

du point C’ sont donc C’ (cos();sin(d)). On note B’ le point de coordonnées (cos(6);0). D’apres le théoreme de
OB’ _ oc’

Thales, on a F5 = F& ou encore :

AB_ 0B _ OB
AC  OoC  ocC'

= cos(0).

On retrouve bien l'antique formule cos(6) = —adiacent -y heut procéder de méme pour montrer que l'on a également
hypoténuse
. __ opposé
Sln(e) ~ hypoténuse
Dessin :

_ )

¢ Les fonctions cosinus et sinus sont bornées. Pour tout 6 € R,
—1<cos(f) <1 et —1<sin(d) < 1.
e Les fonctions cos et sin sont 2m-périodiques. Pour tout 6 € R et tout k € Z,
cos (0 + 2km) = cos (0) et sin (0 + 2k7) = sin (0) .
o La fonction cosinus est paire sur R et la fonction sinus est impaire sur R. Pour tout 6 € R,

cos(—6) = cos(0) et sin(—6) = — sin(0).

IT Formulaire

Avant de donner une étude plus poussée des fonctions sinus et cosinus, nous allons établir des formules qui nous seront
utiles par la suite.
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Pour tout z € R,
cos?(x) + sin®(z) = 1.

Démonstration. Découle simplement de la définition des fonctions cosinus et sinus. Soient z € R, M le point de
coordonnées (cos(x);sin(x)) et N (cos(x); 0) dans le repére orthonormé (O i, ) Le triangle OM N est rectangle en

M. Donc d’apres le théoréme de Pythagore, 1 = OM? = ON? + NM? = cos?(x) + sin®(x). 0

Exemple 4 : On admet que sin (g) f\/ 5 — /5. Calculer cos (%)

Pour tout (a,b) € R?, on a

cos(a + b) = cos(a) cos(b) — sin(a) sin(b)
sin(a + b) = cos(a) sin(b) + cos(b) sin(a).

Démonstration. On fixe deux réels a et b et dans le repére X = (O' 7, _P) on définit les points A (cos(a);sin(a))

et A’ (cos(a+b);sin(a +b)). On pose également ¥ = OA et T tel que Z' = (O; U, V) soit un repére orthonormé,
c’est-a-dire tel que || 7[| = 1, et tel que (U, 7) = J.

Notez que dans ce nouveau repere, le vecteur OA a pour coordonnées (1;0). Le vecteur OA" quant & lui peut étre

obtenu par rotation d’angle b du vecteur OA autour du point O. Autrement dit le vecteur OA’ a pour coordonnées
(cos(b);sin(b)) dans le repere 2’ = (O; U, U). Donc

0A = cos(b) U + sin(b) V.
Or @ =0A= cos(a)_i> +sin(a)] et T = cos(a)7 + sin(a) ( ) = cos(a )7 — sin(a) 7. Donc
OA = cos (b) (cos (a) i +sin(a ) + sin(b (cos(a)7 — sin(a)?)
c ( b)? — sin(a) sin(b)?
b) 4 cos(b) sin(a)] 7.

= cos(a) cos(b )2 + cos(b )sm a)?—l—c s(a) sin
7+

o~~~

= [cos(a) cos(b) — sin(a) sin(b)] [cos(a) sin

Or dans le repére Z = (O; 7, 7), les coordonnées du vecteur OA" sont (cos(a + b);sin(a + b)). Donc par unicité des
coordonnées dans un méme repere, on en déduit que

cos(a + b) = cos(a) cos(b) — sin(a) sin(b) et sin(a + b) = cos(a) sin(b) + cos(b) sin(a).
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Pour tout (a,b) € R?,

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

sin(a — b) = cos(b) sin(a) — cos(a) sin(d).

Démonstration. Découle immédiatement de la Proposition en remplacant b par —b et de la parité ou de
I'imparité des fonctions cosinus et sinus.

O

_ )

Pour tout (a,b) € R?,

cos(a + b) + cos(a — b)

cos(a) cos(b) =

2
sin(a) sin(b) = cos(a — b) ; cos(a +b)
) __sin(a+b) +sin(b — a)
cos(a) sin(b) = 7 }

Démonstration. Ces inégalités s’obtiennent en sommant ou soustrayant les formules des Propositions [[T.2] et mb

_ h

Pour tout z € R,
1 2
cos?(x) = 1+ costz) C;)S( @)
1-— 2
sin?(z) = L= ),

Démonstration. Découle du corollaire [[T.4] avec a = b = x ou encore de la Proposition : pour tout = € R,

cos(2z) = cos?(z) — sin?(x) = 2cos?(z) — 1 et donc cos?(x) = H‘%S(%) O

Exemple 5 : Soit = € R, linéariser cos?(z).

Remarque 6 : La Proposition doit étre connue sur le bout des doigts! Vous pouvez apprendre les Propositions
[[T:3] a [[T.5] également par coeur mais je vous conseille plutot d’apprendre & les retrouver RAPIDEMENT & partir de
la Proposition [[T.2} Dans tous les cas une restitution rapide et correcte est attendue sur toutes ces formules.

_ )

Pour tout (p, q) € R?,
cos(p) + cos(q) = 2 cos (p ; q) coS (p g q)
cos(p) — cos(q) = —2sin (p —; q) sin (1%)
i in(q) = 2sin (P4 (p - q)
sin(p) + sin(q) = 2sin ( 5 ) cos (—5
sin(p) — sin(q) = 2 cos (p ; q) sin (p ; q) :

Démonstration. Fixons (p,q) € R? et définissons a et b tels que p = a + b et ¢ = a — b, c’est-a-dire a = pTﬂ et

Wi
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b= P54, Alors d’apres la Proposition 1.2, on a

cos(p) + cos(q) = cos (a + b) + cos (a — b)
= cos(a) cos(b) — sin(a) sin(b) 4 cos(a) cos(b) + sin(a) sin(b)
= 2cos(a) cos(b) (on retrouve une égalité de la Proposition |I1.4

= 2cos (p—i—q) cos (p—q).
2 2

Exercice 7 : Démontrer de méme les autres égalités.

_ )

z 0] % 1 3 | 3
cos(x) 1 ‘/75 ‘/TE i 0
sin(z) 0 : \/Ti ‘/75 1

A

3
T ”

V3 3

2
V2 4
2
1 @

2

0
VIV B
0 3 w51

Démonstration. D’aprés la définition des fonctions cosinus et sinus, on a cos(0) = sin (3) = 1 et cos (5) =sin(0) =
1.
D’apres la Proposition m (ou directement par la Proposition [[I.5]), on écrit que

0 = cos (g) = €08 (% + %) = cos? (%) — sin® (%) = 2cos? (%) -1

Donc cos? (%) = % Remarquez bien que ’on pouvait obtenir ce résultat directement par la Propositionm (le calcul

ci-dessus retrace la démonstration de la Proposition . Or pour tout x € [O; g}, on sait que cos(z) > 0. D’ou

™ V2
cos (7) = %: —2

4 2

De méme sin® (%) = 1_%5(%) = % Donc sin (%) = ?

Démontrons les valeurs des fonctions cosinus et sinus en %. D’aprés la Proposition

1 ntr o (5o (2) - () (2)
s (1) o () ()] - (2) o () 3)]
- e (5) - (3 3).

577
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On élimine le sinus grace & la Proposition et on obtient

—1 = cos® (%) — 3 cos (3) + 3cos® (g) = 4 cos® (%) — 3 cos (g)

Notons X = cos (%) Le réel X est alors solution de 1’équation
X3 -3X+1=0.

On s’apercoit que —1 est une solution évidente, on peut donc factoriser 4X> — 3X + 1 par X + 1. Donc le réel X est
solution de 1’équation

4XP —3X 4+1=(X+1)(4X°-4X+1) = (X + 12X —-1)*=0.

2
est positif sur [0, 5], on en déduit que cos (g) # —1 et donc

o 5)-

1
2
Pour en déduire la valeur du sinus, on utilise la Proposition

1:cos2(g>+sin2( )@sm ( )—1—(:05 (g)zl—i:;

Puis, comme le sinus est positif sur [O' E},
\/> \/7
s1n

)
La démonstration des valeurs de cosinus et sinus en % est laissée en exercice.

Les solutions sont donc X = —1ou2X —1=0<« X = 5 c’est-a-dire cos (3) = —1 ou cos (%) = % Comme le cosinus

Exemple 8 : A 'aide de la Proposition E calculer sin ( ) + sin (%)

— A

Pour tout =z € R,

e cos(zxm) = —cos(x) e sin(r+m) = —sin(x)
e cos(m—x) = —cos(x) e sin(r — z) = sin(z)

e cos(z+ %)= —sin(z) e sin(z+ %) = cos(x)

o cos(z— %) =sin(z) o sin(z— %) = —cos(x)
e cos (3 —x) =sin(z) o sin (5 —x) = cos(x)

Exercice 9 : Démontrer ces formules & l'aide de la Proposition [[L.2}
Exemple 10 : Soit « € R et k € Z, simplifier cos (z + k) et sin (x + k).
Remarque 11 :
1. Ces égalités découlent de la Proposition [[T.2| mais vous devez savoir les retrouver rapidement a l'aide de dessins.

2. Gréce a ces égalités, il est possibles d’étendre (et de retrouver si besoin) les valeurs remarquables des fonctions
cosinus et sinus sur le cercle entier (et non juste le premier quart de cercle de la Proposition [I1.7)).

III Propriétés

o lim iz 1
h—0
h£0
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Démonstration. Notations. Soit h € ]0; 3 [ Dans le repere orthonormé (O; 7, 7) du plan, on considére les points
M (cos(h);sin(h)), N (cos(h);0), A(1;0) et B le point d’intersection de (OM) avec la droite perpendiculaire & (OA)
passant par A.

A

Continuité de cosinus en 0. Commencons par montrer que la fonction cosinus est continue en 0, c’est-a-dire que
limp_,0 cos(h) = 1. Puisque h = MA > MA > NA, on en déduit que 1 = ON + NA = cos(h) + NA < cos(h) + h et
bien siir cos(h) < 1. Donc

Vhe]O;g[, 1—h<cos(h) <1
Sih e |—%;0[,ona—h € ]0; 5[ et donc 1+h < cos(—h) < 1. Donc par parité de la fonction cosinus, 14+-h < cos(h) < 1.
Enfin, si h = 0 'inégalité est trivial. Donc
Vhe}—g;g[, 1 —|h| < cos(h) < 1.

En passant & la limite quand h — 0, on obtient bien ,llin%) cos(h) = 1.
—

Premiére limite. Montrons maintenant la limite de %

en 0. Fixons a nouveau h € }O; 5 [ et reprenons les points
précédemment définies. On a MN < MA < MA < AB (admis). Or M N = sin(h), MA = h et par le théoréme de
Thales (les droites (M N) et (AB) étant perpendiculaires & la méme droite (OA), sont paralleles entre elles),

MN _ ON _ sin(h)  cos(h)

B _ sin(h)
AB T 0A T TAB T 1 @AB_cos(h)'

—

Notez bien que l'on ne divise pas par 0 car h € ]0; g[ = AB # 0 et cos(h) # 0. Ainsi U'inégalité MN < MA < AB
implique que

sin(h) < h < z;r;((ig

Par positivité stricte de h et de cos(h) sur }O; 3 [, on en déduit que

in(h
VhG]O;E[, cos(h)gsm( ) <1
2 h
Par parité du cosinus et imparité du sinus, on obtient également pour tout h € }—g;O[, cos(—h) < Si“ﬁ;h) <1l&e

cos(h) < % < 1. Donc

Vhe]—g;o{u]o;g[, cos(h) < Sin}Eh)

Or nous avons vu que limy,_,g cos(h) = 1. Donc par le théoréme d’encadrement, on conclut que

<1

i 520 _
h—0 h
h£0

Seconde limite. Montrons maintenant }1Limo 7173;3;(}1) = % D’apres la Proposition , on a
—
h#£0

_T. T — cog2 ﬁ)_~2(ﬁ)_ _ 2(@)
Vhe} 2,0[U}0,2[, cos(h) = cos <2 sin” | 5 =1-—2sin 5)

i



c
( ) P
""""""""""""" Mathématiques PTSI, Chapitre III 2025-2026

Donc 2
vhel-Tolulo: ™ 1fcos(h)72sin2(%) 1 sin (%)
2’ T2l ) A '
. in(k
Or }llin% % =0et ’llirrb w = 1, donc par composition de limites, on a ]}birr%) w = 1. Puis par continuité de la fonction
— — e 2
h#£0 h#£0 h#£0
carré, on conclut que
. 1—cos(h) 1
im——= = —.
h—0 h? 2
h#0

_ h

e La fonction cos est dérivable sur R et pour tout = € R,
cos'(z) = —sin(z).
e La fonction sin est dérivable sur R et pour tout z € R,

sin’(z) = cos(z).

\ J

Démonstration. Soit x € Ret h € ]—g; 0[ U]O; z [ D’apres la Proposition on a

sin(z + h) —sin(z)  cos(x)sin(h) + cos(h) sin(z) — sin(z)

in(h 1-— h
0 = . = cos(x) Sm}g ) _ Sin(x)h%().
Donc en utilisant le Proposition [[IT.1] et par produits et somme de limites finies, on obtient que
i h) —si in(h 1-— h
lim sin(e + h) = sin(x) = cos(x) x lim sinh) _ sin(z) x limhA x limﬂ
h—0 h—0 h—0  h—0  h?
h£0 h+£0 h£0 h+£0

1
= cos(z) x 1 —sin(z) x 0 x 3

= cos(x).

Donc la fonction sinus est dérivable au point x et sin’(z) = cos(z).
La dérivabilité de la fonction cosinus est similaire et est laissée en exercice.

Exemple 12 : On souhaite redémontrer la Proposition [[T.2] Soient o € R et

u:R—>R

2 > cos (o — &) cos(x) — sin (o — z) sin(z).

1. Montrer que u est une fonction constante sur R.
2. En déduire la formule cos (a +b) = ....
3. Faire de méme avec v : x — sin (o — ) cos(x) + cos (o — z) sin(z).

De la proposition précédente et du signe des fonctions cosinus et sinus, on en déduit leurs tableaux de variations.

_ h

La fonction cosinus est une fonction 2w-périodique, paire, dont le tableau de variations sur [0; 27] est le suivant.
x 0 z 7r 3 27
sin(z) 0 + 0 = 0
1 — — 1
x — cos(z 0 0
(@) -
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La fonction sinus est une fonction 2m-périodique, impaire, dont le tableau de variations sur [0; 27] est le suivant.
7 0 % s 3 27
cos(z) - - 0+
1 —_ 0
x +— sin(z) / 0\ /
0 —1

A
2 +

SRS 0/
IRV AN IEND

Remarque 13 : Pour mémoriser si la dérivée de cos est 4 sin ou — sin, on peut retrouver ce résultat graphiquement
en observant que, aprés 0, le cosinus décroit et que donc sa dérivée est négative : cos’ = — sin tandis que le sinus a
une pente positive en 0 et donc a une dérivée positive : sin’ = cos.

Pour tout z € R, on a

jsin(z)| < |z

Démonstration. On procede par disjonction de cas.
o Six €]—o00;—1[U]l;+00]. Alors |z| > 1 > |sin(z)|. Donc I'inégalité est vraie dans ce cas.

« Deuxitme cas, si z € [0;1]. On note que [0;1] € [0; 5], donc sin(z) > 0 i.e. |sin(x)| = sin(x). Il nous faut donc
établir dans ce cas que sin(z) < z.
0;1] — R
Posons f : . La fonction f est définie et méme dérivable sur [0;1] comme composée de
x +— x—sin(x)
fonctions qui le sont. De plus,
Va € [0;1], f(z) =1 —cos(z).

Or on sait déja que pour tout = € R, cos(x) < 1. Donc Vz € [0;1], f/(z) < 0. Ainsi la fonction f est décroissante
sur [0;1] et 'on observe que f(0) =0 et f(1) =1 —sin(1). On obtient donc le tableau de variations suivant :

T 0 1
f'(@) +
1 —sin(1)
!
0 /
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On en déduit donc que

vV € [0;1], f(z) =2z —sin(z) 20 ie. sin(x)| < |z|.
o Troisieme cas, x € [—1;0]. Alors, y = —x € [0;1]. Donc par le cas précédent,
sin(y)| <[yl & [sin(-z)|< |-z & |=sin(@)| <2,

par parité de la valeur absolue et imparité de la fonction sinus.
sin(y)| <yl & [sin(z)] <z

L’inégalité est encore vraie.

IV La fonction tangente

Sur I'ensemble R\ { 5 + k7 | k € Z } on définit la fonction tangente notée tan par

VmER\{g—i—kw‘keZ}, tan(m):iz;((?).
A
U
sin(6) tan(0)
- —>
cos(0)

La fonction tangente est dérivable sur son ensemble de définition et

1
cos?(z)’

VxER\{g—i—kﬂ"keZ}, tan’(z) = 1 + tan?(z) =

Démonstration. La fonction tangente est le quotient de deux fonctions dérivables ne s’annulant pas sur R \
{5 +kn|keZ}. Donc la fonction tangente est dérivable sur cet ensemble et pour tout z € R\ {5 +kr | k € Z},

sin’(z) cos(z) — sin(x) cos’(x cos?(z) + sin®(z
() = ) (o) _ o) 4 ) _y

Mais en utilisant également ’égalité cos?(z) + sin?(z) = 1, on peut aussi I'écrire :

1

tan'(m) = M

10/17]
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_ A

La fonction tangente est m-périodique, impaire et croissante sur tous les intervalles ]—% +km; 5 + kﬂ'[, ou k € Z.
Son tableau de variation est le suivant.

- - 0
+00
x +— tan(z) 0/
—00 /
Démonstration. EXO! 0
1A
3
2
1
—bm 27 —r 0 T s 3 ™ Sm >

/|
—2
-3
—4

&

&)
SIE]
k]
w3
NIE}

tan(z) 0

S
B
[ &

J

Démonstration. Puisque tan(0) = 0, on reconnait la limite du taux d’accroissement de la fonction tangente en 0,
donc

. tan(h) . tan(h) —tan(0) fn 20
%12%) 5 —’lllg% — = tan'(0) = 1 + tan®(0) = 1.
h£0 h£0

11
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Pour tout (a,b) € R? tels que a, b et a + b soient dans Pensemble R\ {5 + km |k € Z}, on a

tan(a) + tan(b)
1 — tan(a) tan(b)

tan(a + b) =

NotammentpourtoutxeR\({%—i—knﬂkEZ}U{%—i—k%|k€Z}),

2 tan(z)
1 —tan?(zx)

\ J

tan(2z) =

Démonstration. EXO!

Pour tout « € R tel que les quantités suivantes soient bien définies,
e tan(—z) = —tan(z) e tan(x £ ) = tan(z)

e tan(m —x) = — tan(x) ° tan(m:l:%) = ~fan(@)

Exemple 14 : Calculer tan (%)

Soit & € R tel que les quantités suivantes soient bien définies. On pose t = tan (%) Alors,

2t
1—t2

2t

T e tan(x) =

o sin(zr) =

o cos(z) =15

Démonstration. Soit 2 € R\ {7+ 2k | k € Z} et posons ¢ = tan (£). D’apres la Proposition m

cos(z) = cos® (g) — sin? (g) — 9cos? (g) 1

Or, nous avons vu que pour tout tan’ (£) =1+ tan® (%) = COS;(%). Donc cos® (%) = 352 Ainsi,
(@) 2 11—
cos(x) = -1= :
1+t 1+ t2
D’aprés la Proposition
. 1’ . x 2 m
sin(z) = 2 cos (7) sin (7) = 2cos (f) t.
2 2 2
2 _ 1
Or nous avons vu que cos (%) = 13- Donc
in(a) =
sin(z) = .
1+¢2

Enfin pour la derniére égalité, on peut utiliser la Proposition [[V.6| ou directement grace aux précédentes inégalités,
pour tout # € R\ ({Z +kn |k €Z} U {r +2kn | ke Z}),

. 2t
sin(z) i@ 2t
tan(z) = cos(z) 1;2 Tl
1+12

12
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V Résolution d’équations et d’inéquations trigonométriques

V.1 Introduction aux congruences

Soient x, y et « trois réels. On dit que z est congru a y modulo « s’il existe k € Z tel que
x—y = ka.

On note alors
x =y [a].

Soit o € R.

« La congruence est transitive. Pour tout (z,y,2) € R3,

v=y [ r=za
{yzz[a] = o=zl

1 =1 [0 - 1+ 22 = Y1 + Y2 [
T2 = Y2 [a] 1 —22=Y1 — Y2 [a]~

o La congruence N’est PAS compatible avec la multiplication. Pour tout (x,y,\) € R3,

r=yla] = Ix=My[la]

\.

« La congruence est compatible avec I’addition et la soustraction. Pour tout (z1,y;,2,y2) € R*,

Exemple 15 :
1. Si z =y [27] alors cos(x) = cos(y) et sin(x) = sin(y).
2. Si x = y [n] alors cos(x) = £ cos(y), sin(x) = £sin(y) et tan(z) = tan(y).
3. La fonction tangente est définie sur {z € R |z # 5 [7] }.

V.2 Equations

Soit (z,y) € R?,

cos(z) =cos(y) & x=y|[27] OU z = —y [27]
=y[2r]OUz =7 —y [27]

3

sin(z) = sin(y)

cos(xz) = cos(y) ET sin(z) =sin(y) < x =y [27]

\.

J

Remarque 16 : Cette proposition n’est pas a apprendre par coeur mais doit pouvoir se retrouver facilement a 'aide

d’un schéma.

Exemple 17 : Déterminer l’ensemble des réels vérifiant I’équation cos(2z — 7) = cos (x + g)
Soit = € R,

=IE]

cos(Q:vfﬂ):cos(erg) & 2z7w5z+g[2ﬂ]ou2x7wz—xfg[27r] e
<= T = 3771- [27] ou 3z = g [27]
& 3353—71-[271']0uavzI {2—71
2 6 L3
oo {2%}
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Exemple 18 : Déterminer l'ensemble des réels vérifiant I’équation sin (m — %) = sin (aj + %)

Vs
Soit = € R, 12
( 7T) .<+ﬂ') N m +7T[2] ™ 7r[2]
sin({z— <) =sin|x+ r—-=c+ - 2rlour—c=r—2x— < 27
3 6 3 6 3 6
5
= 05%+%[2w]ou2ng+g[2ﬂ]
7
& 2= |2
6
T
12
Exemple 19 : Déterminer 'ensemble des réels vérifiant I’équation sin (3z) = cos (z + ).
Un sinus est un cosinus qui s’ignore et réciproquement. Soit € R, on sait que sin (3z) = 3
cos (3z — ). Ainsi, 3 8
4
sin (3z) = cos (z + ) =3 oS (33: - g) =cos (z + ) N
= 3x—g:x+7r[27r]ou3x gz—x—w[Qw]
3 i
& 2x52[27r]0u4x——§[ 7 w 8
- 3T (] m {7‘(} _an 4
r=—[rlouz=—= |Z =
g ot 8 2 3

V.3 Inequations

Exemple 20 : Déterminer 'ensemble des réels vérifiant l'inéquation 4 sin (4x) + 3 > 5.

137

Soit = € R,

1
4sin (4z) +3>5 & sin (4z) > —

2
& dk € Z, 4x6}6+2k7r 6+2k7r{
T 5T
& dk € Z, xe}ﬂ+k‘2 24+k: {

L1
Exemple 21 : Déterminer l’ensemble des réels vérifiant l’inéquation 6 cos (x

Soit = € R,

6cos (z+7) —3vV3 <0 & cos (4 7m) <

RE

< Jk e Z, x+77€{6+2k7r o +2k7r}

& JkeZ, 336{_75%—&-21%;5%—&-21677}.

V.4 Paramétrage du cercle trigonométrique et applications

« Pour tout 6 € R, on a cos?(#) + sin?(9) = 1.
 Réciproquement, soit (z,y) € R? tel que x2 + y? = 1, alors il existe un unique 6 € [0; 27| tel que

x = cos(6) et y = sin(6).

14/17]
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Démonstration. Le premier point est un rappel de la Proposition
Pour le second point, fixons (z,y) € R? tel que 22 + y?> = 1 et observons que 2> = 1 — y? < 1. Donc x € [-1;1].
Or cos(0) = 1, cos(m) = —1 et la fonction cosinus est continue sur [0;7]. Donc d’apres le théoréme des valeurs
intermédiaires, il existe 6 € [0;7] tel que cos(p) = x. Par conséquent, y*> = 1 — 22 = 1 — cos? (fy) = sin? ().
Procédons par disjonction de cas :

— Si, y > 0, on pose 8 = 6y € [0;7]. Alors y = sin (0) et & = cos ().

— Sinon, si y < 0, on pose § = —f + 27 € [r; 27]. Observons que dans ce cas 6 # 0 car sinon y? = sin? (27) = 0.
Donc 6 € [m; 2] Alors sin (6) = sin (=) = —sin () donc y? = sin? (#) et comme les deux membres de cette
égalité sont de méme signe (négatif), on en déduit que y = sin (f). Enfin on vérifie bien que x = cos (6p) =
cos (2 — ) = cos (—0) = cos(0).

Dans tous les cas on a démontré I'existence d’un réel 0 € [0; 2] tel que x = cos(f) et y = sin(h).
L’unicité découle du point 3 de la proposition [V.3]

Application : forme polaire de acos() + bsin(f).
Soient # € R et (a,b) € R\ {(0,0)}. Puisque (a,b) # (0,0), on a va? + b2 # 0. Donc

acos(f) + bsin(f) = v/ a? + b2 <

a 0 b . 9)
\/TWCOS( )+\/TWSID( ) .

b__ Alors il est facile de vérifier que 22 + 32 = 1. Donc il existe ¢ € R tel que

Vo etby = Ve
Jazioz - cos (p) et Jarr = Sin (p). Ainsi,

acos(0) + bsin(f) = v a? + b2 (cos (@) cos(f) + sin () sin(0)) = v a? + b2 cos (0 — ).

Exemple 22 :
Dans un circuit électrique, on considére une résistance R et un condensateur l

c

Yo

de capacité C en série. On suppose que l’intensité i est en fonction du temps
t sinusoidale : i(t) = I cos (wt), avec I et w deux réels.

|
|
O [

1. Exprimer la tension aux bornes de l’ensemble résistance-condensateur,
notée e(t). e(t)

2. On suppose que C' = ﬁ, montrer alors que la tension e est un signal
sinusoidal déphaser de —7 par rapport a l'intensité et déterminer son
amplitude.

1. La tension aux bornes de la résistance est donnée par ug(t) = Ri(t) = RI cos (wt). La tension aux bornes du
condensateur est liée a l'intensité par la relation Cul(t) = i(t) = Icos(wt) < u(t) = & cos(wt). Donc en
intégrant cette égalité, uc(t) = £ sin (wt). Les tensions en séries s’ajoutent donc

e(t) = ur(t) + uc(t) = RI cos (wt) + % sin (wt) .

2. On suppose que C' = ﬁ. Donc,
e(t) = RI (cos (wt) + sin (wt)) .

On applique désormais le procédé vu précédemment :
2 2
e(t) = V2RI (\2[ cos (wt) + g sin (wt))

= V2RI (cos (%) cos (wt) + sin (2) sin (wt))
= V2RI cos (wt — g) .

On en déduit que 'amplitude de e est 2RI et qu’il est déphasé de —7 par rapport a I'intensité 4(t).

15/]17
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VI Prochainement... Calcul algébrique - Notations

_ )

Soit I un ensemble fini et (a;),.; une famille de nombres réels ou complexes. On note

. Z a; la somme de tous les éléments de la famille (a;)
iel

el
. Hai le produit de tous les éléments de la famille (a;),.;.
i€l
Sil=][gp]=1{¢q9+1,...,p—1,p}, avec (p,q) € Z?, on note également

P
Zai: Z a/i:Zai:aq+aq+l+a/q+2+"'+ap

el q<isp i=q

P
Haiz H ai:Hai:aqxaqHxaq+2x~-><ap.
el q<isp i=q

Exemple 23 :
1. Si I =[1;5] et a; =i pour tout i € I, alors

5 5 5 5

 5(541) ‘

Zai:ZZ:T:]ﬁ et HaZ:H2:120:5|
i=1 i=1 i=1 i=1

2. Si I=1{0,2,4,6} et a; = 2 pour tout i € I, alors

Zai =204922494196 = 1444+16+64 =85 et Hai =20.92.94.96 — 912 — 46 — 163 = 4096.
el el

Remarque 24 : L’indice de sommation est muet !
L’indice i utilisé pour décrire la famille (a;);.; ainsi que la somme )
qui peut étre modifié en une autre lettre sans porter a conséquence :

Sa=Ya = a =Y

i€l kel ferl cer

ier @i ou le produit Hz‘e 1 @; est un indice muet

Naturellement et comme a 'accoutumée, on veillera a ne pas utiliser une lettre précédemment réservée.

Remarque 25 : IMPORTANT. La somme totale (ou le produit) ne doit JAMAIS dépendre de 'indice de sommation

57k+2

e s 10k 100
(ou de multiplication). Des monstruosités du genre ), "% ax ou D, = ar = 555

ne doivent jamais étre commises.

Remarque 26 : La longueur d’'une somme Z£=q - estdep—q+1.

Pour tout n € N, on a

1 Y= et 5 Yoo nEEDERED g (r D)
k=1 k=1
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Note historique : le mot « sinus » est un mot latin signifiant « courbe, pli, cavité ». Il a donné en francais les mots
« sein » (en italien le sinus mathématique se dit « seno » qui signifie également « sein ») et « sinueuz ».

L’histoire du mot « sinus » vient probablement d’une erreur de traduction. Au VIiéme siécle, le mathématicien indien
Aryabhata utilise le mot jiva qui signifie « corde ». Au VIIIiéme siécle, le mathématicien arabe Al-Fazziri arabise le
mot en jiba (n’ayant aucune signification en arabe). C’est alors qu’au XIliéme siécle, l’écrivain et traducteur italien
Gerard de Crémone confond jtba avec jatb, d’autant plus facilement qu’en arabe les voyelles sont parfois omises.
Jaib signifiant « poche, cavité », il le traduisit en latin par « sinus ». Le mot « cosinus » (de co-sinus) date lui du
XVlIIliéme siécle.

Srinivasa RAMANUJAN (Erode, Inde 1887 - Kumbakonan, Inde 1920) est le fils
d’un employé de magasin de Kumbakonam a cent soizante kilomeétres de Madras dans
le sud de l’Inde. Ses dons exceptionnels en mathématiques sont rapidement remarqués
mais c’est en autodidacte qu’il les développera a travers des livres qui se contentent
parfois de cataloguer des théoréemes sans donner de démonstration. Vivant dans une
grande pauvreté matérielle, Ramanujan prend cette habitude de n’écrire que ses résul-
tats sur papier, qu’il consigne dans des cahiers et de faire tous ses calculs de téte ou
sur ardoise. Il rédige également selon ses propres notations. Toujours excellent en ma-
thématiques mais médiocre dans les autres discipline, il échoue a plusieurs reprises aux
examens qui lui aurait permis d’accéder a un enseignement supérieur conventionnel. Il
arrive cependant a se faire connaitre de quelques mathématiciens indiens et obtient un
premier poste de fonctionnaire d Madras. Il envoie par la suite ses travauz d plusieurs
mathématiciens britanniques. Seul Hardy (cf chapitre 14) répond favorablement d la
lettre de neuf pages de Ramanujan. Hardy croit au début a une mystification tellement il est étonné par le contenu
de cette lettre. Il y reconnail bien certaines formules (que Ramanujan a redécouvert en autodidacte) mais d’autres
lui semblent & peine croyables. Convaincu avec son ami et colléque Littlewood du génie de Ramanujan, il le fait
venir en avril 1914 en Angleterre et commence alors une fructueuse collaboration entre Hardy et Ramanujan. Hardy
est trés impressionné par lintuition fulgurante de Ramanujan et la quantité de nouveaux résultats qu’il lui présente
mais déplore son manque de formation et de rigueur. Il doit souvent insister auprés de Ramanujan pour obtenir
davantage de démonstrations. Les travauz de Ramanujan portent en particulier sur les séries (cf chapitre 20) et la
théorie des nombres. Malade de longue date, peut-étre accentué par le climat britannique et la difficulté d’y suivre son
régime végétarien stricte exigé par son brahmanisme orthodoxe, il retourne en 1919 dans son pays et y meurt l’année
sutvante d l’dge de 33 ans.

Saisi d’étonnement par les nouveaux théorémes que Ramanujan lui proposait dans sa lettre, Hardy fit la remarque
suivante :

« ces théoréemes doivent étre vrais, car s’ils n’étaient pas vrais, personne n’aurait assez d’imagination pour les
inventer »

Interrogé par Erdos pour savoir qu’elle fut sa plus grande contribution auxr mathématiques, Hardy répondit sans
hésitation que ce fut sa découverte de Ramanujan.

Hardy encore raconte l’anecdote suivante :

« Je me souviens que j’allais le voir une fois alors qu’il était malade, a Putney. J’avais pris un taxi portant le numéro
1729 et je remarquais que ce nombre me semblait peu intéressant, ajoutant que j'espérais que ce ne fit pas mauvais
signe. 2 Non, me répondit-il, c’est un nombre trés intéressant : c’est le plus petit nombre décomposable en somme de
deux cubes de deux maniéres différentes »

En effet, 93 +103 = 13 + 123 = 1729...

Un sinus et un cosinus sont bons amis. Le sinus est fétard et le cosinus plutét pantouflard mais un soir le sinus
convainc le cosinus de sortir avec lui en boite de nuit. Comme a son habitude le sinus s’amuse bien mais le cosinus
reste boudeur au bar. Quand le sinus lui demande ce qui ne va pas le cosinus lui répond :

« -Tu es sympa mais dans cette boite je n’ai rencontré que des sinus et aucun cosinus.

-Allez fais un effort, tu n’as qu’a t’intégrer ! »
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