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Chapitre III : Trigonométrie

I Définition
Dans le plan munit d’un repère orthonormé direct

Ä
O; #»

i ,
#»
j
ä

on considère le cercle de centre O et de rayon 1, appelé
le cercle unité ou le cercle trigonométrique et noté U.
On oriente le cercle U dans le sens trigonométrique qui est le sens contraire de celui des aiguilles d’une montre.

Soient #»u et #»v deux vecteurs du plan. On note M , respectivement N , le point d’intersection du cercle unité U avec
la droite passant par O et de vecteur directeur #»u , respectivement de vecteur directeur #»v . La mesure de l’angle
( #»u , #»v ) en radian est égale à la longueur de l’arc de cercle M̄N compté positivement dans le sens trigonométrique
et négativement sinon.

Définition I.1

U

#»u

#»v

N

M

Remarque 1 :
1. La valeur d’un angle n’est défini qu’à 2π-près. Par exemple un quart de cercle vaut π

2 = 5π
2 = 9π

2 = −3π
2 = . . . .

2. Par enroulement de la droite des réels sur le cercle unité, pour tout θ ∈ R correspond un point sur le cercle
trigonométrique et un angle associé.

Pour tout θ ∈ R, on considère le point M ∈ U du cercle unité tel que
Ä

#»
i ,

#      »

OM
ä

= θ. On définit alors le cosinus
de θ, noté cos(θ), respectivement le sinus de θ, noté sin(θ), comme étant l’abscisse, respectivement l’ordonnée, du
point M .

Définition I.2

• La fonction cosinus, notée cos est la fonction qui à tout réel θ associe son cosinus, cos(θ).
• La fonction sinus, notée sin est la fonction qui à tout réel θ associe son sinus, sin(θ).

Définition I.3

Remarque 2 : Les fonctions cosinus et sinus sont définies sur R tout entier.
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U

M

θ

θ

cos(θ)

sin(θ)

Remarque 3 : Lien avec la trigonométrie du triangle rectangle. Soit ABC un triangle rectangle en B. On
désigne par θ l’angle ’BAC. Par translation (transformation du plan conservant les angles et les distances), on déplace
le triangle pour amener le point A à l’origine. Par rotation (transformation du plan conservant les angles et les
distances), du triangle autour du point O il est possible de faire coïncider la droite (OB) avec l’axe des abscisses tel
que #    »

OB et #»
i soient de même sens. On note C ′ le point d’intersection de (OC) avec le cercle unité U. Les coordonnées

du point C ′ sont donc C ′ (cos(θ); sin(θ)). On note B′ le point de coordonnées (cos(θ); 0). D’après le théorème de
Thalès, on a OB′

OB = OC′

OC ou encore :
AB

AC
= OB

OC
= OB′

OC ′ = cos(θ).

On retrouve bien l’antique formule cos(θ) = adjacent
hypoténuse . On peut procéder de même pour montrer que l’on a également

sin(θ) = opposé
hypoténuse .

Dessin :

• Les fonctions cosinus et sinus sont bornées. Pour tout θ ∈ R,

−1 ⩽ cos(θ) ⩽ 1 et − 1 ⩽ sin(θ) ⩽ 1.

• Les fonctions cos et sin sont 2π-périodiques. Pour tout θ ∈ R et tout k ∈ Z,

cos (θ + 2kπ) = cos (θ) et sin (θ + 2kπ) = sin (θ) .

• La fonction cosinus est paire sur R et la fonction sinus est impaire sur R. Pour tout θ ∈ R,

cos(−θ) = cos(θ) et sin(−θ) = − sin(θ).

Proposition I.4 (conséquences immédiates)

II Formulaire
Avant de donner une étude plus poussée des fonctions sinus et cosinus, nous allons établir des formules qui nous seront
utiles par la suite.
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Pour tout x ∈ R,
cos2(x) + sin2(x) = 1.

Proposition II.1

Démonstration. Découle simplement de la définition des fonctions cosinus et sinus. Soient x ∈ R, M le point de
coordonnées (cos(x); sin(x)) et N (cos(x); 0) dans le repère orthonormé

Ä
O; #»

i ,
#»
j
ä
. Le triangle OMN est rectangle en

M . Donc d’après le théorème de Pythagore, 1 = OM2 = ON2 + NM2 = cos2(x) + sin2(x).
□

Exemple 4 : On admet que sin
(

π
5
)

=
√

2
4

√
5 −

√
5. Calculer cos

(
π
5
)
.

Pour tout (a, b) ∈ R2, on a

cos(a + b) = cos(a) cos(b) − sin(a) sin(b)
sin(a + b) = cos(a) sin(b) + cos(b) sin(a).

Proposition II.2

Démonstration. On fixe deux réels a et b et dans le repère R =
Ä
O; #»

i ,
#»
j
ä
, on définit les points A (cos(a); sin(a))

et A′ (cos(a + b); sin(a + b)). On pose également #»u = #    »

OA et #»v tel que R′ = (O; #»u , #»v ) soit un repère orthonormé,
c’est-à-dire tel que ∥ #»v ∥ = 1, et tel que ( #»u , #»v ) = π

2 .

U

A

A′

#»u

#»v

a
b

a + b

Notez que dans ce nouveau repère, le vecteur #    »

OA a pour coordonnées (1; 0). Le vecteur
#     »

OA′ quant à lui peut être
obtenu par rotation d’angle b du vecteur #    »

OA autour du point O. Autrement dit le vecteur
#     »

OA′ a pour coordonnées
(cos(b); sin(b)) dans le repère R′ = (O; #»u , #»v ). Donc

#     »

OA′ = cos(b) #»u + sin(b) #»v .

Or #»u = #    »

OA = cos(a) #»
i + sin(a) #»

j et #»v = cos(a) #»
j + sin(a)

Ä
− #»

i
ä

= cos(a) #»
j − sin(a) #»

i . Donc
#     »

OA′ = cos(b)
Ä
cos(a) #»

i + sin(a) #»
j
ä

+ sin(b)
Ä
cos(a) #»

j − sin(a) #»
i
ä

= cos(a) cos(b) #»
i + cos(b) sin(a) #»

j + cos(a) sin(b) #»
j − sin(a) sin(b) #»

i

= [cos(a) cos(b) − sin(a) sin(b)] #»
i + [cos(a) sin(b) + cos(b) sin(a)] #»

j .

Or dans le repère R =
Ä
O; #»

i ,
#»
j
ä
, les coordonnées du vecteur

#     »

OA′ sont (cos(a + b); sin(a + b)). Donc par unicité des
coordonnées dans un même repère, on en déduit que

cos(a + b) = cos(a) cos(b) − sin(a) sin(b) et sin(a + b) = cos(a) sin(b) + cos(b) sin(a).

□
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Pour tout (a, b) ∈ R2,

cos(a − b) = cos(a) cos(b) + sin(a) sin(b)
sin(a − b) = cos(b) sin(a) − cos(a) sin(b).

Corollaire II.3

Démonstration. Découle immédiatement de la Proposition II.2 en remplaçant b par −b et de la parité ou de
l’imparité des fonctions cosinus et sinus.

□

Pour tout (a, b) ∈ R2,

cos(a) cos(b) = cos(a + b) + cos(a − b)
2

sin(a) sin(b) = cos(a − b) − cos(a + b)
2

cos(a) sin(b) = sin(a + b) + sin(b − a)
2 .

Corollaire II.4 (Formules de linéarisation)

Démonstration. Ces inégalités s’obtiennent en sommant ou soustrayant les formules des Propositions II.2 et II.3
□

Pour tout x ∈ R,

cos2(x) = 1 + cos(2x)
2

sin2(x) = 1 − cos(2x)
2 .

Corollaire II.5

Démonstration. Découle du corollaire II.4 avec a = b = x ou encore de la Proposition II.2 : pour tout x ∈ R,
cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 et donc cos2(x) = 1+cos(2x)

2 .
□

Exemple 5 : Soit x ∈ R, linéariser cos3(x).
Remarque 6 : La Proposition II.2 doit être connue sur le bout des doigts ! Vous pouvez apprendre les Propositions
II.3 à II.5 également par coeur mais je vous conseille plutôt d’apprendre à les retrouver RAPIDEMENT à partir de
la Proposition II.2. Dans tous les cas une restitution rapide et correcte est attendue sur toutes ces formules.

Pour tout (p, q) ∈ R2,

cos(p) + cos(q) = 2 cos
(p + q

2

)
cos

(p − q

2

)
cos(p) − cos(q) = −2 sin

(p + q

2

)
sin

(p − q

2

)
sin(p) + sin(q) = 2 sin

(p + q

2

)
cos

(p − q

2

)
sin(p) − sin(q) = 2 cos

(p + q

2

)
sin

(p − q

2

)
.

Proposition II.6 (Formules de factorisation)

Démonstration. Fixons (p, q) ∈ R2 et définissons a et b tels que p = a + b et q = a − b, c’est-à-dire a = p+q
2 et
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b = p−q
2 . Alors d’après la Proposition II.2, on a

cos(p) + cos(q) = cos (a + b) + cos (a − b)
= cos(a) cos(b) − sin(a) sin(b) + cos(a) cos(b) + sin(a) sin(b)
= 2 cos(a) cos(b) (on retrouve une égalité de la Proposition II.4)

= 2 cos
(p + q

2

)
cos

(p − q

2

)
.

□

Exercice 7 : Démontrer de même les autres égalités.

x 0 π
6

π
4

π
3

π
2

cos(x) 1
√

3
2

√
2

2
1
2 0

sin(x) 0 1
2

√
2

2

√
3

2 1

Proposition II.7 (Valeurs remarquables)

0 1
2

√
2

2

√
3

2 1

1
2

√
2

2

√
3

2

1

0

π
6

π
4

π
3

π
2U

Démonstration. D’après la définition des fonctions cosinus et sinus, on a cos(0) = sin
(

π
2
)

= 1 et cos
(

π
2
)

= sin(0) =
1.
D’après la Proposition II.2 (ou directement par la Proposition II.5), on écrit que

0 = cos
(π

2

)
= cos

(π

4 + π

4

)
= cos2

(π

4

)
− sin2

(π

4

)
= 2 cos2

(π

4

)
− 1.

Donc cos2 (π
4
)

= 1
2 . Remarquez bien que l’on pouvait obtenir ce résultat directement par la Proposition II.5 (le calcul

ci-dessus retrace la démonstration de la Proposition II.5). Or pour tout x ∈
[
0; π

2
]
, on sait que cos(x) ⩾ 0. D’où

cos
(π

4

)
=
…

1
2 =

√
2

2 .

De même sin2 (π
4
)

= 1−cos( π
2 )

2 = 1
2 . Donc sin

(
π
4
)

=
√

2
2 .

Démontrons les valeurs des fonctions cosinus et sinus en π
3 . D’après la Proposition II.2,

−1 = cos (π) = cos
(π

3

)
cos
Å2π

3

ã
− sin

(π

3

)
sin
Å2π

3

ã
= cos

(π

3

) [
cos2

(π

3

)
− sin2

(π

3

)]
− sin

(π

3

) [
2 cos

(π

3

)
sin

(π

3

)]
= cos3

(π

3

)
− 3 cos

(π

3

)
sin2

(π

3

)
.
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On élimine le sinus grâce à la Proposition II.1 et on obtient

−1 = cos3
(π

3

)
− 3 cos

(π

3

)
+ 3 cos3

(π

3

)
= 4 cos3

(π

3

)
− 3 cos

(π

3

)
.

Notons X = cos
(

π
3
)
. Le réel X est alors solution de l’équation

4X3 − 3X + 1 = 0.

On s’aperçoit que −1 est une solution évidente, on peut donc factoriser 4X3 − 3X + 1 par X + 1. Donc le réel X est
solution de l’équation

4X3 − 3X + 1 = (X + 1)
(
4X2 − 4X + 1

)
= (X + 1)(2X − 1)2 = 0.

Les solutions sont donc X = −1 ou 2X −1 = 0 ⇔ X = 1
2 c’est-à-dire cos

(
π
3
)

= −1 ou cos
(

π
3
)

= 1
2 . Comme le cosinus

est positif sur
[
0; π

2
]
, on en déduit que cos

(
π
3
)

̸= −1 et donc

cos
(π

3

)
= 1

2 .

Pour en déduire la valeur du sinus, on utilise la Proposition II.1,

1 = cos2
(π

3

)
+ sin2

(π

3

)
⇔ sin2

(π

3

)
= 1 − cos2

(π

3

)
= 1 − 1

4 = 3
4 .

Puis, comme le sinus est positif sur
[
0; π

2
]
,

sin
(π

3

)
=
…

3
4 =

√
3

2 .

La démonstration des valeurs de cosinus et sinus en π
6 est laissée en exercice.

□

Exemple 8 : A l’aide de la Proposition II.6, calculer sin
( 7π

12
)

+ sin
(

π
12
)
.

Pour tout x ∈ R,

• cos(x ± π) = − cos(x) • sin(x ± π) = − sin(x)
• cos(π − x) = − cos(x) • sin(π − x) = sin(x)
• cos

(
x + π

2
)

= − sin(x) • sin
(
x + π

2
)

= cos(x)
• cos

(
x − π

2
)

= sin(x) • sin
(
x − π

2
)

= − cos(x)
• cos

(
π
2 − x

)
= sin(x) • sin

(
π
2 − x

)
= cos(x)

Proposition II.8

Exercice 9 : Démontrer ces formules à l’aide de la Proposition II.2.
Exemple 10 : Soit x ∈ R et k ∈ Z, simplifier cos (x + kπ) et sin (x + kπ).
Remarque 11 :

1. Ces égalités découlent de la Proposition II.2 mais vous devez savoir les retrouver rapidement à l’aide de dessins.
2. Grâce à ces égalités, il est possibles d’étendre (et de retrouver si besoin) les valeurs remarquables des fonctions

cosinus et sinus sur le cercle entier (et non juste le premier quart de cercle de la Proposition II.7).

III Propriétés

• lim
h→0
h ̸=0

sin(h)
h = 1 • lim

h→0
h̸=0

1−cos(h)
h2 = 1

2

Proposition III.1 (Limites remarquables)
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Démonstration. Notations. Soit h ∈
]
0; π

2
[
. Dans le repère orthonormé

Ä
O; #»

i ,
#»
j
ä

du plan, on considère les points
M (cos(h); sin(h)), N (cos(h); 0), A(1; 0) et B le point d’intersection de (OM) avec la droite perpendiculaire à (OA)
passant par A.

O

c

M

A

B

N

h

Continuité de cosinus en 0. Commençons par montrer que la fonction cosinus est continue en 0, c’est-à-dire que
limh→0 cos(h) = 1. Puisque h = M̄A ⩾ MA ⩾ NA, on en déduit que 1 = ON + NA = cos(h) + NA ⩽ cos(h) + h et
bien sûr cos(h) ⩽ 1. Donc

∀h ∈
]
0; π

2

[
, 1 − h ⩽ cos(h) ⩽ 1.

Si h ∈
]
− π

2 ; 0
[
, on a −h ∈

]
0; π

2
[

et donc 1+h ⩽ cos(−h) ⩽ 1. Donc par parité de la fonction cosinus, 1+h ⩽ cos(h) ⩽ 1.
Enfin, si h = 0 l’inégalité est trivial. Donc

∀h ∈
]
−π

2 ; π

2

[
, 1 − |h| ⩽ cos(h) ⩽ 1.

En passant à la limite quand h → 0, on obtient bien lim
h→0

cos(h) = 1.

Première limite. Montrons maintenant la limite de sin(h)
h en 0. Fixons à nouveau h ∈

]
0; π

2
[

et reprenons les points
précédemment définies. On a MN ⩽ MA ⩽ M̄A ⩽ AB (admis). Or MN = sin(h), M̄A = h et par le théorème de
Thalès (les droites (MN) et (AB) étant perpendiculaires à la même droite (OA), sont parallèles entre elles),

MN

AB
= ON

OA
⇔ sin(h)

AB
= cos(h)

1 ⇔ AB = sin(h)
cos(h) .

Notez bien que l’on ne divise pas par 0 car h ∈
]
0; π

2
[

⇒ AB ̸= 0 et cos(h) ̸= 0. Ainsi l’inégalité MN ⩽ M̄A ⩽ AB
implique que

sin(h) ⩽ h ⩽
sin(h)
cos(h) .

Par positivité stricte de h et de cos(h) sur
]
0; π

2
[
, on en déduit que

∀h ∈
]
0; π

2

[
, cos(h) ⩽ sin(h)

h
⩽ 1.

Par parité du cosinus et imparité du sinus, on obtient également pour tout h ∈
]
− π

2 ; 0
[
, cos(−h) ⩽ sin(−h)

−h ⩽ 1 ⇔
cos(h) ⩽ sin(h)

h ⩽ 1. Donc

∀h ∈
]
−π

2 ; 0
[

∪
]
0; π

2

[
, cos(h) ⩽ sin(h)

h
⩽ 1.

Or nous avons vu que limh→0 cos(h) = 1. Donc par le théorème d’encadrement, on conclut que

lim
h→0
h̸=0

sin(h)
h

= 1.

Seconde limite. Montrons maintenant lim
h→0
h̸=0

1−cos(h)
h2 = 1

2 . D’après la Proposition II.2, on a

∀h ∈
]
−π

2 ; 0
[

∪
]
0; π

2

[
, cos(h) = cos2

Å
h

2

ã
− sin2

Å
h

2

ã
= 1 − 2 sin2

Å
h

2

ã
.
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Donc

∀h ∈
]
−π

2 ; 0
[

∪
]
0; π

2

[
,

1 − cos(h)
h2 =

2 sin2 (h
2
)

h2 = 1
2

Ç
sin

(
h
2
)

h
2

å2

.

Or lim
h→0
h̸=0

h
2 = 0 et lim

h→0
h̸=0

sin(h)
h = 1, donc par composition de limites, on a lim

h→0
h̸=0

sin( h
2 )

h
2

= 1. Puis par continuité de la fonction

carré, on conclut que
lim
h→0
h ̸=0

1 − cos(h)
h2 = 1

2 .

□

• La fonction cos est dérivable sur R et pour tout x ∈ R,

cos′(x) = − sin(x).

• La fonction sin est dérivable sur R et pour tout x ∈ R,

sin′(x) = cos(x).

Proposition III.2

Démonstration. Soit x ∈ R et h ∈
]
− π

2 ; 0
[

∪
]
0; π

2
[
. D’après la Proposition II.2, on a

sin(x + h) − sin(x)
h

= cos(x) sin(h) + cos(h) sin(x) − sin(x)
h

= cos(x) sin(h)
h

− sin(x)h1 − cos(h)
h2 .

Donc en utilisant le Proposition III.1 et par produits et somme de limites finies, on obtient que

lim
h→0
h̸=0

sin(x + h) − sin(x)
h

= cos(x) × lim
h→0
h̸=0

sin(h)
h

− sin(x) × lim
h→0
h̸=0

h × lim
h→0
h̸=0

1 − cos(h)
h2

= cos(x) × 1 − sin(x) × 0 × 1
2

= cos(x).

Donc la fonction sinus est dérivable au point x et sin′(x) = cos(x).
La dérivabilité de la fonction cosinus est similaire et est laissée en exercice.

□

Exemple 12 : On souhaite redémontrer la Proposition II.2. Soient α ∈ R et

u : R → R
x 7→ cos (α − x) cos(x) − sin (α − x) sin(x).

1. Montrer que u est une fonction constante sur R.
2. En déduire la formule cos (a + b) = . . . .
3. Faire de même avec v : x 7→ sin (α − x) cos(x) + cos (α − x) sin(x).

De la proposition précédente et du signe des fonctions cosinus et sinus, on en déduit leurs tableaux de variations.

La fonction cosinus est une fonction 2π-périodique, paire, dont le tableau de variations sur [0; 2π] est le suivant.

x

sin(x)

x 7→ cos(x)

0 π 2π

0 + 0 − 0

11

−1−1

11

π
2

0

3π
2

0

Proposition III.3
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La fonction sinus est une fonction 2π-périodique, impaire, dont le tableau de variations sur [0; 2π] est le suivant.

x

cos(x)

x 7→ sin(x)

0 π
2 π 3π

2 2π

+ 0 − 0 +

00

11

−1−1

00
0

Proposition III.4

x 7→ cos(x)
x 7→ sin(x)

−7π
2

−5π
2

−3π
2

3π
2

5π
2

7π
2

−3π −2π 2π 3π−π π−π
2

π
2

−2

−1

1

2

0

Remarque 13 : Pour mémoriser si la dérivée de cos est + sin ou − sin, on peut retrouver ce résultat graphiquement
en observant que, après 0, le cosinus décroit et que donc sa dérivée est négative : cos′ = − sin tandis que le sinus a
une pente positive en 0 et donc a une dérivée positive : sin′ = cos.

Pour tout x ∈ R, on a
|sin(x)| ⩽ |x| .

Proposition III.5

Démonstration. On procède par disjonction de cas.
• Si x ∈ ]−∞; −1[ ∪ ]1; +∞[. Alors |x| ⩾ 1 ⩾ |sin(x)|. Donc l’inégalité est vraie dans ce cas.
• Deuxième cas, si x ∈ [0; 1]. On note que [0; 1] ⊆

[
0; π

2
]
, donc sin(x) ⩾ 0 i.e. |sin(x)| = sin(x). Il nous faut donc

établir dans ce cas que sin(x) ⩽ x.

Posons f :
[0; 1] → R

x 7→ x − sin(x)
. La fonction f est définie et même dérivable sur [0; 1] comme composée de

fonctions qui le sont. De plus,
∀x ∈ [0; 1] , f ′(x) = 1 − cos(x).

Or on sait déjà que pour tout x ∈ R, cos(x) ⩽ 1. Donc ∀x ∈ [0; 1], f ′(x) ⩽ 0. Ainsi la fonction f est décroissante
sur [0; 1] et l’on observe que f(0) = 0 et f(1) = 1 − sin(1). On obtient donc le tableau de variations suivant :

x

f ′(x)

f

0 1

+

00

1 − sin(1)1 − sin(1)
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On en déduit donc que

∀x ∈ [0; 1] , f(x) = x − sin(x) ⩾ 0 i.e. |sin(x)| ⩽ |x| .

• Troisième cas, x ∈ [−1; 0]. Alors, y = −x ∈ [0; 1]. Donc par le cas précédent,

|sin(y)| ⩽ |y| ⇔ |sin(−x)| ⩽ |−x| ⇔ |− sin(x)| ⩽ |x| ,

par parité de la valeur absolue et imparité de la fonction sinus.

|sin(y)| ⩽ |y| ⇔ |sin(x)| ⩽ |x| .

L’inégalité est encore vraie.
□

IV La fonction tangente

Sur l’ensemble R \
{

π
2 + kπ

∣∣ k ∈ Z
}

on définit la fonction tangente notée tan par

∀x ∈ R \
{ π

2 + kπ
∣∣∣ k ∈ Z

}
, tan(x) = sin(x)

cos(x) .

Définition IV.1

tan(θ)

U

M

θ
cos(θ)

sin(θ)

La fonction tangente est dérivable sur son ensemble de définition et

∀x ∈ R \
{ π

2 + kπ
∣∣∣ k ∈ Z

}
, tan′(x) = 1 + tan2(x) = 1

cos2(x) .

Proposition IV.2

Démonstration. La fonction tangente est le quotient de deux fonctions dérivables ne s’annulant pas sur R \{
π
2 + kπ

∣∣ k ∈ Z
}

. Donc la fonction tangente est dérivable sur cet ensemble et pour tout x ∈ R \
{

π
2 + kπ

∣∣ k ∈ Z
}

,

tan′(x) = sin′(x) cos(x) − sin(x) cos′(x)
cos2(x) = cos2(x) + sin2(x)

cos2(x) = 1 + tan2(x).

Mais en utilisant également l’égalité cos2(x) + sin2(x) = 1, on peut aussi l’écrire :

tan′(x) = 1
cos2(x) .

□
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La fonction tangente est π-périodique, impaire et croissante sur tous les intervalles
]
− π

2 + kπ; π
2 + kπ

[
, où k ∈ Z.

Son tableau de variation est le suivant.

x

x 7→ tan(x)

− π
2 0 π

2

−∞−∞

+∞+∞

0

Proposition IV.3

Démonstration. EXO !
□

−5π
2

−3π
2

3π
2

5π
2

−3π −2π 2π 3π−π π−π
2

π
2

−4

−3

−2

−1

1

2

3

4

0

x 0 π
6

π
4

π
3

π
2

tan(x) 0 1√
3 1

√
3

Proposition IV.4

lim
h→0
h̸=0

tan(h)
h

= 1

Proposition IV.5 (Limite remarquable)

Démonstration. Puisque tan(0) = 0, on reconnait la limite du taux d’accroissement de la fonction tangente en 0,
donc

lim
h→0
h̸=0

tan(h)
h

= lim
h→0
h̸=0

tan(h) − tan(0)
h − 0 = tan′(0) = 1 + tan2(0) = 1.

□
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Pour tout (a, b) ∈ R2 tels que a, b et a + b soient dans l’ensemble R \
{

π
2 + kπ

∣∣ k ∈ Z
}

, on a

tan(a + b) = tan(a) + tan(b)
1 − tan(a) tan(b) .

Notamment pour tout x ∈ R \
({

π
2 + kπ

∣∣ k ∈ Z
}

∪
{

π
4 + k π

2
∣∣ k ∈ Z

})
,

tan(2x) = 2 tan(x)
1 − tan2(x)

.

Proposition IV.6

Démonstration. EXO !
□

Pour tout x ∈ R tel que les quantités suivantes soient bien définies,

• tan(−x) = − tan(x) • tan (x ± π) = tan(x)
• tan (π − x) = − tan(x) • tan

(
x ± π

2
)

= − 1
tan(x)

Proposition IV.7

Exemple 14 : Calculer tan
(

π
8
)
.

Soit x ∈ R tel que les quantités suivantes soient bien définies. On pose t = tan
(

x
2
)
. Alors,

• cos(x) = 1−t2

1+t2 • sin(x) = 2t
1+t2 • tan(x) = 2t

1−t2

Proposition IV.8 (Formules de l’angle moitié)

Démonstration. Soit x ∈ R \ {π + 2kπ | k ∈ Z} et posons t = tan
(

x
2
)
. D’après la Proposition II.2,

cos(x) = cos2
(x

2

)
− sin2

(x

2

)
= 2 cos2

(x

2

)
− 1.

Or, nous avons vu que pour tout tan′ (x
2
)

= 1 + tan2 (x
2
)

= 1
cos2( x

2 ) . Donc cos2 (x
2
)

= 1
1+t2 . Ainsi,

cos(x) = 2
1 + t2 − 1 = 1 − t2

1 + t2 .

D’après la Proposition II.2,
sin(x) = 2 cos

(x

2

)
sin

(x

2

)
= 2 cos2

(x

2

)
t.

Or nous avons vu que cos2 (x
2
)

= 1
1+t2 . Donc

sin(x) = 2t

1 + t2 .

Enfin pour la dernière égalité, on peut utiliser la Proposition IV.6 ou directement grâce aux précédentes inégalités,
pour tout x ∈ R \

({
π
2 + kπ

∣∣ k ∈ Z
}

∪ {π + 2kπ | k ∈ Z}
)
,

tan(x) = sin(x)
cos(x) =

2t
1+t2

1−t2

1+t2

= 2t

1 − t2 .

□
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V Résolution d’équations et d’inéquations trigonométriques
V.1 Introduction aux congruences

Soient x, y et α trois réels. On dit que x est congru à y modulo α s’il existe k ∈ Z tel que

x − y = kα.

On note alors
x ≡ y [α].

Définition V.1

Soit α ∈ R.
• La congruence est transitive. Pour tout (x, y, z) ∈ R3,®

x ≡ y [α]
y ≡ z [α]

⇒ x ≡ z [α].

• La congruence est compatible avec l’addition et la soustraction. Pour tout (x1, y1, x2, y2) ∈ R4,®
x1 ≡ y1 [α]
x2 ≡ y2 [α]

⇒
®

x1 + x2 ≡ y1 + y2 [α]
x1 − x2 ≡ y1 − y2 [α].

• La congruence N’est PAS compatible avec la multiplication. Pour tout (x, y, λ) ∈ R3,

x ≡ y [α] ⇒ λx ≡ λy [λα].

Proposition V.2

Exemple 15 :
1. Si x ≡ y [2π] alors cos(x) = cos(y) et sin(x) = sin(y).
2. Si x ≡ y [π] alors cos(x) = ± cos(y), sin(x) = ± sin(y) et tan(x) = tan(y).
3. La fonction tangente est définie sur

{
x ∈ R

∣∣ x ̸≡ π
2 [π]

}
.

V.2 Equations

Soit (x, y) ∈ R2,

cos(x) = cos(y) ⇔ x ≡ y [2π] OU x ≡ −y [2π]
sin(x) = sin(y) ⇔ x ≡ y [2π] OU x ≡ π − y [2π]

cos(x) = cos(y) ET sin(x) = sin(y) ⇔ x ≡ y [2π]

Proposition V.3

Remarque 16 : Cette proposition n’est pas à apprendre par coeur mais doit pouvoir se retrouver facilement à l’aide
d’un schéma.
Exemple 17 : Déterminer l’ensemble des réels vérifiant l’équation cos(2x − π) = cos

(
x + π

2
)
.

Soit x ∈ R,

cos(2x − π) = cos
(

x + π

2

)
⇔ 2x − π ≡ x + π

2 [2π] ou 2x − π ≡ −x − π

2 [2π]

⇔ x ≡ 3π

2 [2π] ou 3x ≡ π

2 [2π]

⇔ x ≡ 3π

2 [2π] ou x ≡ π

6

ï2π

3

ò
⇔ x ≡ π

6

ï2π

3

ò
.

π
6

5π
6

3π
2
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Exemple 18 : Déterminer l’ensemble des réels vérifiant l’équation sin
(
x − π

3
)

= sin
(
x + π

6
)
.

Soit x ∈ R,

sin
(

x − π

3

)
= sin

(
x + π

6

)
⇔ x − π

3 ≡ x + π

6 [2π] ou x − π

3 ≡ π − x − π

6 [2π]

⇔ 0 ≡ π

6 + π

3 [2π] ou 2x ≡ 5π

6 + π

3 [2π]

⇔ 2x ≡ 7π

6 [2π]

⇔ x ≡ 7π

12 [π].

7π
12

−5π
12

Exemple 19 : Déterminer l’ensemble des réels vérifiant l’équation sin (3x) = cos (x + π).
Un sinus est un cosinus qui s’ignore et réciproquement. Soit x ∈ R, on sait que sin (3x) =
cos

(
3x − π

2
)
. Ainsi,

sin (3x) = cos (x + π) ⇔ cos
(

3x − π

2

)
= cos (x + π)

⇔ 3x − π

2 ≡ x + π [2π] ou 3x − π

2 ≡ −x − π [2π]

⇔ 2x ≡ 3π

2 [2π] ou 4x ≡ −π

2 [2π]

⇔ x ≡ 3π

4 [π] ou x ≡ −π

8

[π

2

]
.

3π
4

−π
4

−π
8

3π
8

7π
8

−5π
8

V.3 Inequations

Exemple 20 : Déterminer l’ensemble des réels vérifiant l’inéquation 4 sin (4x) + 3 > 5.

Soit x ∈ R,

4 sin (4x) + 3 > 5 ⇔ sin (4x) >
1
2

⇔ ∃k ∈ Z, 4x ∈
ò

π

6 + 2kπ; 5π

6 + 2kπ

ï
⇔ ∃k ∈ Z, x ∈

ò
π

24 + k
π

2 ; 5π

24 + k
π

2

ï
.

π
24

13π
24

− 23π
24

− 11π
24

5π
24

17π
24

− 19π
24 − 7π

24

Exemple 21 : Déterminer l’ensemble des réels vérifiant l’inéquation 6 cos (x + π) − 3
√

3 ⩽ 0.

Soit x ∈ R,

6 cos (x + π) − 3
√

3 ⩽ 0 ⇔ cos (x + π) ⩽
√

3
2

⇔ ∃k ∈ Z, x + π ∈
ï

π

6 + 2kπ; 11π

6 + 2kπ

ò
⇔ ∃k ∈ Z, x ∈

ï−5π

6 + 2kπ; 5π

6 + 2kπ

ò
.

5π
6

− 5π
6

V.4 Paramétrage du cercle trigonométrique et applications

• Pour tout θ ∈ R, on a cos2(θ) + sin2(θ) = 1.
• Réciproquement, soit (x, y) ∈ R2 tel que x2 + y2 = 1, alors il existe un unique θ ∈ [0; 2π[ tel que

x = cos(θ) et y = sin(θ).

Proposition V.4
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Démonstration. Le premier point est un rappel de la Proposition II.1.
Pour le second point, fixons (x, y) ∈ R2 tel que x2 + y2 = 1 et observons que x2 = 1 − y2 ⩽ 1. Donc x ∈ [−1; 1].
Or cos(0) = 1, cos(π) = −1 et la fonction cosinus est continue sur [0; π]. Donc d’après le théorème des valeurs
intermédiaires, il existe θ0 ∈ [0; π] tel que cos (θ0) = x. Par conséquent, y2 = 1 − x2 = 1 − cos2 (θ0) = sin2 (θ0).
Procédons par disjonction de cas :

— Si, y ⩾ 0, on pose θ = θ0 ∈ [0; π]. Alors y = sin (θ) et x = cos (θ).
— Sinon, si y < 0, on pose θ = −θ0 + 2π ∈ [π; 2π]. Observons que dans ce cas θ0 ̸= 0 car sinon y2 = sin2 (2π) = 0.

Donc θ ∈ [π; 2π[. Alors sin (θ) = sin (−θ0) = − sin (θ0) donc y2 = sin2 (θ) et comme les deux membres de cette
égalité sont de même signe (négatif), on en déduit que y = sin (θ). Enfin on vérifie bien que x = cos (θ0) =
cos (2π − θ) = cos (−θ) = cos(θ).

Dans tous les cas on a démontré l’existence d’un réel θ ∈ [0; 2π[ tel que x = cos(θ) et y = sin(θ).
L’unicité découle du point 3 de la proposition V.3.

□

Application : forme polaire de a cos(θ) + b sin(θ).
Soient θ ∈ R et (a, b) ∈ R \ {(0, 0)}. Puisque (a, b) ̸= (0, 0), on a

√
a2 + b2 ̸= 0. Donc

a cos(θ) + b sin(θ) =
√

a2 + b2
Å

a√
a2 + b2

cos(θ) + b√
a2 + b2

sin(θ)
ã

.

Posons x = a√
a2+b2 et y = b√

a2+b2 . Alors il est facile de vérifier que x2 + y2 = 1. Donc il existe φ ∈ R tel que
a√

a2+b2 = cos (φ) et b√
a2+b2 = sin (φ). Ainsi,

a cos(θ) + b sin(θ) =
√

a2 + b2 (cos (φ) cos(θ) + sin (φ) sin(θ)) =
√

a2 + b2 cos (θ − φ) .

Exemple 22 :
Dans un circuit électrique, on considère une résistance R et un condensateur
de capacité C en série. On suppose que l’intensité i est en fonction du temps
t sinusoïdale : i(t) = I cos (ωt), avec I et ω deux réels.

1. Exprimer la tension aux bornes de l’ensemble résistance-condensateur,
notée e(t).

2. On suppose que C = 1
Rω , montrer alors que la tension e est un signal

sinusoïdal déphaser de − π
4 par rapport à l’intensité et déterminer son

amplitude.
1. La tension aux bornes de la résistance est donnée par uR(t) = Ri(t) = RI cos (ωt). La tension aux bornes du

condensateur est liée à l’intensité par la relation Cu′
C(t) = i(t) = I cos (ωt) ⇔ u′

C(t) = I
C cos (ωt). Donc en

intégrant cette égalité, uC(t) = I
Cω sin (ωt). Les tensions en séries s’ajoutent donc

e(t) = uR(t) + uC(t) = RI cos (ωt) + I

Cω
sin (ωt) .

2. On suppose que C = 1
Rω . Donc,

e(t) = RI (cos (ωt) + sin (ωt)) .

On applique désormais le procédé vu précédemment :

e(t) =
√

2RI

Ç√
2

2 cos (ωt) +
√

2
2 sin (ωt)

å
=

√
2RI

(
cos

(π

4

)
cos (ωt) + sin

(π

4

)
sin (ωt)

)
=

√
2RI cos

(
ωt − π

4

)
.

On en déduit que l’amplitude de e est
√

2RI et qu’il est déphasé de − π
4 par rapport à l’intensité i(t).
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VI Prochainement... Calcul algébrique - Notations

Soit I un ensemble fini et (ai)i∈I une famille de nombres réels ou complexes. On note

•
∑
i∈I

ai la somme de tous les éléments de la famille (ai)i∈I ,

•
∏
i∈I

ai le produit de tous les éléments de la famille (ai)i∈I .

Si I = Jq; pK = {q, q + 1, . . . , p − 1, p}, avec (p, q) ∈ Z2, on note également

∑
i∈I

ai =
∑

q⩽i⩽p

ai =
p∑

i=q

ai = aq + aq+1 + aq+2 + · · · + ap

∏
i∈I

ai =
∏

q⩽i⩽p

ai =
p∏

i=q

ai = aq × aq+1 × aq+2 × · · · × ap.

Définition VI.1

Exemple 23 :
1. Si I = J1; 5K et ai = i pour tout i ∈ I, alors

5∑
i=1

ai =
5∑

i=1
i = 5(5 + 1)

2 = 15 et
5∏

i=1
ai =

5∏
i=1

i = 120 = 5!

2. Si I = {0, 2, 4, 6} et ai = 2i pour tout i ∈ I, alors∑
i∈I

ai = 20+22+24+26 = 1+4+16+64 = 85 et
∏
i∈I

ai = 20 ·22 ·24 ·26 = 212 = 46 = 163 = 4096.

Remarque 24 : L’indice de sommation est muet !
L’indice i utilisé pour décrire la famille (ai)i∈I ainsi que la somme

∑
i∈I ai ou le produit

∏
i∈I ai est un indice muet

qui peut être modifié en une autre lettre sans porter à conséquence :∑
i∈I

ai =
∑
k∈I

ak =
∑
f∈I

af =
∑
ζ∈I

aζ .

Naturellement et comme à l’accoutumée, on veillera à ne pas utiliser une lettre précédemment réservée.
Remarque 25 : IMPORTANT. La somme totale (ou le produit) ne doit JAMAIS dépendre de l’indice de sommation
(ou de multiplication). Des monstruosités du genre

∑10k
k=1 ak ou

∑100
k=1 ak = 57k+2

100 ne doivent jamais être commises.
Remarque 26 : La longueur d’une somme

∑p
k=q · · · est de p − q + 1.

Pour tout n ∈ N, on a

1.
n∑

k=1
k = n(n + 1)

2 . 2.
n∑

k=1
k2 = n(n + 1) (2n + 1)

6 . 3.
n∑

k=1
k3 =

Å
n(n + 1)

2

ã2
.

Proposition VI.2
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Note historique : le mot « sinus » est un mot latin signifiant « courbe, pli, cavité ». Il a donné en français les mots
« sein » (en italien le sinus mathématique se dit « seno » qui signifie également « sein ») et « sinueux ».
L’histoire du mot « sinus » vient probablement d’une erreur de traduction. Au VIième siècle, le mathématicien indien
Âryabhata utilise le mot jîva qui signifie « corde ». Au VIIIième siècle, le mathématicien arabe Al-Fazzârî arabise le
mot en jîba (n’ayant aucune signification en arabe). C’est alors qu’au XIIième siècle, l’écrivain et traducteur italien
Gerard de Crémone confond jîba avec jaîb, d’autant plus facilement qu’en arabe les voyelles sont parfois omises.
Jaîb signifiant « poche, cavité », il le traduisit en latin par « sinus ». Le mot « cosinus » (de co-sinus) date lui du
XVIIIième siècle.

Srinivasa RAMANUJAN (Erode, Inde 1887 - Kumbakonan, Inde 1920) est le fils
d’un employé de magasin de Kumbakonam à cent soixante kilomètres de Madras dans
le sud de l’Inde. Ses dons exceptionnels en mathématiques sont rapidement remarqués
mais c’est en autodidacte qu’il les développera à travers des livres qui se contentent
parfois de cataloguer des théorèmes sans donner de démonstration. Vivant dans une
grande pauvreté matérielle, Ramanujan prend cette habitude de n’écrire que ses résul-
tats sur papier, qu’il consigne dans des cahiers et de faire tous ses calculs de tête ou
sur ardoise. Il rédige également selon ses propres notations. Toujours excellent en ma-
thématiques mais médiocre dans les autres discipline, il échoue à plusieurs reprises aux
examens qui lui aurait permis d’accéder à un enseignement supérieur conventionnel. Il
arrive cependant à se faire connaître de quelques mathématiciens indiens et obtient un
premier poste de fonctionnaire à Madras. Il envoie par la suite ses travaux à plusieurs
mathématiciens britanniques. Seul Hardy (cf chapitre 14) répond favorablement à la
lettre de neuf pages de Ramanujan. Hardy croit au début à une mystification tellement il est étonné par le contenu
de cette lettre. Il y reconnaît bien certaines formules (que Ramanujan a redécouvert en autodidacte) mais d’autres
lui semblent à peine croyables. Convaincu avec son ami et collègue Littlewood du génie de Ramanujan, il le fait
venir en avril 1914 en Angleterre et commence alors une fructueuse collaboration entre Hardy et Ramanujan. Hardy
est très impressionné par l’intuition fulgurante de Ramanujan et la quantité de nouveaux résultats qu’il lui présente
mais déplore son manque de formation et de rigueur. Il doit souvent insister auprès de Ramanujan pour obtenir
davantage de démonstrations. Les travaux de Ramanujan portent en particulier sur les séries (cf chapitre 20) et la
théorie des nombres. Malade de longue date, peut-être accentué par le climat britannique et la difficulté d’y suivre son
régime végétarien stricte exigé par son brahmanisme orthodoxe, il retourne en 1919 dans son pays et y meurt l’année
suivante à l’âge de 33 ans.

Saisi d’étonnement par les nouveaux théorèmes que Ramanujan lui proposait dans sa lettre, Hardy fit la remarque
suivante :

« ces théorèmes doivent être vrais, car s’ils n’étaient pas vrais, personne n’aurait assez d’imagination pour les
inventer »

Interrogé par Erdos pour savoir qu’elle fut sa plus grande contribution aux mathématiques, Hardy répondit sans
hésitation que ce fut sa découverte de Ramanujan.

Hardy encore raconte l’anecdote suivante :
« Je me souviens que j’allais le voir une fois alors qu’il était malade, à Putney. J’avais pris un taxi portant le numéro
1729 et je remarquais que ce nombre me semblait peu intéressant, ajoutant que j’espérais que ce ne fût pas mauvais
signe. ? Non, me répondit-il, c’est un nombre très intéressant : c’est le plus petit nombre décomposable en somme de
deux cubes de deux manières différentes »
En effet, 93 + 103 = 13 + 123 = 1729...

Un sinus et un cosinus sont bons amis. Le sinus est fêtard et le cosinus plutôt pantouflard mais un soir le sinus
convainc le cosinus de sortir avec lui en boîte de nuit. Comme à son habitude le sinus s’amuse bien mais le cosinus
reste boudeur au bar. Quand le sinus lui demande ce qui ne va pas le cosinus lui répond :
« -Tu es sympa mais dans cette boîte je n’ai rencontré que des sinus et aucun cosinus.
-Allez fais un effort, tu n’as qu’à t’intégrer ! »
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