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Corrigé du Devoir Surveillé 2
Trigonométrie, complexes, calcul
algébrique

Probleme I - Trigonométrie

Partie 1 : Lignes trigonométriques de J;

1. Méthode 1.

(a) Soit (a,b) € R2. Développons cos (a — b). Par le cours, on a

’ cos (a — b) = cos(a) cos(b) + sin(a) sin(b). ‘

(b) Posons a = % et b = 7T et déterminons cos ( ) Par la question précédente,
G-D=o@eo(Den@m()  « w(=35+77
cos(-——) =cos(<)cos|—)+sin|=)sin|— cos | —
3 4 3 4 3 4 12 22 2 2
T\ _ V2+V6
<o (ﬁ) T4
Conclusion,

2. Méthode 2.
(a) Soit € R. Montrons que sin (3z) = 3sin(x) — 4sin®(z). On a les égalités dans R suivantes :
sin (3z) = sin (2z + )
= sin (2x) cos(z) + sin(x) cos (2x)
= 2sin(x) cos(x) cos(x) + sin(z) (1 — 2sin2(:c))
cos®(x) + sin(z) — 2sin®(x)
(1 —sin®*(z)) + sin(z) — 2sin®(z)
— 4sin(z).

Conclusion,

Vo € R, sin(3x) = 3sin(x) — 4sin®(x).

(b) Montrons que f est une racine de P(X) = 4X3 — 3X + f .Si X = ‘[ ,on a

()(2) ()4

_ V2 V2

8 2
— Va3
=0.

Conclusion,

2
- est une racine de P.

123
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(c) Soit X € R. Résolvons P(X) = 0. Par la question précédente, on sait que (X - @) factorise
P:

2 2

P=4X3—&X+ﬁ;=:(X—ﬁ?)Qm?+2¢iX—1)

Déterminons les racines de 4X2 + 2/2X — 1. Soit A le discriminant associé :
A=8+16=24=4x6.

Donc les racines associées sont

o3I VB-VE | 2VE-26 | VG4
8 4 8 4 '

Conclusion, I'ensemble des solutions de P(X) = 0 est

y:{ﬁ VE— 2 _¢6+ﬂ}_

X1

2 4 4

(d) Calculons sin ({5). On a vu dans la question que Vx € R, sin (3z) = 3sin(z) — 4sin®(x). En

prenant x = {5, on obtient,

2
sin (%) = Jsin (%) — 4sin® (%) & \2f = 3sin (%) — 4sin® (%) .

Posons X = sin (%), alors,

2
4X3&X+i;:0 =  PX)=0.
Donc par la question précédente,
2 6 — 2 6 2
X:{ ou X:W ou X:‘W'

Or 0 < {5 < 7. Donc par la stricte croissance de la fonction sinus sur [O; %],

s \/i
vem(z) <L
0< sin { 75 < 5
Donc X # @ et X # —M < 0. Conclusion,
.(w> V6 -2
sin(—)=-——.
12 4

s

(e) Montrons que cos (12) = M. Par la question précédente, on a

cos? <1> =1 —sin? <1>

12 12
L (ﬁﬁ)

4
6 — 212+ 2
-

_16—-8+4V3

N 16

243
T

=1
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D’autre part, on observe que

<\/€+ﬂ>2:6+2\/ﬁ+2_8+4\/§_2+\/§

4 6 16 4

Donc

ot (3)=(V2) e () =aT

12 4 12 4

Or 0 < {5 < 5. Donc par la stricte décroissance de la fonction cosinus sur [O, 2} cos (%) > 0.
Conclusion, on retrouve bien que

T V6 f
COS (7) l_

3. Méthode 3.

(a) Soit # € R. Factorisons sin (4z) + sin (2z). Par la formule sin(p) + sin(q) = 2sin (252) cos (25),

on a
2
sin (4x) + sin (2x) = 2sin <62x> Ccos (;) = 2sin (3z) cos (z) .

Conclusion,

Yz € R, sin (4z) + sin (22) = 2sin (3z) cos (v) .|

(b) Calculons encore cos (%) En prenant xz = {5 dans la question précédente, on a

(T (T o . (T 7 \/3 1 \/5 o
sin <§) + sin <E) = 2sin (Z> cos <E) = —_— + — —— cos (12)

2
. ( ) o)
\f
- cos(ﬂ-> V2V3+1  V6+V2
12/ 2 2 4
Conclusion, rien a faire, on obtient toujours le méme résultat,
. ( kd ) V6 + /2
12 4
4. Calculons cos (1 ) On observe que 7 5” = (15—“ — {5 = 5 — 1g. Dés lors,

() == (5-15) = ()
COS 12 = COS B 12 = sin 12 .

Conclusion, par la question

On observe que 2024 = 24 x 84 + 8. Donc

20257 8 2
15 84 x 27 + 15 84 x 27 + 3

(22) x4 2) () -
COS 12 = COS s 3 = COS 3 = 2

Conclusion, (oui 2024 ne raméne pas du 7w/12)

(202577) 1
coS ===
12 2

Ainsi,
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Partie 2 : En passant par les complexes

On consideére les nombres

complexes z1 =141, 29

= M et Z = z129.

5. Calculons Z. On a les égalités entre complexes suivantes :

Z =z120=(1+1)

Votiva VEtiatiE-vE VE-vE . otV2
2 2 =T Tt

Conclusion, la forme algébrique de Z est donnée par

_VE-VE VR

Z
2 2

6. Calculons la forme polaire de z1, z9 et Z. On a

De plus,

Des lors,

Enfin,

Conclusion,

St

z1:1+z'=\/§(\f+i\f):\f2eil.

1 1
:*\/m:§2\/§:\/§'

|z2| = 5

’\/éﬂ’\/?
2

Z = 2129 = \/iei% \/iez% = 2ei<%+%) = 2ez(%+%) = QQZ%T .

i s L
21 =V2eT, 29 =265, Z=2¢1T2.

s

7. Calculons cos (ﬁ) et sin (—) Par les deux précédentes questions, on a

Z

12

6 —+/2 6 2 S 5 5
= \[2 \[+i\[—;\[:2eli :2cos(172r>+2isin(172r>.

Par unicité de la forme algébrique, on en déduit que

Conclusion,

cos <57T> = M et sin (57r> = \/61_\/5
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8. Résolvons (E) : (1 —v/3) cos(z) — (1 + v/3)sin(z) = /6. Soit # € R. En multipliant par %, on a

vV2-6 V2+ V6 | V12
(E) & ————cos(zx) - —————sin(x) = —
4 4 4
& — cos (57T> cos(x) — sin <57T) sin(z) = 2—\/3
12 12 4
& — cos (a: - 57r) = @
12 2
& cos (m - 57T) = —é
12 2
12 6 6 12 6 6
< IE5£+1[)J:15—7T:5—7T[2W] ou x5577r+1477r:197775_51 [27] .
12 12 12 4 12 12 12 12
Conclusion,

%8 T

9. Précisons les solutions dans [0; 27| et représentons-les. Par la question précédente, les solutions dans

[0; 27[, sont
5t 197
Zlo2n = {4 ! 12} -

Ainsi,
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Probléeme II - Complexes

On pose :
zZ—1

241

1. Calculons D = {z € C| f(z) existe. }. On a les équivalences suivantes :

f: ze

z€D & z+1#0 & z=—1.

Conclusion,

D=C\{-1} ]

2. Calculons f(0), f (%) et f(—1+ 4) puis précisons leurs formes polaires. On a

—1

0 = — = —7 = 71’%
Puis,
fC—w_f?—zrd—%_—Lﬁ_em
2 Hy1 i-142 0 144
Enfin,
—14+i-i -1 .
A== T

Conclusion,

3. Déterminons I’ensemble des complexes z € D tel que f(2)? = 1. Soit z € C\{—1}. On a les équivalences

suivantes :
_‘ 2
<z z) _1
z+1

fP=1 &

& (z—i)=(z+1)? car z # —1

& 22— 2iz—1=224+22+1

& —2=(2+2i)z
-2

< FT 3049

U S Gl S &)
1+i 2 2

Conclusion, ’ensemble solution est

= {_1é*i}.

4. Déterminons f< (R) et donnons la représentation graphique de cet ensemble. Soit z € C\ {—1}. On
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a les équivalences suivantes :

ze fT(R)

Posons z = = + iy. Alors,

te e T O

z€ fT(R) &

f(z) eR
fz)=f(z)
zZ—1 _§+i
z4+1 z4+1

z—i)Z+1)=Z+i)(2+1)

|22+ z—iz—i=|z|>+ 2+ iz +i

z2—Z—i(2+%)=2i

2iIm (z) — 2iRe (2) = 21

Im(z) —Re(z) = 1.

y=1+=x.

car z # —1

Conclusion, ’ensemble solution est la droite d’équation y = 1 + x privée du point (—1,0) :

| ={z=a+iyeCly=1+a}\{-1}.|

A
3,,

Or z € U donc z = % Ainsi,

5. Soit z € U\ {—1}. Montrons que f(z) =if(z). On a les égalités entre complexes suivantes :

z+1

T4 14iz z—i

z

- ()

141 142

/23
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Conclusion,

Vze U\ {1}, [f(z)=if(2)

6. Soit z € C\ {—1} tel que f(z) = if(z). Montrons que z € U\ {—1}. On a les implications suivantes :

=
b
I
.
Ry
—~
W
S~—

<zi)_,zi
z+1 _Zz—f—l

N Ehi izl
z+1 z+1
= E+i)(z+1) =(iz+1)(z+1)
= |22 +z+iz+i=ilzP+iz+7z+1
= |22 (1—i)=1—3i
= ]zf=1
= |z| =1
= z e U.

Or z # —1. Conclusion,
v2eC\{-1}, (f(x)=if(z)) =  zeU\{-1}.

NB : on aurait pu aussi raisonner par équivalences pour avoir la réciproque et retrouver le résultat de
la question précédente.

. Calculons f (U \ {—1}) et donnons la représentation graphique de cet ensemble. Soit w € C. On a
we f(UN{-1}) &  FzeU\{-1}, w=f(2)

Or par les deux questions précédentes, on a (f(z) = zf(z)) & z €U\ {—1}. Ainsi,

weFUN{-1}) o HzeC\{—l},{i(j;z{(z) N

gl
I
s

Posons w = = + iy, (z,y) € R2. On obtient,
we f(U\{-1}) & r—iy=1i(r+iy) =ix —y.
Par unicité de la forme algébrique :

we f(U\{-1}) & { & Yy = —u.

Conclusion, on obtient la droite d’équation y = —x :

JUN{-1})={w=a+iyeCly=—a}|
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A
3,,

8. Calculons A = {0 eR | elf £ -1 } Soit # € R. On a les équivalences suivantes :
. | & elf =™ & 0=mr [27].

Conclusion,

|[A={@k+1)r|keZ}.|

9. Soit 6 € |—m; 7.

(a) Montrons que f () =ie't @ (tan () + 1). Puisque § € ]—m; 7[, alors § € A et donc el £ 1
autrement dit ¢’ € C\ {—1} = D. Donc f (e’e) existe. De plus, on a les égalités entre complexes
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suivantes :
0
i\ _ e " —1
/ (e ) el 41
0l _ i3
~ il 4 ei0
0+E 0-F 0-Z
e el —e i
eig ei% —i—e_’%
. [(0-T
. 2isin ( 72 )
= eZZ
2 cos (g)
o)
azsn(d-3)
- [
cos (5)
. ;= sin (g) cos (%) — sin (%) cos (g)
—¢e'2
o)
cos 5)
0\ V2 _ V2 0
BPIRE (3) % — %5 cos (5)
- 0
cos (5)
2 0
=qi—e'4 <tan <§ — 1)
Conclusion,

f (ew) —ield \éi (tan (Z) — 1) .

(b) Déterminons un argument de f (ew). Par la question précédente,

f (ew) —e'3 T 72 (tan (g) — 1) = \gi (tan (g) — 1) e
. (

(4
2

Puisque 6 € |—m; [, alors g € ]—g, 5 [ et donc on observe que tan

5) (5)
tan<2 —1>0 & tan > >1

0
& erZ,z+k7r<f<z+k7r

) existe bien. De plus, on a

4 2 2
- T l_7 Qe]_z.z[
15252 Mot ]T9g
& Tco<n
5 .
De méme, tan (g) -1<0 & —7 <0< 3. Ainsi,
V2 (tan (4) — 1) &'F si 6e]n
F(e%) =<0 §i0=1
@’tan (%) -1 CF-m) g 0ec]-m—3%.
Conclusion,
3 . T
o\ _ 1 [27] s 0e]5m|
arg (f (e )) - {_Z 2] i QGJ—W;%[
et

f (eiG) —0si 6= g (et n’a donc par d’argument).

10/]22]
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(c) Par la question précédente, on observe que pour 6 € =]\ {g}, on a arg (f (eie)) = %T’T [7].
Par conséquent le point d’affixe f (e’e) est sur la droite d’équation y = —z. Or €'? € U et méme
e'® € U\ {~1} car 6 € A donc f (') € f(U\ {-1}) qui est bien I'ensemble des affixes de la

droite d’équation y = —z d’apres la question |7.| Ce résultat reste vrai si § = 5. Conclusion,

‘le résultat de la question précédente est parfaitement cohérent avec la question |Z”

10. Montrons que f définit une bijection de D dans un ensemble D et déterminons 1. Soient z € D =
C\ {—1}. Soit w € C. On a les équivalences suivantes :

z—1
= = =
) =w a1 ”
& z—i=w(z+1) car z # —1

& z(1—w) =w+i.

Siw=1,alorson a f(z) =w < 0=1+1 ce qui est impossible. Dans ce cas, I’équation f(z) = w
n’a pas de solution et donc 1 n’a pas d’antécédent par f. Supposons maintenant que w # 1. Alors,
w1

f(z) =w & p=

Dans ce cas, f(z) = w admet une et une seule solution. Conclusion,

C\{-1} — C\{1}

.. . —1
i est bijective et f7 :
z = 2

C\{1} — C\{-1}

W et

I

11/]22
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Probleme III - Calcul algébrique

Pour tout o € N on pose
n
VneN,  S,=> k*2%,
k=0
avec (a)cy une suite d’entiers. On fixe n € N*.
Partie 1 : Cours

1. On suppose que pour tout £ € N, ax = 0. Alors, on obtient

Sp=>_ k20 ="k~
k=0 k=0

Si a = 0, alors on obtient la somme d’une constante,

n

Sn=> K'=> 1=n+1
k=0

k=0
De méme, si « = 1, on obtient la somme des premiers entiers :
n
n(n+1)
Sn = k= ——=.
TR

Si a = 2, on obtient la somme des carrés des premiers entiers :

= +1)(2n+1)
Sn:Zkzz n(n
k=0

6
Conclusion,
n+1 sia=0
Sy = { el sia=1
w sia=2.

2. On suppose que « = 0 et que pour tout k € N, a, = k. Par définition, on a
n n
Sp=Y K02F =32k,
k=0 k=0

On reconnailt une somme géométrique de raison 2 # 1. Donc

2n+1 -1
Sp="F——=2""1 1,
" 2-1
Conclusion,
S, = 2" 1.

Partie 2 : Casou a=1

On suppose que a = 1 et on pose pour tout k € N, ar = k. On propose ni une ni deux ni trois mais quatre
méthodes pour calculer S, !

12/22



C
o
e s Ko Mathématiques PTSI, DS2 Cor Samedi 09 Novembre 2024

3. On a par définition,
Sn=_ k2",
k=0
Donc

1 2
S1=> k2F=0x20+1x2"'=2 et S=) k2"=0x2"+1x2"'+2x2°=2+8=10.
k=0 k=0

Conclusion,

Slz2et52:10.\

4. (Par un changement d’indice)
(a) Par définition, on a
n n n
Sp=> k2"=>"k2F+0x20 = k2 car n > 1.
k=0 k=1 k=1

Posons k = k — 1 i.e. k =k + 1. Alors,

n—1 5
Sp=3" (k+1)2F,
k=0

L’indice de sommation étant muet, on conclut

n—1

Sp=Y_ (k+1)2~F
k=0

(b) Par la question précédente, on a les égalités entre réels suivantes :
n—1 n—1
S’n — Z k2k+1 + Z 2k+1
k=0 k=0

n n—1
— Z k2k+1 o n2n+1 + Z 2k+1
k=0 k=0

n n—1
-9 Z ]C2k _ n2n+1 + Z 2k+1
k=0 k=0

n—1
=28, —n2"tt 423" 2k
k=0
On reconnalt une somme géométrique de raison 2 # 1,
2n71+1 -1

=25, —n2"t 4 2(2" —1).
Deés lors, on en déduit que
STL = n2n+1 —9 (2” _ 1) — n2n+1 o 27’L+1 4 92 — (n . 1) 2n+1 + 2.

Conclusion,

S, =(n—1)2" 42,

On vérifie son résultat. Sin =1, on a S; = (1 —1)2" +2 = 2 ce qui est cohérent avec la
questian De méme, So = (2—1)2*"1 +2=8+2=10 OK!

13/22
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RY — R
5. (Par une dérivée) Soit f : N zn:xk

La fonction f est dérivable sur R* en tant que fonction polynomiale et
n
VeeRY,  fl(x)=0+> ka" L
k=1
D’autre part, pour tout x € R \ {1}, on reconnait une somme géométrique. Donc

1— xn+1

1—=x

fz) =

Cette expression est dérivable sur R \ {1} et

—(n+1)a"(1—=z)— (1—a") (1)
(1—a)
—(n+Dz"+ (n+1)z"H +1 — gt
(1—a)*
nx"tt —(n+ 1)z +1

(1*»’6)2 '

Ve e RL\{1},  fl(x) =

Ainsi,

Vo e RY\ {1},

oy na™l—(n+1)2"+1
E kx" " = 5 .
— (1—2)

En particulier, pour x = 2,

i’f?k_l _n2" —(n+1)2" +1

= (1—2)
=n2" —(n+1)2" +1
=2"2n—-n—-1)+1
=2"(n—1)+1.

Ainsi,
Sn=> k2F=0+Y k2"=2> k2" =212"(n—-1)+1]=2""(n—1)+2.

Conclusion, on retrouve bien I'expression de la question [1.D]

S, =2 (n —1) + 2.

6. (Par une autre méthode dont je ne donnerai pas le nom...)
(a) Soit k € N. On a
(k+1)281 — g2k = 2k +2) 2% — k2 = 2k +2 — k) 2% = (k4 2) 28 = K2k 4 2FFL,

Conclusion, on trouve bien que

VEEN, (k4 1)2F — g2k = gok 4 oF 1

14/]22
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(b) En sommant la relation précédente entre 0 et n, on a

n

S [+ 1) 26t — kok] = zn: |2k + 28]

k=0 k=0
On reconnait une somme télescopique dans le terme de gauche donc

n
(n+1)2"T —0x 20 =3~ [k2F + 2K+
k= 0

o (n+1)2"+! = ka + ZQk—H

& (n41)2nt :Sn+222’“.
k=0

En reconnaissant une somme géométrique de raison 2 % 1, on obtient que

Sp=(n+1)2"" - 222’c

n+1 2Tl+1 —1
=n+1)2""" —2x ST
(n + 1) 2n+1 2 (2n+1 _ 1)
(n + 1) 27’L+1 2n+2 + 2
=(n4+1-2)2"" 42

= (

n— )2n+1+2

Conclusion, on retrouve une fois encore,

S, = (n—1)2" 42,

7. (Par une somme double)
(a) En sommant en interne sur p et en externe sur k, on a
n k
> =332
1<p<k<n k=1p=1
L’entier 2¥ ne dépendant pas de p :
n k n
PDEELED SEL ST SEATERY
1<p<k<n k=1 p=1 k=1

Conclusion,

(b) En échangeant I'ordre de sommation i.e. en sommant en interne sur k et en externe sur p, on a

Sn= >, 2’“:262732’“.

1<p<k<n p=1k=p

15//22
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On reconnailt une somme géométrique de raison ¢ =2 # 1. On a donc

n-ptl

Sn=2 =5

=(n-1)2"" +2.

Conclusion, on obtient une fois encore,

S, =(n—1)2" 4 2.

(c) On proceéde comme dans la question précédente, on a les égalités entre réels suivantes :

1<p<k<n (p) =1 k=p+1 ( )
-1
p= k=p+1
= Y (n> 2p+1 2n7p71+1 - 1
s P 2—1
n—

_ Z ( ) 2n+1 _ 2p+1)
n—1 n n—1 n
:2n+1z< )_Z< )2p+1
p=1 \P p=1 \P
n n
_ on+l Z (”) _gnt+l _gntl _ Z (”) gp+l | o | on+l
p=0 \P p=0 \P
On reconnait alors deux binémes de Newton :

3 (”>2k —omtl (1 1) — 2 924 1) 42
p

1<p<k<n
—92ntl _ogntl 9y 3n 4 9

Conclusion,

3 (”>2k:2"+1(2n—1)—2x3"+2.

1<p<k<n \P

16/22]
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8. (Une conséquence) Par I'inversion d’indice k = n — k, on obtient que

L

n
Tn = E:ka

car l'indice est muet

N o=t 1 o=,
=5 22— D k2
k=0 k=0

2n+1_1 1
_ s T g
2n 2-—1 AL

:n<2—ld-nl(m—1ﬂwd+@

n n

n 1
2

—g_nt2
2n
Conclusion,
n-+ 2
T, =2 — on

17/22

car on reconnait une somme géométrique

par ce qui précede
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Probleme IV - Trigonométrie

Partie 1 : Manipulation d’une expression trigonométrique

Pour tout = € R, on pose

Puis,
1()=(%) ) -+ (F) =505

Aussi,

105 =) (-0 () =G0+ i
Enfin,

2 T 2

()= (4 (o) -0+ (9) 4 () 3 -3-

Conclusion,

2. Signe de f(x), méthode 1.

(a) Soit x € R. Précisons cos (2z) uniquement en fonction de cos(z). On a directement,

cos (2z) = 2cos*(x) — 1.

(b) Montrons que pour tout z € R, f(z) = 2cos*(x) — 3cos?(z) + 1. Soit x € R, par la question
précédente, on a les égalités dans R suivantes :

cos (2x) — 1) + sin?(z)
2cos?(z) — 1 — 1) + sin*(z)
—2cos?(z) + 1 — cos®(z)

z) — 3cos?(z) + 1.

~— ~— —

Conclusion,

Vz eR, f(z)=2cos*(z)—3cos®(z) + 1.

(¢) Résolvons dans R l'inéquation f(z) < 0. Soit x € R. Posons X = cos(x). Par la question
précédente,

flz) <0 & 2cos?(z) —3cos?(z) +1 <0 & 2X* -3Xx%4+1<0.

Posons Y = X2. Alors,
f(x)<o0 & 2Y?2 —3Y +1<0.
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Puisque 1 est une racine,

@) <0 o (Y-DEY-1)<0 o 2(Y—1)<Y—;><O.

Donc les deux racines sont 1 et % Donc le signe de 2 est a l'extérieur des racines d’ou

1
f(z) <0 & §<Y<1
1
& 5<X2<1
& 1<X < ! ou ! <X <1
V2 V2
& —1<cos()<—\2f OU£<COS()<1

& dk e Z, %+2kw<x<(2k+l)7r ou (2]€+1)7T<$<%n—+2kﬂ'

OU — 7 +2km <z < 2km OU 2k < < +2kr.
Ce qui s’écrit aussi :
f(x) <0 & JkeZ, —%+k7r<x<k:7r ou k‘7r<l‘<%+k‘7r.

Conclusion,

= U(}——Jrkmlm[ }Im, —l—lmD

kEZ

3. Signe de f(x), méthode 2.

(a) Montrons que pour tout x € R, f(x) = — cos (2z)sin?(x). Soit z € R. Par la formule cos(p) —

cos(q) = —2sin (259) sin (257), on a les égalités dans R suivantes :

f(z) = cos®(z) (cos (2z) — 1) + sin®(x)

)
= cos®(z) [ —2sin Qx;o)sin<2x2_0)>+sin2(x)

= —2cos?(z) sin(z)? 4 sin®(z)
= —sin®(z) (2 cos?(z) — 1)
= —sin?(z) cos (22) d’apres la question

Conclusion,
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(b) Retrouvons le résultat de la question Soit x € R. Par la question précédente,

f(z) <0 & —cos (2x) sin?(z) < 0
& cos (2z) sin?(z) > 0
o sin(z) # 0
cos (2z) >0
o x#0 [n]
dk € Z, —5 + 2kmw < 2x < § + 2km
. [0
dke€Z, -7 +kr<x<i+kr
o TFkez, —£+k7r<a:<k7r ou k7r<x<%+k7r.

Conclusion, on retrouve bien le résultat de la question

_ _rT : T
y—kLEJZG 1 +k7r,k7r[u}k7r,4 —l—kﬂrD.

4. Soit x € R. Linéarisons l'expression de f(z). On a les égalités dans R suivantes :

f(z) = cos®(x) (cos (2z) — 1) + sin®(z)

14 cos(2x) 1 — cos (2z)
-2 2
(cos® (2z) — 14+ 1 — cos (22))

-1 <1 + C(;S (4z) cos (21‘))

_cos (4x) —2cos (2z) + 1
- . '

(cos (2z) — 1) +

1
2
1

Conclusion,

cos (4x) — 2 cos (2z) + 1

Ve eR, f(z)= 1

Partie 2 : Inégalité de Winkler
On pose :

g: x> sin®(z) + ztan(z) — 222

5. Précisons D, le domaine de définition de g et vérifions que }O; Z [ C D,. La fonction sinus et la fonction
carrée sont définies sur R tandis que la fonction tangente est définie sur R\ {5 + k7 | k € Z }. Donc
par somme, on en déduit que

Dg:R\{g—i—lm’kEZ}.

En particulier, on a directement

T
}0;§{cpg.

6. Calculons la dérivée de g sur ]0; z [ La fonction g est dérivable sur son domaine de définition comme
somme de fonctions dérivables sur leurs domaines de définition respectifs. Donc g est dérivable en
particulier sur ]O; z [ De plus, pour tout =z € }0; 3 [,

g'(x) = 2cos(z) sin(z) + tan(x) + z (1 + tanQ(m)) —4x
= sin (2z) + tan(z) + z (1 + tan®(z)) — 4z.

20/]22]
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Conclusion,

Vo € }0; g [, g'(x) = sin (22) + tan(z) + = (1 + tanQ(x)) — 4z

7. Montrons que Vz € |0; 5[,  ¢”"(z) = 2cos (2z) + 2tan®(z) — 24 2 (1 + tan®(z)) @ tan(z). La fonction
g’ est dérivable sur }0; g[ comme somme de fonctions qui le sont donc g est deux fois dérivable sur
]0; g[ et par la question précédente, pour tout x € ]0, 5 [ on a

g"(z) = 2cos (2z) + 1 + tan®*(z) + 1 + tan*(z) + x (2 (1 + tan®(z)) tan(z)) — 4
(14 tan®*(z)) (24 2z tan(z)) — 4

(2z)

= 2cos (2z) +

= 2cos (2x) + 2 + 2z tan(z) + 2tan?(x) + 2z tan®(z
(2z)
(2z)

) —4
= 2cos (2x) + 2tan®(z) — 2 + 2z tan(x) + 2z tan®(x)
= 2cos (2z) + 2tan®*(z) — 2+ 2 (1 + tan®(z))  tan(x).

Conclusion,

Vo € }0; g [, g"(x) = 2cos (2x) 4+ 2tan?(z) — 2 + 2 (1+ tanQ(x)) x tan(z).

8. Montrons que Vz € |0; 5[, ¢"(z) = co£2((52) + 2 (1 + tan?(z)) z tan(z). Soit z € |0; 5[. On a

H 421+ tan () tante) = 2B DD 4 (14 tan?0)) taner)
=2 (cos (2z) — 1) + tan®(z) + 2 (1 + tan*(z)) x tan(z)
= 2cos (2z) + 2tan®*(z) — 2 + 2 (1 + tan®(z)) z tan(z).
Conclusion,

Vo € }0; g [, q"(z) = c?s;((x:i) +2 (1 + tan*(z)) z tan(z).

9. A Tlaide de la question montrons que Vz € |0; 5[, f(z) = — 1 sin (4z) tan(z). Soit x € 10: 5[
Par la question 3.3 on a

f(z) = — cos (2z) sin®(z)
sin?(x) cos(x
= —cos (2x) (Eos)(m)()
= — cos (2z) tan(x) sin(x) cos(x)

= —cos (2x) tan(z) sin éZx)

_ _% tan(z) sin (2z) cos (2z)
sin (4x)

1

=-3 tan(x)
1 .

=-1 tan(x) sin (4x) .

Conclusion,

Vo € }0; g[, flz) = —%sin (4z) tan(x).

21/]22
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10.

11.

12.

Montrons que Vz € 0; %[, ¢"(z) = 5 (1+ tan?(z)) tan(z) (42 — sin (4z)) . Soit = € |0; Z[. Par la
question [8.| et la question précédente,

g'(x) = cigg)

_ —1sin (4z) tan(z)

+2 (1 + tan*(z)) z tan(z)

cos2(2) +2(1+ tan? (z)) x tan(x)

= —% sin (4z) tan(z) (1 + tanQ(x)) +2(1+ taHQ(x)) z tan(z)

= % (1 + tan®*(z)) tan(z) (—sin (4z) + 4z) .

Conclusion,

Vo € }0; g [, g"(x)=5(1+ tan®(z)) tan(z) (4 — sin (4z)) .

N —

On rappelle que pour tout ¢t € R*, sin(t) < ¢t. Montrons que pour tout x € }O; %[, g(x) > 0. Soit
z € ]0; 3[. En prenant ¢ = 4z > 0, on a sin (4z) < 4z. Donc 4z — sin (4z) > 0. De plus tan(z) > 0 et
1 +tan?(x) > 1 > 0. Donc par la question précédente,

YV G}O;g[, g"(x) > 0.

Donc la fonction ¢’ est strictement croissante sur ]0; 5 [ Or ¢’ est définie et méme continue en 0 (par
la question donc ¢’ est strictement croissante sur [0; g[ Donc
T / 0 —
VzE}O,i[, g (xz)>g'(0)=0.

us

Donc la fonction g est strictement croissante sur ](); 5

g est strictement croissance sur [O; %[ Donc

[. Or g est définie et méme continue en 0. Donc

V:ce}();g[, g(x) > ¢(0) =0.

Conclusion,

VxE}O;g[, g(x) > 0.

: 2
Concluons en démontrant I'inégalité de Winkler : Va € ]0; 3 [, (Slnx(gg)) + w > 2. Soit ¢ € ]0; 5 [
Par la question précédente,

sin?(z) + z tan(z) — 222 > 0 =3 sin?(z) + z tan(z) > 222

sin?(x) n tan(z)

5 > 2 car 72 > 0.

xT T

Conclusion, on obtient bien 'inégalité de Winkler :

Ve € }0; g [’ <sin(:z:)>2 .\ tan(z) 59

x x
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