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Corrigé du Devoir Surveillé 2
Trigonométrie, complexes, calcul

algébrique

Problème I - Trigonométrie
Partie 1 : Lignes trigonométriques de π

12

1. Méthode 1.

(a) Soit (a, b) ∈ R2. Développons cos (a − b). Par le cours, on a

cos (a − b) = cos(a) cos(b) + sin(a) sin(b).

(b) Posons a = π
3 et b = π

4 et déterminons cos
(

π
12
)
. Par la question précédente,

cos
(π

3 − π

4

)
= cos

(π

3

)
cos

(π

4

)
+ sin

(π

3

)
sin

(π

4

)
⇔ cos

( π

12

)
= 1

2

√
2

2 +
√

3
2

√
2

2

⇔ cos
( π

12

)
=

√
2 +

√
6

4 .

Conclusion,

cos
( π

12

)
=

√
6 +

√
2

4 .

2. Méthode 2.

(a) Soit x ∈ R. Montrons que sin (3x) = 3 sin(x) − 4 sin3(x). On a les égalités dans R suivantes :

sin (3x) = sin (2x + x)
= sin (2x) cos(x) + sin(x) cos (2x)
= 2 sin(x) cos(x) cos(x) + sin(x)

(
1 − 2 sin2(x)

)
= 2 sin(x) cos2(x) + sin(x) − 2 sin3(x)
= 2 sin(x)

(
1 − sin2(x)

)
+ sin(x) − 2 sin3(x)

= 3 sin(x) − 4 sin3(x).

Conclusion,
∀x ∈ R, sin (3x) = 3 sin(x) − 4 sin3(x).

(b) Montrons que
√

2
2 est une racine de P (X) = 4X3 − 3X +

√
2

2 . Si X =
√

2
2 , on a

P

Ç√
2

2

å
= 4
Ç√

2
2

å3

− 3
Ç√

2
2

å
+

√
2

2

= 42
√

2
8 − 2

√
2

2
=

√
2 −

√
2

= 0.

Conclusion, √
2

2 est une racine de P.
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(c) Soit X ∈ R. Résolvons P (X) = 0. Par la question précédente, on sait que
Ä
X −

√
2

2

ä
factorise

P :
P = 4X3 − 3X +

√
2

2 =
Ç

X −
√

2
2

åÄ
4X2 + 2

√
2X − 1

ä
.

Déterminons les racines de 4X2 + 2
√

2X − 1. Soit ∆ le discriminant associé :

∆ = 8 + 16 = 24 = 4 × 6.

Donc les racines associées sont

X1 = −2
√

2 + 2
√

6
8 =

√
6 −

√
2

4 et X2 = −2
√

2 − 2
√

6
8 = −

√
6 +

√
2

4 .

Conclusion, l’ensemble des solutions de P (X) = 0 est

S =
®√

2
2 ,

√
6 −

√
2

4 , −
√

6 +
√

2
4

´
.

(d) Calculons sin
(

π
12
)
. On a vu dans la question 2.a que ∀x ∈ R, sin (3x) = 3 sin(x) − 4 sin3(x). En

prenant x = π
12 , on obtient,

sin
(π

4

)
= 3 sin

( π

12

)
− 4 sin3

( π

12

)
⇔

√
2

2 = 3 sin
( π

12

)
− 4 sin3

( π

12

)
.

Posons X = sin
(

π
12
)
, alors,

4X3 − 3X +
√

2
2 = 0 ⇔ P (X) = 0.

Donc par la question précédente,

X =
√

2
2 OU X =

√
6 −

√
2

4 OU X = −
√

6 +
√

2
4 .

Or 0 < π
12 < π

4 . Donc par la stricte croissance de la fonction sinus sur
[
0; π

4
]
,

0 < X = sin
( π

12

)
<

√
2

2 .

Donc X ̸=
√

2
2 et X ̸= −

√
6+
√

2
4 < 0. Conclusion,

sin
( π

12

)
=

√
6 −

√
2

4 .

(e) Montrons que cos
(

π
12
)

=
√

6+
√

2
4 . Par la question précédente, on a

cos2
( π

12

)
= 1 − sin2

( π

12

)
= 1 −

Ç√
6 −

√
2

4

å2

= 1 − 6 − 2
√

12 + 2
16

= 16 − 8 + 4
√

3
16

= 2 +
√

3
4 .
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D’autre part, on observe queÇ√
6 +

√
2

4

å2

= 6 + 2
√

12 + 2
16 = 8 + 4

√
3

16 = 2 +
√

3
4 .

Donc

cos2
( π

12

)
=
Ç√

6 +
√

2
4

å2

⇔ cos
( π

12

)
= ±

√
6 +

√
2

4 .

Or 0 < π
12 < π

2 . Donc par la stricte décroissance de la fonction cosinus sur
[
0; π

2
]
, cos

(
π
12
)

> 0.
Conclusion, on retrouve bien que

cos
( π

12

)
=

√
6 +

√
2

4 .

3. Méthode 3.

(a) Soit x ∈ R. Factorisons sin (4x) + sin (2x). Par la formule sin(p) + sin(q) = 2 sin
(p+q

2
)

cos
(p−q

2
)
,

on a
sin (4x) + sin (2x) = 2 sin

Å6x

2

ã
cos
Å2x

2

ã
= 2 sin (3x) cos (x) .

Conclusion,
∀x ∈ R, sin (4x) + sin (2x) = 2 sin (3x) cos (x) .

(b) Calculons encore cos
(

π
12
)
. En prenant x = π

12 dans la question précédente, on a

sin
(π

3

)
+ sin

(π

6

)
= 2 sin

(π

4

)
cos

( π

12

)
⇔

√
3

2 + 1
2 = 2

√
2

2 cos
( π

12

)
⇔ 1√

2

Ç√
3 + 1
2

å
= cos

( π

12

)
⇔ cos

( π

12

)
=

√
2

2

√
3 + 1
2 =

√
6 +

√
2

4 .

Conclusion, rien à faire, on obtient toujours le même résultat,

cos
( π

12

)
=

√
6 +

√
2

4 .

4. Calculons cos
(5π

12
)
. On observe que 5π

12 = 6π
12 − π

12 = π
2 − π

12 . Dès lors,

cos
Å5π

12

ã
= cos

(π

2 − π

12

)
= sin

( π

12

)
.

Conclusion, par la question 2.d

cos
Å5π

12

ã
=

√
6 −

√
2

4 .

On observe que 2024 = 24 × 84 + 8. Donc
2025π

12 = 84 × 2π + 8π

12 = 84 × 2π + 2π

3 .

Ainsi,
cos
Å2025π

12

ã
= cos

Å
84 × 2π + 2π

3

ã
= cos

Å2π

3

ã
= −1

2 .

Conclusion, (oui 2024 ne ramène pas du π/12)

cos
Å2025π

12

ã
= −1

2 .
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Partie 2 : En passant par les complexes

On considère les nombres complexes z1 = 1 + i, z2 =
√

6+i
√

2
2 et Z = z1z2.

5. Calculons Z. On a les égalités entre complexes suivantes :

Z = z1z2 = (1 + i)
√

6 + i
√

2
2 =

√
6 + i

√
2 + i

√
6 −

√
2

2 =
√

6 −
√

2
2 + i

√
6 +

√
2

2 .

Conclusion, la forme algébrique de Z est donnée par

Z =
√

6 −
√

2
2 + i

√
6 +

√
2

2 .

6. Calculons la forme polaire de z1, z2 et Z. On a

z1 = 1 + i =
√

2
Ç√

2
2 + i

√
2

2

å
=

√
2 ei π

4 .

De plus,

|z2| =
∣∣∣∣∣
√

6 + i
√

2
2

∣∣∣∣∣ = 1
2

√
6 + 2 = 1

22
√

2 =
√

2.

Dès lors,

z2 =
√

6 + i
√

2
2 =

√
2
Ç√

3
2 + i

2

å
=

√
2 ei π

6 .

Enfin,
Z = z1z2 =

√
2 ei π

4
√

2 ei π
6 = 2 ei( π

4 + π
6 ) = 2 ei( 3π

12 + 2π
12 ) = 2 ei 5π

12 .

Conclusion,
z1 =

√
2 ei π

4 , z2 =
√

2 ei π
6 , Z = 2 ei 5π

12 .

7. Calculons cos
(5π

12
)

et sin
(5π

12
)
. Par les deux précédentes questions, on a

Z =
√

6 −
√

2
2 + i

√
6 +

√
2

2 = 2 ei 5π
12 = 2 cos

Å5π

12

ã
+ 2i sin

Å5π

12

ã
.

Par unicité de la forme algébrique, on en déduit que{
2 cos

(5π
12
)

=
√

6−
√

2
2

2 sin
(5π

12
)

=
√

6+
√

2
2 .

Conclusion,

cos
Å5π

12

ã
=

√
6 −

√
2

4 et sin
Å5π

12

ã
=

√
6 +

√
2

4 .
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8. Résolvons (E) :
(
1 −

√
3
)

cos(x) −
(
1 +

√
3
)

sin(x) =
√

6. Soit x ∈ R. En multipliant par
√

2
4 , on a

(E) ⇔
√

2 −
√

6
4 cos(x) −

√
2 +

√
6

4 sin(x) =
√

12
4

⇔ − cos
Å5π

12

ã
cos(x) − sin

Å5π

12

ã
sin(x) = 2

√
3

4

⇔ − cos
Å

x − 5π

12

ã
=

√
3

2

⇔ cos
Å

x − 5π

12

ã
= −

√
3

2

⇔ x − 5π

12 ≡ π − π

6 = 5π

6 [2π] OU x − 5π

12 ≡ π + π

6 = 7π

6 [2π]

⇔ x ≡ 5π

12 + 10π

12 = 15π

12 = 5π

4 [2π] OU x ≡ 5π

12 + 14π

12 = 19π

12 ≡ −5π

12 [2π] .

Conclusion,

S =
ß 5π

4 + 2kπ ; −5π

12 + 2kπ

∣∣∣∣ k ∈ Z
™

.

9. Précisons les solutions dans [0; 2π[ et représentons-les. Par la question précédente, les solutions dans
[0; 2π[, sont

S[0;2π[ =
ß5π

4 ; 19π

12

™
.

Ainsi,

5π
4

19π
12
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Problème II - Complexes

On pose :
f : z 7→ z − i

z + 1 .

1. Calculons D = {z ∈ C | f(z) existe.}. On a les équivalences suivantes :

z ∈ D ⇔ z + 1 ̸= 0 ⇔ z = −1.

Conclusion,
D = C \ {−1} .

2. Calculons f(0), f
(

i−1
2
)

et f (−1 + i) puis précisons leurs formes polaires. On a

f(0) = −i

+1 = −i = e−i π
2 .

Puis,

f

Å
i − 1

2

ã
=

i−1
2 − i

i−1
2 + 1

= i − 1 − 2i

i − 1 + 2 = −1 − i

1 + i
= −1 = eiπ .

Enfin,
f (−1 + i) = −1 + i − i

−1 + i + 1 = −1
i

= i = ei π
2 .

Conclusion,

f(0) = −i = e−i π
2 , f

Å
i − 1

2

ã
= −1 = eiπ, f (−1 + i) = i = ei π

2 .

3. Déterminons l’ensemble des complexes z ∈ D tel que f(z)2 = 1. Soit z ∈ C\{−1}. On a les équivalences
suivantes :

f(z)2 = 1 ⇔
Å

z − i

z + 1

ã2
= 1

⇔ (z − i)2 = (z + 1)2 car z ̸= −1
⇔ z2 − 2iz − 1 = z2 + 2z + 1
⇔ −2 = (2 + 2i) z

⇔ z = −2
2 (1 + i)

⇔ z = − 1
1 + i

= −1 − i

2 = −1 + i

2 .

Conclusion, l’ensemble solution est

S =
ß−1 + i

2

™
.

4. Déterminons f← (R) et donnons la représentation graphique de cet ensemble. Soit z ∈ C \ {−1}. On
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a les équivalences suivantes :

z ∈ f← (R) ⇔ f(z) ∈ R
⇔ f(z) = f(z)

⇔ z − i

z + 1 = z + i

z + 1
⇔ (z − i) (z + 1) = (z + i) (z + 1) car z ̸= −1
⇔ |z|2 + z − iz − i = |z|2 + z + iz + i

⇔ z − z − i (z + z) = 2i

⇔ 2iIm (z) − 2iRe (z) = 2i

⇔ Im (z) − Re (z) = 1.

Posons z = x + iy. Alors,
z ∈ f← (R) ⇔ y = 1 + x.

Conclusion, l’ensemble solution est la droite d’équation y = 1 + x privée du point (−1, 0) :

S = {z = x + iy ∈ C | y = 1 + x} \ {−1} .

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y = 1 + x

5. Soit z ∈ U \ {−1}. Montrons que f(z) = if(z). On a les égalités entre complexes suivantes :

f(z) =
Å

z − i

z + 1

ã
= z + i

z + 1 .

Or z ∈ U donc z = 1
z . Ainsi,

f(z) =
1
z + i
1
z + 1

= 1 + iz

1 + z
= i

z − i

z + 1 = if(z).
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Conclusion,
∀z ∈ U \ {−1} , f(z) = if(z).

6. Soit z ∈ C \ {−1} tel que f(z) = if(z). Montrons que z ∈ U \ {−1}. On a les implications suivantes :

f(z) = if(z) ⇒
Å

z − i

z + 1

ã
= i

z − i

z + 1

⇒ z + i

z + 1 = iz + 1
z + 1

⇒ (z + i) (z + 1) = (iz + 1) (z + 1)
⇒ |z|2 + z + iz + i = i |z|2 + iz + z + 1
⇒ |z|2 (1 − i) = 1 − i

⇒ |z|2 = 1
⇒ |z| = 1
⇒ z ∈ U.

Or z ̸= −1. Conclusion,

∀z ∈ C \ {−1} ,
Ä
f(z) = if(z)

ä
⇒ z ∈ U \ {−1} .

NB : on aurait pu aussi raisonner par équivalences pour avoir la réciproque et retrouver le résultat de
la question précédente.

7. Calculons f (U \ {−1}) et donnons la représentation graphique de cet ensemble. Soit ω ∈ C. On a

ω ∈ f (U \ {−1}) ⇔ ∃z ∈ U \ {−1} , ω = f(z).

Or par les deux questions précédentes, on a
Ä
f(z) = if(z)

ä
⇔ z ∈ U \ {−1}. Ainsi,

ω ∈ f (U \ {−1}) ⇔ ∃z ∈ C \ {−1} ,

®
f(z) = if(z)
ω = f(z)

⇔ ω = i ω .

Posons ω = x + iy, (x, y) ∈ R2. On obtient,

ω ∈ f (U \ {−1}) ⇔ x − iy = i (x + iy) = ix − y.

Par unicité de la forme algébrique :

ω ∈ f (U \ {−1}) ⇔
®

x = −y

−y = x
⇔ y = −x.

Conclusion, on obtient la droite d’équation y = −x :

f (U \ {−1}) = {ω = x + iy ∈ C | y = −x} .
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

y = −x

8. Calculons A =
{

θ ∈ R
∣∣ ei θ ̸= −1

}
. Soit θ ∈ R. On a les équivalences suivantes :

ei θ = −1 ⇔ ei θ = eiπ ⇔ θ ≡ π [2π] .

Conclusion,
A = {(2k + 1) π | k ∈ Z} .

9. Soit θ ∈ ]−π; π[.

(a) Montrons que f
(
ei θ

)
= i ei π

4
√

2
2
(
tan

(
θ
2
)

+ 1
)
. Puisque θ ∈ ]−π; π[, alors θ ∈ A et donc ei θ ̸= −1

autrement dit ei θ ∈ C\{−1} = D. Donc f
(
ei θ

)
existe. De plus, on a les égalités entre complexes
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suivantes :

f
Ä
ei θ
ä

= ei θ −i

ei θ +1

= ei θ − ei π
2

ei θ + ei0

= ei
θ + π

2
2

ei θ
2

ei
θ − π

2
2 − e−i

θ − π
2

2

ei θ
2 + e−i θ

2

= ei π
4

2i sin
(

θ−π
2

2

)
2 cos

(
θ
2
)

= i ei π
4

sin
(

θ
2 − π

4
)

cos
(

θ
2
)

= i ei π
4

sin
(

θ
2
)

cos
(

π
4
)

− sin
(

π
4
)

cos
(

θ
2
)

cos
(

θ
2
)

= i ei π
4

sin
(

θ
2
) √2

2 −
√

2
2 cos

(
θ
2
)

cos
(

θ
2
)

= i

√
2

2 ei π
4

Å
tan
Å

θ

2

ã
− 1
ã

.

Conclusion,

f
Ä
ei θ
ä

= i ei π
4

√
2

2

Å
tan
Å

θ

2

ã
− 1
ã

.

(b) Déterminons un argument de f
(
ei θ

)
. Par la question précédente,

f
Ä
ei θ
ä

= ei π
2 ei π

4

√
2

2

Å
tan
Å

θ

2

ã
− 1
ã

=
√

2
2

Å
tan
Å

θ

2

ã
− 1
ã

ei 3π
4 .

Puisque θ ∈ ]−π; π[, alors θ
2 ∈

]
−π

2 ; π
2
[

et donc on observe que tan
(

θ
2
)

existe bien. De plus, on a

tan
Å

θ

2

ã
− 1 > 0 ⇔ tan

Å
θ

2

ã
> 1

⇔ ∃k ∈ Z,
π

4 + kπ <
θ

2 <
π

2 + kπ

⇔ π

4 <
θ

2 <
π

2 car θ

2 ∈
]
−π

2 ; π

2

[
⇔ π

2 < θ < π.

De même, tan
(

θ
2
)

− 1 < 0 ⇔ −π < θ < π
2 . Ainsi,

f
Ä
ei θ
ä

=


√

2
2
(
tan

(
θ
2
)

− 1
)

ei 3π
4 si θ ∈

]
π
2 ; π

[
0 si θ = π

2√
2

2

∣∣∣tan
(

θ
2
)

− 1
∣∣∣ ei( 3π

4 −π) si θ ∈
]
−π; −π

2
[

.

Conclusion,

arg
Ä
f
Ä
ei θ
ää

≡
®3π

4 [2π] si θ ∈
]

π
2 ; π

[
−π

4 [2π] si θ ∈
]
−π; π

2
[

et
f
Ä
ei θ
ä

= 0 si θ = π

2 (et n’a donc par d’argument).
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(c) Par la question précédente, on observe que pour θ ∈ ]−π; π[ \
{

π
2
}

, on a arg
(
f
(
ei θ

))
≡ 3π

4 [π].
Par conséquent le point d’affixe f

(
ei θ

)
est sur la droite d’équation y = −x. Or ei θ ∈ U et même

ei θ ∈ U \ {−1} car θ ∈ A donc f
(
ei θ

)
∈ f (U \ {−1}) qui est bien l’ensemble des affixes de la

droite d’équation y = −x d’après la question 7. Ce résultat reste vrai si θ = π
2 . Conclusion,

le résultat de la question précédente est parfaitement cohérent avec la question 7.

10. Montrons que f définit une bijection de D dans un ensemble D̃ et déterminons f−1. Soient z ∈ D =
C \ {−1}. Soit ω ∈ C. On a les équivalences suivantes :

f(z) = ω ⇔ z − i

z + 1 = ω

⇔ z − i = ω (z + 1) car z ̸= −1
⇔ z (1 − ω) = ω +i.

Si ω = 1, alors on a f(z) = ω ⇔ 0 = 1 + i ce qui est impossible. Dans ce cas, l’équation f(z) = ω
n’a pas de solution et donc 1 n’a pas d’antécédent par f . Supposons maintenant que ω ̸= 1. Alors,

f(z) = ω ⇔ z = ω +i

1 − ω
.

Dans ce cas, f(z) = ω admet une et une seule solution. Conclusion,

f : C \ {−1} → C \ {1}
z 7→ z−i

z+1
est bijective et f−1 : C \ {1} → C \ {−1}

ω 7→ ω +i
1−ω .
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Problème III - Calcul algébrique

Pour tout α ∈ N on pose

∀n ∈ N, Sn =
n∑

k=0
kα2ak ,

avec (ak)k∈N une suite d’entiers. On fixe n ∈ N∗.
Partie 1 : Cours

1. On suppose que pour tout k ∈ N, ak = 0. Alors, on obtient

Sn =
n∑

k=0
kα20 =

n∑
k=0

kα.

Si α = 0, alors on obtient la somme d’une constante,

Sn =
n∑

k=0
k0 =

n∑
k=0

1 = n + 1.

De même, si α = 1, on obtient la somme des premiers entiers :

Sn =
n∑

k=0
k = n (n + 1)

2 .

Si α = 2, on obtient la somme des carrés des premiers entiers :

Sn =
n∑

k=0
k2 = n (n + 1) (2n + 1)

6 .

Conclusion,

Sn =


n + 1 si α = 0
n(n+1)

2 si α = 1
n(n+1)(2n+1)

6 si α = 2.

2. On suppose que α = 0 et que pour tout k ∈ N, ak = k. Par définition, on a

Sn =
n∑

k=0
k02k =

n∑
k=0

2k.

On reconnaît une somme géométrique de raison 2 ̸= 1. Donc

Sn = 2n+1 − 1
2 − 1 = 2n+1 − 1.

Conclusion,
Sn = 2n+1 − 1.

Partie 2 : Cas où α = 1
On suppose que α = 1 et on pose pour tout k ∈ N, ak = k. On propose ni une ni deux ni trois mais quatre
méthodes pour calculer Sn !
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3. On a par définition,

Sn =
n∑

k=0
k2k.

Donc

S1 =
1∑

k=0
k2k = 0 × 20 + 1 × 21 = 2 et S2 =

2∑
k=0

k2k = 0 × 20 + 1 × 21 + 2 × 22 = 2 + 8 = 10.

Conclusion,
S1 = 2 et S2 = 10.

4. (Par un changement d’indice)

(a) Par définition, on a

Sn =
n∑

k=0
k2k =

n∑
k=1

k2k + 0 × 20 =
n∑

k=1
k2k car n ⩾ 1.

Posons k̃ = k − 1 i.e. k = k̃ + 1. Alors,

Sn =
n−1∑
k̃=0

(
k̃ + 1

)
2k̃+1.

L’indice de sommation étant muet, on conclut

Sn =
n−1∑
k=0

(k + 1) 2k+1.

(b) Par la question précédente, on a les égalités entre réels suivantes :

Sn =
n−1∑
k=0

k2k+1 +
n−1∑
k=0

2k+1

=
n∑

k=0
k2k+1 − n2n+1 +

n−1∑
k=0

2k+1

= 2
n∑

k=0
k2k − n2n+1 +

n−1∑
k=0

2k+1

= 2Sn − n2n+1 + 2
n−1∑
k=0

2k.

On reconnaît une somme géométrique de raison 2 ̸= 1,

Sn = 2Sn − n2n+1 + 22n−1+1 − 1
2 − 1 = 2Sn − n2n+1 + 2 (2n − 1) .

Dès lors, on en déduit que

Sn = n2n+1 − 2 (2n − 1) = n2n+1 − 2n+1 + 2 = (n − 1) 2n+1 + 2.

Conclusion,
Sn = (n − 1) 2n+1 + 2.

On vérifie son résultat. Si n = 1, on a S1 = (1 − 1) 21+1 + 2 = 2 ce qui est cohérent avec la
question 3. De même, S2 = (2 − 1) 22+1 + 2 = 8 + 2 = 10 OK !
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5. (Par une dérivée) Soit f :
R∗+ → R

x 7→
n∑

k=0
xk .

La fonction f est dérivable sur R∗+ en tant que fonction polynomiale et

∀x ∈ R∗+, f ′(x) = 0 +
n∑

k=1
kxk−1.

D’autre part, pour tout x ∈ R∗+ \ {1}, on reconnaît une somme géométrique. Donc

f(x) = 1 − xn+1

1 − x

Cette expression est dérivable sur R∗+ \ {1} et

∀x ∈ R∗+ \ {1} , f ′(x) =
− (n + 1) xn (1 − x) −

(
1 − xn+1) (−1)

(1 − x)2

= − (n + 1) xn + (n + 1) xn+1 + 1 − xn+1

(1 − x)2

= nxn+1 − (n + 1) xn + 1
(1 − x)2 .

Ainsi,

∀x ∈ R∗+ \ {1} ,
n∑

k=1
kxk−1 = nxn+1 − (n + 1) xn + 1

(1 − x)2 .

En particulier, pour x = 2,
n∑

k=1
k2k−1 = n2n+1 − (n + 1) 2n + 1

(1 − 2)2

= n2n+1 − (n + 1) 2n + 1
= 2n (2n − n − 1) + 1
= 2n (n − 1) + 1.

Ainsi,

Sn =
n∑

k=0
k2k = 0 +

n∑
k=1

k2k = 2
n∑

k=1
k2k−1 = 2 [2n (n − 1) + 1] = 2n+1 (n − 1) + 2.

Conclusion, on retrouve bien l’expression de la question 4.b

Sn = 2n+1 (n − 1) + 2.

6. (Par une autre méthode dont je ne donnerai pas le nom...)

(a) Soit k ∈ N. On a

(k + 1) 2k+1 − k2k = (2k + 2) 2k − k2k = (2k + 2 − k) 2k = (k + 2) 2k = k2k + 2k+1.

Conclusion, on trouve bien que

∀k ∈ N, (k + 1) 2k+1 − k2k = k2k + 2k+1.
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(b) En sommant la relation précédente entre 0 et n, on a

n∑
k=0

î
(k + 1) 2k+1 − k2k

ó
=

n∑
k=0

î
k2k + 2k+1

ó
On reconnaît une somme télescopique dans le terme de gauche donc

(n + 1) 2n+1 − 0 × 20 =
n∑

k=0

î
k2k + 2k+1

ó
⇔ (n + 1) 2n+1 =

n∑
k=0

k2k +
n∑

k=0
2k+1

⇔ (n + 1) 2n+1 = Sn + 2
n∑

k=0
2k.

En reconnaissant une somme géométrique de raison 2 ̸= 1, on obtient que

Sn = (n + 1) 2n+1 − 2
n∑

k=0
2k

= (n + 1) 2n+1 − 2 × 2n+1 − 1
2 − 1

= (n + 1) 2n+1 − 2
(
2n+1 − 1

)
= (n + 1) 2n+1 − 2n+2 + 2
= (n + 1 − 2) 2n+1 + 2
= (n − 1) 2n+1 + 2.

Conclusion, on retrouve une fois encore,

Sn = (n − 1) 2n+1 + 2.

7. (Par une somme double)

(a) En sommant en interne sur p et en externe sur k, on a

∑
1⩽p⩽k⩽n

2k =
n∑

k=1

k∑
p=1

2k.

L’entier 2k ne dépendant pas de p :

∑
1⩽p⩽k⩽n

2k =
n∑

k=1
2k

k∑
p=1

1 =
n∑

k=1
2k × k = Sn.

Conclusion, ∑
1⩽p⩽k⩽n

2k = Sn.

(b) En échangeant l’ordre de sommation i.e. en sommant en interne sur k et en externe sur p, on a

Sn =
∑

1⩽p⩽k⩽n

2k =
n∑

p=1

n∑
k=p

2k.
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On reconnaît une somme géométrique de raison q = 2 ̸= 1. On a donc

Sn =
n∑

p=1
2p 2n−p+1 − 1

2 − 1

=
n∑

p=1

(
2n+1 − 2p

)
= n2n+1 − 22n − 1

2 − 1
= n2n+1 − 2n+1 + 2
= (n − 1) 2n+1 + 2.

Conclusion, on obtient une fois encore,

Sn = (n − 1) 2n+1 + 2.

(c) On procède comme dans la question précédente, on a les égalités entre réels suivantes :

∑
1⩽p<k⩽n

Ç
n

p

å
2k =

n−1∑
p=1

n∑
k=p+1

Ç
n

p

å
2k

=
n−1∑
p=1

Ç
n

p

å
n∑

k=p+1
2k

=
n−1∑
p=1

Ç
n

p

å
2p+1 2n−p−1+1 − 1

2 − 1

=
n−1∑
p=1

Ç
n

p

å (
2n+1 − 2p+1)

= 2n+1
n−1∑
p=1

Ç
n

p

å
−

n−1∑
p=1

Ç
n

p

å
2p+1

= 2n+1
n∑

p=0

Ç
n

p

å
− 2n+1 − 2n+1 −

n∑
p=0

Ç
n

p

å
2p+1 + 2 + 2n+1.

On reconnaît alors deux binômes de Newton :

∑
1⩽p<k⩽n

Ç
n

p

å
2k = 2n+1 (1 + 1)n − 2n+1 − 2 (2 + 1)n + 2

= 22n+1 − 2n+1 − 2 × 3n + 2.

Conclusion, ∑
1⩽p<k⩽n

Ç
n

p

å
2k = 2n+1 (2n − 1) − 2 × 3n + 2.
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8. (Une conséquence) Par l’inversion d’indice k̃ = n − k, on obtient que

Tn =
n∑

k=0

k

2k

=
n∑

k̃=0

n − k

2n−k

=
n∑

k=0

n

2n−k
− k

2n−k
car l’indice est muet

= n

2n

n∑
k=0

2k − 1
2n

n∑
k=0

k2k

= n

2n

2n+1 − 1
2 − 1 − 1

2n
Sn car on reconnaît une somme géométrique

= n

Å
2 − 1

2n

ã
− 1

2n

(
(n − 1) 2n+1 + 2

)
par ce qui précède

= 2n − n

2n
− 2 (n − 1) − 1

2n−1

= 2 − n + 2
2n

.

Conclusion,

Tn = 2 − n + 2
2n

.
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Problème IV - Trigonométrie

Partie 1 : Manipulation d’une expression trigonométrique

Pour tout x ∈ R, on pose
f(x) = cos2(x) (cos (2x) − 1) + sin2(x).

1. Calculons f(0), f
(

π
4
)
, f

(
−π

6
)

et f
(2π

3
)
. On a

f(0) = 12 (1 − 1) + 02 = 0.

Puis,

f
(π

4

)
=
Ç√

2
2

å2 (
cos

(π

2

)
− 1

)
+
Ç√

2
2

å2

= 1
2 (−1) + 1

2 = 0.

Aussi,

f
(

−π

6

)
=
Ç√

3
2

å2 (
cos

(
−π

3

)
− 1

)
+
Å

−1
2

ã2
= 3

4

Å1
2 − 1

ã
+ 1

4 = −3
8 + 2

8 = −1
8 .

Enfin,

f

Å2π

3

ã
=
Å

−1
2

ã2 Å
cos
Å4π

3

ã
− 1
ã

+
Ç√

3
2

å2

= 1
4

Å
−1

2 − 1
ã

+ 3
4 = −3

8 + 6
8 = 3

8 .

Conclusion,

f(0) = f
(π

4

)
= 0, f

(
−π

6

)
= −1

8 , f

Å2π

3

ã
= 3

8 .

2. Signe de f(x), méthode 1.

(a) Soit x ∈ R. Précisons cos (2x) uniquement en fonction de cos(x). On a directement,

cos (2x) = 2 cos2(x) − 1.

(b) Montrons que pour tout x ∈ R, f(x) = 2 cos4(x) − 3 cos2(x) + 1. Soit x ∈ R, par la question
précédente, on a les égalités dans R suivantes :

f(x) = cos2(x) (cos (2x) − 1) + sin2(x)
= cos2(x)

(
2 cos2(x) − 1 − 1

)
+ sin2(x)

= 2 cos4(x) − 2 cos2(x) + 1 − cos2(x)
= 2 cos4(x) − 3 cos2(x) + 1.

Conclusion,
∀x ∈ R, f(x) = 2 cos4(x) − 3 cos2(x) + 1.

(c) Résolvons dans R l’inéquation f(x) < 0. Soit x ∈ R. Posons X = cos(x). Par la question
précédente,

f(x) < 0 ⇔ 2 cos4(x) − 3 cos2(x) + 1 < 0 ⇔ 2X4 − 3X2 + 1 < 0.

Posons Y = X2. Alors,
f(x) < 0 ⇔ 2Y 2 − 3Y + 1 < 0.
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Puisque 1 est une racine,

f(x) < 0 ⇔ (Y − 1) (2Y − 1) < 0 ⇔ 2 (Y − 1)
Å

Y − 1
2

ã
< 0.

Donc les deux racines sont 1 et 1
2 . Donc le signe de 2 est à l’extérieur des racines d’où

f(x) < 0 ⇔ 1
2 < Y < 1

⇔ 1
2 < X2 < 1

⇔ −1 < X < − 1√
2

OU
1√
2

< X < 1

⇔ −1 < cos(x) < −
√

2
2 OU

√
2

2 < cos(x) < 1

⇔ ∃k ∈ Z,
3π

4 + 2kπ < x < (2k + 1) π OU (2k + 1) π < x <
5π

4 + 2kπ

OU − π

4 + 2kπ < x < 2kπ OU 2kπ < x <
π

4 + 2kπ.

Ce qui s’écrit aussi :

f(x) < 0 ⇔ ∃k ∈ Z, −π

4 + kπ < x < kπ OU kπ < x <
π

4 + kπ.

Conclusion,

S =
⋃

k∈Z

(]
−π

4 + kπ; kπ
[

∪
]
kπ; π

4 + kπ
[)

.

−π
4

π
4

3π
4

5π
4

0π

3. Signe de f(x), méthode 2.

(a) Montrons que pour tout x ∈ R, f(x) = − cos (2x) sin2(x). Soit x ∈ R. Par la formule cos(p) −
cos(q) = −2 sin

(p+q
2
)

sin
(p−q

2
)
, on a les égalités dans R suivantes :

f(x) = cos2(x) (cos (2x) − 1) + sin2(x)

= cos2(x)
Å

−2 sin
Å2x + 0

2

ã
sin
Å2x − 0

2

ãã
+ sin2(x)

= −2 cos2(x) sin(x)2 + sin2(x)
= − sin2(x)

(
2 cos2(x) − 1

)
= − sin2(x) cos (2x) d’après la question 2.a

Conclusion,
∀x ∈ R, f(x) = − cos (2x) sin2(x).

19/22



Mathématiques PTSI, DS2 Cor Samedi 09 Novembre 2024

(b) Retrouvons le résultat de la question 2.c Soit x ∈ R. Par la question précédente,

f(x) < 0 ⇔ − cos (2x) sin2(x) < 0
⇔ cos (2x) sin2(x) > 0

⇔
®

sin(x) ̸= 0
cos (2x) > 0

⇔
®

x ̸≡ 0 [π]
∃k ∈ Z, −π

2 + 2kπ < 2x < π
2 + 2kπ

⇔
®

x ̸≡ 0 [π]
∃k ∈ Z, −π

4 + kπ < x < π
4 + kπ

⇔ ∃k ∈ Z, −π

4 + kπ < x < kπ OU kπ < x <
π

4 + kπ.

Conclusion, on retrouve bien le résultat de la question 2.c

S =
⋃

k∈Z

(]
−π

4 + kπ; kπ
[

∪
]
kπ; π

4 + kπ
[)

.

4. Soit x ∈ R. Linéarisons l’expression de f(x). On a les égalités dans R suivantes :

f(x) = cos2(x) (cos (2x) − 1) + sin2(x)

= 1 + cos (2x)
2 (cos (2x) − 1) + 1 − cos (2x)

2
= 1

2
(
cos2 (2x) − 1 + 1 − cos (2x)

)
= 1

2

Å1 + cos (4x)
2 − cos (2x)

ã
= cos (4x) − 2 cos (2x) + 1

4 .

Conclusion,

∀x ∈ R, f(x) = cos (4x) − 2 cos (2x) + 1
4 .

Partie 2 : Inégalité de Winkler

On pose :
g : x 7→ sin2(x) + x tan(x) − 2x2.

5. Précisons Dg le domaine de définition de g et vérifions que
]
0; π

2
[

⊂ Dg. La fonction sinus et la fonction
carrée sont définies sur R tandis que la fonction tangente est définie sur R \

{
π
2 + kπ

∣∣ k ∈ Z
}

. Donc
par somme, on en déduit que

Dg = R \
{ π

2 + kπ
∣∣∣ k ∈ Z

}
.

En particulier, on a directement ]
0; π

2

[
⊂ Dg.

6. Calculons la dérivée de g sur
]
0; π

2
[
. La fonction g est dérivable sur son domaine de définition comme

somme de fonctions dérivables sur leurs domaines de définition respectifs. Donc g est dérivable en
particulier sur

]
0; π

2
[
. De plus, pour tout x ∈

]
0; π

2
[
,

g′(x) = 2 cos(x) sin(x) + tan(x) + x
(
1 + tan2(x)

)
− 4x

= sin (2x) + tan(x) + x
(
1 + tan2(x)

)
− 4x.
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Conclusion,

∀x ∈
]
0; π

2

[
, g′(x) = sin (2x) + tan(x) + x

(
1 + tan2(x)

)
− 4x.

7. Montrons que ∀x ∈
]
0; π

2
[

, g′′(x) = 2 cos (2x) + 2 tan2(x) − 2 + 2
(
1 + tan2(x)

)
x tan(x). La fonction

g′ est dérivable sur
]
0; π

2
[

comme somme de fonctions qui le sont donc g est deux fois dérivable sur]
0; π

2
[

et par la question précédente, pour tout x ∈
]
0; π

2
[
, on a

g′′(x) = 2 cos (2x) + 1 + tan2(x) + 1 + tan2(x) + x
(
2
(
1 + tan2(x)

)
tan(x)

)
− 4

= 2 cos (2x) +
(
1 + tan2(x)

)
(2 + 2x tan(x)) − 4

= 2 cos (2x) + 2 + 2x tan(x) + 2 tan2(x) + 2x tan3(x) − 4
= 2 cos (2x) + 2 tan2(x) − 2 + 2x tan(x) + 2x tan3(x)
= 2 cos (2x) + 2 tan2(x) − 2 + 2

(
1 + tan2(x)

)
x tan(x).

Conclusion,

∀x ∈
]
0; π

2

[
, g′′(x) = 2 cos (2x) + 2 tan2(x) − 2 + 2

(
1 + tan2(x)

)
x tan(x).

8. Montrons que ∀x ∈
]
0; π

2
[

, g′′(x) = 2f(x)
cos2(x) + 2

(
1 + tan2(x)

)
x tan(x). Soit x ∈

]
0; π

2
[
. On a

2f(x)
cos2(x) + 2

(
1 + tan2(x)

)
x tan(x) =

2
(
cos2(x) (cos (2x) − 1) + sin2(x)

)
cos2(x) + 2

(
1 + tan2(x)

)
x tan(x)

= 2 (cos (2x) − 1) + tan2(x) + 2
(
1 + tan2(x)

)
x tan(x)

= 2 cos (2x) + 2 tan2(x) − 2 + 2
(
1 + tan2(x)

)
x tan(x).

Conclusion,

∀x ∈
]
0; π

2

[
, g′′(x) = 2f(x)

cos2(x) + 2
(
1 + tan2(x)

)
x tan(x).

9. A l’aide de la question 3.a montrons que ∀x ∈
]
0; π

2
[

, f(x) = −1
4 sin (4x) tan(x). Soit x ∈

]
0; π

2
[
.

Par la question 3.a on a

f(x) = − cos (2x) sin2(x)

= − cos (2x) sin2(x) cos(x)
cos(x)

= − cos (2x) tan(x) sin(x) cos(x)

= − cos (2x) tan(x)sin (2x)
2

= −1
2 tan(x) sin (2x) cos (2x)

= −1
2 tan(x)sin (4x)

2
= −1

4 tan(x) sin (4x) .

Conclusion,

∀x ∈
]
0; π

2

[
, f(x) = −1

4 sin (4x) tan(x).
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10. Montrons que ∀x ∈
]
0; π

2
[

, g′′(x) = 1
2
(
1 + tan2(x)

)
tan(x) (4x − sin (4x)) . Soit x ∈

]
0; π

2
[
. Par la

question 8. et la question précédente,

g′′(x) = 2f(x)
cos2(x) + 2

(
1 + tan2(x)

)
x tan(x)

=
−1

2 sin (4x) tan(x)
cos2(x) + 2

(
1 + tan2(x)

)
x tan(x)

= −1
2 sin (4x) tan(x)

(
1 + tan2(x)

)
+ 2

(
1 + tan2(x)

)
x tan(x)

= 1
2
(
1 + tan2(x)

)
tan(x) (− sin (4x) + 4x) .

Conclusion,

∀x ∈
]
0; π

2

[
, g′′(x) = 1

2
(
1 + tan2(x)

)
tan(x) (4x − sin (4x)) .

11. On rappelle que pour tout t ∈ R∗+, sin(t) ⩽ t. Montrons que pour tout x ∈
]
0; π

2
[
, g(x) > 0. Soit

x ∈
]
0; π

2
[
. En prenant t = 4x > 0, on a sin (4x) < 4x. Donc 4x − sin (4x) > 0. De plus tan(x) > 0 et

1 + tan2(x) > 1 > 0. Donc par la question précédente,

∀x ∈
]
0; π

2

[
, g′′(x) > 0.

Donc la fonction g′ est strictement croissante sur
]
0; π

2
[
. Or g′ est définie et même continue en 0 (par

la question 6.) donc g′ est strictement croissante sur
[
0; π

2
[
. Donc

∀x ∈
]
0; π

2

[
, g′(x) > g′(0) = 0.

Donc la fonction g est strictement croissante sur
]
0; π

2
[
. Or g est définie et même continue en 0. Donc

g est strictement croissance sur
[
0; π

2
[
. Donc

∀x ∈
]
0; π

2

[
, g(x) > g(0) = 0.

Conclusion,

∀x ∈
]
0; π

2

[
, g(x) > 0.

12. Concluons en démontrant l’inégalité de Winkler : ∀x ∈
]
0; π

2
[

,
Ä sin(x)

x

ä2
+ tan(x)

x > 2. Soit x ∈
]
0; π

2
[
.

Par la question précédente,

sin2(x) + x tan(x) − 2x2 > 0 ⇔ sin2(x) + x tan(x) > 2x2

⇔ sin2(x)
x2 + tan(x)

x
> 2 car x2 > 0.

Conclusion, on obtient bien l’inégalité de Winkler :

∀x ∈
]
0; π

2

[
,

Åsin(x)
x

ã2
+ tan(x)

x
> 2.
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