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Correction du Devoir Maison 6
Analyse asymptotique, ensembles et
applications

Du jeudi 23 janvier

Exercice I - Analyse asymptotique

Le but de ce probleme n’est pas de donner une, ni deux, ni trois, ni quatre mais cinq méthodes pour
déterminer le développement limité de la fonction tangente en 0!

Tendons vers la tangente

1. La fonction tangente est ¥ en 0 et donc pour tout n € N, la fonction tangente est €™ en 0 et d’apres
le théoréme de Taylor-Young admet donc un développement limité a ’ordre n en 0. En particulier
pour n = 5,

la fonction tangente est €° donc admet un développement limité & Pordre 5 en 0.

Soient (ag, a1, as,as, a4, as) € R5 les coefficients du développement limité de la fonction tangente i.e.

tan(x) =, 40 + a1z + asx® + asz® + agxt + asz® + o (a:5) .
X

2. On sait que la fonction tangente est une fonction impaire sur R. Donc d’apres le cours, on sait que en 0
(trés important) son développement limité n’admet que des mondmes de degré impair. Par conséquent,

‘a0:a2:a4:().‘

On obtient alors
tan(z) = aijz+ azz® +asz® + o (3:5) .
z—0

3. On sait que tan(z) ~0 T ie. tan(z) =, LT o(z). Or par troncature du développement précédent, on
d T—
a

tan(z) = az+o(z).

z—0

Donc par unicité du développement limité,

On admet dans toute la suite que

tan(z) Somrt azz® + asz® + o (2°),

et I'on cherche a retrouver les valeurs de a1, as, as.
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Méthode 1 : Taylor est une brute
4. La fonction tan est cing fois dérivable sur U = R\ { 5+ km | ke Z}. De plus sur U, on a

tan’ = 1 + tan®.
Donc en posant P; = X2 + 1, on a bien tan®) = Py (tan). Puis,

tan” = 2tan’ tan = 2 (1 + tanz) tan = 2tan® +2 tan
tan® = tan’ (6 tan? +2) = (tzm2 +1) (6 tan? +2) = 6tan® +6tan® +2tan’® +2 = 6tan® +8tan’ +2
tan(® = tan’ (24 tan® +16 tan)
= (tan®+1) (24 tan® +16 tan)
= 24 tan® 4+16 tan® 424 tan® +16 tan
= 24 tan® +40 tan® +16 tan
tan® = tan’ (120 tan? 4120 tan? —|—16)
= (tan®+1) (120 tan" +120 tan® +16)
= 120 tan® +120 tan® +16 tan® +120 tan* +120 tan® +16
= 120 tan® +240 tan® +-136 tan® +16.

Ainsi, en posant

P =X%+1, P, =2X3 42X, Py =6X%+8X%42

et

Py = 24X° +40X3 + 16X, Ps = 120X5 4+ 240X* + 136 X2 + 16,

on a bien

vk € [1;5], tan® = P o tan.

5. Puisque 0 € U = R\ {5 + k7 | k € Z}, on évalue les relations précédentes en 0. On a tan(0) = 0.
Donc pour tout k € [1;5], tan®) (0) = Py, (tan(0)) = P5(0). Ainsi,

tan’(0) =1,  tan®@(0) =0, tan®0)=2, tan™®(0)=0,  tan®(0) = 16.
Or par la formule de Taylor-Young, puisque tan est 4> au voisinage de 0, on a

5 tan(k) (O) k

tan(x) = —
z—0 =0 k!
tan® tan®) tan® tan®)
= tan(0) + tan’(0)z + an 5 (O)xQ + an6 © 3+ an24(0)$4 + a11120(0) z° + o (z°)
2z%  162° 5
St g g o)

Conclusion,

x3 2P
x—0 3 15
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Méthode 2 : avec la réciproque, c’est sans équivoque

6. Soit n € N.
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(a) D’apres le cours, on sait que

1 _ 2 3 n n ny __ - k Kk n
1+uu:>01 utut—u+ -+ 1)u+0(u)u302( D¥u" 4o (u").

Donc en posant u = 22 —6 0, on a
T—>

1 n

et () o (e) = 3 () o ()

(b) On sait que la fonction arctan est une primitive de = ﬁ sur R. Donc par la question
précédente et le théoreme de primitivation des développements limités, on en déduit que

3 45 T g2l -
t = arctan(0) 4z — — + = T 4.4 (—1
arcan(ac)xﬁoarcan()—i—x 3+5 7—|— +(-1) 2n+1+0($ )
- g ot 2n+1
= tan(0 —1 " .
xﬁ()arcan()%—kz:%( ) 2k+1+0(£ )
Comme arctan(0) = 0,
3 5 7 2n+1
R x
— 4 T (=) 2n+l
arctan(z) = &=+ = et (1) g e o ()
ou encore
n . a2kt i
t = -1 " .
arctan(x) z_)();:%( ) ST + o (z*"*)

Observez que l'on a que des monomes de degré impair, ce qui est normal car la fonction arctan
est impaire sur R.

(¢) En particulier si n = 2, on déduit de la question précédente que

arctan(z) =, f- g T to (:B5) .

7. D’apres la partie précédente, on sait que

tan(u) S Ut azu® 4+ asu’® + o (u5) .



-
o
e Mathématiques PTSI, DM6 Cor 2024-2025

Posons u = arctan(z) —6 0. Alors, d’aprés la question précédente,
x>

sz—f+f+o(x5)

e (= G @) (- e T o)
:1:2—1;4—0(335)—%;-1-0@5)
:x2—2§4+o(a:5)

(o) (5 o)
=$32§5+0(1:5) j+0(x5)

5 2,3 o 2z! 5 3 5 5
u’ = utu® = x—TjLo(:L’) (27 —2° + 0 (2°))
= 2" 4 0 (2°)
Ainsi,
23 5
tan (arctan(x)) =, “e —ag + a1 + 0 (z°)
X
+ asx® — asazd® +o (a:5)
+ agx® + 0 (z°)
=, M + (ag - %) z? + (% —az+ a5> x° +o0(z%).
Conclusion,

tan (arctan(z)) =, mr+ <a3 - %) 3+ (% —as+ a5) 2 +o (1:5) :
x

8. La fonction arctan est définie sur R et a valeurs dans ]—g,g[ Or la fonction tan est bien défi-

nie sur ]—g; %[ donc tanoarctan est bien définie sur R. De plus, d’apres sa définition, la fonction

arctan est la réciproque de la restriction de la fonction tangente a ’ensemble ]—g; 3 [ On sait que

‘pour tout x € R, tan (arctan(z)) = ‘

Attention linverse est faux ! arctan (tan(z)) # x en général.

9. Des deux questions précédentes, on en déduit que

xr = alx—i—(ag—ﬂ)m3+(ﬂ—ag—i—ag,)x‘r’—i—o(a:f’).

x—0 3 5
Donc par unicité des coefficient d’un développement limité, on a nécessairement
al = 1 al = 1
0a—4 = ERCEE B
U _—a3+a5=0 as=a3 — 9L =1_1-2
5 3 5 5 375 375 15

. 1 2
Conclusion, , a3 =g a5 = ¢ et

tan(x) ot 3 + T +o(x5) .
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Méthode 3 : quand sinus et cosinus prennent la tangente
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10. D’apres le cours, on sait que

3 5
i T T 5
sinfe) 5,7 =G g to (@)
2 4
. 5
cos(a:)m— 2+24+0(x).

11. De la question précédente, on obtient

_ sin(x)

x—’%g+%+0(x5)

tan(x
(=) 28+ 0 (ab)

cos(r) z—0 ] — % +

Or IJ%U o 1 —u+u2—u3—|—0(u3). Donc en posant uzio —%—i—% —1—0(335) mo, on a
z?2 ozt 5
ux:>0 _?—i_ﬂ—i_o(l‘ )
2 4 2 4
2 _ (2T ) (2 P 5
u Qo( 2 +24+0(x)>< 2 +24+0(“”'3)>
_ ozt 5
z:>0 Z to (l‘ )
z?2  zt x?
' (Y sre) (o)
xiO ¢ (lﬁ)
0 (u3) =, (x5) :
Alors,
2 4
1—11—u :viO 1 _|_932 _%l +o ($5)
+4 to(a?)
+o (z°)
R e
et donc,
B 2 2b 5 z?2 5zt 5 )
tan(x) :D;O <JI—6+120+O($ )) <1+2+24+0(1’ )
_ x> 5ad 5 > 2 5 x° 5
ottt tol) g o rele) g tel@)
_ 3 220 5
Conclusion, on retrouve bien encore une fois le résultat,
3 220 5
tan(z) ziox—l—?—&-ﬁ%—o(m )-

Méthode 4 : laissons-nous dériver petit a petit

12. Par la question [3./on a tan(x)
€T

,rto (x). Donc

1 + tan®(x)

T—

01+(:B+0(96))2

5/10

T—

01+m2+2m0(w)+0(x)2.



C
o
e Mathématiques PTSI, DM6 Cor 2024-2025

Conclusion,

1 + tan®(z) =, 1+22+o0 (xz) .

T—r

13. Par primitivation des développements limités, on déduit de la question précédente que
23
tan(z) = tan(0)+x+ — +o (3:3) .

x—0 3

Donc

e
tan(z) = x4+ —+o (:U3) .

x—0 3

14. Donc en prenant ce nouveau développement limité de la fonction tangente, on trouve

1 4 tan?(z) =, 1 (Jf-i— m3—1‘0(353)) <$+ - +0(m3))

z— 3 3
5 4 at 4
= 1+ +§+0(x )+§+0(x )
224
_ 2 4T 4
Syl 3 +o(z").
Alors par intégration des développements limités,
3 2 5
tan(z) = tan(0) +x + T2 40 (ac5) .

x—0 3 15

Finalement, pour la quatriéme fois, on retrouve toujours le méme résultat,

Méthode 5 : la méthode 5
. T 14
15. On sait que cos(x) = 1—2Z + %4 0(a*). Donc

2 4 2 4
2,y = (12 % 4 _r . 4
os'(@) 3 (1 2+24+0(x)>(1 2+24+0(x)>

x—0
2

4 2 4 4
_ A A 4
9;01 2+24+o(a:) 2+4+0(az)+24+0(:1c)

1+6+1
— 12 4 4
=0 x YR o(z")
o ! 4
ijl_x +§+O(l‘)
Par suite, on obtient,
I 1
cos2(x) =0 1 — 22 4 % +o(z4)
: 1 _ 2 2 2 4 4
On sait quemuzol—u—i—u + o0 (u?). Posons u(x) = —2? + % 4 o (2*). On a alors,
o u(x) — 0
z—0
— 2 4 4
. u(x)xzo—x +Z +o(z%)
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e Puis,
2 , ot 4 , ot 4
e 5, (2t + o) (o + T rotet)
_ .4 4
]
. Pui 2 ., .4 : 2y _ 2)
uisque u(z) o, rhon obtient o (u(x)?) =0 (2?)
Des lors,
1 _ 2 4 4
syl R (e
+2* 4o (fc4)
+o (2*)
— 2 274 4
ISV +o (x4)
Conclusion,
224
- _q 2, 4T 4y
cos?(x) z—0 ta 3 o)

16. On sait que la fonction tangente est une primitive de z +— Wl(m) sur l'intervalle }—%; %[ (voisinage

de 0). Donc par la question précédente et le théoréeme de primitivation des développements limités on

obtient 5 .
T 2z 5
tan(zx) o tan(0) + x + 3 + 15 +o(z°).

Conclusion, on commence a étre serein sur notre résultat, on obtient

3 5
z 2z
tan(x) ot 3 + 1 +o (:U5) .

Exercice 11 - Ensembles et applications

Partie 1 : A faire avec application

Soit E un ensemble et f € .7 (E, E) telle que fo f = f.

1. Supposons que f est injective. Montrons alors que f = Idg. Soit € E. Montrons donc que f(z) = x.
Par définition, on a

Posons y = f(x) alors,

Or par hypothese, f est injective. Donc
y=ux ie.f(zx) = .
Ceci étant vrai pour tout « € F, on obtient que f = Idg. On a donc montré que
f injective = f=1dg.

Réciproquement, si f = Idg, alors directement, f est bijective et donc notamment injective (ou
encore pour tout (z,y) € E?, si f(x) = f(y) alors = f(x) = f(y) = y et donc f est bien injective).
Conclusion,

‘f injective & f= IdE.‘

7/i0
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2. On suppose que f est surjective. Montrons alors que f = Idg i.e. Vo € E, f(z) = z. Soit z € E.
Puisque f est surjective, il existe u € E tel que f(u) = x. Donc en composant par f, on obtient

fof(u)= f(x).

Or par définition f o f = f. Donc

Or par définition de u, f(u) = z. D’ou
z = f(u) = f(x).
Ceci étant vrai pour x quelconque dans F. On en déduit que f = Idg. On a donc établi que
f surjective = f=1dg.

Réciproquement, si f = Idg, alors f est bijective et donc surjective (ou encore pour tout y € F, on a
y = f(y) donc y admet au moins un antécédent (lui-méme) donc f est surjective). Conclusion,

’f surjective & f= IdE.‘

3. Prenons F =R et f: Hi : H_Qx . Alors fo f = f et pourtant f # Idg. (on pouvait aussi prendre

fxez)).

Autre exemple, pour n € N*, prenons E = ., (R) et f: M M+TMT Alors pour tout M € .4, (R),

T \T
FOM) + f)T M (M) MMt MM g T

7o) = DR : -— = = F(M),

Donc fo f = f mais f # Id 4, () (exemple si M € o, (R) \ {0,}, on a f (M) =0, # M).

Partie 2 : Des questions trés sympas dans I’ensemble

On considéere ’application suivante :

. ZR) = Z(R)
I E — (ENA)UB.
4. On a
f@=0®nNnA)UB=0UB =B,
et
f(A)=(ANA)UuB=AUB,
et

f(B)=(ANB)UB.
Or AN B C B, donc f (B) = B. Enfin,

f(R)y=(RNA)UB=AUB.

Conclusion,

f0)=B, [(A)=AUB, [(B)=B, [(R)=AUB]
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5. Si A ={. Alors, pour tout £ € & (R)

f(E)=(EN))uB=0UB=B.

Dans ce cas, f est 'application constante :

2 (R)

- Z(R)
F — B.

Si B = R. Alors pour tout £ € & (R),
f(E)=(ENA)UB=(ENA)UR=R.

Dans ce cas, f est aussi une application constante :

2 (R)

- Z(R)
EF — R

Soit E € Z(R) telque BC EC AUB.

(a) Soit x € E. Puisque E C AU B, alors x € AU B.
Premier cas, si z € A, alors comme on a aussi par définition x € E on obtient que z € E N A.
Doncx € (ENA)UB = f(E).
Deuxiéme cas, si z ¢ A, comme v € AU B, alors x € B. Doncz € (ENA)UB = f(E).
Donc dans tous les cas, x € f (E). Conclusion,

(e E) = (xef(B) ie ECf(E).|

(b) Réciproquement, si z € f(E)=(ENA)UB.
Premier cas, siz € EN A, alors x € E.
Deuxiéme cas, si € B. Par hypothese, on a B C F, donc = € E.
Ainsi, dans tous les cas x € E. D’ou (z € f (F)) = (z € E). Donc f (E) C E. Or par la question
précédente, E C f (E). Conclusion,
f(E)=E.

Soit E € Im (f). Autrement dit, F admet un antécédent par f : il existe F' € & (R) tel que E =
f(F)=(FnNA)UB. Dans ce cas, on obtient que

B CE.

Puis FNAC A. Donc (FNA)UB C AUB. D’ou E C AU B. Conclusion,

BCFECAUB.

Soit F € Im (f). Alors par la question précédente, B C E C AU B. Donc par la question [7|on en
déduit que £ = f (E). Donc

Im(f)c{EecZR)|E=[(E)}.

Réciproquement soit £ € & (R) tel que E = f(FE). Alors E admet bien un antécédent par f (lui-
méme) donc E est dans I'image de f : E € Im (F). Donc

{FEeZR)|E=f(E)} Clm(f).

Conclusion,

m(f)={Ec 2 ®R)|E=f(E)}|
9/10
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10.

11.

Soit E € & (R). Posons F' = f (E). Alors F' € Im (f). Donc par la question précédente, f (F) = F.
Autrement dit,

FF(E) = [(E).

Ceci étant vrai pour E € & (R) quelconque, on en conclut que

Par la question précédente, on a f o f = f. On en déduit donc de la partie[l] :

f est bijective

f est surjective
@ . . .
f est injective

=1Id
N {f P(R)
[ =ldsw,

< [ =1dow)
& VE € Z (R), f(F)=E.
En particulier, si E =0, on a
D=f0)=0NA)UB=B.
D’autre part, E =R, on a

WR=f(R)=(RNAUB=AUB=AUD=A.

Donc si f est bijective, alors A = R et B = (). Réciproquement, si A = R et B = (), alors pour tout
E e Z(R),
f(E)y=(ENR)UD=FEUD=E.

Donc f = Idgg) et donc f est bien bijective. Conclusion,

’ f est bijective & A=Ret B=1{.

10/10



