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Correction du Devoir Maison 6
Analyse asymptotique, ensembles et

applications

Du jeudi 23 janvier

Exercice I - Analyse asymptotique

Le but de ce problème n’est pas de donner une, ni deux, ni trois, ni quatre mais cinq méthodes pour
déterminer le développement limité de la fonction tangente en 0 !

Tendons vers la tangente

1. La fonction tangente est C ∞ en 0 et donc pour tout n ∈ N, la fonction tangente est C n en 0 et d’après
le théorème de Taylor-Young admet donc un développement limité à l’ordre n en 0. En particulier
pour n = 5,

la fonction tangente est C 5 donc admet un développement limité à l’ordre 5 en 0.

Soient (a0, a1, a2, a3, a4, a5) ∈ R5 les coefficients du développement limité de la fonction tangente i.e.

tan(x) =
x→0

a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + o
(
x5) .

2. On sait que la fonction tangente est une fonction impaire sur R. Donc d’après le cours, on sait que en 0
(très important) son développement limité n’admet que des monômes de degré impair. Par conséquent,

a0 = a2 = a4 = 0.

On obtient alors
tan(x) =

x→0
a1x + a3x3 + a5x5 + o

(
x5) .

3. On sait que tan(x) ∼
x→0

x i.e. tan(x) =
x→0

x + o(x). Or par troncature du développement précédent, on
a

tan(x) =
x→0

a1x + o (x) .

Donc par unicité du développement limité,

a1 = 1.

On admet dans toute la suite que

tan(x) =
x→0

a1x + a3x3 + a5x5 + o
(
x5) ,

et l’on cherche à retrouver les valeurs de a1, a3, a5.
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Méthode 1 : Taylor est une brute

4. La fonction tan est cinq fois dérivable sur U = R \
{

π
2 + kπ

∣∣ k ∈ Z
}

. De plus sur U , on a

tan′ = 1 + tan2 .

Donc en posant P1 = X2 + 1, on a bien tan(1) = P1 (tan). Puis,

tan′′ = 2 tan′ tan = 2
(
1 + tan2) tan = 2 tan3 +2 tan

tan(3) = tan′ (6 tan2 +2
)

=
(
tan2 +1

) (
6 tan2 +2

)
= 6 tan4 +6 tan2 +2 tan2 +2 = 6 tan4 +8 tan2 +2

tan(4) = tan′ (24 tan3 +16 tan
)

=
(
tan2 +1

) (
24 tan3 +16 tan

)
= 24 tan5 +16 tan3 +24 tan3 +16 tan
= 24 tan5 +40 tan3 +16 tan

tan(5) = tan′ (120 tan4 +120 tan2 +16
)

=
(
tan2 +1

) (
120 tan4 +120 tan2 +16

)
= 120 tan6 +120 tan4 +16 tan2 +120 tan4 +120 tan2 +16
= 120 tan6 +240 tan4 +136 tan2 +16.

Ainsi, en posant

P1 = X2 + 1, P2 = 2X3 + 2X, P3 = 6X4 + 8X2 + 2

et
P4 = 24X5 + 40X3 + 16X, P5 = 120X6 + 240X4 + 136X2 + 16,

on a bien
∀k ∈ J1; 5K, tan(k) = Pk ◦ tan .

5. Puisque 0 ∈ U = R \
{

π
2 + kπ

∣∣ k ∈ Z
}

, on évalue les relations précédentes en 0. On a tan(0) = 0.
Donc pour tout k ∈ J1; 5K, tan(k)(0) = Pk (tan(0)) = Pk(0). Ainsi,

tan′(0) = 1, tan(2)(0) = 0, tan(3)(0) = 2, tan(4)(0) = 0, tan(5)(0) = 16.

Or par la formule de Taylor-Young, puisque tan est C 5 au voisinage de 0, on a

tan(x) =
x→0

5∑
k=0

tan(k)(0)
k! xk

=
x→0

tan(0) + tan′(0)x + tan(2)(0)
2 x2 + tan(3)(0)

6 x3 + tan(4)(0)
24 x4 + tan(5)(0)

120 x5 + o
(
x5)

=
x→0

0 + x + 2x3

6 + 16x5

120 + o
(
x5)

=
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Conclusion,

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5) .
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Méthode 2 : avec la réciproque, c’est sans équivoque

6. Soit n ∈ N.

(a) D’après le cours, on sait que

1
1 + u

=
u→0

1 − u + u2 − u3 + · · · + (−1)n un + o (un) =
u→0

n∑
k=0

(−1)k uk + o (un) .

Donc en posant u = x2 −→
x→0

0, on a

1
1 + x2 =

x→0
1 − x2 + x4 − x6 + · · · + (−1)n x2n + o

(
x2n

)
=

x→0

n∑
k=0

(−1)k x2k + o
(
x2n

)
.

(b) On sait que la fonction arctan est une primitive de x 7→ 1
1+x2 sur R. Donc par la question

précédente et le théorème de primitivation des développements limités, on en déduit que

arctan(x) =
x→0

arctan(0) + x − x3

3 + x5

5 − x7

7 + · · · + (−1)n x2n+1

2n + 1 + o
(
x2n+1)

=
x→0

arctan(0) +
n∑

k=0
(−1)k x2k+1

2k + 1 + o
(
x2n+1) .

Comme arctan(0) = 0,

arctan(x) =
x→0

x − x3

3 + x5

5 − x7

7 + · · · + (−1)n x2n+1

2n + 1 + o
(
x2n+1)

ou encore

arctan(x) =
x→0

n∑
k=0

(−1)k x2k+1

2k + 1 + o
(
x2n+1) .

Observez que l’on a que des monômes de degré impair, ce qui est normal car la fonction arctan
est impaire sur R.

(c) En particulier si n = 2, on déduit de la question précédente que

arctan(x) =
x→0

x − x3

3 + x5

5 + o
(
x5) .

7. D’après la partie précédente, on sait que

tan(u) =
u→0

a1u + a3u3 + a5u5 + o
(
u5) .
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Posons u = arctan(x) −→
x→0

0. Alors, d’après la question précédente,

u = x − x3

3 + x5

5 + o
(
x5) .

u2 =
Å

x − x3

3 + x5

5 + o
(
x5)ãÅx − x3

3 + x5

5 + o
(
x5)ã

= x2 − x4

3 + o
(
x5) − x4

3 + o
(
x5)

= x2 − 2x4

3 + o
(
x5)

u3 =
Å

x − x3

3 + x5

5 + o
(
x5)ãÅx2 − 2x4

3 + o
(
x5)ã

= x3 − 2x5

3 + o
(
x5) − x5

3 + o
(
x5)

= x3 − x5 + o
(
x5)

u5 = u2u3 =
Å

x2 − 2x4

3 + o
(
x5)ã (x3 − x5 + o

(
x5))

= x5 + o
(
x5) .

Ainsi,

tan (arctan(x)) =
x→0

a1x − a1
x3

3 + a1
x5

5 + o
(
x5)

+ a3x3 − a3x5 + o
(
x5)

+ a5x5 + o
(
x5)

=
x→0

a1x +
(

a3 − a1
3

)
x3 +

(a1
5 − a3 + a5

)
x5 + o

(
x5) .

Conclusion,

tan (arctan(x)) =
x→0

a1x +
(

a3 − a1
3

)
x3 +

(a1
5 − a3 + a5

)
x5 + o

(
x5) .

8. La fonction arctan est définie sur R et à valeurs dans
]
−π

2 ; π
2
[
. Or la fonction tan est bien défi-

nie sur
]
−π

2 ; π
2
[

donc tan ◦ arctan est bien définie sur R. De plus, d’après sa définition, la fonction
arctan est la réciproque de la restriction de la fonction tangente à l’ensemble

]
−π

2 ; π
2
[
. On sait que

pour tout x ∈ R, tan (arctan(x)) = x .
Attention l’inverse est faux ! arctan (tan(x)) ̸= x en général.

9. Des deux questions précédentes, on en déduit que

x =
x→0

a1x +
(

a3 − a1
3

)
x3 +

(a1
5 − a3 + a5

)
x5 + o

(
x5) .

Donc par unicité des coefficient d’un développement limité, on a nécessairement
a1 = 1
a3 − a1

3 = 0
a1
5 − a3 + a5 = 0

⇔


a1 = 1
a3 = a1

3 = 1
3

a5 = a3 − a1
5 = 1

3 − 1
5 = 2

15 .

Conclusion, a1 = 1 , a3 = 1
3 , a5 = 2

15 et

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5) .
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Méthode 3 : quand sinus et cosinus prennent la tangente

10. D’après le cours, on sait que

sin(x) =
x→0

x − x3

6 + x5

120 + o
(
x5)

cos(x) =
x→0

1 − x2

2 + x4

24 + o
(
x5) .

11. De la question précédente, on obtient

tan(x) = sin(x)
cos(x) =

x→0

x − x3

6 + x5

120 + o
(
x5)

1 − x2

2 + x4

24 + o (x5)

Or 1
1+u =

u→0
1 − u + u2 − u3 + o

(
u3). Donc en posant u =

x→0
−x2

2 + x4

24 + o
(
x5) −→

x→0
0, on a

u =
x→0

−x2

2 + x4

24 + o
(
x5)

u2 =
x→0

Å
−x2

2 + x4

24 + o
(
x5)ãÅ−x2

2 + x4

24 + o
(
x5)ã

=
x→0

x4

4 + o
(
x5)

u3 =
x→0

Å
−x2

2 + x4

24 + o
(
x5)ãÅx4

4 + o
(
x5)ã

=
x→0

o
(
x5)

o
(
u3) =

x→0
o
(
x5) .

Alors,
1

1+u =
x→0

1 +x2

2 −x4

24 +o
(
x5)

+x4

4 +o
(
x5)

+o
(
x5)

=
x→0

1 +x2

2 +5x4

24 +o
(
x5)

et donc,

tan(x) =
x→0

Å
x − x3

6 + x5

120 + o
(
x5)ãÅ1 + x2

2 + 5x4

24 + o
(
x5)ã

=
x→0

x + x3

2 + 5x5

24 + o
(
x5) − x3

6 − x5

12 + o
(
x5) + x5

120 + o
(
x5)

=
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Conclusion, on retrouve bien encore une fois le résultat,

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Méthode 4 : laissons-nous dériver petit à petit

12. Par la question 3. on a tan(x) =
x→0

x + o (x). Donc

1 + tan2(x) =
x→0

1 + (x + o (x))2 =
x→0

1 + x2 + 2xo (x) + o (x)2 .
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Conclusion,
1 + tan2(x) =

x→0
1 + x2 + o

(
x2) .

13. Par primitivation des développements limités, on déduit de la question précédente que

tan(x) =
x→0

tan(0) + x + x3

3 + o
(
x3) .

Donc

tan(x) =
x→0

x + x3

3 + o
(
x3) .

14. Donc en prenant ce nouveau développement limité de la fonction tangente, on trouve

1 + tan2(x) =
x→0

1 +
Å

x + x3

3 + o
(
x3)ãÅx + x3

3 + o
(
x3)ã

=
x→0

1 + x2 + x4

3 + o
(
x4) + x4

3 + o
(
x4)

=
x→0

1 + x2 + 2x4

3 + o
(
x4) .

Alors par intégration des développements limités,

tan(x) =
x→0

tan(0) + x + x3

3 + 2x5

15 + o
(
x5) .

Finalement, pour la quatrième fois, on retrouve toujours le même résultat,

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Méthode 5 : la méthode 5

15. On sait que cos(x) =
x→0

1 − x2

2 + x4

24 + o
(
x4). Donc

cos2(x) =
x→0

Å
1 − x2

2 + x4

24 + o
(
x4)ãÅ1 − x2

2 + x4

24 + o
(
x4)ã

=
x→0

1 − x2

2 + x4

24 + o
(
x4) − x2

2 + x4

4 + o
(
x4) + x4

24 + o
(
x4)

=
x→0

1 − x2 + 1 + 6 + 1
24 x4 + o

(
x4)

=
x→0

1 − x2 + x4

3 + o
(
x4) .

Par suite, on obtient,
1

cos2(x) =
x→0

1
1 − x2 + x4

3 + o (x4)
.

On sait que 1
1+u =

u→0
1 − u + u2 + o

(
u2). Posons u(x) = −x2 + x4

3 + o
(
x4). On a alors,

• u(x) −→
x→0

0

• u(x) =
x→0

−x2 + x4

3 + o
(
x4)
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• Puis,

u(x)2 =
x→0

Å
−x2 + x4

3 + o
(
x4)ãÅ−x2 + x4

3 + o
(
x4)ã

=
x→0

x4 + o
(
x4) .

• Puisque u(x)2 ∼
x→0

x4, on obtient o
(
u(x)2) =

x→0
o
(
x2).

Dès lors,
1

1+u =
x→0

1 +x2 −x4

3 +o
(
x4)

+x4 +o
(
x4)

+o
(
x4)

=
x→0

1 +x2 +2x4

3 +o
(
x4) .

Conclusion,
1

cos2(x) =
x→0

1 + x2 + 2x4

3 + o
(
x4) .

16. On sait que la fonction tangente est une primitive de x 7→ 1
cos2(x) sur l’intervalle

]
−π

2 ; π
2
[

(voisinage
de 0). Donc par la question précédente et le théorème de primitivation des développements limités on
obtient

tan(x) =
x→0

tan(0) + x + x3

3 + 2x5

15 + o
(
x5) .

Conclusion, on commence à être serein sur notre résultat, on obtient

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Exercice II - Ensembles et applications

Partie 1 : A faire avec application

Soit E un ensemble et f ∈ F (E, E) telle que f ◦ f = f .

1. Supposons que f est injective. Montrons alors que f = IdE . Soit x ∈ E. Montrons donc que f(x) = x.
Par définition, on a

f ◦ f(x) = f(x).

Posons y = f(x) alors,
f(y) = f(x).

Or par hypothèse, f est injective. Donc

y = x i.e.f(x) = x.

Ceci étant vrai pour tout x ∈ E, on obtient que f = IdE . On a donc montré que

f injective ⇒ f = IdE .

Réciproquement, si f = IdE , alors directement, f est bijective et donc notamment injective (ou
encore pour tout (x, y) ∈ E2, si f(x) = f(y) alors x = f(x) = f(y) = y et donc f est bien injective).
Conclusion,

f injective ⇔ f = IdE .

7/10



Mathématiques PTSI, DM6 Cor 2024-2025

2. On suppose que f est surjective. Montrons alors que f = IdE i.e. ∀x ∈ E, f(x) = x. Soit x ∈ E.
Puisque f est surjective, il existe u ∈ E tel que f(u) = x. Donc en composant par f , on obtient

f ◦ f(u) = f(x).

Or par définition f ◦ f = f . Donc
f(u) = f(x).

Or par définition de u, f(u) = x. D’où

x = f(u) = f(x).

Ceci étant vrai pour x quelconque dans E. On en déduit que f = IdE . On a donc établi que

f surjective ⇒ f = IdE .

Réciproquement, si f = IdE , alors f est bijective et donc surjective (ou encore pour tout y ∈ E, on a
y = f(y) donc y admet au moins un antécédent (lui-même) donc f est surjective). Conclusion,

f surjective ⇔ f = IdE .

3. Prenons E = R et f : R → R
x 7→ −x

. Alors f ◦ f = f et pourtant f ̸= IdE . (on pouvait aussi prendre

f : x 7→ |x|).

Autre exemple, pour n ∈ N∗, prenons E = Mn (R) et f : M 7→ M+MT

2 . Alors pour tout M ∈ Mn (R),

f (f (M)) = f(M) + f(M)T

2 =
M+MT

2 +
Ä

M+MT

2

äT

2 =
M+MT

2 + MT +M
2

2 = M + MT

2 = f(M).

Donc f ◦ f = f mais f ̸= IdMn(R) (exemple si M ∈ An (R) \ {0n}, on a f (M) = 0n ̸= M).

Partie 2 : Des questions très sympas dans l’ensemble

On considère l’application suivante :

f : P (R) → P (R)
E 7→ (E ∩ A) ∪ B.

4. On a
f (∅) = (∅ ∩ A) ∪ B = ∅ ∪ B = B,

et
f (A) = (A ∩ A) ∪ B = A ∪ B,

et
f (B) = (A ∩ B) ∪ B.

Or A ∩ B ⊂ B, donc f (B) = B. Enfin,

f (R) = (R ∩ A) ∪ B = A ∪ B.

Conclusion,
f (∅) = B, f (A) = A ∪ B, f (B) = B, f (R) = A ∪ B.
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5. Si A = ∅. Alors, pour tout E ∈ P (R)

f (E) = (E ∩ ∅) ∪ B = ∅ ∪ B = B.

Dans ce cas, f est l’application constante :

P (R) → P (R)
E 7→ B.

6. Si B = R. Alors pour tout E ∈ P (R),

f (E) = (E ∩ A) ∪ B = (E ∩ A) ∪ R = R.

Dans ce cas, f est aussi une application constante :

P (R) → P (R)
E 7→ R.

7. Soit E ∈ P (R) tel que B ⊂ E ⊂ A ∪ B.

(a) Soit x ∈ E. Puisque E ⊂ A ∪ B, alors x ∈ A ∪ B.
Premier cas, si x ∈ A, alors comme on a aussi par définition x ∈ E on obtient que x ∈ E ∩ A.
Donc x ∈ (E ∩ A) ∪ B = f (E).
Deuxième cas, si x /∈ A, comme x ∈ A ∪ B, alors x ∈ B. Donc x ∈ (E ∩ A) ∪ B = f (E).
Donc dans tous les cas, x ∈ f (E). Conclusion,

(x ∈ E) ⇒ (x ∈ f (E)) i.e. E ⊂ f (E) .

(b) Réciproquement, si x ∈ f (E) = (E ∩ A) ∪ B.
Premier cas, si x ∈ E ∩ A, alors x ∈ E.
Deuxième cas, si x ∈ B. Par hypothèse, on a B ⊂ E, donc x ∈ E.
Ainsi, dans tous les cas x ∈ E. D’où (x ∈ f (E)) ⇒ (x ∈ E). Donc f (E) ⊂ E. Or par la question
précédente, E ⊂ f (E). Conclusion,

f (E) = E.

8. Soit E ∈ Im (f). Autrement dit, E admet un antécédent par f : il existe F ∈ P (R) tel que E =
f (F ) = (F ∩ A) ∪ B. Dans ce cas, on obtient que

B ⊂ E.

Puis F ∩ A ⊂ A. Donc (F ∩ A) ∪ B ⊂ A ∪ B. D’où E ⊂ A ∪ B. Conclusion,

B ⊂ E ⊂ A ∪ B.

9. Soit E ∈ Im (f). Alors par la question précédente, B ⊂ E ⊂ A ∪ B. Donc par la question 7. on en
déduit que E = f (E). Donc

Im (f) ⊂ {E ∈ P (R) | E = f (E)} .

Réciproquement soit E ∈ P (R) tel que E = f (E). Alors E admet bien un antécédent par f (lui-
même) donc E est dans l’image de f : E ∈ Im (E). Donc

{E ∈ P (R) | E = f (E)} ⊂ Im (f) .

Conclusion,
Im (f) = {E ∈ P (R) | E = f (E)} .
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10. Soit E ∈ P (R). Posons F = f (E). Alors F ∈ Im (f). Donc par la question précédente, f (F ) = F .
Autrement dit,

f (f (E)) = f (E) .

Ceci étant vrai pour E ∈ P (R) quelconque, on en conclut que

f ◦ f = f.

11. Par la question précédente, on a f ◦ f = f . On en déduit donc de la partie 1 :

f est bijective ⇔
®

f est surjective
f est injective

⇔
®

f = IdP(R)

f = IdP(R)

⇔ f = IdP(R)

⇔ ∀E ∈ P (R) , f (E) = E.

En particulier, si E = ∅, on a
∅ = f (∅) = (∅ ∩ A) ∪ B = B.

D’autre part, E = R, on a

bbR = f (R) = (R ∩ A) ∪ B = A ∪ B = A ∪ ∅ = A.

Donc si f est bijective, alors A = R et B = ∅. Réciproquement, si A = R et B = ∅, alors pour tout
E ∈ P (R),

f (E) = (E ∩ R) ∪ ∅ = E ∪ ∅ = E.

Donc f = IdP(R) et donc f est bien bijective. Conclusion,

f est bijective ⇔ A = R et B = ∅.
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