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Corrigé - Banque PT - Maths C - 2022
Version pour juniors

Les réponses en bleu sont les réponses des questions ajoutées ou modifiées par rapport sujet initial.
Préambule
Avant de faire des maths, un peu de récitation...

1. La fonction tangente est définie sur

@tan:R\{nglm’keZ}: U]—g+k7r;%+k7r .
keZ

La fonction tangente est , dérivable sur Zan,

1
Vo € Dian, tan’(z) = 1 + tan?(z) = ——,
x tan an’(z) + tan®(z) cos2 ()
et on a
s 0
+00

tan
/

2. On sait que la fonction est continue et strictement croissante sur ]—g; g[ donc par

‘le théoreme de la bijection‘

la restriction de la fonction tangente a ]—g; g[ définit une bijection de ]—%; g[ dans tan (] —5i5 D
et de plus, tan (] -5 5 D = ]—00; +o0[. Conclusion,

la fonction tangente réalise une bijection de } —g; g [ sur R.

Donc arctan sa réciproque existe bien. De plus, on sait que arctangente est dérivable sur R et

1

Vz € R, arctan’(z) = T2
x

3. Par le théoréeme de la bijection, la réciproque de la restriction de la fonction tangente est de méme
stricte monotonie que la restriction de la fonction tangente. Donc

‘arctangente est strictement croissante sur R. ‘

Ce qui est bien cohérent avec la stricte positivité de la fonction x — ﬁ sur R : Vz € R, arctan’(z) > 0
donc

’arctangente est bien strictement croissante sur R. ‘
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4. On a les graphes suivants :

(garctan

\

On obtient le graphe de la fonction arctangente a partir du graphe de la fonction tangente par une

symétrie d’axe la droite d’équation y = z.
5. Soit t € ]0;%[U]%;ﬂ[. On a

1
tan?(t)

1+

cos?(t)
sin?(t)

sin?(t) + cos?(t)

sin?(t)
1

sin?(t)

Conclusion,

car cos(t) #0

1
1+

tan?(t)

sin?(t)’

1. Pour tout réel x, on pose :

Autrement dit lorsque la limite existe,

Partie I

+o0 dt
[m1+ﬂ+ﬂ'

F /
Aﬁ+m A 1+x2+t2
On pose également,
1
VneN, v,(z) = ————.
" on(2) 1+ 22 4 n?

2/ig
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(a) Soit # € R. On a pour tout n € N, n? < 1+ 22 + t2. Donc par la décroissance de la fonction
inverse sur R* , on a
1 1

Vn € N* 0< ——— < —.
’ 1+a2+12 = n?
1
Or Z — converge en tant que série de Riemann d’exposant o = 2 > 1. Donc par le théoreme
neN*
de comparaison de séries a termes positifs, on en déduit,

Vz € R, Z vn(x) converge.

neN
(b) Soit A € R. Pour z =0, on a
A dt A de _
/ T2 e / e [arctan(t)]i;fA = arctan (A) — arctan (—A) = 2arctan (A).
—A €T —A

Or la fonction arctan converge en +oo donc F'(0) existe et

T
F = 1' 2 A = 2— = .
(0) Jm arctan (A) 5 =T

Conclusion, F(0) existe et
F(0) = .

(¢) Soit x € R. Soit A€ R. On a

e e ()
= arctan | ——
/—A 1+ 22 +1¢2 1+ 2 14+22/1,_4

1 A A
\/ﬁ (arctan (\/1—'_7) — arctan <—m>>
2 A >

= ————arctan <

V142

Conclusion, pour tout réel x, F'(z) existe et

™

0=

2. Soit « un réel positif. Pour tout entier naturel non nul n, on pose :

™ i dt (nt-1)m dt
Un = ]ﬁ/::j[ NOYIN I = /f YR
0 1+ n*r®sin®(t) nm 1 + t@sin“(t)

(a) Si @ = 0, alors pour tout n € N*, u,, = % Dans ce cas Z uy, diverge grossierement et donc

neN*
diverge.
Si a > 0, alors,
™ nl=2
Un fry = ~J o
1+ (nm)® 220 n2
De plus,
Vn € N¥, Uy > 0.
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Donc par le théoréme des équivalents des séries a termes positifs, on en déduit que Z U, et

o
7T17§ A 7’ . .
E =— sont de méme nature. Or, en tant que série de Riemann,
neN* nz
o
71'1 2 «
E 5— converge & ) >1 &
neN* n2

Donc

E U, converge & o> 2.

neN*

Conclusion, en résumé de tous les différents cas,

E U, converge & a > 2.

neN*

Soit n € N*. Pour tout ¢ € [nm; (n + 1) 7], puisque a > 0,
nr® <t < (n+ 1) 7.

Puis, comme sin?(t) > 0,

neN*

a > 2.

0 < 14 n%7%sin®(t) < 1+ t%sin’(t) < 1+ (n+ 1)* 7% sin’(¢).

Donc par décroissance de la fonction inverse sur R* ,

1 1
0

1

Donc par croissance de 'intégrale, car nm < (n + 1) 7, on obtient,

< < . < . :
1+ (n+1)%*7wesin?(t) ~ 1+ ¢@sin?(f) — 1+ nomsin?(¢)

1

(n+1)m 1 (n+1)m
/ &<%</

dt.

- 1+ (n+1)%msin?(t) n 1 + nom®sin?(t)

Or en posant s =t — n, la fonction ¢ — t — nm est €' sur R et on a ds = dt et

(n+1)w 1 7r 1
J i = w
nm 1+ n@r®sin®(t) 0o 1+ nam®sin® (s + nm)

dt

dit

5 dt

T 1
~Jo 14 nere ((—1)"sin (s))
~Jo 1+ noresin? (s)
=1I,.
. (n+1)m 1 )
De méme, /m 15 (n £ 1) 7 sin?(1) dt = I,,4+1. Conclusion,
VneN, Iy < Jn <

i. Soit n € N*. Par la relation de Chasles,

™

™ dt 2 dt i dt
In:/ 3 2/ —5 +/ 5
0 1+ n*r®sin?(t) 0 1+ nomesin®(t) z 1+ n*msin®(t)

ViE
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Posons s = m — t dans la seconde intégrale, t — m —t est €' sur R, ds = — dt et alors
;o /’5 dt N /0 —ds
" Jo 1+ noresin?(t) z 14 nor®sin? (1 — s)
B /’5 dt L /’2‘ ds
~Jo 14+mnemasin?(t)  Jo 14 nomsin?(s)
3 dt
o -
0o 14 n%r®sin*(t)
Conclusion,
3 dt
VYneN*,  I,=2 / ’ .
" 0o 1+ noresin?(t)
ii. Soit € 6 ]0, Z[ et n un entier naturel non nul. Posons pour tout t &€ [57 5 —5] = I,

Puisque I, = [

]

u = T—¢

C ]0; 3|, tan(t) existe et est non nul donc u =

tan( )" €3 tan(t)
existe et est a valeurs dans R . Pour tout ¢ € I., on a tan(t) = et donc t = arctan (%) car
tel. C ] 335 [ La fonctlon u +— arctan ( ) est €1 sur RY et dt “%ﬁ du = —%.
Enfin, par la question [5] du Préambule on observe que
1 1
sin?(t) = 5-
14+ Q(t) 1 + u
Ainsi,
™ 1
/E*E dt B /tan(g%) 1 -1 du
c 1 +nomosin?(t) o 14 nor s 1+ u?
o /tanl(e) 1
N 1+ u? + noge
tan(§75)
_ / =@ 1 du.
1 1+ nom® 4 u?
tan(775)
Conclusion,
/’2’—6 dt /tnlu 1 1
= u~
e 1+ norsin?(t) 1+ (14 nom®) u?

tan(j—e)

1

111. tan(e)

Puisque tan (¢) = 0%, on a a
-0+ —0

D

tan(g—s) e—0+

a pour tout n € N*,

—> 4+00. De méme, tan (5—5) — oo donc

e—0t

— 0. Donc en passant a la hmlte quand € — 07, dans le résultat précédent, on

/’5 dt /+o<> 1 q (%)
= u .
o l+mnoresin?(t)  Jo 1+ (1+nor®)u?
D’une part, par la question
3 dt
I, =2 / ’ .
0o 14+ nomesin“(t)
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D’autre part, pour tout x € R et tout A € Ry,
A dt 0 dt A dt
[A1+$2+t2 :[A1+$2+t2 +/o 1422 + 12
0 —ds A dt
(s=:t)/,4 1+x2+32+/0 1+ 22+ ¢t2
A ds A dt
:/0 1+x2—|—52+/0 1+ 22 +1¢2

_2/A de
T o 1422442

Donc par passage a la limite quand A — +oo,

vreR, Fa) =2/  — &
€R, = —.
v (@) /0 14 22 4 2
Ainsi,
F (Tﬁ 7r5) =2 / o car la variable est muette.
0 1+ nomre 4 u2

On obtient donc en multipliant par 2 (%)

VneN*, I,=F (n%ﬂ%) .

(d) Soit n € N*. Par la question

Donc par la question précédente,
F((n+1)37%) <Jy <F(nnf).

Puis, par la question

s ™

§ S /.
\/1 (n+1)¢ V1 + nere

Par définition de la suite (uy,)

neN*»

‘Vn eN*) Uy < Jp < un‘

X dt
(e) Soit @ € R. Posons G : X +— / T2 . Puisque Vt € Ry, 1+ t*sin?(t) > 1> 0, on en
0

@ gin?(t)

déduit que t — m est continue sur Ry donc sur [0; X] pour tout X € R;. Donc G est

bien définie sur Ry . De plus, par la relation de Chasles, pour tout n € N*,

nmw 1 (k+1)m n—1
o [ =5 - S
(n7) 0o 1+ t>sin?( Z b 1+ tosin?(t) ];) k

1
en posant Jy = / ————dt. Si a > 2, alors par la question [2.a « Uy, converge. Or
p 0= Jy Tres) : p q EneN n COnverg

par la question précédente,
Vn e N*, J, <up.

Or par positivité de I'intégrale, pour tout n € N*, J, > 0. Donc

Vne N, 0<J,<u,.

/i3
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Donc par le théoréme de comparaison des séries a termes positifs, si a > 2,

Z Jn, converge.
neN

Autrement dit, (G ((n + 1)7)),,cy ou encore (G (n)),, o converge. Attention le fait que la fonc-
tion G converge sur une suite de points ne signifie pas que G converge globalement ! Un argument

de monotonie est nécessaire. La fonction t — m est continue sur R, donc par le théo-
1

reme fondamental de I’analyse, la fonction G est la primitive de t — T s ()
0. Donc

qui s’annule en

1
VteR Gt)=——5—>0.
i ®) = 1+t sin?(t)
Donc la fonction G est strictement croissante sur R... Par le théoréme de convergence monotone,

o (G diverge vers +00 en 400,
e G converge vers une réel fini (supycp, G(X)) en +oo.

Puisque (G (nm)),,cn converge, seul le second point est possible. Donc

+oo
dt
Va > 2, / — 5 converge.
0o 1+t>sin®(t)

Supposons maintenant que a < 2. Par la question E > neN Uns1 diverge. Or
Vn € N*, 0 § Un+1 < Jn

Donc par le théoreme de comparaison des séries a termes positifs, Z Jn diverge i.e. (G (7)), cn

neN
converge. Deés lors, dans ce cas seule la divergence de G vers +o0o est possible :

+oo dt
Va < 2, / — diverge.
o 1+t>sin“(t)

Conclusion,

+oo dt
/0 Hta—SIHQ(t) converge = a > 2.

Partie I1
Soit R un réel strictement positif, (an)neN et (b”)nGN deux séries numériques telles que Z anpx et Z b,z

neN neN
converge pour tout x € |—R; R[. On pose alors

+o00o +o0
Vo €]-RiR[,  f(z) =) ana",  gla)=)_ bna"
n=0 n=0

n
On pose pour tout n € N, ¢, = Z apby_k.

1

1. On suppose dans cette question que pour tout n € N, a,, = b, = .

(a) Soit n € N. On a

1 <& (n
Cn_zakbnk Zk:'n— ! n'zk"n— :n'z<k)
On reconnait un bindme de Newton,
1

Conclusion,

27’L
Vn € N, Cp = —.
n

7/i8
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(b) Soit z € R. On remarque que

2 et =D it =D S

neN neN neN

On reconnait alors une série exponentielle de parametre z = 2x. Or la série exponentielle converge
pour tout z € R (ou méme pour tout z € C). Donc

Ve e R, Z cpx™ converge.
neN

xn
Soit « € R. La série Z — converge en tant que série exponentielle. Soit n € N. On a, par la

neN
formule du produit de deux polyndémes,

n ﬂik 2 n .’Ek n £Cl n k 1 1 N n 3
(£5) -(E0) (55) -5 Grats) £

Puisque la série converge, on a

n xk 2 —+o00
. _ k
LU (Z m) =2 a’

k=0 k=0
xk
La série Z "’ converge et par continuité de la fonction carrée,
keN
no kY 2 nok 2 +oo kY 2
x x x
lim — ] = lim — | = — ] .
Conclusion,
+o0o
(f(x)* = Z cpx™ converge.
n=0

On admet la généralisation du résultat précédent. Pour tout = € |—R; R|, Z cnx™ converge et de plus,
neN

+o00
Ve €]-RR[,  f@)gle) =3 caa" (%)

2. On suppose désormais que la fonction f s’annule en zéro, et que, pour tout réel z de |—R; R] :

fl(x) =1+ (f(2))*.

+oo
On admet que pour tout réel z de |—R; R|, Z nan,x™ ' converge et Z na,z" = f'(z).
neN* n=1
(a) On admet que pour (uy), .y € RV :
(Vm €|-R;R[, Z Upr" = O) = (VneN, wu,=0). (Fek)
neN
On sait que
Vo€ |-RiR[,  f'(z) =1+ (f(x))?
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De plus,
+00 +00
Vr € |—-R; R], fl(x) = Z napz" = Z (n+1)ap12™.
n=1 n=0

avec pour tout n € N, ¢, = Z apQn—_p. Ainsi,

k=0
+00 oo
Vo € |-R; R[, Z(n+1)an+1x”: 1+chx".
n=0 n=0
Ou encore
Vo € |-R; R[, 1+Z —(n+1)aps1)x" =0.
n=0

Posons ug = 1 4 ¢p — a; et pour tout n € N*, u, = ¢, — (n+ 1) ap41. Donc par (k) (vous
appellerez ¢a l’année prochaine 'unicité du développement en série entiére) on obtient
0
l+c—a1 =0 < 1+Zaka,k—a1 =0 < 1+ag—a1:O <~ a1:1+ag,
k=0

Or on sait que f(0) =0 donc 0 = ap + Z akOk = ag. Donc

CL1:1.
et, pour tout n € N*,
1 1 n

cpn—(n+1)a =0 & a = Ccp = Ak Chy— -

n— (n+1)ant ntl = n+1l§)knk
Conclusion,

ag = 0, ap =1 et Vn € N¥, an+1:72akan_k.

n

Posons pour tout p € N, Z(p) : « azp = 0 ». Procédons comme indiqué par une récurrence forte :
Initialisation. Si p = 0, on a par la question précédente, ag = 0. Donc Z?(0) est vraie.
Hérédité. Soit p € N. Supposons que pour tout k € [0;p], Z(k) est vraie :

Vk € [0;p],  agr =0.

Deés lors, par la question précédente, avec n =2p+1 > 1,

2p+1
a = a9p+2 = Ap41 = ——— AL Qp— arpa
2(p+1) P+ n-+ n+1kz_% kUn—k = 2p+2 Z k@2p+1—k-

En séparant les indices pairs des indices impairs,

1
A2pt2 = m Za2]a2p+1 2]+Za2]+la2p+l 2j—1

7=0

S z PSS
2p+ 2

7=0

o/i8



; ! Mathématiques PTSI, Maths C 2022 Junior Cor 2022/2023

Par hypothese de récurrence, pour tout j € [0;p], ag; = 0 et p — j € [0;p], donc ay_j; = 0.

Ainsi,
a2p+2 =0.
Donc & (p + 1) est vraie.
Conclusion,
’VpeN, agp:().‘

Deés lors,

+oo

Vz € |-R; R|, f(z) = Z g1z
k=0

On note que |—R; R] est centré en 0 et pour tout = € |—R; R|,

—+00 “+00
F=2) =" agsr (—2)* = =3 ag12®™ ™ = —f(2).
k=0 k=0

On en déduit donc que

‘la fonction f est impaire. ‘

(¢) On a vu précédemment que

“+oo
Ve e]-R;R[,  f'(x)=) (n+1)anpz".
n=0
En particulier, pour x = 0,
“+o00
F0)=ai+ Y (n+1)ap x0=ar.
n=1
Or on a vu que a; = 1. D’ou
() =1.

On sait que a; = 1. Puis par la relation de récurrence, avec n = 2,

13 1 1
az = 5 Z apao—k = - (aoa2 + a% + azao) =3
3 P 3 3

De méme,
1& 1 2
as = 5 l;)aka4—k = 5 (ara3 + agar) = 15
Puis,
1( b+ asan) 1(4+1> 1245 17
a7 = - (ai1a a asa = =\ — — = = —.
TS TERTEM e \15 "9/ T 7x45 315
Conclusion,
1 2 17
aa = — ar = — ayr = ——.
5T g TS "7 315

(d) Par ce qui précede, on a pour tout z € |—R; R],
+oo
f(z) = Z apx”
n=0

“+00
=air + CL3.733 + a5a:5 + Z akxk
k=T




; ! Mathématiques PTSI, Maths C 2022 Junior Cor 2022/2023

Posons pour tout = € |—R; R|,
+o00
g(x) = Z apz®.
k=9

Puisque par hypothese, °, ey ana™ converge pour tout « € |—R; R[ donc il en va de méme pour
> >0 @nx™ et g est bien définie sur |-R; R[. De plus,

+oo “+o00
Vz € |-R; R], g(z) = 2° Z anz" " =2 Z aptox".
n=9 n=0
Des lors,
+oo
9(@) _ n _
el an::OanJrg:L‘ ::) 0 X ag =0.
Donc
_ 8
g(x) o 0 (x ) .
On peut méme montrer que g(x) = O (:cg). Mais tout ceci implique que g(z) = o (a:7)
z—0 z—0

Conclusion,

On admet que la fonction tangente a le méme développement limité au voisinage de zéro donc

) () +x+2x5+17$7
an(r) = x+ -+ —
z—0 3 15 315

+o0 (a:7) .
A recaser en soirée pour impressionner son auditoire !
Partie 111

1. Pour tout entier naturel non nul n, on pose :

) A u2n
o= i [0 e WREN b=

(a) Soit n € N*. On a
k1

By ~ =
oo KAn T k20

1

Or Z T2 converge en tant que série de Riemann d’exposant o = 2n > 2 > 1. De plus pour
keN*

tout k € N, k%n > 0. Donc par le théoreme des équivalents des séries a termes positifs, on en

déduit que

Vn € N, Z hy converge.
keN

On admet que pour tout n € N, H,, existe dans R.

(b) Mais c’est presque insultant ¢a comme question. Soit n € N. On a

1 2n+1 Ju=1
[ )
0 n+11,9 2n+1

1

lim u? du = 0.
n—-+oo 0

11/18

Conclusion,
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(c) Soient n € N et A € [1;400[. On observe que pour tout u € [1; A],
0 <u'™ <14,
Donc par décroissance de la fonction inverse sur R* ,

< 1 < L < 7u2n < L% _ L n >
\1+u4n\u4n = 0\1_|_u4n\u4n_u2n car u™" = 0.

Donc par croissance de 'intégrale car les bornes sont dans le bon sens (1 < A),

A u2n A 1
< | — du< | ——
0\/1 1_’_u4ndu\/1 u2ndu

Orpourn>1, —2n+1< —1<0. Donc

A —2n+1 Ju=A
L u 1 1 1
d - |::| - g '
/1 Fa e (SRS | @n—1)AZT "2 —1S2m—1

u=1

Donc

A 2n
U 1
0< du < .
= /1 L+utn " = 2n—1
On a admis que H,, existe donc,
A 2n 1 2n
n U
lim ——du=H, — / ——— du aussi.
ASYoo J1 1+ uldn o 14 uin
Donc par passage a la limite quand A — 400

A u2n 1
< i < .
0 Airfoo/l TR TR w—

1
Or 1l
3 n—1>r—lI-100 2n—1
on a

= 0. Donc par le théoréme d’encadrement, la limite existe (important!!!) et

lim lim — du=0.
n—+00 A—+oo J1 14 u*”

(d) Pour tout n € N et tout A € [1; 00|, par la relation de Chasles,

A u?n 1 u2n A u?n
———du = —d — du.
/0 T4t /0 1+t u+/1 1+ utn "

Donc par passage a la limite quand A — +o00, qui existe car par hypotheése H,, existe :

1 g2n A g2
H, = —Fd li —F du.
" /0 T T8, Tran ™

Or par les questions précédentes,

1 u?n A u2n

lim ————du=0 et lim lim

1 — 7, du=0.
n—+oo Jg 1+ u*" n—+oo A—+oo J1 14 u*"

Donc par somme, (H,,), . converge et

lim H, =0.

n—-+4o0o

12/18
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1
2. Pour tout entier naturel non nul n, et tout réel strictement positif z, on note %/x = x2~». On pose
pour tout € € ]0;%[ :

s Z—¢ 3¢
o /4 Wfran@)de,  Ln(e) = /z Yftan(x)dz,  L,= lim [°  */tan(z)da.
0 I 1

(a) Soit n € N*. Pour tout z € |0; [, tan(z) > 0 donc

A/tan(z) = ezn n(tan(@) oyigte.

De plus, 2 — */tan(x) est continue sur |0; ]. Par ailleurs,

lim */tan(z) = lim ezm Im(tan(2)) — o — %/0.
z—0 z—0
x>0 x>0

Donc z +— */tan(z) est continue sur le segment [0; ﬂ Conclusion,

‘Vn € N*, K, existe. ‘

Soient n € N* et ¢ 6]0;%[. On

—e €% 5| Donc la fonction 2 — */tan(z) = e In(tan(z))
est continue sur le segment [%

. Donc

9

)
[

Vn € N*, Ve € }O; %[ L, (¢) existe.

(b) Soit n € N*.

i. Soit n € N* etsE]O;%[. Posons y = § —w i.e. x = § —y. La fonction y — § —y est €' sur
[g;%—e[et dx = — dy. Donc

Conclusion,

Vn € N, Vae}o;ﬂ,

I 1
L, (5):/6 de.

ii. Pour tout z € [0; 5[, posons h(z) = tan(z) — . La fonction h est dérivable sur [0;
pour tout x € [O;g

g[et

9

—

B'(z) =1+ tan®(z) — 1 = tan®(x)geqO.

Donc la fonction h est croissante sur [0; 5 [ et h(0) = 0. Donc pour tout = € [0; 5 [, h(z) > 0:

Vo € [O; g [, tan(z) > x.

iii. Soit ¢ € ]0; T [ Par la question précédente et décroissance de la fonction inverse sur R,
pour tout z € [5; ﬂ,
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Donc par croissance de la fonction t — X/t,
< 1 < 1
T 2/ftan(x) | X/x

Donc par croissance de 'intégrale, car ¢ < 7,

71
0< L)< [ o

Or pour tout n > 1,

71 L
5= d :/ x” 2 do
[ =
1‘1_2171 T 1 1
- 1— QL car om < 5 <1
n Tr=¢
(/)3 ()}
— L
2n on
4 1 2n
S /) 1 < indépendant de e.
T 2n
Conclusion,
4 1 2n
e — Ly () est majorée sur ]0; % [ par M, = %
T 2n

iv. La fonction e — L, (¢) est par la question majorée sur ]O; %[ De plus pour tout 0 < € <
e <%, ona

Ln(a):/fmdx:/:/mdx+/fmdx.

Or pour tout z € [g; €], ﬁ > 0. Donc par positivité de I'intégrale car e < &/,
an(x

Ln () 2L, ().

Donc la fonction € — L, (g) est décroissante sur }0; T [ Donc par le théoréme de convergence
monotone, on en conclut que

L, = lim L, (¢) existe.
e—07T

(c) Soient 1<n<n'.Onal< 2%, < ﬁ Pour tout z € [0; ﬂ, 0 < tan(z) < 1. Donc

0 < %/tan(z) < *y/tan(z) < 1.

Donc par croissance de I'intégrale, car 0 < 7,

™

OgKngKnlg/Zldx:z.
0 4

On en conclut que

. . - n
la suite (Kn)neN* est croissante et majorée par 1

14/18



; ! Mathématiques PTSI, Maths C 2022 Junior Cor

2022/2023

(d) Soient 1 < n < n’. On a toujours 0 < 2711, < ﬁ mais pour tout £ € ]0;%[ et pour tout
1

’

N
3

1< #y/tan(z) < 2’\‘/tan(:n).
Donc par croissance de I'intégrale, car § < § — &,

Ly

—~

e) < Ly (e).
Donc par passage a la limite quand € — 07T,
L, <L,.

Conclusion,

la suite (Ly),cn- est décroissante.

Soit n € N* et € € ]0; T [, on a vu 1 < */tan(z). Donc par croissance de l'intégrale,

3¢ ™
/ ldz < Ly, () YEN Z—&tgLn(ee).

4

Donc par passage a la limite quand € — 07T,

Vn € N¥,

Par ce qui précede, (L), oy~ €st minorée et décroissante. Donc par le théoreme de convergence
monotone,

la suite (Ly),cy- converge.

De plus, pour tout n € N*, L,, > 7 et K, > 0. Donc

Ln+Kn>%.

D’autre part, on a vu que (Kp), o+ est croissante et majorée donc converge également. Ainsi,
par somme, (L, + K,),cy- converge et par passage a la limite,

lim (K, + L) >

n—-+o0o

NS

3. Soit n € N* et € € ]0; %[ Pour tout = € [0; 5= 5], posons u = */tan(z) i.e. x = arctan (u2”) car
T € ]—g; o [ Alors, u € [0; /tan (g — 5) C R,. La fonction u — arctan (u2”) est €1 sur R et

dx =

2nu2n71

Tt du. Donc

™ T _¢
K,+ Ly, () = /4 2de - /2 /tan(z) dx
0 T

—E&
:/ /tan(z) dx
0
_/QWVtan(gf) 2nu?n1
0

ESFRYD

WP

u.

Ainsi,

2/tan( T —¢ 2n
VEE}O;%[, Kn+Ln(5):/ (3) 2nu

—)— du.
0 1 4 udn

Or quand ¢ — 0, A = */tan (g — 5) — +00. Donc par passage a la limite quand ¢ — 0,

\VneN', K.+ Ly, =2nH,.|

15/18
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4. On a vu précédemment que la suite (K, + L), .- converge. Notons ¢ sa limite et posons H = g.

Pour tout n € N*,

H, K, + L, H,
—_—= H & —
1/n 2 n——+00 H/n n——+o00

Conclusion,

H
IHeR, H, ~ —

n—+oo N ’

Partie IV

1. Soit ® la fonction définie, pour tout réel non nul x, par :

X

O(x) = 1

En reconnaissant un taux d’accroissement de la fonction exponentielle en 0 (ou par un mini-DL)

et -1
lim
x—0 x
x#0

=exp/(0) = 1.

Donc par continuité de la fonction inverse en 1, lin}) ®(x) existe et
—
20
lim &(z) = 1.
z—0
x#0

Conclusion,

en posant ®(0) = 1, la fonction ® est prolongeable par continuité en 0. ‘

Dans ce qui suit, on désigne encore par ® la fonction ainsi prolongée. On admettra que la fonction ® est
développable en série entiére sur |—2m; 2| il existe (By)cy € RN telle que pour tout x € |—2m; 27,

xn
Z B,,— converge et
n!

neN
+oo

Vo € |-2m; 27|, O(x) = Z Bn%
n=0 ’

2. Notamment en évaluant en 0, on obtient
B
®(0) = 0—?+0:BO.

Conclusion,

3. On remarque que, pour tout réel x de |—27; 27| :
+o0 xn
(T L
x = (e 1)1;)3”71!'

Or on sait que pour tout = € |—2m; 27,

+o00 :Ek +o0o .CUk
T __ < T _ 1 <
e’ = Z ol & e’ —1 Z R

k=0 k=1
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4.

+oo
T = Z cpT”
n=0
+oo n
= Z (Z akbnk> x
k=0

+o00 nlBk 1 .
aobo—i-z Z 7@!—1—0 T
= 1’”Bk n! .
:Z(n!l;)k!(n—k)!)x

n=1

8]

&)

Conclusion, pour tout x € |—27; 27|,

(a) Par la question précédente,

wEEO - SEE)-

k=0

Donc par I'implication (¥ ) on a pour tout n > 2,

17171 n n—1 n
g o F()ne

En posant n =n — 1, pour tout n > 1,

"+l
3 <”Z )B,c —0.
k=0

Donc en utilisant (%) avec f = &, Vk € N, a = %, g:axr—>e’—1,bg=0et Vk € N*, b = %, on
obtient que

Conclusion, Montrer a 'aide de la relation (%) que, pour tout entier naturel non nul n :

Z 1
Vn € N*, E:Ci;>Bk:Q

k=0

1 n-! 1
<"+ >Bn—|—z (”+ )Bk:O.
n P k

Des lors, pour tout n > 1,

Conclusion,
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(b) En prenant n =1, on a
En prenant n =2, on a

Donc By = % et

Poursuivons, pour n = 3,

4 4 4 1
4Bs=—( " )Bo— (" |Bi—|.)Ba=—1+2-6x==0.

Donc B3 = 0. Enfin, pour n = 4,

5 5 5 5 5 1 3 5 1
5Bi=—()Bo— (2 )Bi—(2)Bo— (2 )Bs=—142—10x = —10x0=2—-2= =,
! <0) ° (1) ! (2) 2 (3) A T A T R B

D’ou By = —%. Donc
2
4By, = ——.
T
Conclusion,
1 2
232:§:a3 et 4B4:—B:—a5.

Je me refuse a dire que 3, 5, 7 étant premiers on en déduit que tous les nombres impairs le sont...

Ce probléme fait intervenir des intégrales généralisées, pour lesquelles la fonction tangente permet
soit d’obtenir leur convergence, soit de les calculer. Cette trés classique fonction trigonométrique
vérifie aussi une équation différentielle permettant d’obtenir son développement en série entiére, ot
interviennent les nombres de Benoulli, que l’on retrouve dans de mombreux autres développements
en série entiere, ou encore dans la formule d’Euler Mac-Laurin, qui relie des sommes discrétes ou
apparaissent également les dérivées successives de la fonction, et des intégrales.

Fin du corrigé
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