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Version pour juniors

Les réponses en bleu sont les réponses des questions ajoutées ou modifiées par rapport sujet initial.

Préambule

Avant de faire des maths, un peu de récitation...

1. La fonction tangente est définie sur

Dtan = R \
{ π

2 + kπ
∣∣∣ k ∈ Z

}
=

⋃
k∈Z

]
−π

2 + kπ; π

2 + kπ
[

.

La fonction tangente est impaire , dérivable sur Dtan,

∀x ∈ Dtan, tan′(x) = 1 + tan2(x) = 1
cos2(x) ,

et on a

x

tan

−π
2 0 π

2

−∞

+∞
0

2. On sait que la fonction est continue et strictement croissante sur
]
−π

2 ; π
2
[

donc par

le théorème de la bijection

la restriction de la fonction tangente à
]
−π

2 ; π
2
[

définit une bijection de
]
−π

2 ; π
2
[

dans tan
(]
−π

2 ; π
2
[)

et de plus, tan
(]
−π

2 ; π
2
[)

= ]−∞; +∞[. Conclusion,

la fonction tangente réalise une bijection de
]
−π

2 ; π

2

[
sur R.

Donc arctan sa réciproque existe bien. De plus, on sait que arctangente est dérivable sur R et

∀x ∈ R, arctan′(x) = 1
1 + x2 .

3. Par le théorème de la bijection, la réciproque de la restriction de la fonction tangente est de même
stricte monotonie que la restriction de la fonction tangente. Donc

arctangente est strictement croissante sur R.

Ce qui est bien cohérent avec la stricte positivité de la fonction x 7→ 1
1+x2 sur R : ∀x ∈ R, arctan′(x) > 0

donc
arctangente est bien strictement croissante sur R.
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4. On a les graphes suivants :

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

− π
2

π
2

− π
2

π
2

Carctan

Ctan y = x

On obtient le graphe de la fonction arctangente à partir du graphe de la fonction tangente par une
symétrie d’axe la droite d’équation y = x.

5. Soit t ∈
]
0; π

2
[
∪
]

π
2 ; π

[
. On a

1 + 1
tan2(t) = 1 + cos2(t)

sin2(t) car cos(t) ̸= 0

= sin2(t) + cos2(t)
sin2(t)

= 1
sin2(t)

Conclusion,

∀t ∈
]
0; π

2

[
∪
]π

2 ; π
[

, 1 + 1
tan2(t) = 1

sin2(t) .

Partie I

1. Pour tout réel x, on pose :
F (x) =

∫ +∞

−∞

dt

1 + x2 + t2 .

Autrement dit lorsque la limite existe,

F (x) = lim
A→+∞

∫ +A

−A

dt

1 + x2 + t2 .

On pose également,
∀n ∈ N, vn(x) = 1

1 + x2 + n2 .
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(a) Soit x ∈ R. On a pour tout n ∈ N, n2 ⩽ 1 + x2 + t2. Donc par la décroissance de la fonction
inverse sur R∗

+, on a
∀n ∈ N∗, 0 <

1
1 + x2 + t2 ⩽

1
n2 .

Or
∑

n∈N∗

1
n2 converge en tant que série de Riemann d’exposant α = 2 > 1. Donc par le théorème

de comparaison de séries à termes positifs, on en déduit,

∀x ∈ R,
∑
n∈N

vn(x) converge.

(b) Soit A ∈ R. Pour x = 0, on a∫ +A

−A

dt

1 + x2 + t2 =
∫ +A

−A

dt

1 + t2 = [arctan(t)]t=A
t=−A = arctan (A)− arctan (−A) = 2 arctan (A) .

Or la fonction arctan converge en +∞ donc F (0) existe et

F (0) = lim
A→+∞

2 arctan (A) = 2π

2 = π.

Conclusion, F (0) existe et
F (0) = π.

(c) Soit x ∈ R. Soit A ∈ R. On a∫ +A

−A

dt

1 + x2 + t2 =
ï 1√

1 + x2
arctan

Å
t√

1 + x2

ãòt=A

t=−A

= 1√
1 + x2

Å
arctan

Å
A√

1 + x2

ã
− arctan

Å
− A√

1 + x2

ãã
= 2√

1 + x2
arctan

Å
A√

1 + x2

ã
.

Conclusion, pour tout réel x, F (x) existe et

F (x) = π√
1 + x2

.

2. Soit α un réel positif. Pour tout entier naturel non nul n, on pose :

un = π√
1 + (nπ)α , In =

∫ π

0

dt

1 + nαπα sin2(t) , Jn =
∫ (n+1)π

nπ

dt

1 + tα sin2(t) .

(a) Si α = 0, alors pour tout n ∈ N∗, un = π√
2 . Dans ce cas

∑
n∈N∗

un diverge grossièrement et donc

diverge.
Si α > 0, alors,

un = π√
1 + (nπ)α ∼

x→0

π1− α
2

n
α
2

.

De plus,
∀n ∈ N∗, un > 0.

3/18



Mathématiques PTSI, Maths C 2022 Junior Cor 2022/2023

Donc par le théorème des équivalents des séries à termes positifs, on en déduit que
∑

n∈N∗
un et

∑
n∈N∗

π1− α
2

n
α
2

sont de même nature. Or, en tant que série de Riemann,

∑
n∈N∗

π1− α
2

n
α
2

converge ⇔ α

2 > 1 ⇔ α > 2.

Donc ∑
n∈N∗

un converge ⇔ α > 2.

Conclusion, en résumé de tous les différents cas,∑
n∈N∗

un converge ⇔ α > 2.

(b) Soit n ∈ N∗. Pour tout t ∈ [nπ; (n + 1) π], puisque α ⩾ 0,

nαπα ⩽ tα ⩽ (n + 1)α πα.

Puis, comme sin2(t) ⩾ 0,

0 < 1 + nαπα sin2(t) ⩽ 1 + tα sin2(t) ⩽ 1 + (n + 1)α πα sin2(t).

Donc par décroissance de la fonction inverse sur R∗
+,

0 <
1

1 + (n + 1)α πα sin2(t) ⩽
1

1 + tα sin2(t) ⩽
1

1 + nαπα sin2(t) .

Donc par croissance de l’intégrale, car nπ ⩽ (n + 1) π, on obtient,∫ (n+1)π

nπ

1
1 + (n + 1)α πα sin2(t) dt ⩽ Jn ⩽

∫ (n+1)π

nπ

1
1 + nαπα sin2(t) dt.

Or en posant s = t− nπ, la fonction t 7→ t− nπ est C 1 sur R et on a ds = dt et∫ (n+1)π

nπ

1
1 + nαπα sin2(t) dt =

∫ π

0

1
1 + nαπα sin2 (s + nπ) dt

=
∫ π

0

1
1 + nαπα ((−1)n sin (s))2 dt

=
∫ π

0

1
1 + nαπα sin2 (s) dt

= In.

De même,
∫ (n+1)π

nπ

1
1 + (n + 1)α πα sin2(t) dt = In+1. Conclusion,

∀n ∈ N∗, In+1 ⩽ Jn ⩽ In.

(c) i. Soit n ∈ N∗. Par la relation de Chasles,

In =
∫ π

0

dt

1 + nαπα sin2(t) =
∫ π

2

0

dt

1 + nαπα sin2(t) +
∫ π

π
2

dt

1 + nαπα sin2(t) .
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Posons s = π − t dans la seconde intégrale, t 7→ π − t est C 1 sur R, ds = −dt et alors

In =
∫ π

2

0

dt

1 + nαπα sin2(t) +
∫ 0

π
2

−ds

1 + nαπα sin2 (π − s)

=
∫ π

2

0

dt

1 + nαπα sin2(t) +
∫ π

2

0

ds

1 + nαπα sin2(s)

= 2
∫ π

2

0

dt

1 + nαπα sin2(t) .

Conclusion,

∀n ∈ N∗, In = 2
∫ π

2

0

dt

1 + nαπα sin2(t) .

ii. Soit ε ∈
]
0; π

4
[

et n un entier naturel non nul. Posons pour tout t ∈
[
ε; π

2 − ε
]

= Iε,
u = 1

tan(t) . Puisque Iε =
[
ε; π

2 − ε
]
⊆
]
0; π

2
[
, tan(t) existe et est non nul donc u = 1

tan(t)
existe et est à valeurs dans R∗

+. Pour tout t ∈ Iε, on a tan(t) = 1
u et donc t = arctan

( 1
u

)
car

t ∈ Iε ⊆
]
−π

2 ; π
2
[
. La fonction u 7→ arctan

( 1
u

)
est C 1 sur R∗

+ et dt = − 1
u2

1
1+( 1

u )2 du = − du
1+u2 .

Enfin, par la question 5. du Préambule on observe que

sin2(t) = 1
1 + 1

tan2(t)
= 1

1 + u2 .

Ainsi, ∫ π
2 −ε

ε

dt

1 + nαπα sin2(t) =
∫ 1

tan( π
2 −ε)

1
tan(ε)

1
1 + nαπα 1

1+u2

−1
1 + u2 du

=
∫ 1

tan(ε)

1
tan( π

2 −ε)

1
1 + u2 + nαπα

du

=
∫ 1

tan(ε)

1
tan( π

2 −ε)

1
1 + nαπα + u2 du.

Conclusion, ∫ π
2 −ε

ε

dt

1 + nαπα sin2(t) =
∫ 1

tan(ε)

1
tan( π

2 −ε)

1
1 + (1 + nαπα) u2 du.

iii. Puisque tan (ε) −→
ε→0+

0+, on a 1
tan(ε) −→ε→0+

+∞. De même, tan
(

π
2 − ε

)
−→

ε→0+
+∞ donc

1
tan( π

2 −ε) −→ε→0+
0. Donc en passant à la limite quand ε → 0+, dans le résultat précédent, on

a pour tout n ∈ N∗,∫ π
2

0

dt

1 + nαπα sin2(t) =
∫ +∞

0

1
1 + (1 + nαπα) u2 du (⋆) .

D’une part, par la question 2.(c)i

In = 2
∫ π

2

0

dt

1 + nαπα sin2(t) .

5/18



Mathématiques PTSI, Maths C 2022 Junior Cor 2022/2023

D’autre part, pour tout x ∈ R et tout A ∈ R+,∫ A

−A

dt

1 + x2 + t2 =
∫ 0

−A

dt

1 + x2 + t2 +
∫ A

0

dt

1 + x2 + t2

=
(s=−t)

∫ 0

A

−ds

1 + x2 + s2 +
∫ A

0

dt

1 + x2 + t2

=
∫ A

0

ds

1 + x2 + s2 +
∫ A

0

dt

1 + x2 + t2

= 2
∫ A

0

dt

1 + x2 + t2 .

Donc par passage à la limite quand A→ +∞,

∀x ∈ R, F (x) = 2
∫ +∞

0

dt

1 + x2 + t2 .

Ainsi,

F
Ä
n

α
2 π

α
2
ä

= 2
∫ +∞

0

du

1 + nαπα + u2 car la variable est muette.

On obtient donc en multipliant par 2 (⋆)

∀n ∈ N∗, In = F
Ä
n

α
2 π

α
2
ä

.

(d) Soit n ∈ N∗. Par la question 2.b
In+1 ⩽ Jn ⩽ In.

Donc par la question précédente,

F
Ä
(n + 1)

α
2 π

α
2
ä
⩽ Jn ⩽ F

Ä
n

α
2 π

α
2
ä

.

Puis, par la question 1.c
π√

1 + (n + 1)α πα
⩽ Jn ⩽

π√
1 + nαπα

.

Par définition de la suite (un)n∈N∗ ,

∀n ∈ N∗, un+1 ⩽ Jn ⩽ un.

(e) Soit α ∈ R. Posons G : X 7→
∫ X

0

dt

1 + tα sin2(t) . Puisque ∀t ∈ R+, 1 + tα sin2(t) ⩾ 1 > 0, on en

déduit que t 7→ 1
1+tα sin2(t) est continue sur R+ donc sur [0; X] pour tout X ∈ R+. Donc G est

bien définie sur R+. De plus, par la relation de Chasles, pour tout n ∈ N∗,

G (nπ) =
∫ nπ

0

1
1 + tα sin2(t) dt =

n−1∑
k=0

∫ (k+1)π

kπ

1
1 + tα sin2(t) dt =

n−1∑
k=0

Jk,

en posant J0 =
∫ π

0

1
1 + tα sin2(t) dt. Si α > 2, alors par la question 2.a ∑

n∈N∗ un converge. Or
par la question précédente,

∀n ∈ N∗, Jn ⩽ un.

Or par positivité de l’intégrale, pour tout n ∈ N∗, Jn ⩾ 0. Donc

∀n ∈ N∗, 0 ⩽ Jn ⩽ un.
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Donc par le théorème de comparaison des séries à termes positifs, si α > 2,∑
n∈N

Jn converge.

Autrement dit, (G ((n + 1)π))n∈N ou encore (G (nπ))n∈N converge. Attention le fait que la fonc-
tion G converge sur une suite de points ne signifie pas que G converge globalement ! Un argument
de monotonie est nécessaire. La fonction t 7→ 1

1+tα sin2(t) est continue sur R+, donc par le théo-
rème fondamental de l’analyse, la fonction G est la primitive de t 7→ 1

1+tα sin2(t) qui s’annule en
0. Donc

∀t ∈ R+, G′(t) = 1
1 + tα sin2(t) > 0.

Donc la fonction G est strictement croissante sur R+. Par le théorème de convergence monotone,
• G diverge vers +∞ en +∞,
• G converge vers une réel fini (supX∈R+ G(X)) en +∞.

Puisque (G (nπ))n∈N converge, seul le second point est possible. Donc

∀α > 2,

∫ +∞

0

dt

1 + tα sin2(t) converge.

Supposons maintenant que α ⩽ 2. Par la question 2.a ∑
n∈N un+1 diverge. Or

∀n ∈ N∗, 0 ⩽ un+1 ⩽ Jn.

Donc par le théorème de comparaison des séries à termes positifs,
∑
n∈N

Jn diverge i.e. (G (nπ))n∈N

converge. Dès lors, dans ce cas seule la divergence de G vers +∞ est possible :

∀α ⩽ 2,

∫ +∞

0

dt

1 + tα sin2(t) diverge.

Conclusion, ∫ +∞

0

dt

1 + tα sin2(t) converge ⇔ α > 2.

Partie II

Soit R un réel strictement positif, (an)n∈N et (bn)n∈N deux séries numériques telles que
∑
n∈N

anx et
∑
n∈N

bnx

converge pour tout x ∈ ]−R; R[. On pose alors

∀x ∈ ]−R; R[ , f(x) =
+∞∑
n=0

anxn, g(x) =
+∞∑
n=0

bnxn

On pose pour tout n ∈ N, cn =
n∑

k=0
akbn−k.

1. On suppose dans cette question que pour tout n ∈ N, an = bn = 1
n! .

(a) Soit n ∈ N. On a

cn =
n∑

k=0
akbn−k =

n∑
k=0

1
k!

1
(n− k)! = 1

n!

n∑
k=0

n!
k! (n− k)! = 1

n!

n∑
k=0

Ç
n

k

å
.

On reconnait un binôme de Newton,

cn = 1
n! (1 + 1)n .

Conclusion,

∀n ∈ N, cn = 2n

n! .
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(b) Soit x ∈ R. On remarque que

∑
n∈N

cnxn =
∑
n∈N

2n

n! xn =
∑
n∈N

(2x)n

n! .

On reconnait alors une série exponentielle de paramètre z = 2x. Or la série exponentielle converge
pour tout z ∈ R (ou même pour tout z ∈ C). Donc

∀x ∈ R,
∑
n∈N

cnxn converge.

Soit x ∈ R. La série
∑
n∈N

xn

n! converge en tant que série exponentielle. Soit n ∈ N. On a, par la

formule du produit de deux polynômes,Ç
n∑

k=0

xk

k!

å2

=
Ç

n∑
k=0

xk

k!

åÇ
n∑

l=0

xl

l!

å
=

n∑
k=0

(
k∑

i=0

1
i!

1
(k − i)!

)
xk =

n∑
k=0

ckxk.

Puisque la série converge, on a

lim
n→+∞

Ç
n∑

k=0

xk

k!

å2

=
+∞∑
k=0

ckxk.

La série
∑
k∈N

xk

k
converge et par continuité de la fonction carrée,

lim
n→+∞

Ç
n∑

k=0

xk

k!

å2

=
Ç

lim
n→+∞

n∑
k=0

xk

k!

å2

=
Ç+∞∑

k=0

xk

k!

å2

.

Conclusion,

(f(x))2 =
+∞∑
n=0

cnxn converge.

On admet la généralisation du résultat précédent. Pour tout x ∈ ]−R; R[,
∑
n∈N

cnxn converge et de plus,

∀x ∈ ]−R; R[ , f(x)g(x) =
+∞∑
n=0

cnxn (⋆)

2. On suppose désormais que la fonction f s’annule en zéro, et que, pour tout réel x de ]−R; R[ :

f ′(x) = 1 + (f(x))2 .

On admet que pour tout réel x de ]−R; R[,
∑

n∈N∗
nanxn−1 converge et

+∞∑
n=1

nanxn−1 = f ′(x).

(a) On admet que pour (un)n∈N ∈ RN :(
∀x ∈ ]−R; R[ ,

∑
n∈N

unxn = 0
)

⇒ (∀n ∈ N, un = 0) . (⋆⋆)

On sait que
∀x ∈ ]−R; R[ , f ′(x) = 1 + (f(x))2 .
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De plus,

∀x ∈ ]−R; R[ , f ′(x) =
+∞∑
n=1

nanxn−1 =
+∞∑
n=0

(n + 1) an+1xn.

Et par (⋆) avec g = f et donc bn = an, on a

(f(x))2 =
+∞∑
n=0

cnxn,

avec pour tout n ∈ N, cn =
n∑

k=0
akan−k. Ainsi,

∀x ∈ ]−R; R[ ,
+∞∑
n=0

(n + 1) an+1xn = 1 +
+∞∑
n=0

cnxn.

Ou encore

∀x ∈ ]−R; R[ , 1 +
+∞∑
n=0

(cn − (n + 1) an+1) xn = 0.

Posons u0 = 1 + c0 − a1 et pour tout n ∈ N∗, un = cn − (n + 1) an+1. Donc par (⋆⋆) (vous
appellerez ça l’année prochaine l’unicité du développement en série entière) on obtient

1 + c0 − a1 = 0 ⇔ 1 +
0∑

k=0
aka−k − a1 = 0 ⇔ 1 + a2

0 − a1 = 0 ⇔ a1 = 1 + a2
0,

Or on sait que f(0) = 0 donc 0 = a0 + ∑+∞
k=1 ak0k = a0. Donc

a1 = 1.

et, pour tout n ∈ N∗,

cn − (n + 1) an+1 = 0 ⇔ an+1 = 1
n + 1cn = 1

n + 1

n∑
k=0

akan−k.

Conclusion,

a0 = 0, a1 = 1 et ∀n ∈ N∗, an+1 = 1
n + 1

n∑
k=0

akan−k.

(b) Posons pour tout p ∈ N, P(p) : « a2p = 0 ». Procédons comme indiqué par une récurrence forte :
Initialisation. Si p = 0, on a par la question précédente, a0 = 0. Donc P(0) est vraie.
Hérédité. Soit p ∈ N. Supposons que pour tout k ∈ J0; pK, P(k) est vraie :

∀k ∈ J0; pK, a2k = 0.

Dès lors, par la question précédente, avec n = 2p + 1 ⩾ 1,

a2(p+1) = a2p+2 = an+1 = 1
n + 1

n∑
k=0

akan−k = 1
2p + 2

2p+1∑
k=0

aka2p+1−k.

En séparant les indices pairs des indices impairs,

a2p+2 = 1
2p + 2

(
p∑

j=0
a2ja2p+1−2j +

p∑
j=0

a2j+1a2p+1−2j−1

)

= 1
2p + 2

(
p∑

j=0
a2ja2p+1−2j +

p∑
j=0

a2j+1a2(p−j)

)
.
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Par hypothèse de récurrence, pour tout j ∈ J0; pK, a2j = 0 et p − j ∈ J0; pK, donc a2(p−j) = 0.
Ainsi,

a2p+2 = 0.

Donc P(p + 1) est vraie.
Conclusion,

∀p ∈ N, a2p = 0.

Dès lors,

∀x ∈ ]−R; R[ , f(x) =
+∞∑
k=0

a2k+1x2k+1.

On note que ]−R; R[ est centré en 0 et pour tout x ∈ ]−R; R[,

f (−x) =
+∞∑
k=0

a2k+1 (−x)2k+1 = −
+∞∑
k=0

a2k+1x2k+1 = −f(x).

On en déduit donc que
la fonction f est impaire.

(c) On a vu précédemment que

∀x ∈ ]−R; R[ , f ′(x) =
+∞∑
n=0

(n + 1) an+1xn.

En particulier, pour x = 0,

f ′(0) = a1 +
+∞∑
n=1

(n + 1) an+1 × 0 = a1.

Or on a vu que a1 = 1. D’où
f ′(0) = 1.

On sait que a1 = 1. Puis par la relation de récurrence, avec n = 2,

a3 = 1
3

2∑
k=0

aka2−k = 1
3
(
a0a2 + a2

1 + a2a0
)

= 1
3 .

De même,

a5 = 1
5

4∑
k=0

aka4−k = 1
5 (a1a3 + a3a1) = 2

15 .

Puis,
a7 = 1

7
(
a1a5 + a2

3 + a5a1
)

= 1
7

Å 4
15 + 1

9

ã
= 12 + 5

7× 45 = 17
315 .

Conclusion,

a3 = 1
3 , a5 = 2

15 , a7 = 17
315 .

(d) Par ce qui précède, on a pour tout x ∈ ]−R; R[,

f(x) =
+∞∑
n=0

akxk

= a1x + a3x3 + a5x5 +
+∞∑
k=7

akxk

= x + x

3 + 2x5

15 + 17x7

315 +
+∞∑
k=9

akxk.
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Posons pour tout x ∈ ]−R; R[,

g(x) =
+∞∑
k=9

akxk.

Puisque par hypothèse, ∑
n∈N anxn converge pour tout x ∈ ]−R; R[ donc il en va de même pour∑

n⩾9 anxn et g est bien définie sur ]−R; R[. De plus,

∀x ∈ ]−R; R[ , g(x) = x9
+∞∑
n=9

anxn−7 = x9
+∞∑
n=0

an+9xn.

Dès lors,
g(x)
x8 = x

+∞∑
n=0

an+9xn −→
x→0

0× a9 = 0.

Donc
g(x) =

x→0
o
(
x8) .

On peut même montrer que g(x) =
x→0

O
(
x9). Mais tout ceci implique que g(x) =

x→0
o
(
x7).

Conclusion,

f(x) =
x→0

x + x

3 + 2x5

15 + 17x7

315 + o
(
x7) .

On admet que la fonction tangente a le même développement limité au voisinage de zéro donc

tan (x) =
x→0

x + x

3 + 2x5

15 + 17x7

315 + o
(
x7) .

A recaser en soirée pour impressionner son auditoire !

Partie III

1. Pour tout entier naturel non nul n, on pose :

Hn = lim
A→+∞

∫ A

0

u2n

1 + u4n
du, ∀k ∈ N, hk = k2n

1 + k4n
.

(a) Soit n ∈ N∗. On a

hk ∼
k→+∞

k2n

k4n
= 1

k2n
.

Or
∑

k∈N∗

1
k2n

converge en tant que série de Riemann d’exposant α = 2n ⩾ 2 > 1. De plus pour

tout k ∈ N, 1
k2n ⩾ 0. Donc par le théorème des équivalents des séries à termes positifs, on en

déduit que
∀n ∈ N,

∑
k∈N

hk converge.

On admet que pour tout n ∈ N, Hn existe dans R.
(b) Mais c’est presque insultant ça comme question. Soit n ∈ N. On a∫ 1

0
u2n du =

ï
u2n+1

2n + 1

òu=1

u=0
= 1

2n + 1 .

Conclusion,

lim
n→+∞

∫ 1

0
u2n du = 0.
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(c) Soient n ∈ N et A ∈ [1; +∞[. On observe que pour tout u ∈ [1; A],

0 < u4n ⩽ 1 + u4n.

Donc par décroissance de la fonction inverse sur R∗
+,

0 ⩽
1

1 + u4n
⩽

1
u4n

⇒ 0 ⩽
u2n

1 + u4n
⩽

u2n

u4n
= 1

u2n
car u2n ⩾ 0.

Donc par croissance de l’intégrale car les bornes sont dans le bon sens (1 ⩽ A),

0 ⩽
∫ A

1

u2n

1 + u4n
du ⩽

∫ A

1

1
u2n

du

Or pour n ⩾ 1, −2n + 1 ⩽ −1 < 0. Donc
∫ A

1
u−2n du =

ï
u−2n+1

−2n + 1

òu=A

u=1
= − 1

(2n− 1) A2n−1 + 1
2n− 1 ⩽

1
2n− 1 .

Donc
0 ⩽

∫ A

1

u2n

1 + u4n
du ⩽

1
2n− 1 .

On a admis que Hn existe donc,

lim
A→+∞

∫ A

1

u2n

1 + u4n
du = Hn −

∫ 1

0

u2n

1 + u4n
du aussi.

Donc par passage à la limite quand A→ +∞

0 ⩽ lim
A→+∞

∫ A

1

u2n

1 + u4n
du ⩽

1
2n− 1 .

Or lim
n→+∞

1
2n− 1 = 0. Donc par le théorème d’encadrement, la limite existe (important ! ! !) et

on a

lim
n→+∞

lim
A→+∞

∫ A

1

u2n

1 + u4n
du = 0.

(d) Pour tout n ∈ N et tout A ∈ [1; +∞[, par la relation de Chasles,∫ A

0

u2n

1 + u4n
du =

∫ 1

0

u2n

1 + u4n
du +

∫ A

1

u2n

1 + u4n
du.

Donc par passage à la limite quand A→ +∞, qui existe car par hypothèse Hn existe :

Hn =
∫ 1

0

u2n

1 + u4n
du + lim

A→+∞

∫ A

1

u2n

1 + u4n
du.

Or par les questions précédentes,

lim
n→+∞

∫ 1

0

u2n

1 + u4n
du = 0 et lim

n→+∞
lim

A→+∞

∫ A

1

u2n

1 + u4n
du = 0.

Donc par somme, (Hn)n∈N converge et

lim
n→+∞

Hn = 0.
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2. Pour tout entier naturel non nul n, et tout réel strictement positif x, on note 2n
√

x = x
1

2n . On pose
pour tout ε ∈

]
0; π

4
[

:

Kn =
∫ π

4

0
2n
»

tan(x) dx, Ln (ε) =
∫ π

2 −ε

π
4

2n
»

tan(x) dx, Ln = lim
ε→0+

∫ π
2 −ε

π
4

2n
»

tan(x) dx.

(a) Soit n ∈ N∗. Pour tout x ∈
]
0; π

4
[
, tan(x) > 0 donc

2n
»

tan(x) = e
1

2n
ln(tan(x)) existe.

De plus, x 7→ 2n
√

tan(x) est continue sur
]
0; π

4
]
. Par ailleurs,

lim
x→0
x>0

2n
»

tan(x) = lim
x→0
x>0

e
1

2n
ln(tan(x)) = 0 = 2n

√
0.

Donc x 7→ 2n
√

tan(x) est continue sur le segment
[
0; π

4
]
. Conclusion,

∀n ∈ N∗, Kn existe.

Soient n ∈ N∗ et ε ∈
]
0; π

4
[
. On a π

2 − ε ∈
]

π
4 ; π

2
[
. Donc la fonction x 7→ 2n

√
tan(x) = e 1

2n
ln(tan(x))

est continue sur le segment
[

π
4 ; π

2 − ε
]
. Donc

∀n ∈ N∗, ∀ ε ∈
]
0; π

4

[
Ln (ε) existe.

(b) Soit n ∈ N∗.
i. Soit n ∈ N∗ et ε ∈

]
0; π

4
[
. Posons y = π

2 − x i.e. x = π
2 − y. La fonction y 7→ π

2 − y est C 1 sur[
π
4 ; π

2 − ε
[

et dx = −dy. Donc

Ln (ε) =
∫ π

2 −ε

π
4

2n
»

tan(x) dx

=
∫ ε

π
4

2n

√
sin
(

π
2 − y

)
cos
(

π
2 − y

) (−1) dy

=
∫ π

4

ε

2n

 
cos (y)
sin (y) dy.

Conclusion,

∀n ∈ N∗, ∀ ε ∈
]
0; π

4

[
, Ln (ε) =

∫ π
4

ε

1
2n
√

tan(x)
dx.

ii. Pour tout x ∈
[
0; π

2
[
, posons h(x) = tan(x) − x. La fonction h est dérivable sur

[
0; π

2
[

et
pour tout x ∈

[
0; π

2
[
,

h′(x) = 1 + tan2(x)− 1 = tan2(x)geq0.

Donc la fonction h est croissante sur
[
0; π

2
[

et h(0) = 0. Donc pour tout x ∈
[
0; π

2
[
, h(x) ⩾ 0 :

∀x ∈
[
0; π

2

[
, tan(x) ⩾ x.

iii. Soit ε ∈
]
0; π

4
[
. Par la question précédente et décroissance de la fonction inverse sur R∗

+,
pour tout x ∈

[
ε; π

4
]
,

0 <
1

tan(x) ⩽
1
x

.
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Donc par croissance de la fonction t 7→ 2n
√

t,

0 ⩽
1

2n
√

tan(x)
⩽

1
2n
√

x
.

Donc par croissance de l’intégrale, car ε ⩽ π
4 ,

0 ⩽ Ln (ε) ⩽
∫ π

4

ε

1
2n
√

x
dx.

Or pour tout n ⩾ 1,∫ π
4

ε

1
2n
√

x
dx =

∫ π
4

ε
x− 1

2n dx

=
ñ

x1− 1
2n

1− 1
2n

ôx= π
4

x=ε

car 1
2n

⩽
1
2 < 1

= (π/4)1− 1
2n

1− 1
2n

− (ε)1− 1
2n

1− 1
2n

⩽
(π/4)1− 1

2n

1− 1
2n

← indépendant de ε.

Conclusion,

ε 7→ Ln (ε) est majorée sur
]
0; π

4

[
par Mn = (π/4)1− 1

2n

1− 1
2n

.

iv. La fonction ε → Ln (ε) est par la question majorée sur
]
0; π

4
[
. De plus pour tout 0 < ε ⩽

ε′ < π
4 , on a

Ln (ε) =
∫ π

4

ε

1
2n
√

tan(x)
dx =

∫ ε′

ε

1
2n
√

tan(x)
dx +

∫ π
4

ε′

1
2n
√

tan(x)
dx.

Or pour tout x ∈ [ε; ε′], 1
2n
√

tan(x)
⩾ 0. Donc par positivité de l’intégrale car ε ⩽ ε′,

Ln (ε) ⩾ Łn

(
ε′) .

Donc la fonction ε→ Ln (ε) est décroissante sur
]
0; π

4
[
. Donc par le théorème de convergence

monotone, on en conclut que

Ln = lim
ε→0+

Ln (ε) existe.

(c) Soient 1 ⩽ n ⩽ n′. On a 0 ⩽ 1
2n′ ⩽ 1

2n . Pour tout x ∈
[
0; π

4
]
, 0 ⩽ tan(x) ⩽ 1. Donc

0 ⩽ 2n
»

tan(x) ⩽ 2n′
»

tan(x) ⩽ 1.

Donc par croissance de l’intégrale, car 0 ⩽ π
4 ,

0 ⩽ Kn ⩽ Kn′ ⩽
∫ π

4

0
1 dx = π

4 .

On en conclut que

la suite (Kn)n∈N∗ est croissante et majorée par π

4 .
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(d) Soient 1 ⩽ n ⩽ n′. On a toujours 0 ⩽ 1
2n′ ⩽ 1

2n mais pour tout ε ∈
]
0; π

4
[

et pour tout
x ∈

[
π
4 ; π

2 − ε
]
, 1 ⩽ tan(x). Donc

1 ⩽ 2n′
»

tan(x) ⩽ 2n
»

tan(x).

Donc par croissance de l’intégrale, car π
4 ⩽ π

2 − ε,

Ln′ (ε) ⩽ Ln (ε) .

Donc par passage à la limite quand ε→ 0+,

Ln′ ⩽ Ln.

Conclusion,
la suite (Ln)n∈N∗ est décroissante.

(e) Soit n ∈ N∗ et ε ∈
]
0; π

4
[
, on a vu 1 ⩽ 2n

√
tan(x). Donc par croissance de l’intégrale,∫ π

2 −ε

π
4

1 dx ⩽ Ln (ε) ⇔ π

4 − ε ⩽ Ln (ee) .

Donc par passage à la limite quand ε→ 0+,

∀n ∈ N∗,
π

4 ⩽ Ln.

(f) Par ce qui précède, (Ln)n∈N∗ est minorée et décroissante. Donc par le théorème de convergence
monotone,

la suite (Ln)n∈N∗ converge.

De plus, pour tout n ∈ N∗, Ln ⩾ π
4 et Kn ⩾ 0. Donc

Ln + Kn ⩾
π

4 .

D’autre part, on a vu que (Kn)n∈N∗ est croissante et majorée donc converge également. Ainsi,
par somme, (Ln + Kn)n∈N∗ converge et par passage à la limite,

lim
n→+∞

(Kn + Ln) ⩾ π

4 .

3. Soit n ∈ N∗ et ε ∈
]
0; π

4
[
. Pour tout x ∈

[
0; π

2 − ε
]
, posons u = 2n

√
tan(x) i.e. x = arctan

(
u2n
)

car
x ∈

]
−π

2 ; π
2
[
. Alors, u ∈

î
0; 2n
»

tan
(

π
2 − ε

)ó
⊆ R+. La fonction u 7→ arctan

(
u2n
)

est C 1 sur R+ et
dx = 2nu2n−1

1+u4n du. Donc

Kn + Ln (ε) =
∫ π

4

0
2n
»

tan(x) dx +
∫ π

2 −ε

π
4

2n
»

tan(x) dx

=
∫ π

2 −ε

0
2n
»

tan(x) dx

=
∫ 2n
»

tan( π
2 −ε)

0
u

2nu2n−1

1 + u4n
du.

Ainsi,

∀ ε ∈
]
0; π

4

[
, Kn + Ln (ε) =

∫ 2n
»

tan( π
2 −ε)

0

2nu2n

1 + u4n
du.

Or quand ε→ 0, A = 2n
»

tan
(

π
2 − ε

)
→ +∞. Donc par passage à la limite quand ε→ 0,

∀n ∈ N∗, Kn + Ln = 2nHn.

15/18



Mathématiques PTSI, Maths C 2022 Junior Cor 2022/2023

4. On a vu précédemment que la suite (Kn + Ln)n∈N∗ converge. Notons ℓ sa limite et posons H = ℓ
2 .

Pour tout n ∈ N∗,
Hn

1/n
= Kn + Ln

2 −→
n→+∞

H ⇔ Hn

H/n
−→

n→+∞
1.

Conclusion,

∃H ∈ R, Hn ∼
n→+∞

H

n
.

Partie IV

1. Soit Φ la fonction définie, pour tout réel non nul x, par :

Φ(x) = x

ex−1 .

En reconnaissant un taux d’accroissement de la fonction exponentielle en 0 (ou par un mini-DL)

lim
x→0
x ̸=0

ex−1
x

= exp′(0) = 1.

Donc par continuité de la fonction inverse en 1, lim
x→0
x ̸=0

Φ(x) existe et

lim
x→0
x ̸=0

Φ(x) = 1.

Conclusion,

en posant Φ(0) = 1, la fonction Φ est prolongeable par continuité en 0.

Dans ce qui suit, on désigne encore par Φ la fonction ainsi prolongée. On admettra que la fonction Φ est
développable en série entière sur ]−2π; 2π[ : il existe (Bn)∈N ∈ RN telle que pour tout x ∈ ]−2π; 2π[,∑
n∈N

Bn
xn

n! converge et

∀x ∈ ]−2π; 2π[ , Φ(x) =
+∞∑
n=0

Bn
xn

n!

2. Notamment en évaluant en 0, on obtient

Φ(0) = B0
0! + 0 = B0.

Conclusion,
B0 = 1.

3. On remarque que, pour tout réel x de ]−2π; 2π[ :

x = (ex−1)
+∞∑
n=0

Bn
xn

n! .

Or on sait que pour tout x ∈ ]−2π; 2π[,

ex =
+∞∑
k=0

xk

k! ⇔ ex−1 =
+∞∑
k=1

xk

k! .
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Donc en utilisant (⋆) avec f = Φ, ∀k ∈ N, ak = Bk
k! , g : x 7→ ex−1, b0 = 0 et ∀k ∈ N∗, bk = 1

k! , on
obtient que

x =
+∞∑
n=0

cnxn

=
+∞∑
n=0

Ç
n∑

k=0
akbn−k

å
xn

= a0b0 +
+∞∑
n=1

Ç
n−1∑
k=0

Bk

k!
1

(n− k)! + 0
å

xn

=
+∞∑
n=1

Ç
1
n!

n−1∑
k=0

Bk

k!
n!

(n− k)!

å
xn

=
+∞∑
n=1

Ç
n−1∑
k=0

Ç
n

k

å
Bk

å
xn

n! .

Conclusion, pour tout x ∈ ]−2π; 2π[,

x =
+∞∑
n=1

Ç
n−1∑
k=0

Ç
n

k

å
Bk

å
xn

n! .

4. (a) Par la question précédente,

B0x +
+∞∑
n=2

Ç
n−1∑
k=0

Ç
n

k

å
Bk

å
xn

n! = x ⇔
+∞∑
n=2

Ç
n−1∑
k=0

Ç
n

k

å
Bk

å
= 0.

Donc par l’implication (⋆⋆) on a pour tout n ⩾ 2,

1
n!

n−1∑
k=0

Ç
n

k

å
Bk = 0 ⇔

n−1∑
k=0

Ç
n

k

å
Bk = 0.

En posant ñ = n− 1, pour tout ñ ⩾ 1,

ñ∑
k=0

Ç
ñ + 1

k

å
Bk = 0.

Conclusion, Montrer à l’aide de la relation (⋆⋆) que, pour tout entier naturel non nul n :

∀n ∈ N∗,
n∑

k=0

Ç
n + 1

k

å
Bk = 0.

Dès lors, pour tout n ⩾ 1, Ç
n + 1

n

å
Bn +

n−1∑
k=0

Ç
n + 1

k

å
Bk = 0.

Conclusion,

∀n ∈ N∗, (n + 1) Bn = −
n−1∑
k=0

Ç
n + 1

k

å
Bk.

17/18



Mathématiques PTSI, Maths C 2022 Junior Cor 2022/2023

(b) En prenant n = 1, on a

2B1 = −
Ç

2
0

å
B0 = −1 ⇔ B1 = −1

2 .

En prenant n = 2, on a

3B2 = −
Ç

3
0

å
B0 −

Ç
3
1

å
B1 = −1 + 3

2 = 1
2 .

Donc B2 = 1
6 et

2B2 = 1
3 .

Poursuivons, pour n = 3,

4B3 = −
Ç

4
0

å
B0 −

Ç
4
1

å
B1 −

Ç
4
2

å
B2 = −1 + 2− 6× 1

6 = 0.

Donc B3 = 0. Enfin, pour n = 4,

5B4 = −
Ç

5
0

å
B0 −

Ç
5
1

å
B1 −

Ç
5
2

å
B2 −

Ç
5
3

å
B3 = −1 + 5

2 − 10× 1
6 − 10× 0 = 3

2 −
5
3 = −1

6 .

D’où B4 = − 1
30 . Donc

4B4 = − 2
15 .

Conclusion,

2B2 = 1
3 = a3 et 4B4 = − 2

15 = −a5.

Je me refuse à dire que 3, 5, 7 étant premiers on en déduit que tous les nombres impairs le sont...

Ce problème fait intervenir des intégrales généralisées, pour lesquelles la fonction tangente permet
soit d’obtenir leur convergence, soit de les calculer. Cette très classique fonction trigonométrique
vérifie aussi une équation différentielle permettant d’obtenir son développement en série entière, où
interviennent les nombres de Benoulli, que l’on retrouve dans de nombreux autres développements
en série entière, ou encore dans la formule d’Euler Mac-Laurin, qui relie des sommes discrètes où
apparaissent également les dérivées successives de la fonction, et des intégrales.

Fin du corrigé
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