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Solution de l’exercice 1 :
1) Soit f une fonction homogène de degré r ∈ R. Puisque f est C1 ses dérivées partielles existent.

Notons ∂1f respectivement ∂2f sa dérivée partielle par rapport à sa première coordonnée, respec-
tivement par rapport à sa seconde coordonnée. Montrons que ∂1f est homogène de degré r − 1.
Puisque f est différentiable sur R2, on rappelle que pour tout (a, b) ∈ R2 il existe ε une fonction
de R2 → R vérifiant ε(h, k)→ 0 quand (h, k)→ (0, 0) et telle que pour tout (h, k) ∈ R2,

f(a+ h, b+ k) = f(a, b) + h∂1f(a, b) + k∂2f(a, b) + ‖(h, k)‖ ε(h, k), (1)

où ‖·‖ est une norme quelconque sur R2. Fixons (x, y) ∈ R2 et t > 0. La propriété (1) implique
en particulier, que pour tout h ∈ R,

f(t(x+ h), ty) = f(tx+ th, ty) = f(tx, ty) + th∂1f(tx, ty) + ‖t(h, 0)‖ ε1(th, 0),

avec ε1(u, v) → 0, lorsque (u, v) → (0, 0). Notez que la définition de ε1 dépend de (x, y) et de t
mais pas de h. En utilisant le fait que f est homogène de degré r, on obtient que

∀h ∈ R, trf(x+ h, y) = trf(x, y) + th∂1f(tx, ty) + ‖t(h, 0)‖ ε0(th, 0)
⇔ ∀h ∈ R, tr (f(x+ h, y)− f(x, y)) = th∂1f(tx, ty) + ‖t(h, 0)‖ ε0(th, 0).

Or (1) nous dit également que

∀h ∈ R, f(x+ h, y)− f(x, y) = h∂1f(x, y) + ‖(h, 0)‖ ε2(h, 0),

avec ε2(u, v)→ 0, lorsque (u, v)→ (0, 0). D’où,

∀h ∈ R, htr∂1f(x, y) + tr ‖(h, 0)‖ ε2(h, 0) = th∂1f(tx, ty) + ‖t(h, 0)‖ ε0(th, 0).

Donc en divisant par h 6= 0,

∀h ∈ R∗, tr∂1f(x, y) + tr
|h|
h
‖(1, 0)‖ ε2(h, 0) = t∂1f(tx, ty) + |h|

h
‖t(1, 0)‖ ε0(th, 0).

En passant à la limite lorsque h→ 0, on obtient que, pour tout (x, y) ∈ R2 et tout t > 0,

tr∂1f(x, y) = t∂1f(tx, ty)

et ainsi
∂1f(tx, ty) = tr−1∂1f(x, y)

c’est-à-dire que ∂1f est homogène de degré r − 1. Exactement de la même façon, on montre que
∂2f est homogène de degré r − 1.
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2) Soit f une fonction C1 de R2 dans R. Supposons que f soit homogène de degré r ∈ R. Pour
établir la formule souhaitée, nous allons dériver par rapport à t l’égalité d’homogénéité f(tx, ty) =
trf(x, y). Fixons (x, y) ∈ R2 et t > 0 (en fait il suffit de prendre t = 1 dans cette question). Par
(1), il existe une fonction ε1 tendant vers 0 en (0, 0) telle que pour tout h ∈ R,

f((t+ h)x, (t+ h)y) = f(tx+ hx, ty + hy)
= f(tx, ty) + hx∂1f(tx, ty) + hy∂2f(tx, ty) + ‖h(x, y)‖ ε1(hx, hy).

Puisque f est homogène de degré r, pour tout h ∈ R,

(t+ h)rf(x, y) = trf(x, y) + hx∂1f(tx, ty) + hy∂2f(tx, ty) + ‖h(x, y)‖ ε1(hx, hy).

Naturellement la fonction s 7→ sr est dérivable sur R de dérivée s 7→ rsr−1. Donc il existe une
fonction ε2 tendant vers 0 en 0 telle que pour tout h, (t+ h)r = tr + rtr−1h+ hε2(h). Ainsi, pour
tout h ∈ R,

∀h ∈ R,
(
rtr−1h+ hε2(h)

)
f(x, y) = hx∂1f(tx, ty) + hy∂2f(tx, ty) + ‖h(x, y)‖ ε1(hx, hy)

⇔ ∀h ∈ R∗,
(
rtr−1 + ε2(h)

)
f(x, y) = x∂1f(tx, ty) + y∂2f(tx, ty) + |h|

h
‖(x, y)‖ ε1(hx, hy).

Par conséquent, quand h→ 0,

rtr−1f(x, y) = x∂1f(tx, ty) + y∂2f(tx, ty).

En particulier lorsque t = 1, on conclut que pour tout (x, y) ∈ R2,

rf(x, y) = x∂1f(x, y) + y∂2f(x, y).

Montrons maintenant la réciproque. Soient f une fonction C1 de R2 dans R et r ∈ R tels que
pour tout (x, y) ∈ R2,

rf(x, y) = x∂1f(x, y) + y∂2f(x, y). (2)
On veut montrer que f est homogène de degré r. Fixons (x, y) ∈ R2 et posons

∀t ∈ R∗+, g(t) := f(tx, ty)− trf(x, y). (3)

L’objectif est de montrer que g est nulle sur R∗+ ce qui est bien sûr équivalent au fait que f est
homogène de degré r. Puisque l’information en notre possession (2) concerne les dérivées partielles
de f il est assez naturel de dériver g. Fixons t ∈ R∗+. Comme précédemment, on écrit que pour
tout h ∈ R,

g(t+ h) = f(tx, ty) + hx∂1f(tx, ty) + hy∂2f(tx, ty) + ‖h(x, y)‖ ε1(hx, hy)
− trf(x, y)− rtr−1hf(x, y)− hε2(h)f(x, y)

= g(t) + h

t
(tx∂1f(tx, ty) + ty∂2f(tx, ty)− rtrf(x, y))

+ ‖h(x, y)‖ ε1(hx, hy)− hε2(h)f(x, y).

En utilisant (2) au point (tx, ty), on trouve que pour tout h ∈ R,

g(t+ h) = g(t) + h

t
(rf(tx, ty)− rtrf(x, y)) + ‖h(x, y)‖ ε1(hx, hy)− hε2(h)f(x, y)

= g(t) + h

t
rg(t) + ‖h(x, y)‖ ε1(hx, hy)− hε2(h)f(x, y).
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Il est clair que la fonction h 7→ h
t
rg(t) est linéaire (et continue puisque la dimension est finie).

Donc la fonction g est différentiable/dérivable sur R∗+ et

∀t ∈ R∗+, g′(t) = r

t
g(t).

On rappelle que si I est un intervalle de R et a : I → R une fonction continue sur I alors g est
une solution de l’équation g′ = ag sur I si et seulement s’il existe C une constante telle que pour
tout t ∈ I, g(t) = C eA(t) où A est une primitive de a. Ici la fonction t 7→ r/t est continue sur R∗+
et dont une primitive est donnée par t 7→ r ln(t). Donc il existe C ∈ R telle que

∀t ∈ R∗+, g(t) = C er ln(t) = Ctr.

Or par définition de g (cf (3)),
C = g(1) = 0.

On conclut que g est nulle sur R∗+ ce qui implique que f est homogène de degré r.
3) Il est possible de résoudre cette question de la même façon que la question 1, en poussant le

développement de Taylor à l’ordre 2,

f(a+ h, b+ k) = f(a, b) + h
∂f

∂x
(a, b) + k

∂f

∂y
(a, b)

+ h2

2
∂2f

∂x2 (a, b) + hk
∂2f

∂x∂y
(a, b) + k2

2
∂2f

∂y2 (a, b) + ‖(h, k)‖2 ε(h, k).

Mais soyons plus astucieux. Soit f une fonction de classe C2 homogène de degré r. Par la question
1, la fonction f1 : (x, y) 7→ ∂1f(x, y) est homogène de degré r − 1 et de classe C1 (car f est C2).
Donc d’après la question 2, pour (x, y) ∈ R2 fixé, on a

x∂1f1(x, y) + y∂2f1(x, y) = (r − 1)f1(x, y),

c’est-à-dire
x
∂2f

∂x2 (x, y) + y
∂2f

∂x∂y
(x, y) = (r − 1)∂f

∂x
(x, y). (4)

De même on a
x
∂2f

∂x∂y
(x, y) + y

∂2f

∂y2 (x, y) = (r − 1)∂f
∂y

(x, y). (5)

En multipliant (4) par x et (5) par y et en sommant les deux égalités obtenues, on trouve que

x2∂
2f

∂x2 (x, y) + 2xy ∂
2f

∂x∂y
(x, y) + y2 ∂

2f

∂x∂y
(x, y) = (r − 1)

(
x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y)

)
.

Puisque f est homogène de degré r, on utilise à nouveau la question 2 pour conclure que

x2∂
2f

∂x2 (x, y) + 2xy ∂
2f

∂x∂y
(x, y) + y2 ∂

2f

∂x∂y
(x, y) = (r − 1)rf(x, y).
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Solution de l’exercice 2 :
1) Pour tout t ∈ [0, 1], on a t2 6 t. Donc pour tout t ∈ [0, 1] et tout n ∈ N,

0 6

(
1 + t2

2

)n
6
(1 + t

2

)n
.

En intégrant cette inégalité, on obtient que pour tout n ∈ N,

0 6 an 6

[
(1 + t)n+1

2n(n+ 1)

]t=1

t=0
= 2n+1

2n(n+ 1) = 2
n+ 1

et par encadrement, il est clair que an → 0 lorsque n→ +∞.
2) Soit (δn)n>0 une suite dans ]0, 1[. Puisque pour tout n ∈ N, t 7→

(
1+t2

2

)n
est croissante sur R+,

on a pour tout n ∈ N et tout t ∈ [1− δn, 1],(
1 + t2

2

)n
>

(
1 + (1− δn)2

2

)n
.

En intégrant, cette inégalité entre [1− δn, 1],

∫ 1

1−δn

(
1 + t2

2

)n
dt >

(
1 + (1− δn)2

2

)n ∫ 1

1−δn

1 dt = δn

(
1 + (1− δn)2

2

)n
.

De plus pour tout n ∈ N,(
1 + (1− δn)2

2

)n
=
(

1− δn + δ2
n

2

)n
= exp

(
n ln

(
1− δn + δ2

n

2

))
.

Posons u := −δn + δ2
n

2 . On rappelle que ln(1 + u) =
u→0

u+ o(u). Ici puisque limn→+∞ δn = 0, on a
bien limn→+∞ u = 0. De plus u ∼

n→+∞
−δn. Par conséquent o(u) =

n→+∞
o(δn). On en déduit que

ln
(

1− δn + δ2
n

2

)
=

n→+∞
−δn + δ2

n

2 + o(δn) =
n→+∞

−δn + o(δn).

Conclusion : (
1 + (1− δn)2

2

)n
=

n→+∞
exp (−nδn + o(nδn)) .

3) Posons pour tout n > 2, δn = 1/n (éventuellement δ0 = δ1 = 1/2 si l’on souhaite définir δn sur
N). Cette suite (δn)n∈N est bien dans ]0, 1[ et tend bien vers 0 lorsque n → +∞. Puisque pour
tout n ∈ N et tout t ∈ [0, 1− δn],

(
1+t2

2

)n
> 0, on en déduit que pour tout n ∈ N,

an >
∫ 1

1−δn

(
1 + t2

2

)n
dt.

Donc par la question précédente, pour tout n ∈ N,

an > δn

(
1 + (1− δn)2

2

)n
> 0. (6)
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Or toujours par la question précédente,(
1 + (1− δn)2

2

)n
=

n→+∞
exp (−1 + o(1))

Donc par continuité de la fonction exponentielle,
(

1+(1−δn)2

2

)n
→ e−1 quand n→ +∞. Donc

δn

(
1 + (1− δn)2

2

)n
∼

n→+∞

e−1

n
.

Or la suite ( e−1

n
)n∈N∗ est de signe constant et la série associée est divergente donc la série∑

n>0 δn
(

1+(1−δn)2

2

)n
diverge également. Ainsi par (6) et le théorème de comparaison de séries

à termes positifs, on en déduit que ∑n∈N an diverge.
4) Par la question précédente, la série ∑n∈N an diverge. Par conséquent ρ 6 1. Mais par la question

1, on a aussi vu que pour tout n > 1, 0 6 an 6 2/(n+ 1). Donc ρ est plus grand que le rayon de
convergence de la série entière ∑n>0

2
n+1z

n. Or

2
n+ 2

n+ 1
2 −→

n→+∞
1.

Donc par le théorème de d’Alembert pour les séries entières, on en déduit que le rayon de conver-
gence de ∑n>0

2
n+1z

n est égal à 1 et par ce que nous avons dit précédemment, ρ > 1. Finalement
on conclut que ρ = 1.

5) La suite (an)n>0 est positive (cf question 1) donc ((−1)nan)n∈N est alternée. De plus pour tout
n > 0, comme 1+t2

2 6 1, on a (
1 + t2

2

)n+1

6

(
1 + t2

2

)n
. (7)

En intégrant cette inégalité, on vérifie bien que (an)n∈N est une suite décroissante et par la question
1, elle converge vers 0. Ainsi par le critère de Leibniz, la série numérique ∑n∈N(−1)nan converge.

6) Soit t ∈ [0, 1[. La série ∑n∈N fn(t) est une série géométrique de raison (−1)1+t2
2 dont la valeur

absolue est strictement plus petite que 1 puisque t < 1. Donc la série ∑n∈N fn(t) converge et de
plus pour tout p ∈ N et tout t ∈ [0, 1[,

Rp(t) =
+∞∑

n=p+1
fn(t) = (−1)p+1

(
1 + t2

2

)p+1 +∞∑
n=0

fn(t) = (−1)p+1
(

1 + t2

2

)p+1 1
1 + 1+t2

2
.

Or limt→1
t<1
|Rp(t)| = 1/2. Donc pour tout ε > 0, il existe αp > 0 tel que pour tout t ∈ [1− αp, 1[,

|Rp(t)| > 1/2 − ε. En particulier pour ε = 1/4 on en déduit que l’on peut au moins trouver un
réel t ∈ [0, 1[ tel que |Rp(t)| > 1/4 et donc pour tout p ∈ N,

sup
t∈[0,1[

|Rp(t)| >
1
4 .

Notamment la suite
(
‖Rp‖ ∞[0,1[

)
p∈N

ne converge par vers 0, c’est-à-dire que la série ∑n∈N fn ne

converge pas uniformément sur [0, 1[.

5
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7) Fixons a ∈]0, 1[ et montrons que la série ∑n∈N fn converge uniformément sur [0, a]. Par ce qui
précède, on sait que pour tout t ∈ [0, a] et p ∈ N, le reste d’ordre p de la série ∑n∈N fn(t) est
donné par

Rp(t) = (−1)p+1
(

1 + t2

2

)p+1 1
1 + 1+t2

2
.

Par croissance de la fonction t 7→ 1+t2
2 sur R+, on a pour tout p ∈ N et tout t ∈ [0, a], d’une part(

1+t2
2

)p+1
6
(

1+a2

2

)p+1
et d’autre part 1

1+ 1+t2
2

6 2
3 . Par conséquent,

‖Rp‖ ∞[0,a]
6

(
1 + a2

2

)p+1 2
3 −→p→+∞

0,

car 1+a2

2 < 1. Ceci signifie que ∑n∈N fn converge uniformément sur [0, a]. Donc par le théorème
d’interversion du signe somme et de l’intégrale (les fn sont toutes Riemann-intégrables sur [0, a]
car continues), on en déduit que ∑+∞

n=0 fn est Riemann-intégrable sur [0, a] et
+∞∑
n=0

∫ a

0
fn(t) dt =

∫ a

0

+∞∑
n=0

fn(t) dt =
∫ a

0

1
1 + 1+t2

2
dt

car on rappelle que ∑n∈N fn(t) est une série géométrique. Donc
+∞∑
n=0

∫ a

0
fn(t) dt =

∫ a

0

2
3 + t2

dt = 2
3

∫ a

0

1
1 +

(
t√
3

)2 dt = 2
√

3
3 arctan

(
a√
3

)
. (8)

8) On sait par la question 5 que la série ∑n∈N(−1)nan converge. De plus pour tout a ∈]0, 1[,
+∞∑
n=0

(−1)nan =
+∞∑
n=0

(∫ a

0
fn(t) dt+

∫ 1

a
fn(t) dt

)
.

Or nous avons vu dans la question précédente que ∑n∈N
∫ a

0 fn(t) dt converge. Donc il en va de
même pour ∑n∈N

∫ 1
a fn(t) dt. Ainsi, par (8), pour tout a ∈ [0, 1[,

+∞∑
n=0

(−1)nan = 2
√

3
3 arctan

(
a√
3

)
+

+∞∑
n=0

∫ 1

a
fn(t) dt. (9)

Fixons a ∈ [0, 1[ et posons pour tout p ∈ N,

S(a)
p =

p∑
n=0

∫ 1

a
fn(t) dt, S(a) =

+∞∑
n=0

∫ 1

a
fn(t) dt, R(a)

p = S(a) − S(a)
p .

La suite
(∫ 1
a fn(t) dt

)
n>0

=
(
(−1)n

∫ 1
a

(
1+t2

2

)n
dt
)
n>0

est alternée et en intégrant (7) entre [a, 1],
on en déduit que la suite

(∫ 1
a

(
1+t2

2

)n
dt
)
n>0

est décroissante. Notez au passage que, pour tout
n ∈ N,

0 6
∫ 1

a

(
1 + t2

2

)n
dt 6 an,

que donc par la question 1, la suite
(∫ 1
a

(
1+t2

2

)n
dt
)
n>0

tend vers 0 et que l’on pouvait aussi
invoquer le critère de Leibniz pour montrer la convergence de la série ∑n∈N

∫ 1
a fn(t) dt. Cette

6



Année universitaire 2016-2017

remarque n’est pas anodine puisque la démonstration de ce dernier résultat repose sur le fait que
les deux suites (S(a)

2p )p∈N et (S(a)
2p+1)p∈N sont adjacentes. N’hésitez pas à consulter à nouveau cette

démonstration. Nous allons ici remontrer que (S(a)
2p )p∈N est décroissante et (S(a)

2p+1)p∈N croissante.
Soit p ∈ N, on a

S
(a)
2p+2 = S

(a)
2p +

∫ 1

a

(
1 + t2

2

)2p+2

dt−
∫ 1

a

(
1 + t2

2

)2p

dt

Or la suite
(∫ 1
a

(
1+t2

2

)n
dt
)
n>0

est décroissante donc S(a)
2p+2 6 S

(a)
2p pour tout p ∈ N. Donc (S(a)

2p )p∈N
est décroissante. Or, puisque (S(a)

2p )p∈N est une suite extraite de (S(a)
p )p∈N, elle converge également

vers S(a). On en déduit donc que pour tout p ∈ N,

S(a) 6 S
(a)
2p .

De la même façon, on peut montrer que pour tout p ∈ N,

S(a) > S
(a)
2p+1.

En particulier pour p = 0,
S

(a)
1 6 S(a) 6 S

(a)
0 .

Or d’une part,
S

(a)
1 = −

∫ 1

a

1 + t2

2 dt > −
∫ 1

a
1 dt = −(1− a),

Et d’autre part,
S

(a)
0 =

∫ 1

a
1 dt = 1− a.

D’où,
−(1− a) 6 S(a) 6 1− a.

En particulier lorsque a→ 1, on a S(a) → 0. Donc en passant à la limite lorsque a→ 1 dans (9),
(par continuite de l’arc-tangente),

+∞∑
n=0

(−1)nan = 2√
3

arctan
(

1√
3

)
.
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