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Mathématiques 1610

Corrigé du devoir maison

Solution de ’exercice 1 :

1) Soit f une fonction homogene de degré r € R. Puisque f est C! ses dérivées partielles existent.
Notons 0, f respectivement O, f sa dérivée partielle par rapport a sa premiere coordonnée, respec-
tivement par rapport a sa seconde coordonnée. Montrons que 0; f est homogene de degré r — 1.
Puisque f est différentiable sur R?, on rappelle que pour tout (a,b) € R? il existe € une fonction
de R* — R vérifiant e(h, k) — 0 quand (h, k) — (0,0) et telle que pour tout (h, k) € R?,

Fla+hb+k) = f(a,b) + hdf(a,b) + kdaf(a,b) + ||(h, k)| e(h, k), (1)

olt ||| est une norme quelconque sur R?. Fixons (z,y) € R? et ¢t > 0. La propriété (1) implique
en particulier, que pour tout h € R,

[tz +h),ty) = f(tz +th,ty) = f(tz, ty) + thoi f(tx, ty) + [[t(h, 0) e1(th, 0),

avec €1(u,v) — 0, lorsque (u,v) — (0,0). Notez que la définition de £; dépend de (z,y) et de t
mais pas de h. En utilisant le fait que f est homogene de degré r, on obtient que

Vh € R, t"f(x+h,y) =t"f(x,y) + thoLf (tz,ty) + |[t(h,0)| eo(th,0)
& VheR,  t"(f(z+hy) - flz,y) =tho f(tz, ty) + [[t(h, 0) €o(th, 0).

Or (1) nous dit également que
VheR,  flz+hy) = f(z,y) =hof(z,y) + [[(h,0)] £2(h, 0),
avec go(u,v) — 0, lorsque (u,v) — (0,0). D’ou,
Vh € R, ht"oy f(x,y) +t" ||(h,0)]| e2(h, 0) = tho, f (tz, ty) + ||t(h, 0)| co(th, 0).

Donc en divisant par h # 0,
h h
VAR, 10, fy) + 0 (1,0)] <a(h,0) = 104 f(t. ty) + ) 4(1,0) zo(th. O).

En passant a la limite lorsque h — 0, on obtient que, pour tout (z,y) € R? et tout ¢ > 0,

tralf(xa y) = t81f<t$, ty)
et ainsi
Ouf(ta, ty) =" 'O f(x,y)

c’est-a-dire que 0, f est homogene de degré r — 1. Exactement de la méme facon, on montre que
Oof est homogene de degré r — 1.
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2) Soit f une fonction C!' de R? dans R. Supposons que f soit homogene de degré r € R. Pour

établir la formule souhaitée, nous allons dériver par rapport a t 1'égalité d’homogénéité f(tx,ty) =
t" f(x,y). Fixons (z,y) € R? et ¢t > 0 (en fait il suffit de prendre ¢ = 1 dans cette question). Par
(1), il existe une fonction e, tendant vers 0 en (0,0) telle que pour tout h € R,

f((t+h)x,(t+ h)y) = f(tz + hz,ty + hy)
= f(tw,ty) + hady f(tx, ty) + hyOs f (tx, ty) + ||h(z, y)|| e1(ha, hy).

Puisque f est homogene de degré r, pour tout h € R,

(t+h) flx,y) =t f(z,y) + hao, f(tx, ty) + hyoa f (tz, ty) + ||h(x, y)| €1 (hz, hy).

Naturellement la fonction s — s” est dérivable sur R de dérivée s — rs"L. Donc il existe une
fonction &, tendant vers 0 en 0 telle que pour tout h, (t + h)" = t" + rt"~*h + heo(h). Ainsi, pour
tout h € R,

Vh € R, <rtr_1h + h€2<h)) f(z,y) = hzoy f(tx, ty) + hyda f (tx, ty) + |h(z, )| €1 (hz, hy)
||

& VheR, (rtH + 52(h>> fla,y) = 20 f(tz, ty) + yda f(tw, ty) + == |z, y) || er(ha, hy).

Par conséquent, quand h — 0,
rt" " (2, y) = 200 f(te, ty) + yda f (t, ty).
En particulier lorsque ¢ = 1, on conclut que pour tout (z,y) € R?,
rf(z,y) = x0f(z,y) +ydaf(x,y).

Montrons maintenant la réciproque. Soient f une fonction C' de R? dans R et r € R tels que
pour tout (z,y) € R?

rf(z,y) =z0f(z,y) +yoaf(z,y). (2)
On veut montrer que f est homogene de degré r. Fixons (z,y) € R? et posons
VEeRL,  g(t) = [tz ty) — 1" f(z,y). (3)

L’objectif est de montrer que g est nulle sur R* ce qui est bien sfir équivalent au fait que f est
homogene de degré r. Puisque 'information en notre possession (2) concerne les dérivées partielles
de f il est assez naturel de dériver g. Fixons ¢t € R. Comme précédemment, on écrit que pour
tout h € R,

g(t+h) = f(te, ty) + haOy f(tx, ty) + hyda f (tx, ty) + [|h(z, y)| e1(hx, hy)
- trf(l'7y) - rtr_lhf(xv y) - h€2(h)f($, y)

h
= g(t) + 5 (w0, f(tz, ty) + tydaf(tz, ty) — rt" f(2,y))
+ 1Az, y)ll ex(ha, hy) — hea(h) f (2, y).
En utilisant (2) au point (tz,ty), on trouve que pour tout h € R,

g(t+h)=g(t) + IZ (rf(t, ty) —ri" f(z,y)) + |h(z, y)l| e1(ha, hy) — hea(h) f(2,y)

=g(t) + ?Tg(t) + |7z, y)ll er(he, hy) — hea(h) f(, y)-
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Il est clair que la fonction h +— Zrg(t) est linéaire (et continue puisque la dimension est finie).
Donc la fonction g est différentiable/dérivable sur R* et

VieR;, () = Lglt).

On rappelle que si I est un intervalle de R et a : I — R une fonction continue sur I alors g est
une solution de l’équation g = ag sur [ si et seulement s’il existe C' une constante telle que pour
tout ¢ € I, g(t) = C e ol A est une primitive de a. Ici la fonction ¢ — 7/t est continue sur R
et dont une primitive est donnée par ¢ — rIn(¢). Donc il existe C' € R telle que

Ve R,  g(t)=Ce™ =Cr.

Or par définition de g (cf (3)),
C=g(1)=0.

On conclut que g est nulle sur R% ce qui implique que f est homogene de degré r.

Il est possible de résoudre cette question de la méme fagon que la question 1, en poussant le
développement de Taylor a l'ordre 2,
0 0
fla+h,b+k) _f(a,b)+haf( b)+ka§( ,b)
h2 aZf azf k2 82f 9
+ Eﬁ( ;) + hka ay (a,b) + 5873/2(@’ b) + [|[(h, k)||" e(h, k).

Mais soyons plus astucieux. Soit f une fonction de classe C? homogene de degré r. Par la question
1, la fonction f; : (z,y) — 01 f(x,y) est homogene de degré r — 1 et de classe C* (car f est C?).
Donc d’apres la question 2, pour (z,y) € R? fixé, on a

xalfl(xvy) +y82f1(x,y) = (T‘ - l)fl(xvy)’

c’est-a-dire

0*f *f of
=(r—1)=— : 4
z55 (@, y)+yaxay(w,y) (r=1)5"(z,y) (4)
De méme on a 82f o/ of
5wy (z,9) +ya 5 (@ y) = (r— 1)5@(%% (5)
En multipliant (4) par x et (5) par y et en sommant les deux égalités obtenues, on trouve que

2 2
w4+ g = (= 1) (a5 ) + 5 ).

0xdy

0*f
2 W(%y) + 2wy

Puisque f est homogene de degré r, on utilise a nouveau la question 2 pour conclure que

2 2 82
a ‘};(x y)+2xya g (z, y)+y28xgy(:r,y) = (r—Drf(x,y).
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Solution de ’exercice 2 :

)

Pour tout ¢ € [0,1], on a t* < t. Donc pour tout ¢ € [0,1] et tout n € N,

2\ " n
0< (LT <(1+t) .
2 2

En intégrant cette inégalité, on obtient que pour tout n € N|

(1 + Z€>rz—i-1‘|t1 2n+1 9

0<a, < |—7 | = —
S \[2”(n+1) 2(n+1) n+l

t=0

et par encadrement, il est clair que a,, — 0 lorsque n — +o0.

Soit (9, )n=0 une suite dans ]0, 1[. Puisque pour tout n € N, t (#)n est croissante sur R,

on a pour tout n € N et tout ¢t € [1 — §,, 1],

(14;152)" N (1 + (12— 6n)2>”.

En intégrant, cette inégalité entre [1 — 4, 1],

L1442\ 14+ (1=6,)"\" /! 14+ (1=6)"\"
> | ———+ 1dt =6, [ ————L
/1—5n< 2 ) a ( 2 /1—5n dr=0 2

De plus pour tout n € N,

1+ (1-6,)%\" 2\" 52
(2 = 1—5n+§ =exp|(nln 1—5n+? )

Posons u := —¢,, + %. On rappelle que In(1 + u) =, ut o(u). Ici puisque lim, ;. 6, =0, on a
u—
bien lim,, ., u = 0. De plus u o~ —0,,. Par conséquent o(u) = 0(d,). On en déduit que
52 62
In (1 —0p + 2) T —0n + 5 + 0(0,,) e —dp + 0(0,).
Conclusion :

2 —~+oo

<1+<1—5>2> —exp(—nbu +ondy).

Posons pour tout n > 2, 6, = 1/n (éventuellement 6y = §; = 1/2 si 'on souhaite définir 9,, sur
N). Cette suite (d,)nen est bien dans |0, 1] et tend bien vers 0 lorsque n — +o00. Puisque pour

tout n € N et tout ¢ € [0,1 — d,,], (1?2)” > 0, on en déduit que pour tout n € N,

114+ 2\"
an>/ ( + > dt.
1-6p 2

Donc par la question précédente, pour tout n € N,

an > 6, <1+(1_5")2>n >0. (6)

2
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Or toujours par la question précédente,

<1+(1—5n>2>n — exp(—1+o0(1))

2 n——+00

14+(1—6,)2
2

b (1 + (1= 5n)2>" Lo

2 n—+oco N

n
Donc par continuité de la fonction exponentielle, ( ) — e ! quand n — +o00. Donc

. -1 . s . s . s .
Or la suite (“—~)nen- est de signe constant et la série associée est divergente donc la série

2\ "N
> n=00n (W) diverge également. Ainsi par (6) et le théoréeme de comparaison de séries
a termes positifs, on en déduit que Y,y a, diverge.

4) Par la question précédente, la série Y, oy a,, diverge. Par conséquent p < 1. Mais par la question
1, on a aussi vu que pour tout n > 1, 0 < a, < 2/(n+ 1). Donc p est plus grand que le rayon de

convergence de la série entiere 3,5 nilz”. Or

2 n+1 .
n+2 2 n—-+o00

1.

Donc par le théoreme de d’Alembert pour les séries entieres, on en déduit que le rayon de conver-
gence de >, %Hz" est égal a 1 et par ce que nous avons dit précédemment, p > 1. Finalement
on conclut que p = 1.

5) La suite (a,)ns0 est positive (cf question 1) donc ((—1)"ay,)nen est alternée. De plus pour tout

1+¢2
1+t2 n+1 1+t2n
iy .

n}O,commeTgl,ona

En intégrant cette inégalité, on vérifie bien que (a,,),en est une suite décroissante et par la question

1, elle converge vers 0. Ainsi par le critére de Leibniz, la série numérique Y-, cn(—1)"a, converge.

1+¢2
2

6) Soit t € [0,1]. La série Y, cn fn(t) est une série géométrique de raison (—1) dont la valeur
absolue est strictement plus petite que 1 puisque ¢ < 1. Donc la série Y, cn fn(t) converge et de
plus pour tout p € N et tout ¢ € [0, 1],

RS L+ 2\ 1+2\" 1
Bpt) = X fult) = (~1p" ( Fl ) > fult) = (171 ( 2 ) Tns
n=p+1 n=0 1+ =5
Or limt_>11 |R,(t)| = 1/2. Donc pour tout € > 0, il existe o, > 0 tel que pour tout ¢ € [1 — oy, 1],
t<

|R,(t)] > 1/2 — e. En particulier pour € = 1/4 on en déduit que 'on peut au moins trouver un
réel t € [0, 1] tel que |R,(t)| = 1/4 et donc pour tout p € N,

sup |R,(t)] >
tel0,1]

|

: s 1 -
Notamment la suite (HRpH[éxi[) . ne converge par vers 0, c’est-a-dire que la série Y,y fn ne

converge pas uniformément sur [0, 1].
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7) Fixons a €]0,1[ et montrons que la série Y, cy fn converge uniformément sur [0,a]. Par ce qui
précede, on sait que pour tout ¢t € [0,a] et p € N, le reste d’ordre p de la série 3,y fu(t) est
donné par

1+2\"™
2 1+ B2

&@AAW%

12

Par croissance de la fonction ¢ — 1+ sur R, on a pour tout p € N et tout t € [0,a], d'une part

(#)pﬂ < (”T“) P ot dvantre part

2 .
" +t2 < 3. Par conséquent,

1+a2\"" 2
o L | —m - —
“RMMM\< 2 ) 3 p e
1

car +T“2 < 1. Ceci signifie que Y, cy fn converge uniformément sur [0, a]. Donc par le théoréme
d’interversion du signe somme et de l’intégrale (les f,, sont toutes Riemann-intégrables sur [0, a]
car continues), on en déduit que >t £, est Riemann-intégrable sur [0, a] et

;i’::;/oa falt)dt = /aiofn /Oa 1 +11+t2 dt

car on rappelle que 3, cn fn(t) est une série géométrique. Donc

X ra a 9 2 ra 1 23 a
nt@:/;——&:f — _dt=""arct — . 8
72)/0 f ( ) 0 3 + t2 3 0 1+ (%)2 3 arctan (\/§> ( )

8) On sait par la question 5 que la série 3, cn(—1)"a, converge. De plus pour tout a €]0, 1],

+oo

Y (=1)an = i (/0 Fat)dt + /a1 £a(1) dt) .

n=0

Or nous avons vu dans la question précédente que Y,cn fo fo(t) dt converge. Donc il en va de
méme pour Y,.cy [1 f,(t) dt. Ainsi, par (8), pour tout a € [0, 1],

2v3 arctan( ) + Z / £alt) ()

+oo

Z(_l)nan =

n=0

Fixons a € [0, 1] et posons pour tout p € N,

p 1 +o00 1
=3 [ A, U= o, B =50 - s
n=0 a n=0 a

. 1 n
La suite ([, fa(t)dt) . = ((-1) fn
on en déduit que la suite ( fal (1“2) dt) ~o est décroissante. Notez au passage que, pour tout
n €N,

114 ¢2
/( + > dt < a,,

que donc par la question 1, la suite ( I (1§t2>ndt) 0 tend vers 0 et que l'on pouvait aussi

1 ( 1+t2)” >n>0 est alternée et en intégrant (7) entre [a, 1],

invoquer le critere de Leibniz pour montrer la convergence de la série ), oy fal fn(t)dt. Cette
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remarque n’est pas anodine puisque la démonstration de ce dernier résultat repose sur le fait que
les deux suites (Ség) )pen et (Ségll)peN sont adjacentes. N’hésitez pas a consulter a nouveau cette

démonstration. Nous allons ici remontrer que (Ség))peN est décroissante et (Ségll)peN croissante.

Soit p € N, on a
a a 1 t2 2p+2 1/1 t2 2p
S5, = ()+/< il ) dt — / ; dt

Or la suite ( I (%)n dt) _, o8t décroissante donc Sé;lﬂ < Séz) pour tout p € N. Donc (Séz))peN

est décroissante. Or, puisque (Ség))peN est une suite extraite de (SZ(,“))pGN, elle converge également
vers S(®. On en déduit donc que pour tout p € N,

S@ < 85

b -
De la méme facon, on peut montrer que pour tout p € N,
S > Sk,

En particulier pour p = 0,
Sl < 5@ < gl

11 2
Sf“):—/ pa /ldt —(1—a),

Or d’une part,

Et d’autre part,
sS40 = / 1dt=1—a.

D’ou,
—(1-a)<SW <1 —a.

En particulier lorsque a — 1, on a S(® — 0. Donc en passant & la limite lorsque a — 1 dans (9),
(par continuite de l'arc-tangente),

—+00

3 (1) = \% arctan (%) |



